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WEAK CONVERGENCE OF INTEGRANDS AND THE YOUNG MEASURE
REPRESENTATION*

DAVID KINDERLEHRERf AND PABLO PEDREGAL

Abstract. Validity of the Young measure representation is useful in the study of microstructure of
ordered solids. Such a Young measure, generated by a minimizing sequence of gradients converging weakly
in Lp, often needs to be evaluated on functions of the pth power polynomial growth. A sufficient condition
for this evaluation is given in terms of the variational principle. The principal result, Theorem 2.1, concerns
lower semicontinuity of functionals integrated over arbitrary sets. The question arose in the numerical
analysis of equilibrium configurations of crystals with rapidly varying microstructure, whose specific applica-
tion is treated elsewhere. Several applications are given. Of particular note, Young measure solutions of an
evolution problem are found.
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1. Introduction. For a lower semicontinuous functional of the form

O(v)= fn q(Vv) dx, ve HI’v(’; m),

the convergence property

O(u’)-->O(u) and u k--> u in HI’(YI; m) weakly

for a particular sequence (u k) does not by itself inform us of the behavior of the
sequence ((Vu)). Here we show that if is nonnegative and has polynomial growth,
then ((Vu)) is weakly convergent in L1(12) to q(Vu). A consequence is that the
Young measure generated by (Vu) represents the weak limit of a sequence ($(V u))
when q is dominated by , which we explain below. Our interest in this question arose
in the attempt to estimate convergence properties of numerical methods for functionals
which are not lower semicontinuous, where q plays the role of the relaxed density.
Validity of the Young measure representation is useful knowledge in the study of the
microstructure of ordered solids; cf. Ball and James [5], [6], Chipot and Kinderlehrer
[10], Ericksen [18]-[29], Fonseca [31]-[34], James [35], James and Kinderlehrer [36],
Kinderlehrer [37], Kinderlehrer and Pedregal [38], Matos [41], and Pedregal [45],
[46]. We do not give any explicit applications to the numerical analysis in this paper
except to say that our results confirm the validity of the Young measure representation
for the limits of the approximations generated by finite element methods when the
energy density has appropriate polynomial growth at infinity. We refer to [9], 11]-[ 14]
for discussions of these developments.

The proof of this and related facts is based on a method of Acerbi and Fusco 1]
and subsequent application of the Dunford and Pettis criterion for weak convergence

* Received by the editors July 9, 1990; accepted for publication (in revised form) May 8, 1991. This
research was supported by the National Science Foundation and the Air Force Office of Scientific Research
through DMS87-18881 and the Army Research Office through DAAL03 88 K0110 at the University of
Minnesota.

t Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
Department de Matemfitica Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Research Group on Transitions and Defects in Ordered Materials, Department of Mathematics and

Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.



2 DAVID KINDERLEHRER AND PABLO PEDREGAL

in L1. Weak convergence of a sequence (fk) in L is sufficient but not necessary to
give sense to the Young measure representation. Ball and Zhang [8] use the Chacon
biting lemma to study this question under hypotheses weaker than ours.

The proofs of our results are in 1-3. Three applications are given in 4-6.
The example of constraint management in 4 is a generalization of a result of Miiller
[44]; cf. also Zhang [51]. In 5 we give a discussion of the Young measure representa-
tion when surface energies are present in the system; cf. [39]. Both of these applications
use the convergence property above, or (1.3) below, without assuming that the func-
tional is being driven to a minimum. An application to an evolution problem is given
in 6, where it is shown how Young measure solutions may be found. This builds on
some recent work of Slemrod [47]. Useful discussions of Young measures are given
by Young [50] and Tartar [48], [49], and more recently by Ball [3] and Evans [30].
One consequence of our considerations is that they lead to a notion of Young measures
generated by functions whose gradients are in Lp for finite p [45]. We begin with a
description of our principal results. Below, denotes the m x n matrices.

THEOREM 1.1. Ler q be continuous and quasi-convex and satisfy

(1.1) O<-_q(A)<-_C(I+IAIP), A,
where 1 <- p <- oc. Suppose that

(1.2) u k
__) U in H1,p f weakly and

(1.3) Ia q(Vu) dx= lim_, ffa q(Vu) dx.

Then there is a subsequence (not relabeled) of the (u) such that

#(Vuk)-- q(VU) in L’(f) weakly.

THEOREM 1.2. Let p be continuous and quasi-convex and satisfy

where 1 <= p <= oo. If u - u in H’p f weakly, then

(1.4) f q(Vu)dx-<_lim infko f ((Vu k) dx
E dE

for every (measurable) E c f.
We wish to discuss Theorem 1.2 briefly, prior to giving the proof. We shall give a

direct proof based on the method of Acerbi and Fusco [1]. This will provide both an
efficient self-contained proof and will expose the limitations of the method.

The case of Theorem 1.2 with p =c is automatic since {((vt/k)} are uniformly
bounded in this case. Indeed, choose M with the property

II(Vu)ll(.)-<_M for all k.

Given E, let U be an open neighborhood of E with IU-E < e. Now U is the union
of countably many cubes {D;} with disjoint interiors and for each D;, (1.4) holds 15],
[16], [45]. Hence

,(Vu) dx Z  (Vu) ax

_-< Y lim inf y q(V t/k) dx

_-<lim inf f q(Vu) dx.
u
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Finally. we have that

IE q(V u) dx <= lim inf fE q(Vu k) dx + 2Me.

Thus, if Uk-* U in HI’() weak*, then

(1.5) f q(Vu) dx <-lim inf f q(Vuk) dx
dE JE

for any measurable E f.
The case p 1 for Theorems 1.1 and 1.2 is easy and will not be discussed.
To illustrate how the preceding results apply to the Young measure representation,

let us recall this notion. Let Co(") denote the continuous functions on N vanishing
at . Given a sequence fk E LI(; Nm), k 1, 2, 3, , for any 0 E Co(N’), the com-
posed sequence (all(fk)) admits a subsequence weak* convergent in L(l)); namely,
for some 0 e L(f),

0(fk’) qS in L(I-I) weak*.

The association of q to is linear, which, after some argument (cf. [3]) employing
the boundedness in L of the sequence (fk), permits us to assert the existence of a
family u (’,)xa of probability measures with the property that

d/(x) d/(h) dux(A) in a a.e.

For the validity of the representation it is sufficient that

(1.6) O(fk,)_) in LI(I) weakly.

The family u is the Young measure or parametrized measure generated by (fk’); cf.
Young [50].

If fk Lp (f; Nm), k 1, 2, 3, , satisfy

and generate a Young measure v ,,)x., it may be verified that whenever
satisfies

limlxl-’ 1 / I1p O,

the sequence t(fk) converges weakly in L and the representation (1.6) is valid. When
fk__ V U k arises as a minimizing sequence in a variational principle for q satisfying
(1.7) or W satisfying (1.12) below, it is less than obvious that we are entitled to use
the Young measure to evaluate the limit energy or other integrals of (V u k) with exactly
pth power growth. Our results, Theorem 1.3 and Corollary 1.4, affirm the validity of
the Young measure representation:

Introduce the Banach space, for p->_ 1 fixed,

iq(A)
<}E 0 C()" sup IAI +----

THEOREM 1.3. Let q be quasi-convex and satisfy, for some constants C _-> c > 0,

(1.7) max{clAlP-l,O}<--q(A)<=C(l+lAIP), AE,
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where 1 <- p < oo. Suppose that

(1.8) u k
U in H1,p (1)) weakly and

(1.9) fa cp(Vu) dx lim_,oo fa q(Vu) dx.

Let , (,). be a Young measure generated by (Vu). Thenfor any dd E, the sequence

q(Vu)- qS in o’(Ll(),

where

(1.13) 6(x)= b(A) d,,(A) in 1 a.e.

In particular, the (W(Vuk)) converges to a limit energy density if" in tr(Ll(f), L(f))
where

(1.14) W(x)= W(A) d,x(A) in f a.e.

Note above that if p 1, we are not assured of a sequence (u k) satisfying the
hypothesis (1.12b). A version of Corollary 1.4 has also been proved independently by
Matos [42] who obtains an improved class E by combining Ekeland’s lemma with the
reverse HSlder inequality, although the convergence is then restricted to
tr(Ll(f’), L(I)’)) for 1’ c l.

Note that a particular consequence ofTheorem 1.3 is that the sequence {IM. V ul"},
for a constant matrix M, converges weakly in L1(12), although not to IM. Vu[p. Another
consequence concerns the relaxation of W, or its quasi convexification; cf. [7], [15],
16], for example. Assume that p > 1. The integrand

(1.15) W*(F)=infH,(m-] W(F+ V’) dx

is quasi-convex and relaxes the variational principle (1.8) in the sense that

infA,(yo) Ia W(Vv) dx=infA,(yo) fa W(Vv) dx.

where

(1.10) (x)= (A) d,x(A) in a a.e.

Further, consider We C(M) satisfying

(1.11) max {clAIP- l, 0} <= W(A)<-_ C(I +IA}’), A,
for some p _>- 1 and 0 < c <- C. Let

Aa(yo)= {v HI’p(-): v= yo on Ol}, where yo Hl’p().
COROLLARY 1.4. Let W satisfy (1.11). Suppose that (uk)c Aa(y0) satisfies

(1.12a) limk_.oo J-n W(Vuk)dx=infaa(yo)Ja W(Vv)dx,

(1.12b) u k u in HI’p(f) weakly.

Let (u,),a be a Young measure generated by (uk). Then for any d/ E, the sequence

q(Vuk)- qS in tr(Ll(f), L(f)),
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Obviously a minimizing sequence for (1.12) is also a minimizing sequence for the
functional with the integrand W*. For a given F, the infimum in (1.15) may or may
not be realized, but given a minimizing sequence uk(x)= FX + k(x) HI"P(I); R"),

W(F)la[ limk_, Ia W(Vuk) dx.

Let /x (/Zx)x be a Young measure generated by (uk). We may assume that /x is
independent of x , although we pass over the details of that here. Applying Corollary
1.4, we obtain in particular that

(1.16) W(F) f W(A) dtx(A),

so the infimum is attained in a Young measure fashion. Moreover, the inequality
W-< W ensures that

supp/x c {A: W(A)= W(A)}.
Of course, if tr is any other Young measure generated by some sequence of the form
(vk)c HI"p(,Rm) with vk= Fx on 012, then

W(A) dtx(A)<= I W(A) act(A),

so/x satisfies an ersatz minimizing principle as well.

2. Proof of Theorem 1.2. Our aim is to give a proof of the second result. Theorem
1.1 will be a corollary of it. For this we adopt a technique of Acerbi and Fusco, which
has an important ingredient from a paper of F.-C. Liu [40]. The technique uses these
facts from Acerbi and Fusco.

LEMMA 2.1. Let GcR" have IGl<o. Assume that {Mk} is a sequence of subsets
of G such that for some e > 0

Mkl> e for all k.

Then there is a subsequence kj for which

LEMMA 2.2. Let {fk} be a sequence bounded in Ll(f). Then for each e > O, there is
a triple (A, 3, S), where A l) with IAl < , > 0, and S is an infinite subset of the
natural numbers, such that

whenever D nA f and IDI < for all k S.
For any v C(), we set

M*v(x) M(Iv(x)l)+ M(IVv(x)l),
where

1 J. Is(:)lMf(x) sup,>o- dz

is the maximal function off. It is well known that if v C(R"), then M*v C(’) and

(2.1) IIM*vll,:(:) <-C(n.p)llvll....(:. 1 <p<=oo,
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and, in particular, for any h > 0,

(2.2) 1 <p <oo.

LEMMA 2.3. Let v C(R") and a > O. Set Ha {M*v < a}. Then

(2.3)
Iv(x)-v(y)l

Ix-yl <-_c(n)A, x,yg,
where C(n depends only on n.

We shall also make use of the well-known fact that a Lipschitz function defined
on a subset of N" may be extended to all of N" without increasing its Lipschitz constant.

Proof of Theorem 1.2. We regard u k and u as extended to functions in Ha’P(N ")
with norms controlled by their HI’p(f) norms. Let e > 0.

Step 1. Since the functional of (1.4) is continuous in HI"p(Nn) in the norm topology,
because of the upper bound on q, we may find z, z k C(N") with

(2.4) In" Iq(Vu)- (#(Vz)l dx < e,

(2.5) f, Iq(Vu) (Vz + Vz)l dx < e,

and

1IIu uk zkIIHI,(" <--.
Thus zk0 in HI’p(R") weakly and

(2.6) Ilz HI,P(I] n) M < (o

Set

Hx={M*z<} and H={M*z<}.
According to Lemma 2.3, we may find ff, e H’(N") such that ff= z on H and
=z on Hx with

and

and the same for r/. After extraction of a subsequence we may suppose that

srk " in Hl’(R") weak*.

We apply Lemma 2.2 to the sequence {M*(zk)P}. By (1.2) and (2.1) these functions
are bounded in Ll(f). So, given e’> 0, there is a triple (A,, , S) with [A,I < e’ and

p < e’dx

whenever D A, with ]DI < 6 and k e S.
Now let G={0}. Since the z0 in LP(N") in norm, we may assume that

z 0 pointwise almost everywhere in . Thus if we set Go G{x e : z(x) 0},
then [Go[ G]. We write Go as a union,

Go (Gon H) U (Gon (" H)).
By (2.2),
(2.7) [Go (" H)[ N CA-PMp for all k.
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This implies that

(2.8)

Otherwise, if

then

[Go] > 2CA-PMp,

IGoO H[> CA-PMp,

by (2.7). Applying Lemma 2.1, there would be a subsequence kj such that

and for x in this intersection,

’(x) lim ’k(x) lim zk(x) 0,

which contradicts the definition of the set G. Hence (2.8) holds.
Step 2. Since o(Vu)eLl(), we may find o’, 0<o’< e, and A large enough that

(2.9) f o(Vu) dx < e;
dAo.U(-Ha)UG

cf. (2.8) above. Let E c be measurable and assume a subsequence of the u k chosen
(but not relabeled) so that

Put

Since o->0, by (2.5)

lim I (Vuk) dx=liminf I q(Vuk) dx"

a I (Vu) dx.

f
a _-> ] (Vu) dx

JfqHafqHX’k (f-A,)

-e + (+Vz) dx.
H H’(-A)

ButVz=V andVz=VinHH’ sothat

-e+e (+) dx
HH’(-A

=-e+ f (Vn+V) dx
HA(-A)- (vn+v) dx

H(a-H,)(-A)
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Since V(t/+ k) is uniformly bounded and p is quasi-convex, by the remark (1.5) we
have that for K sufficiently large

/ + >- f o(V +V) dx.
NH C(-A)

We now inspect k. Using the bounds on V and V, and choosing A large enough,

Cia- HI + J CM*(zk)p dx

Ce + Ca 2Ce.

Consequently, for k sufficiently large,

(2.10) -c + f (v +re) dx.
H(-A)

Step 3. Again using the positivity of , from (2.10),

dx.

Since 0 in G, we have that V 0 in G, so, since z in H*, we deduce that

a-C+ (V) dx
E

dx.
EH(a--A)(-G)

By (2.4) and (2.9),

a -(1+ c) + dx
H(-A)(-G)

-(l+C)e+y (Vu) dx-y (Vu) dx
E E[AU(-Hx)UG]

-(2 + c) + [ (Vu) dx.
dE

Since e > 0 is arbitrary, the theorem is proved.

3. Proofs of the other results.
Proof of eorem 1.1. This follows from the Dunford-Pettis criterion. Assume

that the sequence ((Vuk)) is not (L, L) relatively compact. Then for some e >0
and every 8 > 0, there is an A c and an integer k such that [A[ < 8 and

dx

Since (Vu) L(), there is a 0 > 0 such that if [El< 8o, then

(3,1) [ (Vu) dx < e.
dE
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Let us choose in particular 61 2-i6o. Then there is a sequence A, IAil < i, and
k such that

q(Vuk) dx > for all j.

Let E U Ai, so IEI and (3.1) holds. Thus

e<----Yr. P(VUk) dx<= IacP(VUk;) dx-- ya-E (VuS) dx.

Letting k - oo, we have by Theorem 1.2 and the hypothesis (1.3) that

e<- I(Vu) dx-I-v, q(Vu) dx

I q(Vu) dx < e,
E

a contradiction.
ProofofTheorem 1.3. The proof of Theorem 1.3 also follows by the Dunford-Pettis

criterion, using Theorem 1.1.

Proof of Corollary 1.4. A minimizing sequence for the functional

W(Vv) dx

is also a minimizing sequence for its relaxation

a
W(Vv) dx

whose integrand W is quasi-convex and satisfies (1.11). We apply Theorem 1.3 to W.
4. Constraint management in a limit case. Certain variational principles in elasticity

constrain the admissible variations v H’P(; n), where R", to satisfy

detVv>0 in 12a.e.

In the limit case p= n, det Vv LI(O) for v HI’"(I; R") but it is not necessarily
integrable to any higher power. Thus it is not automatic that if u k

weakly, that det V u k
._.) det V u in L(f) weakly. In fact, without additional requirements,

this condition does not hold. The reader may refer to the counterexamples in Ball and
Murat [7]. However, much is known about this situation, as we summarize below.

First of all, the determinant is a null Lagrangian, that is, if u, v HI’"(; R") and

uloa vloa, then

(4.1) Ia det V u dx= Ia det V v dx.

Assume that u, u H"(12; ’) and

(4.2) u -* u in H"(12;) weakly.

Then for a subsequence of the (u), not relabeled (cf., e.g., [2]),

(4.3) det 7Uk
"- det Vu in D’(f).

Very recently, Miiller [44] showed that if (4.2) holds and det v uk>= O, then

(4.4) det Vu k - det Vu in Lo(O) weakly.
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We give a slight generalization of Miiller’s result, and also an independent proof of
it. With it, alternate proofs of some results in elasticity may be given, for example,
some of those in Zhang [51].

THEOREM 4.1. Let U k, l,l E Hi’n([),; Rn) satisfy

(4.5) u k - u in Hl’n(fl; Rn) weakly,

(4.6) det Vuk>=o in l’l a.e.,

(4.7) uklo UOIOl,

where Uo H1, (l-l; R is fixed. Then

(4.8) det Vu k - det Vu in LI(I)) weakly

Proof. First of all, u- Uo on 0ft. From (4.6), we deduce that

u ->_ 0 -<_ C(),det V dx whenever 0

thus det V u _-> 0 in f almost everywhere. By (4.1),

fd tVua =f  tvu", x=fd  VUoaX, foral, k.(4.9)
J J J

Now let

q(A) max {det A, 0}, A M,

which is continuous, quasi-convex, and satisfies

O<=(A)<=C(I+IAI) ", AeM.

Then (Vuk)= det Vu k and (Vu)= det Vu, so, trivially, by (4.9),

Ia(Vu) dx=limk-, Iaq(Vuk) dx.

Consequently, by Theorem 1.1, possibly for a subsequence which we do not relabel,

det VU k -’)det Vu in LI(-) weakly. U]

The idea of Theorem 4.1 is that the sequence (u k) may arise as a minimizing
sequence for some variational principle subject to (4.6). Additional information then
follows from the theorem.

5. Application to functionals with surface energies. We consider a simple situation
where cooperative bulk and surface energies are minimized. Let c En have smooth
boundary F and set

(5.1) E(v)= fa W(Vv) dx+ fr’r(Vv, v) dS, l.) cl(fi’[m),

where v denotes the exterior normal to F. The infimum of E over C1(1); ’) is not
necessarily the sum of the infima of its two summands, so we envision an application
of our results when (1.3) will hold for each of the two terms but where these quantities
will not be the unrestricted infima of their portions of the functional.
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Assume that W is continuous and satisfies, for some p > 1 and C >= c > 0,

(5.2) max {clalP- l, O} <- W(A) <= C(I +IAIP), a.
About " we assume that it is continuous and, for some s > 1,

(5.3)
0--< z(A’ ’)’

A,c(Iatanl 1) <= z(A, 9) <- c([a[ + 1),

where Ata A(]]- ,(),) is the tangential part of A.
For a fixed ,5n-l, let D’c{x. ,=0} be a domain and let dx’ denote the

(n- 1)-Lebesgue measure on D’. By D’x (-r, r), r > 0, we abbreviate the name of the
set

{x Rn: x’= ( 9(R) ,)x D’ and Ix. ’1 < r}.

Let [E] denote the (n-1)-dimensional Lebesgue measure of E. We define

F, r(F+V’, v) dx’, (F, ,)ex"-1

(5.4)
r

o’

C’=C(O’x(-r,r)).

We always suppose that [OD’] 0. Clearly r* _-> 0 and is independent of r. The relaxation
of the functional E is given by

(5.5) E(v) I. W(Vv) dx+yr’(Vv,,)dS
where W(A) is the ordinary quasi convexification of W and - is defined by (5.4).
A special property of z is that

z#(A, ): 7-#(Atan, 9), A,
which implies that

(5.6) c(IAtan[S-1)<-z(A, ,)-<_ C([AI / 1), A,

and that z is well defined on HI’s(F; "). An easy generalization of [39] tells us that

(5.7)

Let (u k) V be a minimizing sequence for E. Then (u k) is a minimizing sequence for
E, which is bounded in Suppose that u V and uko U in V weakly. By lower
semicontinuity,

E(u) limko E(v) infc(a E(v) =infvE(v) and

(5.8) aW*(Vu) dx=limaW*(Vu)dx,
r*(Vtu, ) dS lim

We may apply Theorem 1.3, or a slight generalization of it in the case of
(*(Vu, )), to deduce that

W*(Vu) W*(Vu) in L(a) weakly,

* (V u, ) r*(Vtau, ) in L(F) weakly.
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If/x (Px)xa denotes a Young measure generated by (Vuk), we have the limit energy
representations

and

l’’r(x) W(Vu(x))= Iu W(A) dlx(A),

(X) T@(VtanU(X), l](X))-- IF ’(A, ,(x)) dtzx(A),

W(x) dx + (x) dS infc,(o E (v).

6. Measure valued solutions of an evolution problem. Some of our methods may
be employed to study measure valued solutions of evolution problems. A more extensive
treatment is given by Slemrod [47]; here we wish to explain merely how such solutions
may come about. For further developments we refer to Demoulini [17]. To fix the
ideas, we consider a scalar case. Suppose that go C1(n) satisfies

max (clal2-1, 0)_--< go(a)--< C(lal+ 1),
a En,(6.1)

]Vgo(a)l--< Clal,

where O<c<=C. Let q(a)=Vgo(a). Our interest is in solutions, possibly Young
measures, which in some sense satisfy

OU
(6.2) -div t] +--= 0 in 12 x N+,

Ot

E+= (0, oo), subject to appropriate boundary conditions.
To render this more precise, let us agree that u (ux,,)x,ta is a Young measure

solution of (6.2) provided that the following condition holds.
CONDITION 6.1. U is a family ofprobability measures and

u L(+; with
Ou +
Ot

which satisfy

OU
(6.3) -div t +--= 0 in H-1(12 x [+),

Ot

(6.4) ult=o= Uo,

where

gl(X, t)= 1_. q(a) d’x.t(a)
(6.5) in 12 x N+ a.e.

Vu(x, t)= Java d,.,(a)

Above, Uo e Ho(12) is given. Moreover, we shall impose the condition that v is a Young
measure in the sense that it meets the following condition.

CONDITION 6.2. ’ is generated by a sequence (Vuh), h > 0, where

(6.6) u h e L(N+; H(12)).
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The equation (6.5) means that

(6.7) gt"V+-- dxdt=O for e/-/o(ax/.

We shall give an outline of the proof of the following theorem.
THEOREM 6.1. Assume (6.1) about o. Then there exists a Young measure solution

1] (x,t)(x,t)x of
Ou

-div+=0 in x +,
Ot

satisfying (6.3)-(6.6). In addition,

(6.8) supp,,{a"(a)=**(a)} in x+ a.e.,

where ** is the convexification of
Recall that if e C1(,), then ** C(’), whence

q(a) q**(a) in {a R" (a) **(a)},

where q**(a)=V**(a). Note also that ** satisfies (6.1). Hence the following
corollary.

Coongv 6.2. Assume (6.1) about and let u=(Ux,t)(,ta be a Young
measure solution satisfying (6.8). en u is a solution of the relaxed problem

Ou
(6.9) -div **+ 0 in x +.

Ot

The constructed solution has some additional propeies which we shall describe
in the sequel.

Step 1. An equilibrium problem. Let w H() and h > 0 and consider

(.0

(6.11)

where ** is the convexification of . By a known relaxation theorem (cf. [16]),

(6.12) I infa (v) infna **(v).

Now let (v) be a minimizing sequence for (v). We may assume there is a u H()
such that

vo u in H() weakly as ko.

By lower semicontinuity,

(vk)-->d**(U) as

and by the Rellich theorem,

Ialtgk-w12dx--->Inltl-w12dx as k-.

Hence
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Hence, by Theorem 1.1,

p**(Vvk) p**(Vu) in Ll(l)) weakly,

(t)(Vvk) --’ (**(VI,/) in LI(-) weakly.

Denoting by u (ux)xa the Young measure generated by (Vvk),
supp uc {a Rn" p(a)= p**(a)},

(6.13)
p**(Vu) q5 qS** and t]- q** in fl a.e.,

where

(x) d/(a) dux(a) in 1 a.e.

In fact, the Young measure representation holds for any E, where

la +1

We may now apply the technique developed in [10] to discuss stable Young
measure minimizers of variational principles; cf. 5. The idea here is to observe that

dd(a, x) cp(a + eV(x)) <= C( l + la]:),
when " C(O), -1 e 1. Hence G E, so

a dxlim Ia (Vv + eV) dx

=LI.(a+eV(x))d(a)dx.
This equation may be differentiated with respect to e. As a consequence, we may write
an equilibrium equation

(6.14) q. VK+ (u- w) dx 0 for H().

Finally, the Young measure representation provides us with an elementary estimate
for q. Indeed, using the estimates of (6.1) and (6.13),

1012 dx [q(a)[2 d(a)dx

(.5

CfIn,((a)+l)d’(a)dx
c f. (**(vu)+ 1) dx.

Step 2. Approximate solution. Let Uo6 H(O) be given and h > 0. We define a
sequence of Young measure solutions uh, and underlying functions u h’ by setting

uh,O=6v and uh’=uo
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and h’j+l is the solution of (6.12) with w u h’j and U
h’j+l its underlying function. We

are then in possession of the energy densities

(6.16) q**(Vu h’j) (v h’j, q)= (vh’, q**)

and the flux densities

(6.17)

Let Ih,j hj, h (j + 1 )), X

glh, Vhd, q) Vh’j, q**).
h,j= Xth,j, the characteristic function of I h’j, and

Ah,J(t)={--J, hj<=t<--h(j+l),

0, otherwise.

Set

(6.18) uh(x,t)--EjX
and

h’J{(1 --Ahd(t))uh’(X)+ Ah’J(t)uh’J+’(X)}E L([R+; H(f))

h h,j hj(6.19) Vx, t--’Ej X (t)v,," E

Now from (6.18),

(6.20)
OU h 1

ot h
(uhd+l- uhd) and oh (vh’ q} =YO h’JXh’J

comprise a solution of

Ou h

-div h+ 0
Ot

in H-I(’)), for each t,

from which it is elementary to check that

ffO ff_ t ouh t(6.21) qh’v’--- dxdt=O for ’H(fxRi+).

Step 3 (Estimates). Uniform estimates are available for u h L(Ri+; H(f)) and
3uh/3t L2(f x+). To begin, u h’j is admissible in the variational principle for u h’;+,
SO

Hence

(6.22)

and

qg**(Vuh’J+l)-t-- luh’J+l- u dx q9

q**(Vuh’) dx <= f q**(V Uo) dx M2

(6.23)
1 h,j+l 12 f **(VUO) dx M2"2-Ej [u l h" (0

Since q** satisfies (6.1), the inequality (6.22) tells us that

(6.24) IlVu,all,=<.) M.
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By convexity of the L2 norm and (6.24) we have that

(6.25) uh LR+;n) -< M.

Rearranging a little in (6.23) and noting (6.20),

IoXIfll Ouh2 M2.(6.26) I--- dxdt<-

Introduce the function

(6.27) wh(x, t)=E uh’J(x)xh’J(t)G Z(+; n()).

Then (6.24) implies that

(6.28) wh <+;.) M.

Finally, we wish to estimate h using (6.15), which provides the estimate

(6.29) IIh +;2.)) C (**(uh’)+ 1) dx C(M=+ 1).

Step 4 (Passage to the limit). We let h 0. From the estimates (6.25), (6.26),
(6.28), and (6.29), we may extract a subsequence of h as h0 and

u= (u,,),,),n+ E’ with supp u= {(a)= **(a)} and u is a Young measure,

w L(+’, H(O)) with 7w (u, a),

q L(+; L2(O)) with q=(u, q)= (u, q**),

u L(+ H(O)) with
Ou L2( x +),
ot

which satisfy

(6.30) t. V "+- ff dx at 0 for " H(f x R+).

In fact, (6.30) above holds for " L(R+; H(f)). We remark that v is a Young measure
but it is not generated by the sequence (Vu h) of (6.18), but rather by a diagonal
subsequence of the functions which generate the (vh) of (6.19). Although v E’, we
have not verified the Young measure representation for 6 E, although, as we men-
tioned in the introduction, under these circumstances, whenever C(m) satisfies

limlal-’ 1 + lal = 0,

the sequence (Vvk) converges weakly in L and the representation is valid.
It remains to show that the Young measure v and the limit function u are connected.

We claim that u w. In fact, we shall show that V u Vw by means of an easy lemma.
LEMMA 6.3. Let (fh,j) c bounded set ofL2(f) for h > 0 andj 1, 2, 3," , and set

fh(x, t)=jfh’J(x)xh’J(t),
gh(x, t)=j xh’J{(1--Ah’J(t))fh’J(X)+Ah’J(t)fh’J+(X)},
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where X
h’j is the characteristic function of hj, h (j + 1)) and

t/h-j,Ah’J(t)
0,

Suppose that

fh of and gh_) g

hj<=t<-h(j+ l),
otherwise.

in Loc( x R+) weakly.

Then f g.
Proof. It suffices to show that

f dx dt g dx dt

for " C(f) of the form (x, t) w(x)z(t). Let z h’; z(hj) and

Oh(x, t)-- W(X) Ej zh’Jxh’J(t),

(x, t) w(x) 2 x’(t){(1 x’(t))z’ + h’(t)’-l}.

It is elementary to check that h and h uniformly since z is smooth. Since

fhh dx dt ghh dx dt,

the lemma follows.
From the lemma we may write a generalized Fourier law for the solution, which

is really much weaker than the propey that supp c {(a) **(a)}. If **(0) =0,
then

** Vu O.
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REMARQUES SUR L'EXISTENCE GLOBALE POUR LE SYSTEME DE
NAVIER-STOKES INCOMPRESSIBLE*

J. Y. CHEMINt

Résumé. Le but de cet article est d'appliquer une estimation d'énergie à perte démontrée avec la
technique du découpage dyadique de l'espace des fréquences à la démonstration de résultats d'existence
globale de solutions suffisamment régulières des équations de Navier-Stokes avec un terme de force .

Abstract. The goal of this paper is the application of an energy estimate with loss of derivative, proved
with the Littlewood-Palet' theory, to proue some results of global existence of smooth enough solutions of
the Navier-Stokes equations with an exterior force .

Mots-clefs, mécanique des fluides (visqueux), Littlewood-Palet' (théorie de)

Codes matières AMS. 35L60, 76A02

Introduction . Nons nous intéressons dans ce travail au mouvement des particules
d'un fluide incompressible visqueux . Ce mouvement est décrit par le système de
Navier-Stokes relatif à un champ de vecteurs défini sur tout R d, d valant ici 2 ou 3,
que nous rappelons :

a tv+v.Vv-E1 v=-Op+V'V,

(SE )

	

div v (t, • ) = 0 à tout instant t positif ou nul,

vit=o = vo .
Ici, v(t, x) désigne la vitesse d'une particule située au point x à l'instant t, p(t, x) la
pression dans le fluide au point x à l'instant t, V(t, x) le potentiel (ici une matrice
antisymétrique), dont dérive la force extérieure au point x à l'instant t, V' V le vecteur
de jème coordonnée ~, a lV , et r la viscosité du fluide, qui est supposée être une
constante strictement positive . Les données du problème sont bien sûr le potentiel V
et le champ des vitesses y0 .

Le but de ce travail est de démontrer des résultats d'existence globale en regardant
le système de Navier-Stokes, non pas comme un système parabolique, mais comme
un système hyperbolique amélioré par le terme de viscosité . Ce point de vue permet
de retrouver des résultats bien connus, comme par exemple le Théorème 0 .1 relatif à
la dimension deux et le Théorème général d'unicité 2.2, et d'en démontrer un nouveau,
le Théorème 0.2 . Dans cette optique, l'existence locale en temps pour des données
régulières, par exemple, v0E Hs et V E L[(0, +oc[ ;HS+1), s > d/2+ 1, résulte de la
théorie classique des systèmes hyperboliques (voir, par exemple, [1]), le terme de
viscosité étant ignoré grâce à son signe . Cette théorie repose sur la démonstration
d'estimations d'énergie . La première estimation d'énergie vérifiée par une solution
assez régulière du système (Se ) provient de l'identité suivante :

(0 .1) (Iv(t, ' ) lo)2- (Ivolo) 2 +28

	

(IV v(r, ' )lo) 2 dt = 2

	

(V'V(r, ')Iv(-r, ' )) dT.
[o,t]

	

[o,t]

En utilisant le fait que 2(V'V(T, • )I v(T, • ))

	

-1 (I V(T, • ) Io ) 2 + r(Iov(T, • ) I o ) 2 , nous

* Received by the editors June 8, 1990 ; accepted for publication (in revised form) March 20, 1991 .
t Centre de Mathematiques, Unité de Recherche Associée D 0169, Ecole Polytechnique, F-91128

Palaiseau Cedex, France .
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obtenons trivialement l 'estimation bien connue suivante :

(E)

	

(I v(t, ' )Io)2+ E

	

(IVv(T, ' ) Io)2 dT < (Ivolo)2+
£-1

	

(I V(T, ' )I o ) 2 dr.
[0,t]

	

[o,t]

L'idée de l'article est d'appliquer des méthodes d'énergies pour estimer l'évolution,
non plus nécessairement de la norme L2 du champ des vitesses v, mais de la norme
Hs, pour un s assurant l'existence globale d'une solution suffisamment régulière pour
être unique dans sa classe . L'outil permettant de réaliser ce programme est une
estimation d'énergie avec perte dans les espaces de Sobolev homogènes sur le terme
(v.V a Ia) . Cette estimation, ne mettant en jeu qu'un faible niveau de régularité du
champ de vecteurs v, introduit des pertes de régularité que le terme de viscosité permet
d'absorber.

La structure de l'article sera la suivante . Dans le premier paragraphe, on exposera
la démonstration de l'inégalité d'énergie avec perte de régularité, démonstration qui
repose sur la caractérisation en couronnes dyadiques des espaces de Sobolev homogènes
et inhomogènes. Nous donnerons de plus une première application de ce résultat sous
la forme d'une condition nécessaire de non-existence globale de solutions régulières .
Dans le deuxième paragraphe, nous utiliserons cette estimation pour démontrer un
lemme d'explosion, un théorème d'unicité et un lemme de convergence qui, appliqués
au cas de la dimension deux d'espace, permettent de redémontrer fort aisément le
théorème bien connu suivant.

THÉOREME 0.1 . Soit s un réel postif ou nul; si v0 est un champ de vitesses de R2 à

coefficients L2 , et V un potentiel-vecteur de R 2 à coefficients L ([O, +oo[;H S ) ; alors le

système (SE ) admet une unique solution dans l'espace C ([O, +oo[; L2 ) (1 C (]O, +oo[; HS) n
L (]O, +oo[;Hs+1) .

Remarquons que ce théorème est tout-à-fait classique, voir, par exemple, [4] .
Dans le troisième et dernier paragraphe, nous appliquerons ce qui précède au cas

de la dimension trois d'espace . Désignons par H S (respectivement, H S ) l'espace de
Sobolev (respectivement, homogène), et par lui s (respectivement, ~Iul)s la quantité
f (1 + I I 2)sIi2()I 2 d (respectivement, f Il2sIa()I2 de) ; nous démontrerons alors le
théorème suivant.

THÉOREME 0.2. Il existe un réel C0 strictement post if tel que, si s est un réel supérieur
ou égal à 2, si les données v 0 et V sont telles que

(i)

	

v0 E H1/2 et V E L2([O, +oo[;H 1 / 2 ) n L 0 (]0, +oo[ ;H S ),

( ii )

	

IIvoL/2+ E -1/2 (J [o,+oo[ (II V (t, ' ) 1 1/2)2 dt)1/2 Ç Cor;
alors (S £ ) admet une unique solution dans C([0, +oo[ ; H1/2)

n L2([(0, +oo[ ; H3/2 ) n

C(]0, +oo[ ; HS) n L 0(]o, +oo[ ; Hs+1) .

Remarques. Ce Théorème 0.1 a été démontré dans [3] par des méthodes de
serai-groupes en supposant que V est une fonction Hdldérienne de [0, +oo[ à valeurs
dans H 1 et en remplaçant, dans la condition (ii) du Théorème 0 .2, la quantité

(J[o,+oo[ ( II V(t, ' )I1 / 2) 2 dt) 1 / 2 par SuptE[o,+oo[ t3/4I) V(t, .\ I1
Enfin, observons que les quantités intervenant dans le membre de gauche de (ii)

sont invariantes par changement d'échelle, ainsi que Sup(E[o,+oo[ t 314 II V(t, ) .
Nous utiliserons dans tout ce travail les notations suivantes :
• Nous désignerons par 4 une partition dyadique de l'unité, i .e ., une fonction

de Cô(R d \{0} ; [0, 1]) telle que, pour tout E R" \{O}, on ait 1 = q E z 4(2_q); de plus,
on posera = 1 -~q~o f3(2-q.) ; remarquons que i appartient à Cô(R") . Nous désig-
nerons par O q l'opérateur 4(2-qD), par Sq l'opérateur ç1,(2_ D) et par N un entier tel
que 0 Supp (2 -N.) +Supp çb ;

•

	

Si s est un réel, nous désignerons parle s l'opérateur (Id
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Enfin, nous allons rappeler la caractérisation des espaces de Sobolev homogènes
et inhomogènes à l'aide du découpage dyadique de l'espace des fréquences . Il est clair
que C-' ~qEZ (,(2 9 )) 2 C et que C-1

(Y'(:))2+2q~o (4(2 q )) 2 C ; le fait que
C-1 ~~çb(2 9D)uIs ~2gSI~(2 9D)ulo ~ Cil4(2-9D)uI s assure

(0.2)

C-1 (ll"s) 2 Ç

	

229s(I4'(2 9D)uIo)2 C C(lluls) 2 ,
qEZ

C_1(Iuls)2 Ç

	

22gs()~h(2 gD)uI0) 2 + (I (D)uio)2 Ç C(Iuls) 2 .
q~0

J . Y. CHEMIN

Pour des démonstrations complètes, nous renvoyons le lecteur à [1] .

1 . Inégalité d'énergie à perte ; Application à la dimension deux d'espace. Nous
allons énoncer et démontrer une inégalité d'énergie avec perte, en utilisant la décompo-
sition de Bony d'un produit .

LEMME 1 .1 . Soient v un champ de vecteurs à divergence nulle et s, r, r', r" quatre
réels tels que r + r' + r" = d/2 + 1 + 2s, r + r'> 0 et 0 r < d/2 + 1 ; alors il existe une
constante C telle que

(i)

	

(Os/2(v.va)iQs/2a) Ç CIvf y . Il ai r ' ll aI r. .+ ll r llvl r 'llal r ",a
(ii)

	

(As (v.V a)l A s a)

	

CI vI rI aI r,al r„+ lal r ivl r 'ial r» .
Si, de plus r' < d/2 +1, alors, nous avons,

(iii)

	

(As(v.V a)l A sa)

	

C)vI rI aI r-I aI r ,- .
Démonstration . L'idée de base est d'écrire (0S/2(v.Va) I0 2/2a) comme suit:

(1 .1)

	

(~S/2(v.V a)I j S/2a) _

	

(~sl2~q(~p(vJ)a;Op(a))Ios/2~q(a}} .
q,q',P,P ;J

Il est bien clair, d'après la formule de Plancherel, qu'il existe un entier N tel que
I q - q'I N. En utilisant la décomposition de Bony, il vient

3
(Os/2(v.va)I~ s/2a) _ ~ T ', avec

1

T1 -

	

(QS/2~q(Sp-N(v J)a;Op(a))IOS/2o q -(a)),
q,q',P ;J

(1.2)
T2

_

	

s/2

	

j

	

s/2
-

	

(~ ~q(~p(v )ajSp-N(a))I0 Oq'(a)),
q,q',P ;J

(1 .3)

T3 = (L s/2Lq(~p(y 3 )a(a))IOS/2zq'(a)) .
q,9 ,P,P ,P - P I~ N ;J

Nous allons maintenant majorer chaque T' . D'après la définition de T 1 , des
manipulations algébriques très simples et une intégration par parties assurent, grâce
à la nullité de la divergence du champ de vecteurs v

T 1 =

	

([ L 12 1 q , Sp-N(vJ )]aj~P(a))I ~s/2~q'(a))
q,q',P ;J

+ 1

	

((Sq-_N-SP-N)( v' a.OS/20 (a ))lLS/2Lq,(a)) .) J

	

p
2 q',P ;J

Vu que ll (Sq -N - SP -N)( vJ ) ll LOD

< 2 p(r-a/2-1)~ nous sommes donc ramenés à étudier la
commutation entre l'opérateur de convolution OS/20q et la multiplication par Sp _N(v j ),
ce qui se fait grâce à la formule suivante:

( 1 .4) OS/20q (Sp-N(y i )p(a)) = 2qd J hs(2q (x .Y))(Sp-N(vJ)aj~p(a))(J') dY,

où hS désigne la transformée inverse de Fourier de ils4O.
(



Une formule de Taylor à l'ordre 1 avec reste intégral assure

Ls/2Lq(Sp-N(v ' )a,IXp(a)) = Sp-N(v')a,Os/20 q
(Op(a))

+2qd ~

	

(x` - Y1 )h$(2 q (x - Y))
1~i~d [p,1]

•

	

Sp_ N (a i v')(y + t(y - x))aJ tx (a)(y) dy dt.

Il ressort de la caractérisation des espaces H S que, comme r < d/2+ 1, nous avons

I(SPN(a!v')(IL~_ °°
C2-P(r-d/2-1)Ivl r . La définition de h et le fait que p - ql N' assure

alors

(1.6)

	

I[ S/2 L q ,

	

~SP-N(v J )]aJz P(a)IDÇ
cp2 p(r+r'+d/2-1)Ivir

kil r' Sup IIx 1 hIIL' ,
1~i~d

avec (cp ) pE~ E 1 2(r) . D'où T'

	

Clvl rll alr,ll al r
Comme r < d/2+ 1, llaiSp_ N (a)ll L C2_P /2_flal r . °DÇ

	

(r-d Le fait que T 2
C I a l r Il v l r' ll a l r" résulte alors simplement de l'existence d'un entier N' tel que I p

- q I et

I q - q'I
soient majorés par N' .

La nullité de la divergence du champ de vecteurs v permet de se ramener à majorer
(Oq(Op(v')Op-(a))IOq-(a)) . Il est clair qu'il existe un entier N' tel que

I q - q 'I soit majoré
par N' ; d'autre part, vu que I p - p'I N, le support de la transformée de Fourier de

0P(v')0P-(a) est inclus dans une boule de rayon C2", il existe un entier N' tel que
p q - N' . Le fait que IO P (v')OP -(a)I o cpcp2-p(r+r`-d/2)I)vl r

II a1 r' et la relation entre r,
r', r" et s assurent alors

(1 .7)

	

T3 Ç

	

cg2(q-P)(r+r')ll v lrllalr-llalr"~
p q-N'

où cq est le terme général d'une série sommable ; d'où le (i) du lemme, r + r' étant
supposé strictement postif.

La démonstration dans le cas des espaces de Sobolev inhomogènes, strictement
analogue si l'on pose O q = 0 si q -2 et Oq = ( D) si q = -1, est laissée au lecteur.

Remarque. Nous avons utilisé l'hypothèse de nullité de la divergence du champ
de vecteurs v uniquement pour assurer le résultat lorsque r + r'> 0 . Il est clair, d'après
la démonstration que le lemme est encore vrai sans hypothèse de nullité de la divergence
du champ de vecteurs v en supposant alors r + r'> 1 .

LEMME 1 .2. Soit s un réel strictement supérieur à d/2+ 1, nous considèrons un
potentiel-vecteur V dans L ([O, +oo[; Hs) et v une solution du système (SE) qui soit dans
C([0, T* [ ;H s ) pour un s > d/2+ 1, l'intervalle [0, T *[ étant l'intervalle maximal de
définition de la solution . Nous avons alors l'alternative suivante :

ou bien T* _ +ŒD, ou bien v L2 ([0, T*[;Hd/ 2 ) .

Démonstration : Nous allons démontrer que, si la solution v appartient à
L 2 ([0, T*[ ;H d / 2 ) ; alors elle appartient à L°° ([0, T*[ ;H s ), ce qui interdit à T* d'être
fini. En posant g$ (t) _ (ll v (t, • ) I S ) 2 , nous avons l'inégalité d'énergie

gs(t)+2e(I)V v(t, • )l) 2 = 2(z S/2 v.V v)(t, . ) li ' 2v(t, . ))

+2(O'12V' V(t, ' )lz 2v(t, • )) •

En faisant une intégration par parties, il vient

(1 .9)

	

2(OSl 2V1 V(t, . )Ios l2 v(t, • )) C 2£ - '(ll V(t, • )Is) 2 +£/2( li v(t, • )Is+1) 2 •

(1 .5)
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Puis, en appliquant le Lemme 1 .1(i), avec r = d/2, r' = s et r" = s +1, nous avons
2(z 12 v(t, '))~C(Iv(t, )L,/IIv(t,')l s llv(t,')I s+1 • Il vient alors

(1.10) 2(Os/ 2(v.V v)(t, ' ) lQsRv(t, ' )) Ç (C2/2E)(I v(t, ' )Id /2) 2 gs(t) + E(II v(t, ' )I±1).

Il résulte alors de (1 .9) que

(1.11) gs(t)+£(I v(t, • )Is+1 ) 2 C ((C2
/2e)(I v(t, ' )Idi2)2+r/2)gs+2s-1(II V(t, ' ) IS) 2.

Une intégration standard entraîne alors l'importante estimation d'énergie suivante :

gs(t) gs(0) exp

	

((C2/2£)(Iv(T, ' )Id/2) 2 dT
[o,t]

(1 .12)

+2£-' f

	

(II V(T, • )Is)2 exp ( f

	

((C2/2£)(Iv(t, ' )I d/2)2 dt dr.
[o,t]

	

[T,t]

Cette estimation, jointe au fait que v appartienne à L2([0, T*[ ;Hd /' 2 ) et V à
L2([0, T*[ ;H s ) assure, avec l'aide de l'estimation (0.1), que v est dans L°°([0, T*[;Hs) ;
d'où le lemme .

Remarques. Nous pouvons démontrer le même résultat en supposant que le
potentiel-vecteur V appartient à L([0, +oo[;Hs+1) .

L'estimation (1 .12) ci-dessus est valable pour tout réel positif s .

2. Un lemme de produit ; Application à un théorème d'unicité. Nous allons énoncer
et démontrer un lemme de produit utilisant la décomposition de Bony d'un produit
de deux distributions tempérées .

LEMME 2.1 . (i) Soit v un champ de vecteurs à divergence nulle, si r et r' sont deux
réels tels que r < d/2, r' < d / s + 1 et r + r' d/2; alors, nous avons

lv.oalr+r'-d/2-1 Ç CIvIrIalr' ;

(ii) Soit r > 1- d/2, nous avons Iabl r_ i C(I al d/2-1lbir + IaI r I1Id/2_ l ) .
Démonstration . Nous utilisons la décomposition d'un produit en somme de deux

paraproduits et d'un reste introduite par Bony dans [2] ; c'est à dire que nous écrivons

v.V a =

	

Sq _N(v')aj q (a) +

	

sq-N(a;a)O q (v')
quo ;J

	

q;o;l

+

	

Oq-(v 3 )a;zq (a) .
q,q'~ 1 ,Iq - q'IÇ N;J

(2.1)

(2.2)

Le fait que la divergence du champ de vecteurs v soit nulle permet d'écrire

v.V a =

	

Sq_N(v')a;1q(a)+

	

sq-N(a;a)oq(v')
quo ;J

	

quo;J

+

	

a;(zq,(v3)iq(a)) .
q,q'~-1,Iq-q'I ~N ;J

La caractérisation des espaces de Sobolev inhomogènes donnée en (0 .2) permet alors
de conclure, une fois observé que, vue la localisation du support de la transformée de
Fourier, nous avons I) Oq( a ) IIL~ C 2qd ~ 2 I i q (a) Io . La démonstration du point (ii) est
analogue .

Nous pouvons maintenant énoncer et démontrer le théorème d'unicité suivant .
THÉORÈME 2.2 . Le système (SE ) admet au plus une solution dans l'espace

L°°[(0, T[
;H"2-1) (1 L2([(0, T[ ;Hd12 ) .



Démonstration . Nous procèdons de manière très classique en supposant l'existence
de deux solutions v et w pour une même donnée initiale v o dans Hd/2-1, et nous
estimons l'évolution en temps de la différence. Nous avons

(2.3)

	

a t (v - w) + v.V (v - w) _ -V p(v, w) + (v - w).V w.

Posons 6À(t) _ (I (ÀD)(v - w)(t, ' )Id/2-1) 2 , 6(t) = SUPTE[o,t] (I(v - w)(t, ' )Id/2-1) 2 et
0(t) = SupTE[o,t] I v(T, • ) Id/2-1 . Il résulte de (1.3), en appliquant l'opérateur i(AD)A'21

et en faisant le produit scalaire avec t i (ÀD) Ad
/2-1(v

- w) que

6(t) = -2(t~(ÀD)A d/2-1(v.V (v - w))(t, ' )Itl(ÀD)Ad/2-1(v - w)(t, •) )

(2.4)

	

+2(t/(ÀD)Ad/2-1((v - w) .Vw)(t, ' )Iti(ÀD)A' 2-1(v - w)(t, ' ))

-2£(ItP(ÀD)V(v - w)(t, • )Id/2-1) 2 •

Le Lemme 1 .1 appliqué avec r = s = d/2 et r' = r" = d/2 assure, pour presque-tout t,

( (ÀD)A"/2-1(v.V (v - w))(t, ' )Iti(ÀD)Ad/2 -1 (v - w)(t, ' ))
(2.5)

ÇCI v(t, ' )Id/2i(v - w)(t, ' )Id/2-lf(v - w)(t,

D'après le Lemme de produit 2 .1 (i), appliqué avec r = d/2 -1 et r' = d/2, il vient

( (AD)A"/2-1((v - w).Vw)(t, • )I t/(ÀD)A" 2-1(v - w)(t, ' ))
(2.6)

Ç CIw(t, ' )Id/2I(v - w)(t, ' )Id/2-lf(v - w)(t, ' )Id/2 •

Il résulte de (2 .4-2.6) que nous avons, pour presque-tout t,
6(t) + £(ki(ÀD)V(v - w)(t, • )Id/2-1) 2

ÇC(Iv(t, ' )Id /2+ Iw(t, ' )Id/2)I(v - w)(t, ' )Id/2-1I(v - w)(t,
(2.7)
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Or, le fait que I(v - w)(t, • )IS+1 C(IV(v - w)(t, • )Is + I(v - w)(t, • )I S ) et que 2ab
C -1 r-1 a 2 + CEb 2, assure que nous avons, pour presque-tout t,

(2.8) 6(t) < ((C 2/E)

	

(I v(T, ' ),d/2)2 dT+

	

(Iw(T, ' I d/2 ) 2 dT + et) 6(t) .
[o,t]

	

[o,t]

Vu que v et w appartiennent à L2([0, T];Hd / 2 ), nous obtenons le résultat en prenant
T assez petit .

On va maintenant aborder la démonstration du Théorème 0 .1 . Dans un premier
temps, nous régularisons la donnée initiale vo et le potentiel-vecteur V en considérant
une suite (vo,n)nEN (respectivement, (Vf)fEN) de H°° (respectivement, de
L ([O, +x[, H°°)) telle que vo, n (respectivement, Vn ) tende vers vo dans L 2 (respective-
ment, V dans L;~([0, ±oo[,L2 )) .

Le théorème d'existence d'une solution locale en temps pour les systèmes hyper-
boliques symétriques s'appliquent ici . En effet, comme le terme de viscosité n'apparaît
pas grâce à son signe, l'estimation hyberbolique linéaire standard (voir, par exemple,
[1]) assure, pour le linéarisé Lvw = 8,w + v.V w - e w - V 0-1 (tr (dv dw) ), l'estimation
suivante

si À C, ~~ v (~ L°°([o,T],HS), pour tout r > -s + d/2, si w est assez régulière,

II
e-~tw

~~ L°°([o,T],HS)

	

I w(0 )IS + ~) e !ktLvwIIL([0,T],H) .°°S

En suivant la démarche empruntée par Alinhac et Gérard dans [1], nous obtenons
l'existence d'une solution dans C([0, T] ; H S ) vérifiant l'estimation (2 .9) pour le
linéarisé . Nous utilisons alors un shéma itératif standard défini par Lvnv n+1= V1 V et

(2.9)
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v t± ô = y0 . L'estimation (2.9) entraîne que, pour T assez petit, la suite (vn) n E N est une
suite bornée de C([0, T] ; H S ) . En suivant toujours la démarche usuelle, nous observons
que Lvn (v' 1 - y") = Lv n-vn+1 v n+1' l'estimation (2.9) assurant alors que, pour t assez
petit, la suite (vn)fEN est une suite de Cauchy dans C([0, T] ; HS-1 ) .

Nous disposons alors, pour tout n, d'une solution vn définie a priori sur un
intervalle de temps [0, T,,[ . Le Lemme 1 .2 assure que ces solutions existent globalement
en temps ; reste maintenant à démontrer, en s'inspirant de la démonstration du théorème
d'unicité, que la suite (vn) n EN est de Cauchy dans L([0, +oo[ ; L2 ) . Cela va résulter
du lemme suivant, valable en toute dimension .

LEMME 2.3. Soient q un réel de l'intervalle [d/2-1, +oo[, et T un réel strictement
positif; si (vn) n EN est une suite de solution du système (S E ) sur l'intervalle [0, T] pour
les données y0 ,n et Vn telle que :

(i)

	

la suite (vo,n) nEN soit de Cauchy dans l'espace Hq,
(ii)

	

la suite (Vn) n EN soit de Cauchy dans l'espace L 2([0, T ] ; H q ),
(iii)

	

la suite (vn) f EN soit bornée dans l'espace L 2([0, T ] ; H"12 ) ;

alors, la suite (vn)fEN est de Cauchy dans l'espace C([0, T] ;Hq) .
Démonstration . Nous allons étudier l'évolution en temps de 6n,m (t) _

(Iv,, - vm ) (t, • ) Iq) 2 . Le système (SE ) assure que
6 ,m(t) = -2(Aq (vn.V (vn vm))(t, • ))A (vn vm)(t, • ))

(2.10)

	

+2(Aq((vn - vm).V vm) .V vm)(t, )A (v,, - vm)(t~ • ))

-2 £(IV(vn - vm)(t, • ) I q ) 2 +2(AgV1( Vn Vm)(t, • )IAq(vn vm)(t, • )) .

En appliquant le Lemme 1 .1 (ii) avec r = d/2, r' = q + 1 et s = r" = q, il vient, comme
q~d/2-1,

(2.11)

Comme

J . Y. CHEMIN

-2(Aq(vn .V (vn vm))(t, . )A (v,, - vm)(t, ))
ÇCI vn(t, )I q +1I(vn - vm)(t, . )Iq+1i(vn - vm)(t, )I q .

2(Ilq ((vn - vm) .V vm)(t, )A (y,, - vm)(t, ))

= 2(A 1 ((v,, - vm) .V vm)(t, • )I11q+1(vn - vm)(t~ ))~

l'application du Lemme de produit 2.1 (ii) avec r = q, il vient, grâce au fait que q est
plus grand que d/2 -1,

2(Aq((vn - vm ).V vm)(t, . ) IA (vn - vm)(t, . ))
(2.12)

ÇCI vm(t, . )Iq+1i(vn

	

vm)(t, . )I I(t',,

	

vm)(t, )Iq+1

Il s'agit donc maintenant, d'après (2.11) et (2.12), de majorer la quantité
(2.13) On,m(t) = C(Ivn(t, • )Iq+1+Ivm( t, )Iq+1)I(vn

	

vm)(t, )Iq+1I(vn - vm)(t, • )Iq .

En utilisant le fait que I(v,, - vm) (t, • ) Iq+1 < 7(y,, - vm ) (t, ' ) I q + I(' n - vm)(t, ' ) I q , nous
obtenons

(2

	

&,,m(t)Ç
C(I vn(t, )I

q+1+Itm(t,
)Iq+1)(£-1(Ivn(t, )Iq+1+I vm(t, )Iq+1)+ 1 ) 6n,m(t)

.14)
+(£/2)(Io(vn vm)(t, •

)I)2

Enfin, une intégration par parties standard assure

2(A V±( Vn - Vm)(t, • )IAq(vn - vm)(t, ))
(2.15)

	

~£_1(I (Vn - Vm)(t, )Iq)
2 +

£(IV(vn
-

vm)(t, )Iq)
2 .
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Il résulte alors de (2 .11-2.15) que l'on a

Sn,m(t)+(6/2) J

	

(IV (vn vm)(T, ' ) Iq) 2 dT
[O,t]

Ç sn,m(0) exp C(E, T) J

	

((Ivm(t, ' )Iq+1)2±((vn(t, ' )Iq+1)2+ 1) dT
[O, T ]

(2.16)

[ r, t ]

d'où le lemme .
Revenons à la démonstration du Théorème 0 .1 . Comme, d'après l'identité d'énergie

(E), la suite (vn) n E N est bornée dans L 2([0, T [ ; H 1 ), le Lemme 2.3 assure le Théorème
0.1 pour s=0.

Pour démontrer le Théorème 0.1 dans tout les cas, on va procéder par une
récurrence très simple; supposons que la solution v soit telle que v E

C([0, +oo[;H r ) (1 L([0, +oo[;Hr+i ), pour r < s. Pour tout réel a strictement positif,
il existe un réel to de l'intervalle ]0,a[ tel que v(to , .) appartienne à Hr+1 . Nous
considèrons alors une suite (vn) n E N de solution régularisée construite comme au début
de la démonstration du cas s =0 . L'estimation d'énergie (1 .12) assure que la suite

(vn)fEN est bornée dans L ([t0, +oo[;HInf(s,r+l)+l) • Le Lemme 2 .3 alors le résultat.

3. Existence globale en dimension 3. Le but de cette partie est la démonstration
du Théorème 0.2. Observons le comportement du système (SE ) par changement
d'échelle . Si v est une solution du système (SE ) avec données v o et!; alors, pour tout
réel À strictement postif, vÀ (t, x) _ Àv(À 2 t, Àx) est solution du système (SE ) avec données
vo,~ _ À vo(Àx) et VÀ (t, x) = A 2 V(À 2 t, Àx) . Nous avons très facilement les égalités
suivantes

(3.1)

lvoÀIo = -112 1vo1o et

	

(1 V,,(t ' )10) 2 dt

	

_

À

,,

	

,
[0,+00[

	

[

	

[

1/2

	

1/2
-i/2

	

(1 V(t, ' ) Io) 2 dt
o +~

II v0,~ 11/2 = II v011/2

+ J

	

£y1(1 Vn - Vm)(t, ' ) I q )2 exp (C(£, T)
[O,t]

'

	

(Ivm(t , ' ) 1q+i) 2 + (1vn(t, ' ) 1 q+i) 2 + 1) dt) dT,

1/2

et

	

(II VA (t, ' )I1/2) 2 dt

	

=

	

( I V (t, ' )I1/2)2 dt

)1/2
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Il en résulte qu'il suffit de démontrer le Théorème 0 .2 en supposant
1/2

(3 .2)

	

Iyo I l/2 +r h/2 j

	

-
(I V(t, .)I1/2) 2 dt

	

ÇCor.
[0,+00[

Nous procèdons comme pour la démonstration du Théorème 0 .1 ; nous com-
mencons par régulariser les données vo et V en considérant une suite (vo,n) n EN de H °°

(respectivement, (Vf)nEN) telle que vo, n tende vers v o dans H1/2 (respectivement, Vn
tende vers V dans L2([0, +oo[ ; H 1/2)) et que

1/2

1 v0 n 11/2 + £
-i/2

I

	

(1 Vn ( t, ' )11/2)2 dt

	

Ç Co£.
[0,+00[

L'étape essentielle consiste en la démonstration d'estimations a priori sur les solutions
vn du système (SE ) pour les données initiales vo , n et Vn assurant que ces solutions
existent globalement en temps ; il suffit ensuite d'appliquer le Lemme 2 .3 .
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Nous allons désigner par v une solution quelconque du système (SE ) avec données
vo et V vérifiant (3 .2) telles que v o soit H °° et V soit L ([O, +oo[;H °° ) . La solution v
est définie sur l'intervalle maximal [0, T*[ . Etudions la fonction g(t) _ ( Il v(t, • ) 1 1/2 ) 2 +
(I v (t, • ))2I o ; nous avons

g'(t) Ç 2(01/4(v.Vv)I& /4v) - 2£(01/4Vv(t, ' ) Iz ' Vv(t, •) )

(3.3)

	

+2(L11/4VI V(t, • )IQ1/4v(t, ' ))
-2r(Ov(t, • )Iov(t, ))+2(V'V(t, )I v(t,

D'après le Lemme 1.1(i), il existe une constante C > 0 telle que l'on ait :

(3 .4)

	

2(01/4(v .Vv)(t, ' )IA" v(t, ' )) Ç CI v(t, ' )I1 / 2(II v(t,
De plus, 2(V' V(; ' )Iv(T, • )) £-1(I V(T, • ) Io) 2 + £( II v(t, • ) Ii) 2 ; de même, nous avons
2(O 1 / 4V 1 V(t, ' ) I0 1/4 v(t, ' )) £ -1 (II V(t, ' )I1/2) 2 + £(II v(t, • )I3/2)2 ; nous obtenons alors

(3 .5) g '(t)+ £(II v(t, ' )I3/2)2Ç (CI v(t, ' )I1/2-2£)(Ilv(t, ' ) I 3/ 2) 2 + £-1(I V(t, ' )I1/2) 2 .

Il en résulte que, tant que I v (t, • ) 11/2 reste inférieur à £ / C, nous avons

(3.6)

	

g'(t)+ £(II v(t, ' )I3/2) 2 Ç £
-1 (I

V(t, '
Il en résulte, par une intégration immédiate, que, tant que Iv(t, • )I/2 reste inférieur à
£ / C,

(3.7)

	

(I v(t, ' )I1/2)2+ £ J

	

(II v(T, ' ) I3/2)2 dT < ( Iv0I1/2)2+ £-1 J

	

(I V( ; • )I1/2 dT.
[0,t]

	

[0,+°0[

Donc, si Ivo I l/2 + £-1/2 J{O,±O[°(I V(T, • )Idr) 1/2 ~ £/2C, alors l'estimation (3.7) est vraie
sur tout l'intervalle [0,T*[ . Le lemme d'explosion 1 .2 assure alors que T* _ +oo .
L'estimation (3 .7) est donc valable sur tout R + . En utilisant une récurrence strictement
analogue à celle concluant la démonstration du Théorème 0 .1, nous obtenons le
Théorème 0.2 via le Lemme 2 .3 .
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ON UNIFORM DIFFERENCE SCHEMES FOR SECOND-ORDER
SINGULAR PERTURBATION

PROBLEMS IN BANACH SPACES*
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Abstract. The paper considers finite difference approximations of arbitrary order O(rn) to certain
nonhomogeneous singular perturbation problems involving a small coefficient e in the higher derivative,
where r is the length ofthe discretization step in and n is an arbitrary integer fixed in advance. Approximation
is uniform with respect to

Key words, singular perturbation, finite difference schemes
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1. Introduction. We consider in this paper four singular perturbation problems
involving second-order differential equations in a Banach space E. The equations are

(1.1) e2u"(t; e)= Au(t, e)+f(t),

(1.2) e2u"(t, e)+u’(t, e)=Au(t, e)+f(t),

(1.3) eEu"(t, e)-iu’(t, e)=Au(t, e)+f(t),

(1.4) e2u"(t, e)+u’(t, e)=(eA+ B)u(t, e)+f(t),

where A, B are linear, generally unbounded operators in E. In each case, the usual
initial conditions are given:

(1.5) u(0)

The singular perturbation problem related to these equations is that of showing that

(1.6) u(t, e)--> u(t),

where u(t) is the solution of the limit equation obtained by setting e 0 in (1.1), (1.2),
(1.3), (1.4). The corresponding limit equations are

(1.7) Au(t)+f(t) =0,

(1.8) u’(t) Au(t) +f(t),

(1.9) u’(t) iAu( t) + if(t),

(1.10) u’(t) Bu(t) +f(t).

Equations (1.8), (1.9), and (1.10) come with the initial condition

(1.11 u(0) Uo,

while (1.7) is not associated with any initial condition. The singular perturbation
problem associated with (1.1) is called elliptic since in typical applications A is a
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(linear) elliptic operator. The singular perturbation problem associated with (1.2) is
called parabolic 11], 14]. The SchriJdinger perturbation problem is associated with
(1.3), ([12], [14]) and the hyperbolic problem corresponds to (1.4) ([13], [14]); a reason
for the latter terminology is that one ofthe main applications of (1.4) is to the hyperbolic
partial differential equation e2(utt a(x)u,,x)+ (ut + b(x)ux)=f(x, t), which appears in
problems of traffic flow (see 13]). The parabolic singular perturbation problem appears
in the study of oscillations in viscous media and the Schr6dinger singular perturbation
problem in the proof that the nonrelativistic limit of the Klein-Gordon equation is
the Schr/Jdinger equation. For further details and bibliography on these applications,
see [14], especially Chapters VI and VIII.

Equations like (1.1) could be handled as first-order systems in a suitable "phase
space" as in [14, Chap. III], or [18], thus reducing the problem to one involving
first-order rather than second-order equations. However, the fact that the limit equations
of the second-order equations are of first order makes it simpler and more efficient to
deal directly with the equations rather than with the corresponding systems. The same
comment applies to (1.2), (1.3), and (1.4). Moreover, the finite difference schemes
obtained by reduction to first-order systems are different than those implemented in
the second-order equation.

A (strong) solution of any of the equations (1.1)-(1.4) is a function twice con-
tinuously ditterentiable in the norm of E such that u(t) D(A) and the equation is
satisfied everywhere. A minimal assumption on the initial value problem for any of
the equations (1.1)-(1.4) for fixed e is well posedness: there exists a dense subspace
D of E such that (a) for every u0, Ul D the initial value problem has a strong solution
u(t; e) in _-> 0, and (b) arbitrary strong solutions u(t; e) depend continuously on their
initial data Uo, ul uniformly on compact subsets. In each of the four cases the equation
is reduced by elementary transformations to the equation

(1.12) v"(t)=Av(t);

thus the well-posedness requirement will be transferred to (1.12). It is known [23], [8]
that the well-posedness condition is satisfied if and only if A is the infinitesimal
generator of a strongly continuous cosine function {C(t);-oo< <oo}. The solution
of the inhomogeneous equation

(1.13) v"(t) Av(t)+ g(t)

is given by

(1.14) v(t)=C(t)v(O)+S(t)v’(O)+ S(t-s)g(s) ds,

where

(1.15) S(t)u= C(s)uds.

The operator valued functions C(.), S(.) are called the solution operators of (1.12).
In general, v(t) is a strong solution only under suitable assumptions on v(0), v’(0),
and g(s) (for example, v(0), v’(0) D(A), g(. is twice continuously ditterentiable).
For arbitrary v(0), v’(0), and locally integrable g(. the (strongly continuous) function
(1.14) satisfies the equation (1.13) and the second initial condition (1.5) only in the
sense of distributions and is called a weak solution (or simply a solution) of (1.12). It
follows from a uniqueness argument that every solution of (1.13) admits the representa-
tion (1.14).
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The solution operators C(. ), S(. can be extended to all setting C(t)= C(-t),
S(t)=-S(-t); we have C(0)=/, S(0) 0,

(1.16)
(S(t)u)’=C(t) (uE),

(C(t)u)’: AS(t)u S(t)Au (uD(A)),

(1.17) C(s+ t)+ C(s- t)=2C(s)C(t),

(1.18) S(s + t) + S(s t) 2S(s)C( t)

for -c< s, < c (the last two equations are called the cosine and sine functional
equation, respectively). Finally, C(. and S(. grow exponentially at infinity:

(1.19)

for suitable M, to. The resolvent R(A2; A) (A2I A)-1 exists for Re A > to. (For proof
of these and other properties, see [23] or [14].)

We consider in this paper discretizations (that is, approximation by finite difference
schemes) of the initial value problems (1.1)-(1.4), which yield approximations to the
solution u(t, e) of arbitrarily high order in the discretization step r, uniformly in e for
e >0. These discretizations are based on reduction of each equation to (1.13) and on
the simplest difference scheme for this equation (introduced in [21]), which is examined
in detail in 3 and can be considered a direct generalization of the Courant-Friedrichs-
Lewy difference scheme for the one-dimensional wave equation in [4]. This difference
scheme is directly applied to (1.13) via Taylor expansions of the right-hand side about
mesh points kr. Other treatments of finite difference schemes for second-order equations
are in [3], [16], [20], and [22]. A general study of discretization schemes for linear
convolution equations (possibly more general than differential) is in [10], although
without rates of convergence.

Uniform difference schemes for ordinary differential equations were considered
by numerous authors: see [19] and especially [5] and bibliography there. See also [7],
1 ], and [2] for a related problem for a partial differential equation. In this connection,
we note that there is another equally natural way to approximate the solution of
singular perturbation problems as e 0, which is first to use asymptotic expansions
and then to discretize them, as done in [17] and [6]. For a treatment of asymptotic
expansions for operator equations see [11], [14] for the parabolic problem and [13]
for the hyperbolic problem.

Since the elliptic singular perturbation problem is not included in [14] (and has
probably not been studied in this level of generality) we include in 2 a few simple
convergence results, although convergence of u(t, e) to the solution of (1.7) is not
essential (uniform approximation holds even in cases where u(t, e) is not convergent).
A treatment of convergence of u(t, e) for (1.2) and (1.3) (respectively, (1.4)) can be
found in [14] (respectively, [13]).

2. The elliptic singular perturbation problem. The initial value problem is

(2.1) e2u"(t; e):Au(t; e)+f(t),

(2.2) u(O; 8)--- UO, u’(O; 8)= U

The assumptions on A have been stated in 1. We assume in addition that 0 belongs
to the resolvent set p(A) of A, that is, that A-i exists and is bounded (this can always
be insured by a translation). In this case, the solution u(t) of the limit equation (1.7)
is given by

(2.3) u(t)= -A-if(t).
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Set v(t)= u(et; e). Then v(.) satisfies the initial value problem

(2.4) v"( t) Av( t) +f( et),

(2.5) v(0)--" no, V’(0)- 8U

Expressing v(t) by means of (1.14) we obtain the formula

(. u(; =c(/Uo+eS(/u+- S((-s/f(s ds.

In general, u(t, e) does not converge as e O.
Using formulas (1.16) and assuming that f(t) is continuously ditterentiable as

many times as necessary we obtain, integrating by parts repeatedly,
b

(2.7)

b

S((b-s)/e)f(s) as=- , e2J-’{C((b-s)/e)A-Jf(zJ-Z(s)}
j--=l

Integrating by parts once again,

e2{S((b-s)/e)A-f(J-l(s)}
j-=l

+- C((b-s/-f(-(s as.

S((b-s)/e)f(s) ds=- Y’, eZJ-l{C((b-s)/e))A-Jf(2J-)(s)}
j=l

(2.8) , e2J{S((b s)/e)A-f(z-’)(s)
j=l

+e" S((b s)/ e)A-mf(2"(s) ds.

We justify these formulas under minimal hypotheses on f Let f(.) be an E-valued
function defined in a -< -< b. Denote by Hl’p(a, b; E) the space of all functions f(.
such that there exists g(. LP(a, b; E) and u e E such that

f(t)=u+ g(s) ds (a<-t<-b).

Obviously, f(’) is absolutely continuous and has a derivative f’(t)=g(t) almost
everywhere.

For r= 1, 2,... we denote by Hr’v(a, b; E) the space of all E-valued r-1 times
continuously differentiable functions u(. such that u(r-l( )e Hl"V(a, b; E).

Let to be the constant in (1.19). It is shown in [8], [14] that if h to then fractional
powers (hI A) can be defined for all a, -oo < a < oe. These fractional powers satisfy
the additivity property (A2I-A)+ =(AI-A)(AI-A). Moreover, (AI-A) is
bounded for h > to and a > 0 and for arbitrary h, x _-> to, -oe < a < oe, D((A2I A))
D(tzI-A)) and (A2I-A) -(xI-A) is bounded.

LEMMA 2.1. Let f(. be an E-valued function defined in a <-_ <-b and let h >-to,
0 <-a <-_ 1, m, r be positive integers. Then the following statements are equivalent:

(2.9) (A-m(hI-A)-f)( H’l(a, b; E),

(2.10) ((A2I A)-’-"f)(. Hr"(a, b; E)

and independent of A for A > to.
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(2.12)

(2.13)

Then

That (2.9) and (2.10) are equivalent follows from the equalities

A-m(AaI A) (AaI A) (A (A2I A)-m)(AaI A)

(I- Am(AaI A)-m)A-m(AaI A)

-(I (h2I A)mA-m)(A2I A)

with both I A h21 A)-m and I h21 A)mA-’ bounded. As for independence
of A, we note that, for fl > 0 and h > to,

(12I A) ((/2I A)-- (A2I A))(A2/- A)
with (tz2I-A)-(A2I-A) bounded (see [14]).

It is known ([7], [14, Chap. III]) that if A_>-to and a<1/2 then S(t)Ec
D(((A2I A)) and

(2.11) - (A2I A)S(t)

is a strongly continuous function for all t. This may not be true for a 1/2; for instance,
if E is the space Co(-Oo, oo) of all continuous functions on the line that tend to zero
at +/- and A d2/dx2 with maximal domain, A is the infinitesimal generator of the
cosine function

C(t)u(x) {u(x+ t)+ u(x- t)}/2

and (2.11) is not bounded for a =1/2 (see [14]). However, (2.11) is strongly continuous
for a=1/2 if E LP(E, ,/x) for 1 <p <oo, (E, Z,/x) a measure space, in particular, if
E is a Hilbert space.

LEMMA 2.2. (a) Let r >- 1 be odd and let f(. be an E-valued function such that,
for some A >= to and a < 1/2,

((A2I-A)--f)(.)H2’l(a,b;E) (l<=j<=(r-1)/2),

(A-f)(.)H2-,l(a,b;E) (l<-j<-(r+l)/2).

S((b-s)/e)f(s) ds

(2.14)

(r+1)/2

e2J-l{(A-Jf)(2-2)(b)-C((b-a)/e))(A-f)(2J-2(a)}
j=l

(r--1)/2

+ E eZJS((b-a)/e)(A-f)2-’)(a)
j=l

+e C((b-s)/(A-//f((s) ds

=L(a, b, e;f)+ e C((b-s)/e)(A-(r+/2f)(r(s) ds

r odd).

(b) Let r >-2 be even and f(. be an E-valued function such that, for some A >-to

and a < 1/2,

(2.15)

(2.16)

((A2I- A)-J-)f( e HJ’l(a, b; E)

(A-f)( H2J-"l(a, b; E)

(l <=j <= r/2),

(l<=j<--r/2).
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Then

’S((b s)/e)f(s) ds

r/2

E e2-X{(A-f)2-(b)-C((b-a)/e))(A-f)2-2(a)}
j=l

r/2

(2.17) + E eS((b-a)/e)(A-f)2-l(a)
j=l

+e" S((b s)/ e)(A-"/2)f(r(s) ds

=Ir(a, b, e;f)+e ff S((b-s)/e)(A-r/2)f(r)(s) as

r even).

If E LP(E, ,/z) (1 <p <cx), (,,/z) a measure space, we may take a=1/2 in (2.12)
and (2.15).

Proof We extend f(. setting f(t)=f(a) for t=< a and f(t)=f(b) for t=> b and
definef, .f, where {,} is a &sequence of scalar test functions. Sincef, is infinitely
ditterentiable, (2.7) can be applied. To take limits in the first summation, we observe
that (A-Jf,)J-l(.)-(A-f)-(.) in L(a,b;E), so that (A-Jf,)2--(.)
(A-f)2-)( uniformly and, in particular, (A-Jf,)-2(a)(A-Jf)J-2(a). For the
second summation, we note that

S((b a)/ e)(A-Jf,)((s)
(2.18)

((XI- A)’S((b a)/ e))(A-(,2I- A)-’f,,)2(s),

deducing that S((b-a)/e)(A-f,)2)(.)- S((b-a)/e)(A-Jf))(’) in L(a, b; E).
Finally, we can take limits in the integral since, due to the last condition (2.12),
(A-+)/f,))( )- (A-+)/2f))( in the space L(a, b; E).

The proof of (b) is similar. The treatment of the boundary terms is exactly the
same. As for the integral, we write

S((b s)/ e)(A-r/2fn)(r)(s
(2.19)

((I A)’S((b s)/e))(A-/(AI A)-’f,,)((s)
and use the last condition (2.16).

Example 2.3. Let E L(0, 7r), A d/dx with maximal domain determined by
the boundary conditions

u(0)= u()=0.

The spectral decomposition of A is

(2.20) Au(x) A ., c, sin nx n-c, sin nx
n=l n=-I

and that of the cosine function C(t) generated by A is

(2.21) C(t)u(x)={u(x+t)+u(x-t)}/2- . c cos nt sin nx.
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Since we are in a Hilbert space and to 0, we may use conditions (2.12) or (2.15) for
A 0 and a 1/2. An E-valued function

(2.22) f(t) c, (t) sin nx
n=l

satisfies (2.12) and (2.13) if and only if all the coefficients c,(t) are r-1 times
continuously differentiable with t:n"(r-1)(t) absolutely continuous and such that the
functions

(2.23) {E In -2j-1 _(2j) <__jc, (t)12} 1/2 (1 _<-- (r- 1)/2),

(2.24) {2 [n-ZJc(n2j-1)(t)12} 1/2 (1 <=j <--_ (r+ 1)/2)

belong to L(a, b; E) or, equivalently, if all the functions

(2.25) {2 In--Xc?)(t)12}1/2 (1 =<j=< r)

belong to L(a, b; E). Conditions (2.15) and (2.16) reduce also to (2.25).
Remark 2.4. The assumption that f(. is an E-valued function in Lemma 2.2 can

be weakened: it is enough that, for some a < 1/2, f(. satisfy (2.12) or (2.15) for j =0.
If E=LP(,Z, tx)(I<p<c), we may take a=1/2. In Example 2.3, this amounts to
abandoning the requirement that {Y [cn(t)[2}1/ be summable and require only that
(2.25) hold for j 0 as well.

Formulas (2.14) and (2.17) (used for a 0, b t) provide asymptotic series up to
any power of e for the solution u(t, e) of (2.1). For instance, formula (2.17) for r 2
yields

u(t, e)= -a-If(t)+ C(t/e)(uo+a-’f(O))

(2.26)

or, formula (2.14) with r= 3,

+eS(t/e)(Ul + (A-If)’(0))

+e S((t-s)/e)(A-f)"(s) as

u(t, e)= -A-If(t)+ C(t/e)(uo+A-lf(o))

+eS(t/e)(ul + (A-f)’(0))
(2.27)

2( e2-e a-Zf)"(t)+ C(t/e)(a-Zf)"(O)

+e2 C((t-s)/e)(A-2f)’"(s) as.

These two formulas are used in the following result.
THEOREM 2.5. Assume that

(2.28) IIc(t)ll, lIs(t)ll <- M (-oo< < oo).

(a) Let f(. satisfy

(2.29) ((A2I A)-l-)f( E H2’l(0, T; E),

for some a < 1/2. Then

(2.30) u(t, e)=-A-lf(t)+C(t/e)(uo+A-lf(o))+O(e)

(A-if)( )E H1’1(0, T; E),

(eO)

uniformly in 0 <= <-- T.
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(b) Let (2.28) hold, and assume in addition that

(2.31) ((AI-A)-I-)f(.)H’I(o, T; E), (A-f)(.)H3"l(o, T; E)

for some a < 1/2. Then

u(t, e)=-A-f(t)+C(t/e)(Uo+A-f(O))
(2.32)

+eS(t/e)(Ul +(A-lf)’(O))+O(e2) (e 0)

uniformly in 0 <= <= T.
(c) If E= U’(E,E, tt) (1 <p<oo), then (2.32) is true under the only assumption

that a 1/2 in (2.31).
(d) If E is a Hilbert space then (2.31) is true under the only assumption that a =1/2

in (2.31).
The proof of Theorem 2.5 (a) and (b) follows from (2.26) and (2.27), respectively;

we use the fact that the (strongly continuous operator valued) function

(2.33) (AI-A)S(.)

is uniformly bounded in -< s <, which follows from an analogue of formula (6.18)
in [14] for a<1/2. To show (c) we note that if E=LP(E,E, tx) (1 <p <), then (2.33)
is a strongly continuous operator valued function in -o < s < also for a . However,
the hypotheses that E LP(E, ,/z) does not insure uniform boundedness of (2.33)
[14, Chap. III]; thus (2.30) does not follow. However, if E is a Hilbert space, the first
condition (2.28) implies that

C(t) K cosh tB)K -1,

where B is self-adjoint with B=<0 and K is self-adjoint and invertible [9], [14].
Moreover, the second condition (2.28) implies that B <=-pI with p > 0 14, Chap. IV].
Thus, uniform boundedness of (2.33) for a =1/2 can be directly proved using the
functional calculus.

COROLLARY 2.6. Assume that (2.28) holds and that (A-f)(.)e H’(O, T; E).
Then

(2.34) u(t, e)=-A-f(t)+C(t/e)(uo+A-f(O))+O(1) (e-->O)

uniformly in 0 <= <= T.
Proof. We use this time formula (2.14) for r= 1, which yields

u(t, e)= -A-If(t)+ C(t/e)(uo+A-lf(o))
(2.35)

+eS(t/e)tll+ C((t-s)/e)(A-lf)’(s) ds

if (A-if)( ) Hi’i(0, T; E). We construct a sequence {f(. )}, each f satisfying the
conditions of Theorem 2.5 (a) (or, for that matter, smooth as in the proof of Lemma
2.2) and such that

Ior ll(A-lf)(s)-(A-lf)(s)ll ds->O (n-->o).

Now, let u,(t, e) denote the solution of (2.1)-(2.2) with f=f, and choose ;>0. We
select n so large that u(t, e)-u,(t, e)ll <-- /2 uniform with respect to e, and then let
e--> 0 making use of Theorem 2.5 (a).



SINGULAR PERTURBATION PROBLEMS IN BANACH SPACES 37

Remark 2.7. Formulas such as (2.14) and (2.17) can be extended to the case where
A does not have an inverse (this will be useful in 7). The formula corresponding to
(2.14) is.

S((b-s)/e)A+’/2f(s) ds

(2.36)

(r+l)/2

E sJ-’{(A(+l-2)/f)(z-)(b)
j=l

(r--1)/2

j=l

-C(( b a)/ e ))(A(r+l-2j)/2f (2j-2)(a)}

e2S( b a )/ e )(A(r+l-2j)/2f (2j-1)( a

b

+ C((b s)/ e)f()(s) as,

which is valid for any f(. such that

(2.37) f(t) D(A(r+1)/2) a.e. in a _-< t-< b,

(2.38) (A(r+’-2)/2f)( H2’a(a, b; E) (O<-j <= (r+ 1)/2).

A similar extension can be made of (2.17)"

S((b-sl/ela/Zf(s) ds

r/2

Z e2j-l{(a(r-2j)/2f)(2J-:Z)(b)
j=l

(2.39) -C((b a)/ e))(A(r-2j)/f)(z-Z)(a)}
r/2

+ 2 ezS((b-a)/e)(A(r-J)/f)(2-a(a)
j=l

+e S((b s)/e)f((s) s

under the hypotheses that

(2.40) f() e D(A/) a.e. in a N N b,

(2.41) (a(-/f)(.)e g’(a, b; ) (ONjNr/2).

3. Te ffereee et. We use for (2.1) the difference scheme

(3. -(u. u+u_ (,/-(c(/ u+A
(=,,...,-

on (the interior points of) the grid 0, r, 2r, , Nr We first treat the homogeneous
case (f 0) and take e 1, so that the difference equation is

(3.) u+ + u_ c(lu ( , ,..., N- ).

Following Piskarev [21] we define two operator valued solutions {C(r)}, {S()}
(k 0) of (3.2) specifying the initial conditions

(3.3) Co(,) C()= I, So()=0, S()= I.
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These solutions (called the solution operators of (3.2)) are uniquely defined and can
be explicitly computed (recursively).

If {Uk} is the solution of (3.2) satisfying the initial conditions

(3.4) Uo l0, T--I(Ul- U0) ll,

then

(3.5) Uk Ck(7.)o+ 7.Sk(7.) (k=0, 1, , S).

We check inductively using the cosine functional equation (1.17) that the operators
{Ck(7.)}, {Sk(7.)} are given by the following formulas"

Cg (7.) 2C((k- 1)7.) 2C((k- 2)7.) +... + 2(-1)+C(7.) + (--1)k+’I
(3.6)

k-1

=(--1)k+lI+2(--1)k+l, (-1)Jc(j7.) (k-> 2),
j=l

Sk(7.) 2C((k- 1)7.)+ 2C((k- 3)7.)+-’’ + 2C(3 7.)+ 2C(7.)
(3.7)

(k-2)/2

=2 Y C((2j+ 1)7") (k->_2even),
j=O

Sk(7.) 2C((k- 1)7.)+ 2C((k-3)7.)+... + 2C(27.) + I
(3.8)

(k-l)/2

=I+2 C(2j7.) (k=>3odd).
j=l

(Formula (3.7) for k=2 is $2(7.)=2C(7.).) Thus, the following two estimates result
from (1.19)"

(3.9) IIG(r)II<-Mke% IISk(7.)II<-Mkek’ (k=0, 1,. ., S).

The estimate for IICk(7.)ll falls short of establishing stability in the strict sense for
solutions of (3.2) since the only bound on k is k -< N T/7. and the right-hand side
will tend to infinity as 7.- 0; the corresponding estimate for IISk(7.)11 is sufficient since
only 7.Sk(7.) is used and kT. <- T. However, the first estimate (3.9) establishes "stability"
in a sense acceptable in numerical analysis; see [15, p. 32].

We show below that (3.9) cannot in general be improved.
Example 3.1. We consider the operator A in Example 2.5. Formula (3.6) translates

into

(3.10) Ck(7.) C, sin nx F,,(k, 7.)c, sin nx,
n=l n=l

where the functions F.(k, r) are given by

F.(k, r)=(-1)+ 1+2 2 (-1)j cos
j=l

(3.
=cos (k-1/2)nT./cos (n7./2),

(see [24]) which is only O(k) if nr r.
We note that, in view of the characterization (2.21) of the cosine function C(t),

the difference equation (3.2) is the classical Courant-Friedrichs-Lewy difference
scheme

(3.12) u(x, k + 1)7.)+ u(x, k 1)7.) u(x + 7., kT.) + u(x 7., kr)
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(see [4]). For a stability analysis of (3.12) confirming the estimates (3.9) in this particular
case, see [15, p. 31].

Remark 3.2. Formulas (3.6)-(3.8) for {Ck(r)}, {Sk(r)} are not especially trans-
parent. They become much more obvious when there exists a strongly continuous
group { U(t); -m < < m} such that

(3.13)

Proceeding formally, we try

(3.14)

C(t)=(U(t)+ U(-t))/2.

Ck(r) AU(k-)+ BU(-k’),

where A, B are unknown operator coefficients. Using the initial conditions Ck(0)=
Ck(’) I we obtain the formal expression

Ck(r) U(k-)(I + U(r))-’ + U(-k-)(I + U(-)) -1

(3.15) {U(kr)+ U((1-k)-)}(I+ U(’))-’
k--1

E (--1)k-’-JU(jr)
j=l-k

In the same way we obtain

k-1

(3.16) Sk(-)=-{U((k+ 1)-)- U((1-k)r)}(I- U(2-))-= U(j-).
j=l-k

The final expressions for Ck(r) and Sk(’) are easily obtained from (3.15) and (3.16)
and can be checked directly in (3.2).

We deal next with the inhomogeneous equation (3.1) for e 1"

(3.17) Uk/I + Uk-1 2C(’)Uk + rfk (k-- 1, 2, , N- 1).

Obviously, we may define fo, fs arbitrarily, since these values of fk do not play a role
in (3.17). We define fo 0 and define a sequence (Uk} starting with Uo 0 and continuing
with

k-1

(3.18) Uk r2 E Sk-j(’)f (k= 1,’’’, N).
j=O

Obviously, we have Uo 0, ul 0. Moreover,

u2+ Uo u= 7"S_(7")fo + rf, r2f, 2C(T)/ + z2f,,

and, due to the sine functional equation (1.18),

2C(r)Uk + rfk (k=>2).
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THEOREM 3.3. The solution ofthe inhomogeneous equation (3.17) with initial condi-
tions (3.4) is given by u0 to,

k-1

(3.19) Uk Ck(’r)o+ ’rSk(r)fil + ’r
2 E Sk_;(r)f (k= 1, 2,. ., N)
j=0

and

(3.20)
u Mk ek,o-II ao + Mk’r ek,o, a,

+M(T(T+r)/2) ek’" max I111l<=j<_k-1
(k=0, 1,-..,N).

Proof. Formula (3.19) has already been established. We use the second formula
(3.9) to estimate:

r: Sk_(r)f <= Mr: Y. (k-j) e’-’’lll
=o j=o

<- Me’"r Y j max

(3.21)
j=l ljk-1

Mekrkr(k + 1)/2 max
ljk-1

rr+/: e max
ljk-1

This ends the proof of Theorem 3.3.
Equation (3.1) is reduced to (3.17), writing it in the form

Z-:( Uk+I 2Uk + Uk-) 2z-:(C(z/e)- I)Uk + e-:fk
or, equivalently,

(3.22) Uk+l+ttk_l=2C(’r/e)Uk+7":(e-Zfk)
Using Theorem 3.3

(3.23)

thus

(3.24)

(k=l,2,..., N-l).

k-1

= c(/)ao+S(/)a,+ E &-(/)(-);
j=0

+M(T(T+’r)/2) ek’/

We shall use (3.24) for to 0 (that is, we assume that (2.28) holds). In this case we obtain

(3.25) IlUkll<--Mkllo[[+Mk’rlllll+M((T2+l)/2) max Ile-:zfll
O--jk-1

for _--< 1/T.
Remark 3.4. Discretization of the second-order equation u"(t) Au (t) by means

of the difference scheme (3.2) runs into problems absent in the case of the first-order
equation u’(t)= Au(t). For this equation the corresponding difference scheme is

7"-l(/,/k+l- Uk)-- ,/.-1(S(7. I)tlk

or

(3.26) Uk+l S(’)Uk (k=O, 1," , N- 1),
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where S(t) is the semigroup generated by A. The solution operator of (3.26) is
Sk() S(k), thus the difference equation is just as stable as the differential equation:
if

(3.27) IlS(t)ll-Me’t (tO)

then

(3.28) Me’k (k 1, 2,...).

There isno exact analogue for the second-order equation; the first bound (1.19) for
the solution operators of the differential equation results in the weaker estimate (3.9)
for the discrete propagator Ck(r). As shown in Example 3.1, this is unavoidable.

Remark 3.5. We note another discrepancy between the first- and second-order
case. The first-order singularly perturbed initial value problem is

(3.29) eu’( t; e) Au( t; e) +f(t),

(3.30) u(t; e) Uo (t -> 0),

whose explicit solution is

(3.31) u(t; e)=S(t/e)uo+e- S((t-s)/e)f(s) ds

where S(t) is the semigroup generated by A. The corresponding discretization of (3.29)
is

(3.32) U+l=S(’/e)u+’(e-f).
The solution of (3.32) corresponding to the initial condition uo is

k-1

(3.33) Uk=S(k’/e)Uo+r 2 S((k-j-1)’/e)(e-lfj) (k=0,1,...,N).
j=0

Assume that the semigroup S(t) has negative exponential growth

(3.34) IIS(t)ll <-_Me-’ (t >=O)

with to > 0. Then we obtain from (3.31) and the fact that

F_,
--1 e -’s/e ds w-1

the estimate

(3.35) Ilu(t)ll<-Mlluoll/,o-M max IIf(t)ll,

On the other hand, (3.33) yields the estimate

(3.36) IlUkll <- Mlluoll + CM max
0j

where C is the maximum of the function

tr 2 e-k’ 0"/(1 e-’’)
k=O

in 0 <= tr <_-o. Hence the a priori bounds for the differential equation and the difference
equation are of the same stability type. The situation is different for the second-order
equation (2.1) and its discretization (3.1). Since there are no cosine functions of negative
exponential growth, on the one hand we cannot get rid of the factor e- estimating
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(2.6); on the other hand, the estimate (3.15) corresponding to the difference equation
contains a factor e- on the right-hand side instead of the factor e -1 resulting from
(2.5)..This determines that we should prefer the differential equation to the difference
equation in estimates for approximate solutions.

4. Higher-order estimates. We study in this section the approximation of the
solution of the differential equation (2.1) by that of the difference equation (3.1). We
assume that o 0, that is, that (2.28) holds.

The method used below (and in the next sections) can be outlined as follows. All
estimations will be based on formula (2.35) for solutions of the initial value problem
(2.1)-(2.2), that is,

u(t, e)= -A-if(t)+ C(t/e)(uo+ A-if(0))
(4.1)

+eS(t/e)ul + C((t-s)/e)(A-f)’(s) ds

A-1with (A-f)( H’I(0, T; E). Assume thatf,( is a function such that f,)(
H’I(0, T; E) as well, and that

r

A-(4.2) I](A-f)’(s)-( f,,)’(s)l ds <- C"

Then, if u,,(t; e) is the solution of the initial value problem (2.1)-(2.2), with the same
initial conditions and f=f,, we have

(4.3) I[u(t; )-u,.(t; )ll C" (OtT).
We shall take the approximants f,, to be piecewise polynomial functions in the intervals
of a grid 0, , 2r,. , (N-1)r, Nr Z We use Taylor polynomials in each interval
kt<(k+ 1), although (see Remark 4.6) other approximations can be used, for
instance, interpolation polynomials of Newton-Cotes type. The paicular form of the
f,, will make possible to obtain u,, (t, e) at the gridpoints kr by means of the difference
equation (3.1) with a paicular right-hand side {f(e)} and initial conditions Uo(e),
u(e) involving the values off(. and of its derivatives at gridpoints.

We begin by deducing this difference equation for a solution of the initial value
problem (2.1)-(2.2) with an arbitrary right-hand side f(.). Let tk=k for k=
1, 2,..., N, with N= Z We compute u(t, e) using (4.1) and replace the sequence
{u(tg, e)} in the difference equation (3.1) (or, equivalently, (3.22)). It follows from the
cosine functional equation (1.17) and the sine functional equation (1.18) that both
{ C (tk/e)Uo} and {S(tk/e)ua} satisfy the homogeneous difference equation. Accordingly,
{ u (tk, e)} satisfies

U(tk+l, e)+ U(/k_l, e)--2C(/e)u(tk, e)

-A-lf((k+ 1))+ 2C(/e)f(kz)-A-lf((k 1))

+ {c(((+-s/+c(((--s/l

(4.4) -2C(/e)C((kr-s)/e)}(A-f)’(s) ds

+ c((( +-s/(a-’f’(s as

C(((-,-s/(-f’(s as
k-1)r

(-f( (= , ,. ,-.
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Since the first integral vanishes due to the sine functional equation (1.18), we have

fk(e) -e2r-2{A-lf((k+ 1)r)+2C(r/e)A-lf(kr)-A-lf((k 1)’)}
(k+1)-

(4.5) +e2"-2 C(((k+ 1)r-s)/e)(A-lf)’(s) ds
d k-r

2 -2 I(k"-e r C(((k-1)’-s)/e)(A-lf)’(s) ds.
k-1)r

This solution satisfies the initial conditions

(4.6) u(0, e)= to- Uo,

’-l(u(r, e)-u(O, e))--A-lf(r)+A-lf(o)

(4.7) + .-1( C(’/e)- I)(uo+ A-if(0)) + e’-ls(r/e)Ul

2f-T-1 C((-s)/e)(A-lf)’(s) ds’--/I(E),

where Uo, Ul are the initial values (2.2) for the differential initial value problem.
Denote by B’(a, b; E) the space of all E-valued functions g(. having derivatives

of order <_-n with g((s) bounded. We approximate g(-) by its Taylor polynomial of
order n 1 in each interval kr _-< _-< (k + 1)-,

g,,(t)- .(t-k-)g(r)(k-)

(4.8)
(k-<- (k+ 1)’, k=0, 1, , N- 1).

It follows from the remainder formula applied in each interval that

(4.9) IIg( t) g,( t)ll <= Cr (0<= <= T).

These considerations will be applied to g(. )--A-lf( ), where f(. is the function on
the right-hand side of (2.1). Assuming that A-f( ) B(a, b; E), we will have

(4.10) II(A-lf)(t)-(A-lf),(t)ll <- Cr

so that (4.2), a fortiori (4.3), will hold. To figure out explicitly the difference equation
satisfied by {u,,(t, e)} it is enough to compute fi(e) given by (4.4) and tl(e) given
by (4.7). This amounts to finding explicit expressions for the operators

(4.11) P,b(a, b, e)u= C((b-s)/e)u(s-a) ds

and

(4.12) P,,(a, b, e)u C((s a)/ e)tl(s a) ds

for arbitrary a, b, e. For related purposes, we shall also make use of the operators

(4.13) Q,b(a, b, e)u= S((b-s)/e)u(s-a)ds,

(4.14) O,(a, b, e)u S((s a)/ e)u(s a) ds.
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To compute Q,.,b(a, b, e) we use Lemma 2.2 forf(s)=(s-a)r; for r even we use (2.14)
for r+ 1 (so that the integral term drops out) and for r odd we use (2.17) for r+ 1. To
compute the Qr,a(a, b, e) we switch a and b in (2.14) and (2.17) and use f(s)= (s- b)".
The Pr,b and Pr,, are reduced to the Q, and the Q,b by means of an integration by
parts. The first few P,, Pr,b, Qr,, Qr,b are

(4.15) Po,a(a, b, e)= Po,b(a, b, e)= eS((b-a)/e),

(4.16) Qo,(a, b, e)- Qo,b(a, b; e)- eA-1C((b-a)/e)-eA-1,

Pl,a (a, b, e) e(b a)S((b a)/ e) e2A-C((b a)/ e) + e2A-l,
(4.17)

P,b(a, b, e)= e2A-1C((b-a)/e)-e2A-1,

Ql,(a, b, e)= eA-C((b-a)/e)-e2A-S((b-a)/e),
(4.18)

Ql,b(a, b, e)=-eA-l(b-a)+ eA-1S((b-a)/e).
We note that the computation of the P, can be reduced to the computation of the
P,b by writing (s a)r ((s b) + (b a)) and using the binomial formula. The same
observation applies to the Q, and Qr,b.

THEOREM 4.1. Assume the boundedness condition (2.28) is satisfied, and let u(t, e)
be the solution of (2.1)-(2.2) with A-if( continuously differentiable and

(4.19) (A-f( ))’ B"(O, T; E)

(n >-_ 1). Then the solution { Uk (e)} of the difference equation (3.22) with right-hand side

fk(e) -e2z-2{A-lf((k+ 1)r)+2C(r/e)A-f(kr)-A-lf((k 1)r)}

(4.20) q- e 2"/"-2
r=o . P,(k+l)(kr, (k + 1)r, e)(A-lf)(+’)(r)

_82r-2 n 1

=o . Pr.(k-,((k- 1)r, kr, e)(A-’f)(r+’((k 1)r)

and initial conditions

(4.21) Uo(e) fro Uo,

7"--1(//1( 6 /’/0()) /1-- -A-if(r) + A-if(0)

(4.22) +r-’(C(/e) I)(uo+ A-f(O))

+er-lS(r/e)u,

nl 1 (r-t-l)+r- P,(0, r, e)(A-if) (0)
r=0

satisfies
(4.23) IlUk(e)-- U(tk, e)[[ =0(r")

as r-> O, uniformly with respect to e.

(k= 1,2,...,N)

Remark 4.2. A number of variants of Theorem 4.1 can be established using the
same methods. For instance, approximations that satisfy

(4.24) Iluk(e)- U(tk, e)ll =0(er")

can be obtained by starting with formula (2.26) and requiring that (A-f)"(.)
B(0, T; E). In this case, the Pr,,, P,b are replaced by the Q,a, Qr,b.
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Remark 4.3. Since the right-hand sides of (4.15) and (4.16) contain the operators
A-1, C(z/e), and S(r/e), the finite difference schemes proposed in this section are
practical only if these can be explicitly computed. In general, A-1, C(r/e), and S(r/e)
will have to be replaced by suitable approximations (in the case of a hyperbolic
equation, approximations to C(r/e) and S(r/e) may be constructed discretizing the
space variables), and the resulting scheme will be independent of e inasmuch as these
approximations are independent of e. Thus, Theorem 4.1 provides only a framework
or "template" for construction of practical discretizations. (The same applies to the
difference schemes proposed in 6-8.)

Example 4.4. To illustrate the application of the results to a particular example,
we consider a Banach space analogue of the operator in Example 2.3. Let E C(0,
be the space of all continuous functions in the interval 0 =< x-<_ 7r satisfying

(4.25) u(0) u(cr) 0

endowed with the supremum norm, and let A d2/dx with maximal domain. Then
A generates a cosine function C(t) given by

(4.26) C( t)u(x) (u(x + t)+ u(x- t))/2,

where u(x) has been continued to -<x<+ as a 27r-periodic function odd about
x 0 and x 7r. We have

1 f
x+,

(4.27) S(t)u(x)=-
,-t

u() d,

(4.28) A-lu(x) (x- )u() d-X (’n’- )u() d.

Assume we wish to construct an approximation of order 0(r) to the solution of the
initial value problem (2.1)-(2.2) by means of the difference scheme (3.22). Theorem
4.1 will hold iff(t)(x)-f(x, t) is three times differentiable with respect to uniformly
with respect to x in 0-< x =< 7r. Taking advantage of periodicity, the integral (4.27) can
be approximated independently of e, while (4.28) does not depend on e. Approximation
of sufficiently high degree will of course need smoothness assumptions with respect
to x on Uo(X), /./l(X).

Remark 4.5. Theorem 4.1 actually holds under milder hypotheses; for instance,
an approximation of order 0(r) can be obtained under the only assumption that (Af)’(t)
is Lipschitz continuous.

Remark 4.6. Approximations different from the piecewise Taylor polynomial (4.8)
can also be employed, and may in fact be of easier application in practice. For instance,
we may use in each interval kr<-_ <-(k+ 1)r polynomials interpolating f(t) at kr,
(k + 1)z and n- 1 interior points as in Newton-Cotes integration formulas. The advan-
tage of this method is that evaluation of derivatives of f(.) is unnecessary. The
expressions on the right-hand side of the difference equation (3.22) are computed using
the repeated integration-by-parts formulas (2.14) and (2.17).

5. The parabolic singular perturbation problem. The assumptions on the initial
value problem

(5.1) e2u"(t, e)+u’(t, e)=Au(t, e)+f(t),

(5.2) U(0, E)--" U0, Ut(0, E)-- U
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are those in 1. We study (5.1)-(5.2) by reducing it to the elliptic singular perturbation
problem. If u(t, e) is a strong solution of (5.1)-(5.2) and

(5.3) v(t; e): et/2e2u(t, e),

then v(-; e) satisfies the initial value problem

(5.4) eEv"(t; e)=(A+(1/4e2)I)v(t; e)+et/E2f(t),
(5.5) v(0; e) Uo, v’(0; e) (1/2e-)Uo+ Ul.

We treat (5.4)-(5.5) using the techniques of the elliptic singular perturbation problem.
Denoting by C(t; e) the cosine function generated by A+(1/4e2)I, the difference
equation associated with the differential equation (5.4) is

(5.6) v+, + vg_, 2C(r/e; e)v + rZ(e-2f).
Hence, the difference equation for

(5.7) {Uk} {e-k/22Vk}
is

(5.8) e{k+l)/2u+ + e-l)/2u_, 2C(r/e e) e/Uk + r2 e/22( e-2fk).
This equation can be written in the form

’( ,(Uk+ 2Uk +/"/k-I) -4- "I’- 1 e- )r- Uk /’/k--l)
(5.9)

=r-2(2C(r/e; e) e-r/22-(1 +e-*/*2)I)Uk+e-2 e-*/2*2fk,
which shows better its relation with (5.1). Initial conditions are

(5.10) Uo 0, T l(er/2e2
To obtain estimates for {Uk} we use the explicit solution formula (3.19) for {Vk},
denoting by Ck(t/e; e), Sk(t/e; e) the discrete propagators of the difference equation
(5.6). The result is

Uk-- e
(5.11)

k-1

E
j=0

where to, 1 are the initial conditions (5.10). To estimate this expression we use the
bound

(5.12) IIC(t; e)ll <= M exp (w2+ 1/4e2)l/2t
(see [14, Chap. VI]). Since

(092+ 1/4e2)l/2=(1/2e)(1 + 4to282)/2 (1/2e)(1 + 2to2e 2)(5.13)

we obtain

Accordingly,
k-1

rYe
j=0

k-1

 )11 -< e-2M ek ’ r2 E (k-j)
j=O

<-- e-2Mek’2rkr(k+ 1)/2,
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which yields

(5.15)
+M((T(T+’)/2) ek’2 max

<--j<=k-

6. Higher-order estimates for the parabolic problem. We study the approximation
of the solution of the differential equation (5.1) by that of the difference equation (5.8).

Using (2.6) we obtain

u(t; e)= e-t/2C(t/e; e)uo+ e-t/2S(t/e; e)((1/2e)Uo+ eUl)
(6.1)

+- s((t-s/; e e-’-vf(s ds.

Using (5.12) and (5.13) we obtain

IIs(; )11 M(o+ 1/4e)-l/(exp + 1/4e2)/2t- 1)
(.

<- 2eM exp (o + 1/4e)l/t -<_ 2eM exp (1/2e +

Hence we deduce from (6.1) that

(6.3) Ilu(t; e)]i<--2Me’t(l]Uoll/e2llUl]l)/2Me’2T ]lf(t)ll dt.

A slightly better estimation (with a factor M instead of 2M) can be obtained by
different means (see [14, Chap. VII).

The arguments in this section are very much the same as those in 4. Assuming
that f(. e LI(0, T; E) and f,,n(") e LI(0, T; E) is a function such that

(6.4) Ilf(s)-f,,n(s)l] ds <= Cr,
0

if u,,,(t, e) is the solution of the initial value problem (5.1)-(5.2) with the same initial
conditions and f=f,,, it follows from (6.3) that

(6.5) Ilu(t, e)-u.,.(t, )ll<=C (O<=t<- T).

We deduce the difference equation for a solution u(t, e) ofthe initial value problem
(5.1)-(5.2) with an arbitrary right-hand side f(.). Taking into account that v(t; e),
given by (5.3), satisfies the differential equation (5.4), a computation similar to that
in (4.4) (and the fact that S(-t)=-S(t)) reveals that {U(tk, e)} is a solution of the
difference equation

e(k+l)r/2eU(tk+l, g)/ e(k-1)’/2eU(tk_l, e)-2C(r/e; e) ek’/2e2tl(tk, e)
(k+l)-r

-1 e(k+l)r/2e2-e S(((k+ 1)r-s)/e, e) e-((+’’-/f(s) ds
dk’r

(6.6) -e -1 e(k-l’/2 S(((k- 1)z- s)/ e; e) e-((g-1)’-)/2f(s) ds
k-1)w

(k+)-
-1 e+l/ -/f(se S(((k+ 1)r-s)/e; e) e-((k+l) as

d k-r

+e -1 e(k-’’/ S((s-(k-1)’)/e; e) e(-(k-’)’)/2f(s) ds.
k-l)7"
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Initial conditions must be given in the form (5.10)"

(6.7) u(0, e)= ao Uo,
--1 e-/2e2tl- (-, )-u(O, ))

(6.8) "/’-I(c("/’/e; e)- i)uo+ ’-1S(’/ e; e)((1/2e)Uo+ eu,)

+(- e"/ s((,-s/; e-’-s/f(s as=

We assume that f(. belongs to B(a, b; E) and use a piecewise Taylor polynomial
approximation f,,,(. as in 4:

f,n( t) -l. t- k’r)rf(r)(k’r)
(6.9)

(k’_-< <(k+ 1)’, k=0, 1,..., N-l),

which yields the approximation

(6.10) IIf,(t)-f,.(t)ll <= C-" (0 <- <- T).

Let u,.(t, e) be the solution of the initial value problem (5.1)-(5.2) with f=f,.. The
function u,.(t, e) is obtained at gridpoints k- by means of the difference equation
(6.6) with initial conditions (6.7)-(6.8), where f(. is replaced by f,.(. ). To figure out
explicitly all coefficients in terms of the values off(. and its derivatives at gridpoints
it is enough to find explicit expressions for the operators

(6.11) QrP,a(a, b; e)= S((s-a)/e; e) e(-’)/z2(s-a)r ds,

p )r(6.12) Q,b(a, b; e)= S((b-s)/e e) e-(b-)/z(S a ds.

Just as in the case of the operators P,, Qr,, P,b, Q,b in 4, the computation of QrP,
reduces to that of QPr,b, writing (s a) ((s b) + b a)) and applying the binomial

pformula. Thus we limit ourselves to the latter; we explicitly calculate Qo,b(a, b, e) and
pQl,b(a, b, e) and give a recursion formula from which each QP,b(a, b; e) can be com-

puted. For r=0 we use (2.17) for r= 2 and f(s)= e-(b-s)/ZeZu, keeping in mind that
A+(1/4e2)I is the infinitesimal generator of C(t; e)"

S((b-s)/e; e) dse-(b-s)/2e2

=-e(A+(1/4e:z)I)-+ eC((b-a)/e; e)(A+(1/4e:z)I)-1 e-b-’)/2

+(1/2)S((b-a)/e; e)(A+(1/4e)I)- e-b-’/2

-t-(1/42) S((b-$)/; )(A-t-(1/42)I) -1 e(b-s)/2e d$.

Applying A + (1/4e)I to both sides, putting integrals on the left-hand side and then
applying A-, we obtain

Q,b(a, b; e)= S((b-s)/e; e) e-(b-s)/e ds

(6.13) -eA- + eC((b a)/ e; e)A- e-(b-a/e

+(1/2)S((b-a)/e; e)A- e-(b-/.
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The computation of Q,b is similar, with f(s)= e-(b-s)/22(s-a)u"

S((b-s)/e; e) dse-(b-s)/2e2(s_ a)

=-e(a+(1/4ez)I)-l(b-a)+ eZS((b-a)/e; e)(a+(1/4e2)I)- e-(b-a)/

+(1/4e2) S((b-s)/e; e)(A+(1/4e2)I)- e-(b-s)/2(s-a) ds

+ S((b-s)/e; e)(A+(1/4e)I)-1 e-(b-s)/ ds.

This leads to the formula

(6.14) Q,b(a, b, e)=-eA-l(b-a)+eS((b-a)/e)A-1 e-(b-a)/2eE+A-1Q,b(a, b, e).

In the same way we obtain
’b

S((b-s)/e; e) e-(b-s)/2e2(S__ g)r dS

-e(A +(1/4e)I)-’(b a)

+(1/4e) S((b-s)/e; e)(A+(1/4e2)I)-1 e-(b-/2(s-a)r ds

+r S((b-s)/e; e)(A+(1/4e)I)- e-(b-’/(s--a)r- ds

+r(r-1)e S((b-s)/e; e)(A+(1/4e2)I)- e-(b-/(s-a)- ds.

Hence

QP,b(a, b; e)=-eA-l(b-a) + rA-1Qp_l,b(a b, e)
(6.15)

+ r(r- 1)e2A-1Qpr_2,b(a b; e),

from which all the QPr,b can be calculated inductively.
THEOREM 6.1. Let u(t, e) be the solution of (5.1)-(5.2) with f(.)Bn(a, b; E).

Then, if {Uk(e)} is the solution of the difference equation (5.8) with right-hand side

f( s) e’r"-:z e ’’/:zE2

=o . QPr,(k+,),(k’, (k + 1)r, e)ja)(ka")
(6.16)

-2 "r/2e p

and initial conditions

(6.17) Uo(e) Uo,

T-l(e’/2e2Ul(6)-- U0(E:)) T-I(c(T/6; 6)--I)Uo-"F-1S("g/F-,; e)((1/2e)Uo+ EUl)
(6.18)

+ (er)- e/:: ’-1 1
P 0

Then {u e } satisfies
(6.19) Iluk(e)-u(tk’, e)l -0("’) (k- 1, 2,..’, N)

as z-. 0, uniformly with respect to s.
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7. The Schriidinger singular perturbation problem. The treatment of the initial
value problem

(7.1) e-u"(t, e)-iu’(t, e)= Au(t, e)+f(t),

(7.2) u(0, e)= Uo, u’(0, e)= u
is similar to that of (5.1)-(5.2). Formally, the initial value problem can be reduced to
(5.1)-(5.2) as follows: if u(t, e) is a solution of (7.1)-(7.2), then the function t(t, e)
"defined" by t(t, e)= u(-it, ie) is a solution of the equation e"(t, e)+ ’(t, e)=
A(t, e)+f(,it) with initial conditions u(0, e)= Uo, t’(0, e)=-iul. Using this formal
correspondence, all formulas in 5 and 6 have analogues here: of course, independent
proofs must be provided.

Assuming that u(t, e) is a solution of the initial value problem (7.1)-(7.2), we set

(7.3) v(t; e)= e-it/22u(t, e).

Then v( .; e) satisfies the initial value problem

(7.4) v"(t; e)=(A-(1/4e)I)v(t; e)+e-’t/-2f(t; e),

(7.5) v(0; e) Uo, v’(0; e) (-i/2e)Uo+ Ul.

Denoting by C(t; ie) the cosine function generated by A-(1/4e)I, the difference
equation associated to (7.4) is

Vk+I + Vk-1 2C(’r/ e; ie)v + "r2(e-:Zfk).
Thus, the difference equation for {u} {ek/2Vk} is

e-i(k+l)’r/2e2/’/k+ -- e-i(k-1)’/2e2 lk_
(7.6)

=2z-2C(7"/e; ie)e-ikr/eZtlk-F’r2 e-ik/22(e-2fk),
which can be rewritten in the form

7.-2( 1( ei-/
(7.7)

U+l-2U+U_,)+’- 1- :)’-’(u-u_,)
=’-2(2C(’/e; ie) ei*/22-(1 + ei*/2)I)+ e -2 ei*/zzfk,

showing its direct relationship with (7.1). Initial conditions are

(7.8) Uo =/0, T-l(e-i’r/2e2Ul- UO) I1.
Estimates for the solution of (7.6)-(7.8) can be obtained directly from the explicit
solution,

Uk eikz/2e2Ck(’r/e; ie)gto+ eik’/2:7"Sk(7"/e; ie)gt,
(7.9)

k-1

+’ eik-*/:Sk_(7"/e ie)(e-:fj).
j=0

We shall estimate this expression in the setting used in [12] (see also [14, Chap. VII])
for treatment of the SchrSdinger singular perturbation problem; we assume that E is
a Hilbert space and that

(7.10) A=Ao+B,
where Ao is a self-adjoint operator bounded above and B is a bounded operator. In
this situation there exist constants M, to such that

(7.11) [If(t; ie)ll<-Me’1,1 (-c < < o),

(7.12) IlS(t; ie)ll--< Me e’1’1 (-< < c)
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(see [12] or [14, p. 242]). Using (7.11) and formulas (3.6), (3.7), and (3.8) for the
discrete propagators we obtain

(7.13) C(/ e IIs(/; ie)[l<-Mke"
and we estimate (7.9) in the same way as (5.11)"

(7.14) Ilull -< Mk ell7oll + Mkr ek’lt tll + M(T(T+ ’)/2) ek" max 11-211.
--<j

with initial conditions

(7.18) u(0, e)= ao= Uo,

-l( e-i’/2e2u- (-, )- u(O, ))

(7.19) =’r-(C(’r/e; ie)-I)uo+’r-lS(’r/e; ie)((-i/2e)Uo+eul)

+(er)-’ e-’’/22 S((’-s)/e; ie) ei(’-’)/22f(s) ds.

We use the same piecewise Taylor polynomial approximation (6.9). To figure out
explicitly all coefficients in terms ofthe values off(. and of its derivatives at gridpoints,
we find explicit formulas for the operators

(7.20) Q,(a, b, e)= S((s-a)/e; ie) e-(-)/(s-a)ds,

(7.21) Q;b(a, b, e)= S((b-s)/e; ie) e(b-/(s--a)ds.

The estimates below are similar to those for the parabolic problem. We begin by writing
the solution of (7.4) using (7.3) and (2.6):

u(t; e)= eit/2Zc(t/e; ie)tto+eit/2ZS(t/e; ie)((-i/2e)Uo+ eul)
(7.15)

+e- S((-s)/e; ie) e(’-/f(s) ds.

Using (7.11) and (7.12) we obtain the analogue of (6.3),

We proceed exactly as in 5 and 6. Assuming that f(-)e El(0, T; ) and f,,n(’)e
L(0, T; E) is a function such that (6.4) holds, then, if U,,n(t, e) is the solution of the
initial value problem (7.1)-(7.2) with the same initial conditions and f=f,,n, it follows
from (7.16) that (6.5) holds.

We deduce the difference equation for a solution u(t, e) ofthe initial value problem
(7.1)-(7.2) with an arbitrary right-hand side f(. ). Taking into account that v(t, e) given
by (7.3) satisfies the differential equation (7.4), a computation similar to (6.6) shows
that {u tk e } solves

e-i(k+l)’/2U(tk+l, e)+ e-i(k-1)’/22U(tk_l, e)-2C(r/e; ie) e-ik’/2U(tk, e)
(k+l)-r

(7.17) +e- e-ik/l/22 S(((k+ 1)’-s)/e; ie) ek/l)-/2f(s) ds
d k-

+e -1 e-ik’/2 S(((k-1)r-s)/e; ie) ei(k-s)/2ef(s) ds
k-1)-r
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The computation of QSr, reduces to that of QSr,b in the same way as in the parabolic
problem; also, as in 6 we limit ourselves to computing Q,b and Q.b and to give a
recursion formula from which each Q,b can be computed. There is a difference,
however, between the computations here and those in 6" the infinitesimal generator
of the cosine function C(t; ie) is A-(1/4e2)I, which may not have an inverse. Thus,
rather than using formula (2.14) we use (2.36) with the function

f( t) ei(b-s/e2(s a)ru,
which satisfies the necessary assumptions for use of (2.36) if u D(A’) for sufficient
large m. We omit the details and only state the final results"

Q;,b(a, b, e)= S((b-s)/e; ie) e i(b-s)/2e2 ds

(7.22) -eA- + eC((b-a)/e; ie)A- e’b-)/2

-(1/2)S((b-a)/e; e)A-1 eib-)/2,

Ql,b(a, b, e) S((b s)/e’, e) e’(b-s/e(s-a) as

(7.23) -eA-l(b-a)+ eeS((b-a)/e; e)A

+A-1Q;,b(a, b, e),

QSr,b(a b, e) S((b-s)/e; e) e(b-/e(s-a)rds

(7.24) -eA-(b a)

+r(r- 1)ezA-Q_Z,b(a
TORM 7.1. Let u(t, e) be the solution of (7.1)-(7.2) with f(.)eB’(a, b; E).

Then the solution {u(e)} of the difference equation (7.6) with right-hand side

fk (e) er- e-,,/2 r=O_l. Qr,(k+lS ,(kr, (k + 1) r, e )f(r)(kr)
(7.25)

_l_ ET-2 eir/2e r)

=o
Q,{k-I)((k- 1)r, kr, e)f ((k- 1)r)

and initial conditions

(7.26) Uo( e Uo,
--1 --ir/2er (e u,(e)-Uo(e))=r-’(C(r/e; ie)-I)uo+r-S(r/e; ie)((-i/2e)Uo+eU,)

(7.27)
+(er) -1 e

=,
Q,(0, r, e (0).

Then { Uk S } satisfies
(7.28) IlUk(e)--u(tk;  )11 0(") (k= 1,2,..., N)

as r O, uniformly with respect to e.

8. The hyperbolic singular perturbation problem. We can write the hyperbolic
singular perturbation problem (1.4)-(1.5) as an "e-dependent parabolic singular per-
turbation problem""

(8.1) e2u"(t; e)+u’(t; e)=a(e)u(t, e)+f(t),

(8.2) u(o, )= Uo, u’(O, )= u,,
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where A(e)= e2A+ B. Accordingly, the treatment in 5 and 6 can be extended with
few modifications.

We state below the necessary information on (8.1), (8.2) from [14]. Assume that,
for each e > 0 the function A(e) generates a cosine function and denote by C(t; e)
the cosine function generated by A(e)+(1/482)I and by S(t; e) the corresponding
sine function. All the basic estimates in 6 can be extended if we assume the bounds

(8.3)

(8.4)

In fact, (8.3) implies

[IC(t; e)ll<-M exp (1/28 + toe)t (t->0),

IIs(t; )11 M exp (1/2e+we)t (t_> O).

(8.5) e-/llC(r/e; e)ll<=Mke

(see (5.14)) and the corresponding bound for the solution of the difference equation
(5.8) with initial condition (5.10):

(8.6) IlUkl[ <--2Mkek’llfio[[+2Mkrekllfilll+ M(T(T+r)/2 ekz max
ljn

The solution of the initial value problem (8.1)-(8.2) is given by (6.1), and we obtain
on the basis of (8.3)-(8.4) the bound

(8.7) Ilu(t; e)ll2Me’(llUoll+e[lUlli)+2Mer f(t)ll dt

in the same way (6.3) is obtained. See [13] for more details on the hyperbolic singular
peaurbation problem. In paicular, the key estimates (8.3) and (8.4) hold if E is a
Hilbea space, A is a self-adjoint operator such that

(8.8) (Au, u) -(u, u) (u D(A)),

and B is a closed, densely defined operator with adjoint B* densely defined, satisfying
D(B)D(Q), D(B*) D(Q) (Q the unique positive square root of (-A)/2) and
such that

(8.9) Iinull IIQull, IIn*ull IlQul (u D(Q)),

(8.10) Re(Su, u)w(u,u), Re(S*u,u)(u,u) (uD(Q)).

For other sets of hypotheses implying (8.3)-(8.4) see [13]. We assume that A(e)-exists and is bounded, which is the case for instance if w < 0 in (8.10). The computations
in 6 for the operators Q,, Qb apply without changes to the operators

Q(a,b;e)= S((s-a)/e;e)e(’-/(s-a)ds,

H

The result corresponding to Theorem 6.1 can be stated and proved in exactly the same
way, thus we omit the details.
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UNIQUE CONTINUATION FOR THE KORTEWEG-DE VRIES EQUATION*

BINGYU ZHANG

Abstract. Unique continuation problems are considered for the Korteweg-de Vries (KdV) equation

ut + UUx + Uxxx O, -< x, < +o.

By using the inverse scattering transform and some results from the Hardy function theory, it is proven
that if u Llc(R, HS(R))(s >) is a solution of the KdV equation, then it cannot have compact support at
two different moments unless it vanishes identically. In addition, it is shown under certain conditions that
if u is a solution of the KdV equation, then u must vanish everywhere if it vanishes on two horizontal half
lines in the x-t space. This implies that the solution u must vanish everywhere if it vanishes on an open
subset in the x-t space. As a consequence of the Miura transformation, the above results for the KdV
equation are also true for the modified Korteweg-de Vries equation

v 6V2Vx + Vxx O, --c < x, < +o.

Key words, unique continuation, Korteweg-de Vries equation, inverse scattering transform, Hardy
function

AMS(MOS) subject classification. 35Q20

1. Introduction. Let L be an evolution operator acting on functions defined on
some connected open set of Rn+l R Rt. L is said to have the unique continuation
property if every solution u of Lu 0 that vanishes on some nonempty open set fllc O
vanishes in the horizontal component of fl in O, i.e., in ((x, t) l; :ix1, (xl, t) fl)
(cf. [4], [8], and [13]).

Saut and Scheurer [12], [13] considered some dispersive operators in one space
dimension of the type

L iDt + oti2k+lD2k+1 d- R(x, t, D)

where a O, D 1/i O/(Ox), D 1/i O/(Ot), and

2k

R(x, t, D)= Z rj(x, t)D,
j=0

r L,(R, Loc(R)).

They proved that if u Loc(R, Hokc+l(R)) is a solution of Lu 0, which vanishes
in some open set -1 of Rx Rt, then u vanishes in the horizontal component of 1.

As a consequence of uniqueness of the solution of the KdV equation in
Llc(R, H3(R)), their result immediately yields the following theorem.

THEOREM 1.1. If U LIc(R, H3(R)) is a solution of the KdV equation

tit + tttlx + Ux 0

and vanishes on an open set of Rx x Rt, then

u(x,t)=O forx6R, tR.

In this paper, we consider various unique continuation properties of the KdV equation.
By using the inverse scattering transform we prove that a solution u of the KdV
equation, which decays sufficiently fast at +, vanishes everywhere if it vanishes on
two different horizontal half lines in the x-t space. In addition, we prove that a class
of generalized solution of the KdV equation or solutions of the KdV equation in
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Llc(R; HS(R))(s >) cannot have compact support at two different moments in the
x-t space unless it vanishes identically. The methods we use are different from those
of Saut and Scheurer. However, with a little stronger condition made on the solution
u, our results recover Theorem 1.1 as a corollary.

The results obtained for the KdV equation are also true for the modified KdV
equation

vt-6vv +v =O

as we see by applying the Miura transformation

u

where v is a solution of the modified KdV equation and u is a solution of the KdV
equation

Ut + UUx + Uxxx O.

The paper is organized as follows: In 2, we provide a sketch of the inverse
scattering transform and cite some results from Deift and Trubowitz [3] which play
important roles in the proof of our main results. In 3, we prove some unique
continuation properties for the linearized KdV equation (Airy equation) by using the
Fourier transform. In 4, we prove our main unique continuation results for the KdV
equation. We will see that the inverse scattering transform in the nonlinear problem
plays the same role as that of the Fourier transform in the linear problem.

2. The inverse scattering transform. We use the following notation to denote the
Fourier and the inverse Fourier transform:

and

Y(Y) l I+ e2iXyf(x)

f(x)= I+ dy.

Let H+ be the Hardy space of functions h(k) analytic in Im k > 0 with

sup I+’h(a + ib)[2 da

Such a function h(k) assumes boundary values

h(a)=limH(a+ie)
e-->O

in LZ(R) and it is well known that

H+ {h(k) L2(R) supp/ c (-c, 0)}.

Similarly, H2 denotes the Hardy space of functions analytic in Im k < 0 with

sup f+ h a + b )12 da <
o

and

H2 {h(k) L2(R) supp/ c (0, o)}.

Consider the Schr6dinger operator

(1) (f)=-f"+qf-k2f
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where k is a complex number and q, called a potential of (1), is a real function of
x R satisfying

(2) (1 + ]xl)lq(x)l dx < oo.

Let fl and f2 be two solutions of 9(f)= 0 such that

fl e ikx as X --> o0

f2 e-ikx as x - -co.

Set

Then

(3)

(4)

m" qm+ 2ikml 1,

m2 2ikm2 qm2

with m - 1 as x- co and m2 1 as x -co.
Define (for all real k 0)

(6)

T(k)
1 -tk q(t)ml(t’ k) dr,

Rl(k) l I+oo_2ik,qr(k) -2ik e (t)m2(t, k) dt,

+cx3R2(k) 1 e2’k’q(t)ml(t, k) dt,(7)
T(k- 2ik

and

T(k) R2(k))S(k)=
Rl(k) T(k)

Here T(k) is called the transmission coefficient and Rl(k) is called the right reflection
coefficient. The operator 9(f) has only finite many simple negative eigenvalues, listed
as

(8) -t <-.-,<’’’ <-t,
which are called bound states of the potential q for 5e(f). The corresponding eigenfunc-
tions q,,. ., 4’1 are assumed to satisfy

I+’kl2 dx= k=l,2,...,n.

Let

(9) c lim e-f’q,,(x), j= 1, 2,..., n.

They are called normalizing coefficients.
The following propositions are cited from [3].
PROPOSITION 2.1. There is a constant c independent of x and k such that

Imp(x, k)- 11 < e/Ikl Ik---]’ j 1, 2

for k 0 and Im k _-> 0.
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PROPOSITION 2.2. The transmission coefficient T(k) is meromorphic in Im k> 0
with a finite number ofsimple poles il, , ifln, flj > O, T( k) is continuous in Im k -> 0,
k O, ifll,’", in, and

Im k0.

Moreover, if q is supported on a half line, then T( k) is meromorphic in the entire k-plane.
PROPOSITION 2.3. Let q be the potential ofthe Schr6dinger operator defined in (1).
(i) If q has Nth-order derivatives which are in LI(R), then

Rl(k)= O ki as Ikl, k real.

(ii) If q is supported on a left half line, then Rl(k) is meromorphic in the upper half
plane.

(iii) If q has compact support, then R(k) is meromorphic in the entire plane.
PROPOSITION 2.4. (Removing all bound states). Assume that q has n bound states,

listed as

Define inductively

q(x,O)--q(x),

d2

q(x,-n)=q(x,-(m-1))-2 dx--Zlogf(x, i/3,,-.,+1 ;-(m- 1))

for l<--m<--_n.

Then q(x,-n) has no bound states and its right reflection coefficient is

(10) RI(k,-n)- (-1) ( fl k-

;=l k+ ifl;/Rl(k)"
In addition, if supp qc (a, b), then supp q(x, -n)c (a, b) where a is a finite number or

PROPOSITION 2.5. (Trace formula). If q has no bound states, then

(11) q(x) =--2i
/

kR,(k)ekxm(x,k)dk.

PROPOSITION 2.6. Assume that q has no bound states. If q has a support lying to
the left of some point, then

sup{supprtfq}=inf{x’I+kR’(k) e:Zik’dk=Ofrallt>x}
Consider the initial value problem for the KdV equation

(12) ut + UUx + Uxxx O, u(x, O) q(x),

for x e R and ->_ 0 where q e H4(R) and

(1 + Ixl)lq(x)] dx < o.
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It is well known that the initial value problem (12) can be solved by using the inverse
scattering transform (cf. [2], [9], and [16] for more details). The basic steps of the
solution method are as follows.

Step 1. With the initial data u(x, O)- q(x) as a potential, solve

-f"+qf=af

Step 3. Let

l i(8k3t+k )(15) B(s, t)= c(0) e8’-,+ Rl(k, O) e dk
j=l 2rr

and use it to define the Gel’fand-Levitan equation

(16) K(x,y; t)+B(x+y; t)+ B(x+z; t)K(z,y; t) dz-O

for all time t.
Step 4. Solve (16) to get K(x, y; t). Then the desired solution of (12) is

d
u(x, t)= -2 K(x, x; t).

3. The linear KdV equation. Consider the initial value problem for the linear KdV
equation:

(17) u, +u 0, u(x, o) q(x)

for xeR, teR.
Formally, by using the Fourier transform, we obtain

(18) u(x,t)=fe2kxek’(k)dk.
If q L2(R), the u(x, t) defined in (18) belongs to L2(R) for any and is called a mild
solution of (17). Obviously, if q is smooth enough, then u(x, t) is a classical solution
of (17).

(13)

and

(14) Rl(k, t)= R,(k, O) eikxt, T(k, t)= T(k, 0).

to get the scattering data

(o)=-, c(O) c
and

Rl(k, 0)= Rl(k), T(k, O)= T(k)

as in (8), (9), (6), and (5).
Step 2. Treat as a parameter and consider u(x, t), the solution of (12), as a

potential to solve

-f"+u(x,t)f=af
The remarkable fact is that we can obtain the scattering data corresponding to u(x, t)
without knowing what u(x, t) is. In fact,

lj( t) ij(O), cj( t) cj(O) e4t, j 1, 2,..., n
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(19)

THEOREM 3.1. Let u(x, t) be a mild solution of (17). If there exist tl < t2 such that

supp u(., tj)c (-, a), j- 1, 2

or

(20)

for some a R, then

supp u(., tj)c (a, ), j=l,2

u(x, t) =- O, -< x, < +o.

To prove Theorem 2.1 we need the following lemma.
LEMMA 3.1. Assume 0 q L2(R) and supp q c (-c, 0). Let

H(b) I e2bxq(x) dx.

Then there exist bn > 0 such that bn- as n o and

(21) In(bn)l>- al e-lbn, n= 1,2,...

where a and fll are positive constants independent of n.

Proof of Lemma 3.1. Let

F(z)= fo e-2’ZXq(x) dx (Im z>0)

and

f(z) F
1

(Izl < 1).

Then f belongs to the Hardy space H in the unit disc and

H(b)=F(ib).

Consider the canonical factorization off (cf. [10, Chap. 17])"

f(z) B(z)S(z)Q(z)

where B is a Blaschke product,

B(z)
1-z zn’

zn are zeros of H(z) in the unit disk,

S(z) exp {- I_ ei*+Zdtx())ei z

is a singular inner function (/z is a positive singular measure, possibly zero), and

O(z)=exp {2-; e*+z log[f(e,)[d)e- z
ois an outer function. If z r e then

Re P(O- )ei

1- r

1-2r cos (0- )+ r’
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the Poisson kernel, and

l+r
Pr(0-)< (0--< r< 1).

1-r

Thus,

l+r
log

1-r

(1111 (-, )) and

l+rlog IQ(r)[>=- log-[f(e’)l dq,
1-r

where log log+- log-. So there exists C < o such that

(1- r) log Is(r)Q(r)ll -c (0<r<l).

As for the Blaschke product B, it is known that

lim sup (1 r) log IB(r)l 0

[14, Lemma 2.3]. Hence there exists r, 1_ as n such that

lim (1- r.) log IB(r.)l--0

and

(1 r.) log If(r.)[>_-- -3C, n= 1,2,....

Let

b 1

b+l
Then

l+rn 2
bn 1 r

1-r, b,+l’

and

b.+l
log [F(ib.)l=(1-r,,) log If(r,,)l>--3C.

Thus

IF(ib,)] >= e-3/2C(b"+1)

for all n.
Choosing al e-3C/2 and/31 3C/2, we have

]H(b,)=lF(ib,)l>-_al e-,b., n= 1,2,....

The proof is completed. U
ProofofTheorem 3.1. Without loss of generality, assume that a 0 and tl 0. Then

U(X, tl)=U(X,O)=q(x)
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and

u(x’t)=lf+e2k’ezk3dl(k)dk’-Tr
For the case in which u satisfies (19), we have

(22) f*ooe2ikXe8ik3’2q(k) dk=Oforx>O._
In addition, since e8ik3’2dl(k)e L2(R), we have e8k3’t(k)e H+. Thus, by the definition
of the Hardy function,

(23) sup f+ le8(a+b)3tl(a + ib)12 da <

On the other hand,

where

I(b)=-- fo le8i(’+ib)3’(a + ib)l2

e16b3t: f+ e-48abt21(a-F ib)l2

-48a:Zbt:l 12>= e 16b3t e l(a + ib) da

el6b3te e-48bt I01 e2bx e-2iaXq(x) dx
2

e16b3t2 e-48bt2 fot fy e2bx e-2iaXq(x) dx da

e16b3t2 e-48bt2

e16b3t2 e-48bt2 e2bXh(x) dx

1 e-2ix
h(x)=q(x).

2ix

If q is not identical zero, by Lemma 2.1, there exist bn such that

fooe2b"Xh(x) dx >=a, e-t’b",

where b, - eo as n - oo. We have

I(b.) >-a21 e16bt2 e -48b.’t2 e -2t3’b"

and

lim I(b,,)

for n 1, 2,

q(x) O forxeR

n=l,2,...,

which is in contradiction with (23). Hence, we must have
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and

u(x, t) =- O, -o < x, < +.

The case where u satisfies assumption (20) reduces to the case that we have just treated
if we let

t’= --t, x’= --x.

The proof is completed.
COROLLARY 3.1. Let u be a mild solution to (17). If u vanishes on an open subset

in x-t space, then u vanishes everywhere.
Proof Without loss of generality, we assume that

u(x, t) O for O < X < [3, tl < < t2,

for some a,/3 R and tl, t2 R. Define

and

u(x, t) for x-< 3’,u(x, t)=
0 for x > 3’

0 for x <- 3’,U2(X, t)
u(x, t) forx>3’

where 3" (a + fl)/2.
Both ul and u2 are mild solutions of the linear KdV equation for t < < t2 and

supp u(x, t)c (-oo, /), supp u(x, t)c (3’,

for t < < t:. Hence, by Theorem 2.1,

u(x, t)= Ul(X, t)=O forxeR, tl < < t,

which implies that u vanishes everywhere. The proof is completed.

4. The Korteweg-de Vries equation. Consider the initial value problem for the
KdV equation

(24) U 1- UU "AI- Uxx 0, U(X, O) q(x).

Itis known that if q HS(R) for s> 2, then (24) has a unique solution u C(R; HS(R))
and for <s<2, equation (24) has a unique solution u C(-T, T; H(R)) where T
depends on the initial value q (cf. [1], [5], and [11]).

For the solutions of (24), we have the following proposition.
PROPOSITION 4.1. Assume that u C(R; H(R)), s>, is a solution of the KdV

equation and u(x, O)= q(x) satisfies that
(i)
(ii)
(iii)
Then

+_ Iq’(x)l dx <, $+_ (1 + Ixl)q(x)l dx <;
supp q (-o, a) for some a R;
q has no bound states if q is considered as a potential for (1).

if there is a t*> 0 such that

u(x, t)=O for x R, R,

supp u(’, t*)c (-o, a).
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Proof. Without loss of generality, we assume that a 0. According to the steps
solving the KdV equation by the inverse scattering transform, u(x, t*) has no bound
states if q(x) has no bound states. Let Rl(k) be the right reflection coefficient of q
and Rl(k, t*) be the right reflection coefficient of u(., t*). Then by (14),

Rl(k, t*)= Rl(k) e8ik3’*.

From Proposition 2.3 and 2.6, we have

(25) k2lR,(k) dk < o

and

(26) fkRl(k) e2ikXdx=Oforx>-O._
Similarly, we have

(27) I+ k21Rl(k, t*)l- dk= I+ k2Rl(k)l2 dk

and

(28) I+kRl(k,t*)e2kXdk=Oforx>=O._
Thus,

kRl(k)H+, kRl(k, t*) H
and

(29) SUPb>0 f [a + ibl2[Rl(a + ib, t*)l da < o.

On the other hand,

I(b) =- I_ la + ibl:lRl(a + ib, t*)l da

=(f+_ (a2+b2)lRl(a+ib)l2 e-48a2bt* da) e 16b3t*

>-_ (a+b)lRl(a+ib)12 e-48a2bt* da) e 1663t*

)--> (a 2 + b)lR,(a + ib)l2 da e 1663t*-48bt*.

Note that

Rl(k
T(k)I+e-2’’q(t)m(t’k)dt’2ik
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By Propositions 2.1 and 2.2,

1 f+-2’t_Rl(k)’-k e q(t) dt

as Ikl-) 00, Im k ->_ 0. Hence,

I(b) >-_ C e’*-4ab,* I(a + ib)l da,

where C is a constant independent of b.
If q is not identically zero, by Lemma 3.1 and the same argument as used in the

proof of Theorem 3.1, there exist bn with bn 00 such that

lim I(b) 00,

which is in contradiction with (29). Hence q must be identically zero which implies,
by the uniqueness of the solution to (24), that

u(x, t) =- O, -00<x, t<+oo.

The proof is completed.
THEOE 4.1. Suppose u C(R, H(R)), s>, is a solution of the KdV equation

tit + UUx + Uxxx O.

If there exist h, t2 R with t < t2 such that

(30) supp u(., tj)c (-00, a),

and

(31)

or

(32)

and

(33)

then

j=1,2,

(1 + Ixl)lu(x, tl) dx < 00,

supp u(’, tj)c (a, 00), j= 1,2,

(1 + Ixl)lu(x, t2)l dx < 00, lux(x, t)] dx < oo,

u(x, t) =O for x E R, R.

Proof Without loss of generality, we assume that t 0. We only consider the
case wherein u satisfies assumption (30) and (31). The other case will reduce to this
case if we make transform

X’= --X, t’= --t.

Suppose u(x, O) q(x). If q(x) has no bound states, then our assertion is Proposi-
tion 4.1, which we have proved. Hence we assume that q has n bound states

-/3
)- <...

Let

q(x,O)-q(x)
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and

d2

q(x, m)=q(x,-(m- 1))-2 dx--logfl(x, ifln-,,+l ;-(m- 1)).

Inductively, we obtain q(x,-n), which has no bound states. In addition,

supp q(x, -n) (-o, a)

and the right reflection coefficient of q(x,-n) is

(34) Rl(k’ -n)=(-1)n
k+ iflj/

Let v(x, t) be the solution of

(35) vt + vvx + v,,,, =0, v(x, O) q(x, -n).

Claim.

(36) supp v(., t_)c (-oo, a).

If (36) is true, then from Proposition 3.1 we have

q(x, -n) =O forxR.

It follows that

Thus

j=l k+i]
R’(k)=O"

Rl(k) 0, k real.

It implies that q has only bound states and has no continuous spectrum if we consider
q as a potential of (1). Hence u is a pure n-soliton solution of the KdV equation. This
is in contradiction with assumption (30) since a pure n-soliton solution of the KdV
equation cannot have support on a half line for any R. The contradiction implies,
via the uniqueness of the solution of the KdV equation in C(R, HS(R)), that

q(x) =0, xeR

and

u(x,t)=O, xeR, teR.

The theorem will be established when we prove the claim.

Proof of the claim. As a potential for (1), v(x, t2) has no bound states since
v(x, O) q(x, -n) has no bound states. By (14) and (34), the right reflection coefficient
corresponding to v(x, rE) is

(37) Rl(k, v)= (-1) fi k- ifl Rl(k e8,k3,2
=l k+ ifl

Let p(x)= u(x, t). Then p(x) has n bound states
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Let p(x,-n) be defined as in Proposition 2.4 such that p(x,-n) has no bound states
and its right reflection coefficient is

Rl(k, p(x, -,)) (-1)" fl k- ij e8,k3,2
=1 k + ifl;

R(k)

It is clear that

Rl(k, p(x, -n))= Rl(k, v).

By assumption (30) and Proposition 2.4,

supp p(., n) c (-o, a).

Proposition 2.6 implies that

I+kRl(k,p(x,-n))e2iktdk=O_
Hence

for t>_-a.

f oo kR(k, v) dk =0 for >_-a.e2 ikt

Using Proposition 2.6 again, we arrive at

supp v(., t2)c (-, a).

The proof is completed. 0
Let (x)-(l/lxl)/. For r,sR we denote by H(R) the completion of the

Schwartz space S(R) of rapidly decreasing infinitely ditterentiable functions on R, in
the norm Ilull,-IrF-Ful, where I’1= denotes the standard norm of L:(R) and
F-, F are the inverse Fourier transform and the Fourier transform, respectively. For
r R and s N U {0}, we denote by W(R) the completion of the space S(R) in the
norm Ilull*-(Ytt [trrDul) 1/2. For s e NU{0}, H(R) Wr(R) (cf. [15]).

Let

Then

S(R) H(R) fq Hr(R).

S(R)c [Hr(R) H;(R)]o Hs(1-o)r(R)
for any 0< 0< 1 (cfo [15]). It has been proved by Tsutsumi [15] that if q eSSr with
r >= 0 and s_-> max {2r, 5+1 e}, then the initial value problem (24) has a unique solution
u(x, t) in Llc(g; Sr(g)). It is clear that if qeSr(g) with r>, then (l+lxi)q(x)
L(R) and qxeLl(R). Hence, if qeSEr with r>, the solution u of (24) satisfies

(1 + Ixl)lu<x, t)l dx <, ]Ux(X, t)l dx <

for any R.
From Theorem 4.1 we have the following corollaries.
COROLLARY 4.1. Assume that q Sr with r> . If there exist q, t_ R such that

for some a R,

or

supp u(’, t)c (-oo, a), j= 1,2,

supp u(., tj)= (a, o), j= 1,2,
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where u is the solution of (24), then

u(x, t) =O for x R, R.

COROLLARY 4.2. Assume that q S with r>. If the solution of (24) vanish
on an open set of R, x Rt, then it vanishes everywhere.

Corollary 4.1 is directly from Theorem 4.1. The proof of Corollary 4.2 is similar
to the proof of Corollary 3.1.

COROLLARY 4.3. Assume that q S with r > . If the solution u of (24) satisfies
U(a, t)=O, Ux(a, t)=O, Uxx(Ce, t)=O

for some a R and tl, t:), then

u(x, t)=O for x R, R.

Proof. Let

for (tl, t:) and

Ul(X, t)=
0

which implies that

and

u(x, t) =O forxR, R.

Remark. Corollaries 4.2 and 4.3 may also be derived from Saut and Scheurer’s
results in the same way as Theorem 1.1.

Now we consider a class of generalized solutions of the KdV equation.
DEFINITION. U Loc(R R) (Ll:oc((0, T) x R)) is called a generalized solution of

the KdV equation if for any (h C(R x R) (qb C((O, T) x R)),

Ut+U24x+Uxxx &dt=O

(fof ( 1 ) )u, + u+u dx dt O

S. N. Kruzhkov and A. V. Faminskii [7] have proved the following theorem.
ToM (Kruzhkov and Faminskii). If q e L(R) and saisfies

dx

then che KdV equation has a unique generalized solution u sati@ing

ess sup u(x, t) dx + x3/u(x, t) dx <
t(O,T)

lim f+u(x,t)w(x)dx=Iq(x)w(x)dxt-O,t E

0 for x < a,
U2(X, t)

u(x, t) forx=>

for (tl, t2). Then both Ul and u2 are solutions of the KdV equation for (tl, t2).
By Theorem 4.1,

Ul(X t) u2(x t) 0 for x
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for any we C(R), where Er-(0, T)\I) and f is a subset of measure zero in (0, T)
such that for any Er u(x, t) is defined almost everywhere on R.

In addition, iffor some e > 0 and integer p >-_ 0 and q >- 0 such that

X
3p+q+l/2+e q:(X) dx <

then the solution u possesses continuous derivatives ok+lu(x, t)/OxPOtk for Of k<--_p,
O<-_l<--_q.

THEOREM 4.2. Let u be a generalized solution of the KdV equation on R x R and
for any T> O,

ess sup
te(--T,T)

uZ(x, t) dx+ X3/2U2(X, t) dx < 0o.

If there exist < t2 such that for any w(x) C(R),

limI+u(x,t)w(x)dx=Iu(x,t)w(x)dx
and for some -oo < a < b < o,

then

supp u(x, b) (a, b),

u(x, t) 0 for x e R,

Proof Let

q(x)=u(x,t,),

Choose T> t2. Then u is a solution of

Ut + UUx + Uxxx O,

j=1,2

tR.

for x R and (fi, T). Using the compact support of q with the Kruzhkov and
Faminskii Theorem, we have u C((q, T)x R). Especially, u(., tz)=p(x) C(R),
which implies pc S(R) since p has compact support. According to [15], there exists
a v(x, t)6 S(R) for any R, which solves the KdV equation and v(x, t2) =p(x). By
uniqueness, we have

v(x,t)=u(x,t) forxR, tR.

Applying Theorem 4.1, we obtain

u(x, t) O forxR, R.

The proof is completed. 1
Similarly, we have the following theorem.
THEOREM 4.3. Let u Loc(R, H R ), s > be a solution of the KdV equation.

If there exist t2 such that for some a, b R,

supp u(-, ts)c (a, b), j= 1, 2,

then

u(x, t)=O for x R, 6 R.

U(X, tl)=q(x)

p(x)-u(x, t2).
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Proof. Let p(x)- u(x, t2) and q(x)= u(x, tl). Then u solves

U + Ul + lxx 0, U(X, tl)-’q(x)

for xR, t (tl,c).
Since q has compact support,

for some b > 0.

Thus, by a result in [6], u(x, t) C(R) for any > In particular, p(x) u(x, t)
C(R), which implies pc S(R) since p(x) has compact support. Therefore, u(x, t)
S(R) for any R [15]. Then Theorem 4.1 yields

u(x,t)=O, xR, t6R.

The proof is completed.
Remark. Consider the modified KdV equation

v 6v2 v + v =0.

Let

(3a

Then u solves

u =--(v+ v).

Ut + UUx + Uxxx O.

Equation (38) corresponds to the Miura transformation. Using this transformation, all
the results we have obtained for the KdV equation are also true for the modified KdV
equation. For instance, if v solves the modified KdV equation and has compact support
at two different times, then

u=-(v+Vx)
solves the KdV equation and has compact support at two different times. By Theorem
4.2, u vanishes identically. Hence

v2(x, t)+ v(x, t)= 0 for any x and t,

which implies that v vanishes identically.
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J. C. Saut, and M. C. Shen for helpful conversations related to the work presented here.
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A FAMILY OF STABLE EQUILIBRIA IN BIFURCATION WITH
SPHERICAL SYMMETRY*

E. BARANY- AND I. MELBOURNEt

Abstract. It is shown that asymptotically stable branches of equilibria may generically bifurcate from
a spherically symmetric solution that loses stability to spherical harmonics of order for any odd /. The
problem is reduced to one of evaluation of certain Clebsch-Gordan coefficients. The evaluation uses methods
from the quantum mechanical theory of angular momentum.

Key words, steady-state bifurcation, spherical symmetry, asymptotic stability, Clebsch-Gordan
coefficients
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Introduction. Steady-state bifurcation with spherical symmetry appears in several
physical contexts; see Chossat, Lauterbach, and Melbourne [1990] and the references
therein. Generically, the problem reduces to a bifurcation equation on a (2/+
1)-dimensional space spanned by the spherical harmonics of order (Ihrig and
Golubitsky [1984]; Golubitsky, Stewart, and Schaeffer [1988]). The induced action of
0(3) is the natural action on the space of spherical harmonics.

In this paper we establish the existence of a family of stable equilibria occurring
in generic steady-state bifurcation with 0(3) symmetry in the cases where is odd,
l->_ 3. Previously, branches of stable equilibria had only been computed in the specific
cases 1, 3, and 5 (see Chossat et al. [1990]). In the notation and terminology of the
above references, the stable solutions have (maximal) isotropy DI.

Up to a point, the methods and results parallel those of Chossat and Lauterbach
[1989], who demonstrated the instability of the so-called axisymmetric solutions for
all odd l_>-3. (The axisymmetric solutions are also unstable for even l, as shown by
Ihrig and Golubitsky [1984].) Using the group-theoretical techniques of the above
references, it is possible to reduce questions of existence and stability of certain branches
of equilibria to conditions on the Taylor coefficients of a vector field with 0(3)-
symmetry.

Where this paper differs from prior work in this area is in its emphasis on methods
from the quantum mechanical theory of angular momentum; see, for example, Bieden-
ham and Louck [1981] or Wigner [1959]. In particular, we are able to obtain general
expressions for the relevant Taylor coefficients by evaluating certain Clebsch-Gordan
coefficients. We note that Chossat [1983] used similar techniques to establish his
example of submaximal branching. See also Barany [1988].

It transpires that these techniques are more flexible and efficient than the algorithm
of Sattinger [1979] which is used, for example, in Chossat and Lauterbach [1989] and
Chossat et al. [1990]. The result proved in this paper was easy to conjecture on the
basis of previous calculations (especially Chossat et al. [1990] for 3 and 5). We
expect that the techniques used here will lead to a variety of new results for bifurcation
with spherical symmetry, and this will be the subject of future work.
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The remainder of this paper falls into two sections. In the first section we set up
the equivariant bifurcation theory of Golubitsky, Stewart, and Schaetter [1988] in the
context of spherical symmetry, Ihrig and Golbitsky [1984] (see also Chossat et al.
[1990]). In particular, we explain how the natural representations of 0(3) arise and
define the family of branches of equilibria that will be proven stable. We also perform
the calculations which reduce the computation of existence and stability to evaluation
of certain cubic order Taylor coefficients. It is shown that the bifurcating equilibria
are stable if the branching is supercritical (the equilibria exist to the right of the
bifurcation point) and l-1 eigenvalues/Zo,’’ ",/Zl-2 are negative simultaneously.

In 2 we compute the required Taylor coefficients by evaluating certain Clebsch-
Gordan coefficients. It is known that there are [1/3] + 1 independent cubic mappings
with O(3)-symmetry. These mappings can be ordered with the first cubic being Ixl2x.
The second mapping is the one that drives the stability result in the cases 3 and 5
considered in Chossat et al. 1990]. It is natural to concentrate on this second mapping
for general/. On setting the coefficients of the remaining 1/3]- 1 terms equal to zero,
we obtain the following expressions for the

tZm fl(12-- m2), O<--_ m <-_ l-3,

tXl_2 fl (41- 6),

where/3 is the coefficient of the second equivariant mapping. Thus the eigenvalues all
have the same sign, sgn (/3). Since the eigenvalues depend continuously on the
coefficients of the equivariant mappings, we obtain stability of the equilibria for an
open set of symmetric vector fields.

1. Steady-state bifurcation with O(3),symmetry. In this section we begin by provid-
ing the necessary group-theoretic background for the analysis of steady-state bifurcation
with O(3)-symmetry. See Golubitsky, Stewart and Schaeffer [1988] for the general
context of bifurcation with symmetry, and Ihrig and Golubitsky [1984] and Chossat,
Lauterbach, and Melbourne [1990] for more details in the specific case of this section.
We then proceed to compute the existence and stability of equilibria with isotropy D2at
in terms of Taylor coefficients of a vector field with 0(3) symmetry. There are three
topics which we discuss to the extent that they concern us in this paper: (i) reduction
to an absolutely irreducible representation, (ii) existence of equilibria, and (iii) stabil-
ity of equilibria.

(i) Reduction. Consider the ODE

dz
aS F(z, A)

where F :n xn is O(3)-equivariant, that is,

F(),z, ) 7F(z, ) for all

Suppose that F(0, A) -= 0 so that z 0 is a trivial solution. This solution is asymptotically
stable if all eigenvalues of the linearization L (dzF)o.o have negative real part, and
unstable if any eigenvalue has positive real part. We say that a steady-state bifurcation
takes place at (z, A) (0, 0) if the trivial solution loses stability by an eigenvalue crossing
the imaginary axis at zero. A Lyapunov-Schmidt or center manifold reduction leads
to reduced equations on V ker (L). These reduction methods can also be applied to
more complicated evolution equations on infinite-dimensional Banach spaces. From
now on we assume that the reduction has been performed and that Rn= V.



74 E. BARANY AND I. MELBOURNE

The theory for equivariant steady-state bifurcation established by Golubitsky et
al. [1988] implies that generically 0(3) acts absolutely irreducibly on V (absolute
irreducibility means that the only commuting matrices L" V- V are scalar multiples
of the identity). For each positive integer there are precisely two (2/+ 1)-dimensional
absolutely irreducible representations of O(3), which we now describe.

Write 0(3)= S0(3)0)+I. For each l, there is a (2/+ 1)-dimensional irreducible
representation of SO(3) on the space V/of spherical harmonics of order 1. These are
the only irreducible representations of S0(3) and moreover they are absolutely irreduc-
ible. To each of these representations, there correspond two absolutely irreducible
representations of O(3), -I acting either trivially or as minus the identity. The "natural"
representation is the one on the space of spherical harmonics V/, and it has -I acting
trivially when is even and nontrivially when is odd. It is the natural representation
that typically occurs in physical applications.

A more concrete description of the representations of 0(3) can be found, for
example, in Sattinger [1979] and Chossat et al. [1990], or in Beidenharn and Louck
[1981]. Complexified coordinates are given by {Z_l,’’’ Zo,’--,Zl) with the reality
condition

(1.1) z_m (-1)m.

We can only describe explicitly the action of one maximal torus in SO(3), which we
denote by SO(2), and the corresponding copy of 0(2) (also in SO(3)). This copy of
0(2) contains rotations 0 in a plane and a rotation K which restricts to a reflection in
the plane of rotation. The action of 0(2) is given by

(1.2a) O" Zm e ira Zm,

(1.2b) . z,,,=(-1)"+z_,,,=(-1)l,,.

We also record the action of-I"

(1.2c) -I. z (-1)lz,.

Finally, we comment on the structure of the O(3)-equivariant mapping up to cubic
order in the case of odd. Since the action of 0(3) is absolutely irreducible, the only
commuting linear maps are scalar multiples of the identity. There is a steady-state
bifurcation at 0, so after reparametrization we may assume that the linear term has
the form Az. Since is odd, -I acts as minus the identity, and there are no equivariant
mappings of even order.

We now turn to the cubic mappings. It is not difficult to determine the restrictions
given by the maximal torus SO(2) described above. If we write a general cubic
equivariant C in components (C_l,..., CI), then

1.3 Cm (Z) Y (ijk) ZZZk.
i--j_k

i+j+k=m

The reality condition (1.1) gives

C_,,,(z)=(-1)"C,,(z).

The main problem lies in determining the restrictions placed on the coefficients (ijk)
by the remaining two dimensions of SO(3). In 2 we find sufficiently many of the
restrictions to prove our main result.

In what follows it suffices to truncate F at cubic order. Existence and stability of
the equilibria with isotropy Ddl is determined by the truncated vector field Az + C(z).
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(ii) Existence. Let z V and define the isotropy subgroup of z to be

:z-{ o(3) z-- z}.

The fixed-point subspace Fix (E) of an isotropy subgroup is defined to be

Fix (E) {z e V[ o-z z for all o- e E}.

An O(3)-equivariant map F" VxR- V restricts to a map

(1.4) FlFix (xa" Fix (X) x R Fix (X).

Thus the problem of finding solutions with isotropy E reduces to a problem in Fix (E).
In particular, when dim Fix (E)= 1, the equivariant branching lemma guarantees the
existence of a unique branch of equilibria with isotropy E.

In this paper, we restrict to the case of odd and consider the isotropy subgroup
Dd21 which is generated by -I. (Tr/1) and K where the first element is the composition
of-I and a rotation in S0(2) through angle 7r/I. It follows from (1.2) that the action
of Dd21 on the complexified space of spherical harmonics is given by

(1.5a) -I. (Tr/l) z, =-eim/I
Zm,

(1.5b) Zm --Z.
If we write Z X -J- iy then it is easy to check that

(1.6) Fix (DgI) { iyl}

In particular, dim Fix (Dd21)- 1 and the equivariant branching lemma guarantees
a unique branch of solutions in Fix (Dd21). For l--> 3, Ddl is the largest subgroup of
0(3) that fixes iyl, and so it is an isotropy subgroup (Ihrig and Golubitsky [1984]).
Hence there exist solutions with isotropy Ddl.

Restricting F as in (1.4) and using (1.6), we can compute the branching equation
for equilibria with isotropy Ddl by solving Fl(iyl) 0. In the notation of (1.3) we obtain

(1.7) h (-lll)y + O(y).

(iii) Stability. The principle of (orbital) linearized stability implies that in order
to establish asymptotic stability of a branch of solutions (z, A) it is sufficient to show
that the eigenvalues of the Jacobian (dF)z,, all have negative real part (with the
exception of eigenvalues that are forced to vanish by the action of the group).

The main group-theoretic tool for computing the eigenvalues of such a matrix is
the isotypic decomposition. Recall that the equivariant vector field F satisfies

F(3/z,A)=3/F(z,A) for all 3/ O(3), zV,

Differentiation of this identity yields

1.8) (dF)vz, 3/= 3/(dF)z,;,.
Taking 3/ E, we see that (dF)z,;, commutes with elements of E when z Fix (E).

Now we can decompose the space of spherical harmonics into a direct sum:

(1.9) {iyl}({Xl}({Zl-1, Z-(I-1)}( ({Z1, Z-I}(){Zo}.

Each of the summands is invariant under the action of Ddl. Moreover, using (1.5) it
is easy to check that Dd acts absolutely irreducibly and nonisomorphically on each
factor. Thus (1.9) is the isotypic decomposition for DdI and, by (1.8), (dF)iyl,;, maps
each summand (or isotypic component) into itself. It follows that the eigenvalues of
(dF)iy. can be computed by restriction to each isotypic component.
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General theory guarantees that the eigenvalue in { iyl} is -2A where A is as computed
in (1.7). We call the corresponding eigenvalue the branching eigenvalue. This eigenvalue
is stable if and only if the branch of equilibria bifurcates supercritically (that is, exists
for positive A). There are three eigenvalues that are forced to be zero by the group.
These lie in {Xl} and {ZI_I, Z_(l_l)}. It is easy to check the eigenvalues in {iyl} and {XI}
by explicit computations.

It remains to compute the eigenvalues in {Zo} and {Zm, Z-m}, m 1,. ., l--2. We
will include the case m l- 1 since the structure of the calculations is identical. Since
Dd21 acts absolutely irreducibly on each {Zm, Z-m} it follows that the corresponding
eigenvalues are double. Hence we need only compute

im
OZm

(iyI’ A)’ m=0,.. ,1--1,

=A + (- lml)z_z +"

=[(-lll) (-Iml)]y + O(y).

Of course, we already have that/Xl-1--0 and so (-Ill)= (-/, l-1, 1). In 2 we show
that the expressions [(-lll)- (-lml)], 0 <-m <-l-2, are simultaneously negative for a
nonempty open set of cubic equivariant mappings C.

2. Evaluation of the eigenvalues. Recall from 1 that we must show that there is
a cubic mapping for which the l-1 expressions

(2.1) /Xm (-lll)-(-lml), 0<-_ m <-_ 1-2

are simultaneously negative. Here, (-lml) appears in the ruth component of the
bifurcation equations and is the coefficient of Z_IZmZ.

It is known that there are r= [//3]+ 1 linearly independent equivariant cubic
mappings Cl,’", cr (see L6vy-Leblond and L6vy-Nahas [1965] and Chossat and
Lauterbach [1989] for independent and different proofs of this fact). Hence we may
write the general equivariant cubic as

C

_
oliCi, o1,

The first cubic C can be taken to be Ixl=x and appears for all I. The expressions
in (2.1) are easily seen to be.independent of C1. When 3 and 5, there is a second
mapping C2, and it transpires that the expressions in (2.1) are all positive multiples
of c (Chossat et al. [1990]). Hence the Da solutions are stable when a2 < 0.

Now, the Ci can be ordered, and we will show that, for all 1, on setting O --0,
-> 3, the expressions in (2.1) are positive multiples of a2. Hence we have stability
when ce < 0, O 0, _-> 3. By continuity, we have stability for an open set of equivariant
cubics.

We now describe our techniques for computing nonlinear equivariant mappings.
The space ofpth order equivariant mappings can be identified with the space ofp-linear
maps that (a) transform like the /th representation of O(3), and (b) are symmetric,
that is, fixed by Sp, the symmetric group on p symbols. Hence the first step is to take
the p-fold tensor product of the/th representation of 0(3) and reduce simultaneously
to that representation and by Sp. The expansion coefficients appearing in the tensor
products are called Clebsch-Gordan (CG) coefficients; see, for example, Biedenharn
and Louck [1981], Miller [1972], or Sattinger 1979].

Where our methods differ from those of Sattinger is in the use of results from the
theory of angular momentum in quantum mechanics to compute CG coefficients. The
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advantage ofthese methods is that it is possible to compute each coefficient individually,
with each independent equivariant mapping taken one at a time. In physics there is a
wealth of literature on these computations, and we shall quote many formulas. The
reader is referred to Biedenharn and Louck [1981] or Wigner [1959] for a more detailed
discussion and derivation of these formulas.

There is one possible causeof confusion that we wish to clear up from the outset.
The results we quote apply to a conventionally normalized form of the CG coefficients.
These may differ from other "CG coefficients" by a factor that depends only on the
representation of 0(3) and the independent equivariant mapping being evaluated.
This factor may be absorbed into a2, and so does not affect the bifurcation theory.

The remainder of this section will fall into two subsections" (i) reduction of the
three-fold tensor product, and (ii)evaluation of the required Clebsch-Gordan
coefficients.

(i) Consider z(L) VL in the basis of spherical harmonics of order L,
L

(2.2) z(L)= E z)Y-

If z is the direct sum z =zL over all nonnegative integers L, then

L) I dO Yt, z

are the expansion coefficients. In order to compute the quadratic equivariant mappings,
we wish to know how the expansion coefficients (z2),, for the square of z will depend
on the original z,. We have the following integral over three spherical harmonics"

(2,3) da gL gl g2= 4(2L+ 1) Co, o, o Cm,,"
The C’ ’,, are CG coeNcients that satisfy the conventional choice of normalization
of the highest-weight coecients C’’ ’ where L= m+ m" see Biedenharn and

1,

Louck [1981]. To simplify the notation, we define

(.4 ,l, 4(+ co, o, o.

Then from (2.2) and (2.3), we can write

21

(2,5) gl g2= 2 NC" L ml+m
m2, ml+m YL

L=0

In deriving (2.5) we have used two propeaies of the CG coecients, namely, that the
coecient C’,m2,12’ Lm vanishes unless m m + m, and that L satisfies the "triangle
inequality" 1 1 L l + 1.

Now squaring (2.2) and using (2.5) we can identify the quadratic expansion
coecients from the lth representation that transform as in the Lth representation.
Let z);;) be shoahand for (z1))). Then

(2.6) Z);2;(L) L L _(1)z(l)NnC,m:,Zm .
mi+m2

Taking L in (2.6) gives the (unique) quadratic equivariant z(t);2;(). This equivariant
vanishes for odd l, as can be seen from the propey

(2.7) ,m,=(--) Cm,,,m.
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In order to generate the cubic order equivariants we iterate the process and consider
the three-fold tensor product z(11;3;(t) obtained from the product of Z

(1) with its square

21 L

(2.8t z(’);2 2 Y’. z);2;(L) Y’.
L=O m=-L

We must first reduce to the (21 + 1)-dimensional representation of 0(3). Observe that
several terms in this product transform like this representation: one for each of the
(2// 1) values of L in (2.8). It is possible to show that the first [//3]/ 1 even values
of L generate the independent equivariant cubics. Since this fact is not required to
prove our main result, we defer the proof to a later paper.

Writing 2(1);3;(1)(L) as the part of the cubic that transforms as and comes from
L, we get

(2.9) Z(Im);3;(l)(L) LNllNiL C L, L (11_(11,.,(1)
m3, M, C ml" m2" M mlm2Z., m3

m3+M=m m+m2=M

It follows from (2.7) that the sum in (2.9) vanishes when L is odd. From now on we
assume that L is even (shortly we shall specialize to the case L 2). To obtain the
(ijk) coefficients defined in 1, we reduce by $3; that is, we symmetrize (2.9) over the
subscripts ml, m2, and m3. There are three cases:

i, j, k all unequal:

(2.10a)

i#j=k:

(2.10b)

i=j= k:

(2.10c)

NllNiL(Ci,j+k,i+j+kCj, k,j+k / Cj, i+k,i+j+kCi, k,(ijk) 2 L I,L, l,I, l,t, l,,, L+k

L I,L, I,I,L 2c,L, t’.l,l,(ijj)L NIINIL(C,,2j,,+2jCj,j,2j+ i+j, i+2; id,/L+;),

(iii)L L l,L,l LNllNlLCi,2i,3iCii,2i.

(ii) We now explicitly compute the coefficients (-lml)2, 0 <- m <= l, as required (in
fact, there is some redundancy, as we already know that (-l,l 1,/) =(-lll)). The choice
L 2 is motivated by the results for 3 and 5, and simplifies the calculations due to
the (obvious) property

(2.11) Cllrl,12,m2, Lm 0 for Im[ > L.

2NllNI2 is absorbed into the coefficient a2 of theIn particular, if the common factor 2

cubic equivariant, the equations in (2.10) become

(- Iml)2 C 2,1 Cm,O,m l,l,,
(-lml)2 C 2,1 C 12, 2

m, O, --l, / C m-l, C-l, rn, m--l,

(-111)2 cl,2,11cl1,o, -l,l,.

O<=ml-3,

m=l-2,1-1,

A further simplification can be obtained by transforming the CG coefficients using the
following two properties:

cl,, 12,1 l,--ml(l / l ) 1/2

ml, m2, (--1)
12 + 1

Cll 12
ITI, --1712

cl,, l,, L___(__l)tcl,.,. l,, L

rill, m2, --ml,
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Absorbing the common square root (with 12 2) into a2, we have

t,l, 2 0<m</ 3,(-lml) (-1)"+1 Cl,_l, oCn,_""
l,l, _")2.at_(__l)"+lCll:l C 1,2(2.12) (-lml)--(Cl,-m, --l, m,--m,0, m=l-2,1-1,

(-I11) C 1"1" o)2l,-l,

At this point, we have reduced the problem to the evaluation of two types of CG
coefficients. In particular, it is sufficient to consider "Racah’s first form"

1--m1)!(12--m2)!(l--m)!(l+m)!)/2cll ,ml, 12,m2, l" =6/,t,1/9,11+t9,/2, (ll+12+l+l)V(l+ll-12)v( l-t-12)!(ll-t-ml)!(12+m2)
(2.13)

E (_1)!1_",+, ( (l,+ml+t),(l+lz-ml-t),)t[(l- m-t)[(1,- rn,-t) .i----l+ rn, + t)!

where summation is over those for which all factorials are of nonnegative numbers.
Specializing, we find that

C 2 m+l(5_(__?_l_.?) !)1/2(2.14a) "’-"’=2(-1) \ (2/+3)
(3m2-12-1)’

(2.14b) C t’t’ (5(2/-2)!)
1/2

’-+’ (2/+3)
vi21(2/- 1)’

l,l, 5(2/-2)!. x/24/(2/- 1).(2.14c) C’-/+2’= (2/+3)!

The derivation of these formulas is straightforward. The only contributions from (2.13)
in (2.14a) come from =0, 1, and 2. For (2.14b, c) the only contributions come from
=0. On substituting the expressions in (2.14) into (2.12) and then into (2.1), we see

that

/x" 121(21-1)(12- m2)a2, O rn <_-- 1-3,

.1--1 12/(2/- 1)(4/

Hence the /x" are positive multiples of ce2 as required. It is also easy to verify that
/Zl_ 0 as expected.
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QUALITATIVE ANALYSIS OF MYELINATED NERVE FIBERS
WITH POINT-NODE FITZHUGH-NAGUMO DYNAMIC SYSTEM*

PEI-LI CHEN

Abstract. The equations for the membrane potentials in a point-node myelinated axon fibers
model take the form

Ut Uxx GU,
W=0,

Vt M[Ux]x + F(U) W,

Wt aU W,

x(O, 1) mod (1),
xe(O, 1) mod (1),
x=0 mod (1),
x=0 mod (1),
x=0 mod (1),

where U (ut, u2, Un) t, W (wt, w2, wn) t, M I aB and the model dynamics are of
FitzHugh-Nagumo type. In this paper, two new results for this model are presented.

In the first result it is shown that this model has two nontrivial solutions and the contracting
rectangle technique is used to show that one of these solutions is stable. The second result gives an
existence proof for the Cauchy problem associated with this model.

Key words, myelinated axon fibers, FitzHugh-Nagumo, contracting rectangle, reaction diffu-
sion equations

AMS(MOS) subject classifications. 35A05, B40, 92A05

1. Introduction. Grindrod and Sleeman [9, p. 119] define a myelinated nerve
axon as follows: "A myelinated nerve axon consists of axoplasm surrounded by a
long cylindrical membrane which is in turn surrounded by a sheath of lipoprotein,
called myelin, formed by condensation of Schwann cell membranes. The sheath, a

fatty layered tissue, insulates the axon from the external ionic fluid." In each myelin
segment, the potential u(x, t) is governed by a diffusion equation of the form

(1.1) ut uxx gu,

in which the spatial variable x is measured along the axon and the constant g l/R,
where R represents the axoplasmic resistivity.

Again, quoting Grindrod and Sleeman [9, p. 119]" "At approximately millimeter
intervals, there are small gaps called nodes of Ranvier. These nodes expose the extra-
cellular fluid to the excitable axon membrane." At the nodes the axon membrane is
selectively permeable to the charged ions within the axoplasm and outer ionic fluid.
Here the potential u(x, t) is governed by a nonlinear diffusion equation of the form

(1.2) ut uxx J,

where J represents the ionic current through the membrane.
In the early 1950s, Hodgkin and Huxley published a series of papers on the un-

myelinated axon model based on the giant squid axon. In [13] they proposed a system

*Received by the editors August 1, 1989; accepted for publication (in revised form) April 4,
1991. This work was done while the author was a Morrey Assistant Professor in the Department of
Mathematics at the University of California at Berkeley, Berkeley, California 94720.

tDepartment of Mathematics, Southern Illinois University at Carbondale, Carbondale, Illinois
62901-4408.
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of differential equations, each of which is in the general form of (1.2). Because of the
analytic complexity of the Hodgkin-Huxley model, most work on the model, particu-
larly on qualitative behavior of the solutions, has been numerical. To gain some insight
into the mathematical phenomena involved in the nerve conduction process FitzHugh
[6] and Nagumo, Arimoto, and Yoshizawa [15] introduced a simpler prototype system
of the form

(1.3)
ut uxx + f(u) w,

Wt (U /W

where u is still the membrane potential and w represents a recovery process. The
current-voltage relation -f(u) is an "N-shaped" function, sketched in Fig. 1, and a,
are recovery constants.

FIG. 1. Each of-fi is an N-shaped function.

Questions of existence and qualitative behavior of solutions to (1.3) have been
pursued very actively by many mathematicians (see, for example, [8]-[12], [16], [17]).
Grindrod and Sleeman [10] used a contracting rectangle technique (see [4] for a general
reference) to give a qualitative analysis of unmyelinated nerve fibers.

Myelinated axons, especially myelinated axon fibers, which are more prevalent in
human anatomy than unmyelinated axons, have also been modeled. However, fewer
analytical results have been obtained for these models. Some asymptotic behavior was
considered in simpler models (e.g., Bell [1], Bell and Cosner [2], Chen and Bell [3],
and Grindrod and Sleeman [9]).

The main purpose of this paper is to consider questions related to the equations for
the point-node myelinated axon fibers (see [2] and [3] for references). These equations
are

(1.4) Ut Ux.: GU, x (0, 1) mod (1),
(1.5) W 0, x e (0, 1) mod (1),
(1.6) U, i[Ux]x + F(U) W, x 0 mod (1),
(1.7) W, aU -/W, x 0 mod (1),
(1.8) [V]x 0, x 0 mod (1),
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where U
,fn(Un)), [Ux]x Ux(x/,t)- U(x-,t), G Diag(g,.-. ,gn} and M (/I-

cB). Here each ui is the potential of a membrane, each -fi is an N-shaped function
as sketched in Fig. 1, each g
> 0, a Diag(a, a2,..., an}, /- Diag(-),, 3’2,"" /}, where cr,- are positive

constants (i 1, 2,..., n), I is the n n identity matrix, and B is the adjacency
matrix for the graph, which is defined as follows.

Following [10] we define F to be a graph on n vertices (see Fig. 2) where the
adjacency matrix B (bj), i,j 1,... n is defined by

(1.9)

0

1
bij

0

if j,

if i - j and there is an edge

in F which connects vi and vj,

otherwise.

Thus B is a symmetric matrix and describes the geometry of the graph F. "This
concept is often used by chemists where it is sometimes called the topology matrix and
is used to describe and classify hydrocarbon molecules. By the previous construction,
if F is the graph on n vertices, representing n-fibers, the adjacency matrix, B of F,
describes the ability of separate fibers to interact." See [10, p. 6].

single fiber

inteection between fiber

FIG. 2. Configuration of parallel fibers in cross section.

Since/it >> c > 0 the matrix M is positive definite. Let /1,..., An denote its
eigenvalues. It is obvious that /i > 0, 1,... ,n. Let C be the unitary matrix
whose columns are the orthonormalized eigenvectors of M, that is, M CACt, where
A Diag{/l,... ,An}. Setting V(x,t) CtU(x,t) and premultiplying the system
(1.4)-(1.8) by Ct, V satisfies the following equations:

(1.10) Vt Vzx- GV, x E (0, 1) mod (1),
(1.11) Vt A[Vx]x + CtF(CV) CtW, x 0 mod (1),
(1.12) Wt aCV 7W, x 0 mod (1),
(1.13) [V] 0, x 0 mod (1).
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We define the operator G by

(1.14) G
\ aCU "/W ,]’

(1.15)

and the matrix P by

x=0 mod(1),

xe (0,1) mod (1),

(2.2) M[Uz]z + F(U) a’,/-U 0, x 0 mod (1).
The general solution of (2.1) can be expressed as

[+ui sinh v/-(x k) + kui sinh v/-(k + 1 x)]
for x (k, k + 1),ui

sinh

where ku u(k) for all k 7/. Obviously, (U, W) (0, 0) is a trivial steady state
solution. The jump of the first derivative of ui on each node x k is given by

(2.3) [ui] Gi(+ui 2cosh ui + k-lUi),

where Gi -7/sinh vfg-. Let ( Diag{G, G2,..., Gn}, Chg Diag{ cosh v/,
cosh V/-, cosh vf}, kU (kUl, ku2,’’’, kUn)t. Using this notation, (2.3) can be
rewritten as

(2.4) [Uz]k (k+lV- 2ChgkU + k-lU).

Substituting (2.4) into (2.2), we see that U satisfies

(2.5) d(k+lU- 2ChgkU + k-lU) -t- AxF(kU) A)a"/-lkU O,

x=kE,

(1.17) (Vw) =P. ([V;]x)+GI(), x=0 mod (1).

In 2, by using the Implicit Function Theorem, it is shown that for certain values
of the parameters there exist nonzero steady state solutions to (1.16) and (1.17). In
3, we show that there exist contracting rectangles around some special steady state
solutions. In 4, we use this result to prove that one of the steady state solutions is
approximately stable. In 5, the existence proof of solutions of the system (1.4)-(1.8)
is given for the Cauchy problem (see [5] and [3] for references).

2. Steady state solutions. Let (U, W) be the steady state solution of (1.4)-
(1.8). In this case, U satisfies the equations

(2.1) Ux: GU 0, x e (0, 1) mod (1),

p= [A0 0]0 ifx=0 mod(1),

=[I 0] ifxe(0,1) rood(l)P
0 0

System (1.10)-(1.13) can then be rewritten as

(1.16) (V) =P" (V) +G1 (), x (0,1) mod (1)
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where the matrix A CA-1C M-. We will now look for a special solution of
the form

kU=z for allkE,
where z (z, z2,..., zn)t. In this case, (2.5) is equivalent to

2((1 Chg)z + AxF(z) Axa/-z O.

In order to find a nonzero solution of the above equation, let us define the functions

HI(z;G (:r’-1) F(z) I(z;G,a-),
(2.6)

I(z;G,a-) (A;2((Chg I) + a-l)z,

where A CAC M. Then

y 0 0 0
0 0 0

(2.7) DzH(z;G, a7-) 0 0 f 0

0 0 0 f
aT-I 2A;l((Chg- I).

Let fi(zi) fi(zi)- oi/Tizi for 1,2,... ,n. Then for oi/7i small there exists

i), i) such that

for 1, 2,... n (cf. Fig. 3). This is equivalent to

(2.8) S(a; 0, a7-1) Hi(a2; 0, a7-) 0,

wherea,-1 is fixed andcU =(a ,a ,...,u )t,j=l,2. By the definition off
and f at a and a2, there exists a g* > 0 such that DzHl(a; G, O"-1) is positive
definite for 0 < gi < g* and DzHl(a2; G, a7-1) is negative definite for 0 < gi < g*,

1, 2,..., n. Using the Implicit Function Theorem there exist smooth manifolds
a al(G) and a2 a2(G) in a neighborhood Uo YI(-q, q) of G (0, 0,..., 0)
such that

H(a(G), G,a’),-) O,
H(a2(G), G, o7-) O, GEUo.

Hence the following theorem has been proved.
THEOREM 2.1. The differential equations (2.1)-(2.2) have at least two super-

threshold (nonzero) solutions, provided the positive constants gi and ai//i are small
(i-1,2,... ,n).

If we define Ua (x) (ul,l)(x), u2,1.)(x),... Una,) (x) )t then Ua and Ua are

two superthreshold solutions with u. ()(k) a) for all k E 7/, where 1,2;
j 1,2,... ,n.

3. Contracting rectangle. In this section and the next, the idea of "invariant
region" or "contracting rectangle" (see [17] and [10]) will be used to reveal the behav-
ior of solutions of (1.4)-(1.8) around the steady state solutions (U, W) (0, 0) and
(U, W) (Ua2, a-Ua.). In fact, these two solutions are "attractors," that is, if any
solution of (1.4)-(1.8) is close enough to one of the two steady states, then it must be
attracted to the steady state solution.
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FIG. 3. fi(c (i) L(O(2i)) 0.

DEFINITION 3.1. Let H denote a vector field over R2n and let S be a bounded
convex set in R2n, with boundary OS. S is contracting for H if, for every w E OS and
the outward normal vector n(w) of OS at w, we have

< 0.

If S is of the form

(3.1) S- $1 x $2,
n n l[_j j], then S is called a contractingwhere S =[- ] and $2 =rectangle.

The boundary of S consists of 4n "faces" which are denoted as follows.

S n {(U, W)’ui i} is the upper ith face,
S n {(U, W) ui -i} is the lower ith face,
S { (U, W)" zi i } is the upper (n + i)th face,
S N {(U, W)" zi -i} is the lower (n + i)th face.

3.1. Contracting rectangle around the trivial solution (U, W) (0, 0).
Define H(U,W) G(U,W) as in (1.14) and (1.15). Then either x e ; or

3.1.1. Case for x 0 mod(1). Fixing x n 7/, the vector field G
R2n R2n defined by (1.14) is the same as (1.1) of [10]; hence we can use the same
results as in 1 of [10] where C (cij) and we define (ij) where ij Icijl, for
i,j 1,...,n.

THEOREM 3.2 (Grindrod and Sleeman [10]). We assume that the functions fi
(i 1, 2,..., n) satisfy the condition that

(3.2) m.in{ai} > rm.ax{gri//i},

where ai -f(O), 1,..., n, and r p(). Then there exists a rectangle S* of
the form (3.1) and a constant al ) 0 such that G(U, W).n(U, W) < --aT on O(-S*)
for any outward normal n(U, W) to O(TS*) at (U, W) and any T e (0, 1).
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3.1.2. Case for x E R\7/. Here (U, 0) is on the OS if and only if there exists
some ui- i (or ui- -i). By (1.15),

(U, W) 0

We only consider the case that (U, 0) is on the upper ith face. In this case n(U, O)
(i, 0) t, where/i (0,... 0, 1, 0,... 0) and GI(U, 0). n(U, O) -gi-i. We have now
proved the following lemma.

LEMMA 3.3. For any rectangle S given by (3.1), T E (0, 1), and a2 mini{g/},
we have that

(3.3) G1 (U, 0). n(U, O)

_
--t2T

on O(TS) for any outward normal vector n(U, O) to O(TS) at (U, 0).
3.2. Contracting rectangle near steady state solution. (Ua.(x),

aT-1Ua2(x)) Let (U, W) be a solution of (1.4)-(1.8) near the steady state solution
(Ua2, aq-lUa). Let us define the functions

(3.4) Vl(x,t) U(x,t) Ua.(x), x 6 (0, 1) mod (1),
(3.5) Zl(n,t) W(n,t) aq-lU.(n), n 0 mod (1).
These functions then satisfy the following differential equations

(3.6) Vlt Vlxz GV1,
o,

(3.8) Vlt M[VI=]x + F(U + V1) F(Ua2) Zl,

(3.9) Zlt aV1 "yZ1,

0,

xe(0,1) mod(1),
xe(0,1) mod(1),
x=O mod(1),
x=0 mod(1),
x=0 mod(1).

3.2.1. Case for x 0 mod(1). Now F(U)- F(Ua.) DF(U + OV1)V1,
where 0 < 0 < 1. From before we have that

(3.11) DF(Ua) 0 f(u2(z) 0

0 0 fn(Un,,)
is negative definite. In fact, we can find el > 0 such that f(ui(x)) < -1 for all
x R. By the smoothness of the function F(Y), there is a constant 5o > 0 such that
the matrix

(3.12) DF(U2 (x) + Y)
nis negative definite for any Y (yl,y2,-", y,)t E S, where S’-- yIi=l[-5o, 5o]. In

this case we can find rio > 0, such that

r/o min {,,i(uiai2 (x) --[- Yi)}
l<i<n

where -Ai (i 1, 2,..., n) are eigenvalues of the matrix (3.12). Let

0

(3.13) /)o -?o

"’.
0
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V CtV1, and Z Z1. The vector field near (Ua.,a’-lU2) is then given by

+ cv) c zl(3.14) GI (V, Z) aCV "yZ ]
If we linearize this near (Ua2,a/-IUa) we have that

aC --y Z

We use the same argument as in the contracting rectangle around (U, W) (0, 0)
and arrive at the following lemma.

LEMMA 3.4. Let-rio < -Y, where p(t), 61 maxi{ai/i}, and C
is the orthogonal matrix with MC AC and (]Cijl)nxn. Then there exists a
rectangle S** and a constant 3 such that for " E (0, 1)

GI (V, Z) n(V, Z) < -na-

(v, z) e

3.2.2. Case for x E R//:. This is the same as in case 3.1.2.

4. Asymptotic stability. Let us consider a more general system of the form

(4.1) Ut U GU, x (0, 1) mod (1),
(4.2) W 0, x e (0, 1) mod (1),
(4.3) Ut A[U]x + FI(U, W), x 0 mod (1),
(4.4) Wt F2(U, W), x 0 mod (1),
(4.5) [U]n O, x 0 mod (1),

where U C(N+ x R, Rn), W e C(R+ x Z, Nn). Fi e CI(R2n, Rn) (i 1,2); matrices
A and G are the same as before.

The contracting rectangles allow us to define nonlinear functionals, which are
decreasing functions of time [4], [10], [17] for some solutions of the differential equa-
tions (4.1)-(4.5). Here the functionals to be considered are those associated with the
rectangles S S1 x $2 such that the origin is in the interior of S.

Let I" Is1 be the norm on Rn defined by S1 in the usual way:

(4.6) IVIsl inf{t >_ O" V e tS1}.
Thus IVIs is the smallest multiple of $1 containing V. Similarly, the norm ]Zl8 is
defined in the obvious way:

(4.7) IZIs inf{t >_ O" Z e tS2}.
If we now define the continuous functions Vs, BC R (i 1, 2) by

(4.8) Ysl(V) sup IV(x)l, and V(Z) sup ]Z(n)ls2,

then we can now state the following lemma.
LEMMA 4.1. Let S be defined as in Definition 3.1 (or S S* fqS** if necessary).

Suppose that (U, W) is a solution of (4.1)-(4.5) for t T < 5, and that (U0, W0) is a
steady state solution of (4.1)-(4.5). Let V U Uo, Z W Wo with V (V(T))
T1 < 1, Vs2 (Z(T)) T2 < 1, V Co(R), and Z co. Suppose that there exist ri1, ?]2 >
0 such that for any Y O(TS) or Z e 0(-2S2) with Z 0 and (V, Z) normal to
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OQ(TIQ’I X T2,2) at (V Z), we have that (FI(U, W) FI(Uo, Wo)). (V, Z) < --TI?I or

(F2(U, W) F2(Uo, Wo)). (V, Z) < --T22; then

(4.9) DV81 (V(T)) <_ -(/L)Vsl (V(T))
or

(4.10) DVs(Z(T)) -(/L)Vs(Z(T)),
where L is the length of the shortest side orS, min{, 2, minj{gjj,gjj}}.

Proof. Let S be defined as in Definition 3.1. If V (V(T)) -, then by (4.6)
--TlU vj(T,x) TIj for all x (j 1,... ,n).

We say that Y(T,x) is in the jth upper face if vj(T,x) 1, with an analogous
definition for the lower face. Now, if V(T,x) OTIS1, then there is a subset J
{1,... ,n} such that Y(T,x) is on one of the jth faces if and only ifj e J. If V(T,)
is in the jth upper face, then vj(T,x) TIj for all x near x . In this case, if
/, then Ov(T,) 0 and

Otvj(T,) Oxvj(T,) gjvj(T,) --gjTj;

if k , then vj(T,) is the local maximum and [vx]k O. Therefore

Otvj(T, k) < --IT1,

and in this case

vj (T + h, ) < T(j h) for small h.

By the continuity of V, this holds for all x in a neighborhood of 5. A similar result
holds for the lower faces.

Let X (x" V(T,x) OTS}. Since V Co(R) then X is a compact set in
R, and by the above computation there is an open set C which contains X such
that, for 0 , we have that for small h

V(T + h,O) ( hi-)nS,
where L maxgjn(j,j}. Now V C((T- 5,T + 5)lC0(R)} and for x
V(T,x) C int(TS). Thus there is an ho > 0 and a compact set K C int(TS) for
which V(T + h,x) C K for all ]h{ < ho. Hence for sufficiently small h,

u (V(T + h)) n(1 h/i),
so that

(ui (V(T + h)) V (U(T)))/h -/i V (V(T)),
and (4.9) has been proved.

Let us turn our attention to Z(t,k). Now V:(Z(T, k)) T2 SO that if Z(T, k)
0(T2S2), say in the (n + j)th upper face, then zj(T, k) T2j for some k and

Oz(T, k) F(U(T, ), W(T, )) F:(Uo(), Wo(k)) < -.
This makes z(T + h,k) < T2(j --2h) for some h. Let N (k Z(T,k) 0T2S2.
Since Z co, N is a bounded set in (provided j or -j are not the nonzero roots
of F and F2; in fact, it is valid when j and j are small). We can then find a

neighborhood r D N such that for 0 r,

Z(T + h, O) C (1 h2/L)T2S2 for small h.

Let k /r. Since Z(T,k) C int(2S:) and Z C((T- 5, T + 5),c0) there is an

ho > 0 and a compact set K2 C int(T2S2) for which Z(T + h, k) C K2 for all ]hi < ho.
Thus for sufficiently small h, Z(T + h, k) c (1- h2/L)T2S2 for all k . Hence

(V(Z(T + h)) V(Z(T)))/h -/i V:(Z(T)).
By Lemma 4.1, we can easily obtain the following result.
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THEOPEM 4.2. The steady state solutions (U, W) (0, O) and (U, W) (Ua2,
aq/-1U) are attractors of (1.4)-(1.8), provided (3.2) is valid.

Proof. By Lemma 4.1,

VI (V Q)(t) <_ e-tV (U Q)(0),

V. (W aq/-1Q)(t) <_ e-tV(W a-Q)(O),
where y3 min{, al, a2, a3}, (Q, a-Q) is one of the steady states (0, 0) or

(U:, a-IUa) (note that S S* S** is fixed and C is an orthogonal matrix).
Remark 4.3. The above theorem tells us that if the initial values (U(x, 0), W(k, 0))

are close enough to one of the steady states with their difference belonging to C0(R),
then the solution (U(x,t), W(k,t)) must approach the steady state uniformly in the
norm of L(R) as t .

5. Existence. We will now give an existence proof for the problem defined by
(1.4)-(1.8). We note that the standard literature deals with the existence of solutions
(at least) in L2. However, our steady state solutions Ua() are not in L2. To over-
come this problem we introduce a new function (V, Z) (U- Q, W- a-Q) near

(Q, a-Q) which is the nontrivial steady state solution of (1.4)-(1.8). We then prove
the existence of a solution (V, Z) of (5.1)-(5.4) in some subspace of n2. This result
establishes the existence of the solution (U, W) (Q + V, a-lQ + Z) to (1.4)-(1.8),
although neither U nor W belongs to L2.

Let us start with the system (1.10)-(1.13). Suppose that (Q,a-Q) is a steady
state solution of (1.10)-(1.13) and that (, 2) satisfies (1.10)-(1.13). Using the above
idea, we define new functions

u=-Q, xE(0,1) mod(1),
v=f -Q, x=0

w 2 -Q, x 0

Then (u, v, w) satisfy the following equations:

(5.4)
Let

tt Uxx Gut
vt A[ux]x + Ct[F(C(Q + v))

F(CQ)] Ctw,
w ffCv

mod (1),
mod (1).

xe(0,1) mod(1),

x=0 mod(1),
x-0 mod(1),
x--0 mod (1).

H {(p,q,r): p e L2(R, Cn), q e/2(7/,Cn), r e 12(7/,Cn)}
with the inner product given by

<(pl,ql,r), (p2,q2,r2)>H f<Apl,p2> + E(<q,q2) + <r,r2)i),

[,1 1--1 2 22 nwhere (Ap,p2>(x) PP2 + P.2 +"" + AnPP2)(x),
(q q2>i 1--1 2--2(qq2 + qq2 +"" + q)(i), for , A Diag{A,A2,... ,An}.

H is a complete Hilbert space. Let X be a subspace of H given by

x {(p,q, e e i (a, C-), e

limp(x q(i) for each e }.
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Then X is dense in H. Let

Y {(p,q,r) e H’p,p’ e L2(R, Cn), limp(x q(i)}

with the inner product given by

(pi ql r (P2 q2 r2 y ./((ipl,p2) -F

Y is a complete space and, in fact, Y H S 19., where

S (q E 12. there exists a p E S1 with limp(x q(i)}.

Then the three spaces satisfy

(5.5) X C Y C S

and

(5.6) II(u, v, w)llH _< II(u, v, w)lly for any (u, v, w) Y.

Define the linear operator A" X --. H by

(5.7) A(u, v, w) (-ux + u, h[-ux] + v, w),
where u(i,t) vi(t). It is easy to verify that (A(ul,v,wl), (u2,v2,w2))H
((ul,vl,wl),A(u2,v2,w2))H for any (ui, vi, wi) e X (i 1,2). That is, A is a self-
adjoint operator. In order to prove existence, we will need the following lemmas.

LEMMA 5.1. The operator A defined by (5.7) with dom (A) X is a closed
operator from X to H with A- H --+ H bounded.

Proof. For any (u, v, w) X we have, by the definition of A,

A(u, v, w) (p, q, r) e H.

To show that A has a bounded inverse, we need to find A-. Fix (p, q, r) E H, then
for any (x, y, z) Y we have that

((x, y, z), (p, q, r))H < II(x, y, Z)IIHII(P, q, r)llH
_< II(x, Y, z)llYIl(p, q, r)llH.

((x, y, z), (p, q, r))H defines a bounded linear functional on Y. By the Riesz Represen-
tation Theorem, there exists unique (u, v, w) Y such that

(.s) ((x, , z), (p, q, )), ((x, u, z), (, ,)) for y (x, u, z) e Y.

Thus for any given (p, q, r) H, we can define B" H -+ Y, where

(5.9) B(p, q, r) (u, v, w).
We need to show that B A- and B is bounded. This is equivalent to showing that

1. IIBII <
2. B(H) C X,
3. Equation (5.9) is valid if and only if A(u, v, w) (p, q, r) H, that is,

B=A-.
By (5.8) and (5.9),

liB(p, q, )11 ((u, v, w), (u, v, w))y ((u, v, w), (p, q, r))H
< II(u, v, w)IIHII(P, q, r)lln < liB(p, q, r)llyll(p, q, r)llH.
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Therefore liB(p, q, r)lly <_ II(P, q, r)llH. Hence B is a bounded operator with IIBII _< 1.
To show 2, the conclusion of Lemma 15.5 of [7, I.15] will be used. The bilinear

form for the operator Lw -w" is given by [x, y] f[j_l,j](x’, y’). Thus Lemma
15.5 in [7] can be rewritten equivalently in the following way.

Assume that u e H(a, b) and that for all e C(a, b),

Then for any subdomain (a, b) of (a, b) with [a, b] C (a, b), u’ belongs to H((a, b))
and

where K is a constant depending only on c, (a, b), and (a, b).
To prove condition (5.10), we choose e C(R, Cn) with supp C [a, b] C

(j 1,j). Let (k), y (k) be such that Ck yk 0 for all k E ;; then

and (5.8) yields

(5.11)

By Holder’s inequality,

-,)

(, ,v) e Y

(’, Au’) j((i_,j) (,A(p- u)).

1<- min ----- (ll(u’ v, w)llH + ll(P,q, r)llH)lllli2(j-,)
l(i(n

1
rain )i

(liB(p, q, r)l]H / II(P, q, r)llH)II[IL(j-,)

1

This establishes (5.10). Therefore,

u’](,b) L:(a, b) for any [a, b] C (j- l, j).

Taking the complex conjugate of (5.11),

The above identity is true for any e C((a, b), Cn). By choosing suitable and by
(5.8) we also can conclude that u", u’ e n2(R). Thus 2 holds.

To show that 3 holds we will show that it holds for each component.
Since C is dense in n2, for any h e n2[(a, b), Ca],

,b) (--u"’ h) a,b) (p u, h).

Therefore -u" + u p on (a, b); hence -u" + u p on (j 1, j). This is the first
component in (5.7).

Now n2[(j- 1,j)] C n[(j- 1,j)], so that u’ is absolutely continuous on (j- 1,j)
and

u’(b)-u’(b)=] u" for any(a,b) C(j-l,j).
(,b)
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Let a -- j 1+ or b --+ j-; then u’ (j 1/) and u’(j-) are well defined. Next, let us
verify the last two components in (5.7).

Let Yj,ik 5e, where e (0, ,0, 1, 0, ,0) is the ith base vector in R.
We define the function

x-j+h e-"h "’
x.j-h eXj,i h

0

xE (j-h,j),

xE(j,j+h),
otherwise,

where 1, 2,..., n. Then (xj,k, yj,, O) Y. Substituting this into (5.8) we see that

(5.12)

lj(j l(j lj(jAui + - Ai(x- j + h)ui- - )u
h -h,) -Us) ,j+h)

1
)i(X j h)u + v

h ,j+h)

1
,i(x- j + h)pi- - )i(x- j- h)pi + qi

h -hh) 5+h)

where u (ul,... u,)t, p (pl,... ,p,)t, etc.

Now

j(j )iu -(ui(j) ui(j h)) --+ Aiui(j-)
h -h,j)

--I1
)iui -+ Aui(j+) as h --+ 0,

h J(5+h)

as h -+0,

d I f(-,)(x-jh)kl <- f(-,)lkl- 0 s h -+ 0 for any k L2(R). Letting
h -+ 0 in (5.12) we see that

’(j .’ J J"iUi Ui(J+) + vi qi 1,2,"" ,n,

which is the second component of (5.7). Now choose (0, 0, zj,i) Y with zjk, 5jkei,
Substituting this into (5.8) we have thatwhere zi,i k zj,i.

((0, O, zj,i), (u, v, W))H ((0, O, zj,i), (p, q, r)}y,

1,2,... n. Thus we have obtained the third com-which implies that wj rj,
ponent of (5.7). Therefore we have that if B(p,q, r) (u, v, w) then (u, v, w) e Z
and A(u, v, w) (p, q, r). We now need to show the converse. That is, if A(u, v, w)
(p, q, r), then B(p, q, r) (u, v, w). Thus (5.8) is valid.

By the definition of A,

(p, q, ) (- + , h[-] + , ).
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Choose any (k, ), ) Y. Taking the inner product of the above expression with
(&, ), ) we arrive at

((k,),), (p,q,r))u --/(A&,p)+ ((i, qi)+ (i, ri))

f(-(,u) + (, Au)) + {-(, A[u]) + (, v) + (, )}

f((, A) + (, A))

+ {(, A[ug])- (, a[ug])+ (fi, v)+ (, w)}

=((, , ), (, v, ))v.
Here we used the fact that limsi &(s) i and u]i+

i- -ux(i-) + ux(i+). Thus
condition 3 holds and the proof is complete.

To apply semigroup theory to the nonlinear problem we need another lemma,
which is a special case of Theorem V3.2 of [14]. Define

O(A) { (A(u,v, w), (u, v, W))H]
(u, v, w) e dom A with l[(u, v, w)[H 1 },

F cl(0(A)),
=cr.

LEMMA 5.2. Suppose that A is closed and is connected. For A A, A-A has
nullity zero and constant deficiency. If the deficiency is zero, then A is contained in
the resolvent set of A and

(5.13) [(A- A)-I 1/dis(A, F) for Re A 0.

Let us check the linear operator A to see if it satisfies the conditions in the lemma
so that (5.13) is valid.

By Lemma 5.1 we know that A is closed. Choose any (u,v,w) X with
[(U, V, W)H 1. Then

(A(u, v, w), (u, v, w)), .f (-Au" + Au, u)

+ {(-A[,] + v, v) + (,

+ {(,(j + 1-, (j))

-(Au’(j+), u(j))} + (A[u’]j, u)
=ll(,v,w)llY
ll(u, v, w)llH 1.

Hence e(A) c [1, ), r c [1, ), nd c/r is connected in C.
By the definition of 0(A), we know that A- A ha8 nullity zero for any A A. If

Re A 0, it i8 very easy to check that

Lm ker(A* A
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Hence (5.13) is valid.
To prove that the solution of (5.1)-(5.4) exists, rewrite (5.1)-(5.4) as follows:

(5.14)

Ut Uxx + U (I G)U,
Vt A[U] + V V + Ct(F(C(Q + V))

-F(CQ))-C*W,
Wt + W aCY + (I- 7)W,

xe(0,1) mod(1),

x=0 mod(1),
x=0 mod(1),
x=0 mod(1),

with initial conditions given by

(v, v, w)l,:o (, , ).

Let

/(t, (U, V, W)) ((I G)U, V + C(F(C(Q + V)) F(CQ)) CW,
cy + (- )w).

Then (5.14) can be simply written as

(5.15)
d
d--;(U’ V, W) + A(U, V, W) =/(t, (U, V, W)),

with

(5.16) (U, V, W)[t:o (, , 7).

Next, we use the following lemma (due to Sobolevski’s theorem; see [7, 11.16])
to prove that (5.15) and (5.16) have a solution.

LEMMA 5.3. Let A be a closed linear operator on a Banach space E such that
(5.13) holds. Suppose that/(t, p) is a function on [0, To] xE so that for some constants
a, E (0, 1) and for any R > 0 there exists a constant C(R) for which

[[/(t, A-apl) (t2, A-ap2)[[E
<_ c(n)(It t21" + [IP

where tl,t2 e [0, to], pl,p2 e E with IIPIIE, IIP.IIE < R. Then for any poe dom A
and each R > IIApollE, there exists a t* t*(R, IIApollE) > 0 such that the initial
value problem

(.s) d + A k(t,) (0) odt

has a unique solution on [0, t*]. Furthermore, if there exists a constant R > 0 such
that for any solution p of (5.18) in [0, T], T <_ To, we have that llApllE < R’. Then
we may choose R > R’ and thus apply the local existence assertion to [0, t*], It*, 2t*],
and so on, until [0, T0] is exhausted.

Since the operator A in (5.18) was shown to be closed in X and satisfies (5.13),
we need only to establish (5.17) for the function / in (5.15) to conclude the local
existence of a solution to (5.1)-(5.4).
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Let (Xk, Yk, Zk)= A-a(Uk, Vk, Wk) for k 1, 2. Then

IIP(tl,A-a(U1, Yx, Wl)) P(t2, A-a(U2, V2,

]lk(tl, (Xl, Yl, Zl)) (t2, (X2, Y2, Z2))IIH
II ((I G)(xI x2),

Y Y + C[F(C(Q + YI)) F(C(Q + Y))]
-Ct(Z Z2D, aC(Y( Y) + (I- O/)(Z

_< I1(I G)(X1 X2), 0, 0)IIH / I1(0, Y Y + Ct[F(C(Q + Y))
F(C(Q / Y))] C(Z z), 0)IIH

/ I1(0, 0, C(Y Y) / (I- )(ZI Zh))IIH.

Now C i8 an orthogonal matrix 80 that

I1((I G)(X1 X2), 0, 0)IIH
< max [1 gi[ [l(Xl X2, Y1 Y2, Zl Z2)I[H,

l<i<n

I1(o, o, c(Y Y#) + (I- ,y)(z Zl))llH
_< (ax{} / mxll l)ll(Xl x,Y1 Y,Z1- Z)IIH,

I1(o, Y -Y / C[F(C(Q / Y))- F(C(Q / Y))]- C(Zi- zh), 0)IIH
<_ I1(0, Y1 Y, 0)IIH / I1(0, C(Z’I Zh), 0)IIH

/ I1(0, C[F(CQ / CY) F(CQ / CY)], 0)IIH
_< (2 + max If(y)l)ll(Xl X2, Y1 Y, Zl Z)IIH.

l<i<n
y

Therefore

(5.19) IIP(tl,A-a(U1,V, W1)) P(t2,A-a(U2, V2, W2))IIH
<_ C(R)II(X1 X, Y1 Y2, Zl Z2)IIH,

where

C(R) max I1 gil + max ai + max I1 1 + 2 + max
<i<n <i<n <i<n <i<n

Hence/ satisfies condition (5.17), and the system (5.15)-(5.16) has unique solution
P (U, V, W) with the initial value Po (Uo, V0, Wo) at t 0 satisfying IIAPolIH <_
R.

To prove global existence, we must show that IIA(U, V, W)IIH is bounded for any
solution P (U, V, W). By (5.19),

liP(u, v, W)IIH C(R)II(U, V, W)IIH.

If II(U, V, W)IIH and II(U, V, W)IIH are bounded, then by (5.15)-(5.16), we can see
that [IA(U, V, W)[[H is bounded.

Let

E(t) (ll(U, v, w)ll/+ ll(U, v, w)ll/)/2.
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Then E(t) is a Lyapunov function and its derivative is given by

E’(t) .{((U, AU,)+
+ ((v,. v,)+ (v. v)+ (w. w,)+ (w,,

./ { (U, AU AGU) + (U, (AU AGU)) )

+ E{(Vti, A[Vtx]i + Ct(DF)CVt CtWit)

+ <Vi, A[Vx]i + CtDF(CQ + OCVi)CV CtW>
+ <w,cv-w> + (w:,cy,

gl(t)+ g2(t),

where

J (t) -.].{(U, AGU) + (Ut, AGUt) + (U, AU,) + (U, AU,)},

J2(t) E{ vti C DF CVi Vi C W[

+ (Vi, CtDF(CQ + OCVi)CVi) (Vi, CtWi)
+ (w.cv,)- (w,,w) + (w. c’)- (w, w:)}.

Notice that if B(x) (b(X))nxn is any bounded matrix then for any vector u Rn,
v Rn,

n2
(u, By> mx Ib(x)l(llull 2 + Ilvl12).

DF is a bounded matrix. Thus we can find a constant K > 0 such that

J2(t) g (llYil2 + IIi2 + Wll2 + [IWil[) 2.

Letting K2 2 max{gt, {Aigi, Ai" 1, 2,..., n}}, we have that

Therefore

E’(t) <_ K2E(t).

(5.21) E(t) <_ E(O)eK.t <_ E(O)eK2To for 0 < t <_ To.

By the definition of E(t), there is a constant R(To), such that

II(U,V, W)IIH < R(To) and II(U, V, W)tlIH < R(To).

By (5.15) and (5.20), we can find an R’ > 0 such that

IIA(U, V, W)IIH < n’.

Combining this with Lemma 5.3 we have just proved the following theorem.
THEOREM 5.4. /fP0 (U, V, W)lt=o e X and OF(u) diag{f(u), f(u2),.. .,

fn(Un)) is bounded, then the problem (1.4)-(1.8) has a unique solution (V, V, W) e Z
for all t > O.
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STABILITY AND HOPF BIFURCATION OF STEADY STATE SOLUTIONS
OF A SINGULARLY PERTURBED REACTION-DIFFUSION SYSTEM*

ROBERT GARDNER,"

Abstract. This paper presents a stability analysis of steady state solutions of a singularly perturbed
reaction-diffusion system which arises as a model for predator-prey interactions. This is the first illustration
of the application of a topological invariant for systems of boundary value problems called the stability
index, recently introduced, by C. Jones and the author, which counts the multiplicity of unstable eigenvalues
of the linearized equations. The main results are as follows:

(i) It is shown that the spectrum tr of the linearized operator is approximated by the spectrum trR of
a certain reduced operator defined in the small parameter limit.

(ii) Under additional assumptions on the parameters trn is characterized in two cases. In the first case
stability is obtained for all interval sizes L, while in the second case, countably many Hopf bifurcations
occur as L is increased.

Key words, stability, reaction-diffusion, steady states

AMS(MOS) subject classifications. 35B30, 35K55

1. Introduction. We will study the diffusive predator-prey system with Dirichlet
conditions

(1.1)

(1.2)

Ut---Uxx+f(u, v), u(+L, t)=0,

v,= e2vxx+g(u, v), v(+L, t)=0,

f(u, v) h(u) uv u(b u)(u a)- uv,

g(u, v) m(u 3")v v.
Here u and v are the population densities of prey and predator species, respectively.
The parameters m, a, b, 3’ are all positive; we assume further that 0 < a < 3’ < b. In the
absence of diffusion and boundary conditions, the kinetic equations associated with
(1.1) admit a stable rest point at the origin and interior to the positive quadrant, either
a stable rest point or a stable limit cycle, depending on the values of m and 3’.

The object of this paper is to discuss the stability of steady state solutions of (1.1),
i.e., functions (U(x), V(x)) satisfying

U+f(U, V):0, U(+L) 0,
(1.3)

e2Q+ g( U, V)=0, V(+L) =0,

wherein both components are positive; such solutions will be called positive solutions.
The existence of a global continuum of such solutions which bifurcates as e decreases
from a solution in which v 0 was proved by Conway, Gardner, and Smoller [2]; see
also Li [11] and Li and Lloyd [12]. The asymptotic behavior and in certain cases the
uniqueness of this branch as e - 0 was discussed by Dancer [3]. In brief, we show that
if e is sufficiently small and if the other parameters are suitably chosen, then in one
case, such solutions are linearly stable for all interval sizes L for which positive solutions

* Received by the editors August 13, 1990; acc.epted for publication (in revised form) April 29, 1991.
This research was partially supported by National Science Foundation grants DMS 8802468 and DMS
8922384.

" Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts
01003.
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exist, while in a second case, the positive solution undergoes countably many Hopf
bifurcations as L increases. Thus we show that if is the linearized operator about
such a solution, then the spectrum of either lies entirely in the stable half plane
Re h <0, or, as L is increased, pairs of complex conjugate eigenvalues cross the
imaginary axis Re h 0. A precise statement of the main results is given in 5.

It is well known for this class of equations that nonlinear stability and bifurcation
are correctly predicted by the linearized analysis (see Henry [10]). In regard to large
amplitude solutions of systems such as (1.3), the difficult aspect of this procedure is
to determine the number and location of any unstable eigenvalues of . Some new
methods for analyzing this question for boundary value problems were recently intro-
duced by Gardner and Jones [7]. Similar methods with applications were previously
introduced by Alexander, Gardner, and Jones [1], and by Gardner and Jones [8], [9]
for traveling waves; this paper presents the first illustration of how these methods work
in the stability analysis of a specific boundary value problem. In either setting, the
main constructions are a complex vector bundle (K) over a real 2-sphere, and an
analytic function D(A) of the eigenvalue parameter, called the Evans function. D(A)
is essentially the Wronskian of certain distinguished solutions of the linearized
equations; its roots, counting order, coincide with the eigenvalues of , counting
multiplicity. The main result in [7] asserts that if K c C is a simple closed curve which
is disjoint from the spectrum of , then a certain topological invariant cl((K)),
called the first Chern number of (K), is an integer which is equal to the number of
eigenvalues of inside K (counting multiplicity). In many situations, including the
problem at hand, it is possible to show that all potentially unstable eigenvalues of w
lie in some large but fixed contour K containing h 0 in its interior. For such K, the
underlying solution will be stable (unstable) if this invariant is equal to (greater than)
zero; we therefore call Cl((K)) the stability index.

The main concern here is to illustrate the application of the stability index to the
problem described above. However, we shall briefly describe some of the main points
ofthe general theory. The principal observation is that the candidates for eigenfunctions
are the solutions of the linearized equations (written as a first-order system) which
satisfy the boundary conditions at x--L. These solutions span certain n-dimensional
subspaces (x, h) of C2n which are parametrized both by x[-L,L] and by the
eigenvalue parameter h. Another way to say this is that they form a vector bundle over
the base space I-L, L] x C. If h is restricted to lie in K, it turns out that the twisting
of these vector spaces over I-L, L] x K determines the number of eigenvalues of
inside K. The actual construction of (K) consists of taking certain algebraic quotients
of vector spaces associated with (x, h), and then gluing on suitable fibers over the
"caps," {+L} x K, where K is the interior of K. The result is a bundle (K) over a
base space B,

B ={-L}x KU I-L, L] x K U {L}x K,
which is topologically a 2-sphere. The quotient and gluing procedures are performed
in such a manner that cl of the resulting bundle (K) coincides with the winding
number of the curve D(K), and therefore measures the number of eigenvalues of w
inside K. These ideas were motivated and developed at length in [1], [7] and [8], and
the interested reader is referred to these papers for additional details.

These tools are of particular significance when the underlying solution is con-
structed by a singular perturbation procedure. In this setting the vector spaces (x, y),
and hence, (K), frequently admit a direct sum decomposition where the summands
are related to certain fast or slow behavior of solutions of the linearized equations. In
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other words, (K) admits a Whitney sum decomposition

k

(K) i(K)
i=1

of subbundles i(K) of g(K). The additive property of 1,

k

c,((K)) E c,(,(K)),
i=1

provides a mechanism for computing the stability index. In particular, the topological
character of cl permits the passage to a limit as the small parameter, say e, tends to
zero. This permits us to identify certain reduced eigenvalue problems obtained directly
from the equations with e 0, which, working backwards, can then be used to predict
the number and location of the eigenvalues of the perturbed problem with e > 0. In
the problem at hand, the bundle g(K) is two-dimensional. A Whitney sum decom-
position,

(K)=,(K)(K),

will be obtained where g(K) and 2(K) are complex line bundles over B, which
correspond, respectively, to fast and slow behavior in the linearized equations. It turns
out that (K) is trivial, so that Cl(l(K))=0. The bundle 2(K) is more complicated
to analyze. In the limit of the small parameter e at e =0, the reduced eigenvalue
problem associated with 2(K) is

(1.4) P= (A-f)-A_v_l P, P(-L)= P(L)=0,

where the partials f,, fv, u, are evaluated at the singular limit

(1.5) (U(x), V(x))=lim(U(x, e), V(x, e)).
e---O

The second half of the paper is devoted to the spectral analysis of problem (1.4)
and is independent of the previous material. Even though (1.4) is a scalar equation,
it is complicated by the fact that the eigenvalue parameter A enters into the potential
in a nonlinear, nonstandard manner; this is because it is really an eigenvalue problem
for a system. Furthermore, it has variable coefficients. This is therefore not a routine
computation, and we found it necessary to make some additional assumptions about
the parameters in order to characterize its spectrum. Our main hypothesis is that the
parameter m, which is the slope of g 0 in Fig. 2.2, is large. The principal tool that
is used is Sturm-Liouville theory; in particular, we analyze the associated projectivized
problem on CP which, in the local coordinate z =/5/p, is just

(1.6) = G(x, h)-z:z, z(-L) oo,

where G(x, ,) is the potential in (1.4). In the stable case we show that , with Re A->0
is not an eigenvalue by locating certain invariant regions for (1.6) which keep the
solution of (1.6) away from the boundary conditions z oo at x +L. In the unstable
case we employ a topological argument to prove the existence of pure imaginary
eigenvalues for large L. The exact eigenvalue count is then obtained by proving that
Re A’(L)> 0 whenever ,(L) is a pure imaginary eigenvalue. We remark that there is
an advantage to using the stability index in bifurcation problems. In particular, since
the Evans function D (,) for the perturbed problem uniformly approximates the Evans
function D*() for the reduced problem, and since they are both analytic, the transverse
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crossing of eigenvalues for the reduced problem implies transversality for the perturbed
problem. Indeed, this is how we prove transversality here when e > 0. This idea was
introduced by Terman 14] in his stability analysis of the combustion equations.

We finally remark that Dancer has concurrently presented a stability analysis of
solutions of the same equations using quite different methods (see [4]). It is also likely
that the singular limit eigenvalue problem (SLEP) method could be used as well;
see [6].

2. Preliminaries.
2.1. Positive solutions. The equations

(2.1) +f(U, V)=0, +g(u, v)=0

admit branches of solutions with V(x)= O. The u-component then satisfies the scalar
equation

(2.2) 0+h(U) =0, U(-L) U(L) O.

There is a critical interval size Lh such that (2.2) has only the zero solution U--0 for
L < Lh, and three solutions 0< Ul(x)< U2(x) for L> Lh (see [13]). This is obtained
through an analysis of the "time map" associated with (2.2),

fou(p) du
T(p)

x/2H(u)- H(U(p))

where T(p) becomes infinite as p-0,/3 and has a unique local minimum at some
p* (0,/); thus Lh--2T(p.) (see Fig. 2.1). The zero solution and U:(x) are stable,
while Ul(X) is unstable relative to the evolution equation associated with (2.2).

FIG. 2.1

In [2], Conway, Gardner, and Smoller show that if L> Lh is fixed, then as a
solution of (1.1) the solution (U2(x), 0) is stable if e is sufficiently large, but that as
e is decreased, a positive steady solution bifurcates from (U2(x), 0), and stability is
transferred to the bifurcating branch. However, the stability of the bifurcating branch
far from the bifurcation point was left unresolved.

In a pair of papers, Dancer [3], [4] characterized several interesting properties of
the branch of positive solutions of (2.1). In particular, he showed that the bifurcating
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)

h(u)/u-FIG. 2.2

branch (U(x, e), V(x, e)) continues globally as e -0. Furthermore, he calculated the
limit in (1.5), by showing that (U(x), V(x)) satisfies a certain reduced equation, which
is obtained from (2.1) by setting e =0. The second equation g =0 is then algebraic,
and is satisfied whenever v=0 or v= m(u-y). Let p(u) denote the Lipschitz con-
tinuous function

0 if u =< %p(u)
m(u-3,) if u ->3/.

The correct reduced equation for (2.1) when e =0 is then

(2.3) U+r(U, m, 3’)=0, U(-L) U(L) =0,

where

r( U; m, 3’) (f(U), p(U)).

Since a < 3’ < b it is easily seen that r( U; m, 3’) is qualitatively a cubic with roots at
zero, a, and t e (a, b), (see Fig. 2.2). In [2], the reduced problem (2.3) was studied by
the time map procedure mentioned above in connection with (2.2). It was shown there
that there is a unique Lr> Lh such that (2.3) has exactly three solutions 0<
UI(X m, 3’)< U2(x; m, 3’) for L> Lr and only the zero solution for L < Lr. As in the
case of (2.2), the zero solution and U2 are (linearly) stable relative to the evolution
equation associated with (2.3). Furthermore, branch (U(x, e), V(x, e)), which bifur-
cates from U2(x), 0) as e decreases, tends to the limit

Ue(x; m, y), p( Ue(x; m, 3’))
as e-0 (see Dancer [3]). This seems to suggest that (U(x, e), V(x, e)) is also an
attractor. This, as it turns out, is not always the case. The reason for this is that the
correct linearized eigenvalue problem for (2.1) when e =0 is (1.4), which is quite
different from the equation obtained by linearizing (2.3) at U2(x; m, 3’).

We summarize these results in the following theorem.
THEOREM 2.1. There exists apositive branch ofsolutions U(x, e), V(x, e)) of (1.3)

for all e(eo, O)for some eo>0. The limit (U(x), V(x)) as e-0 of this branch exists.
Furthermore, V(x)=p( U2(x; m, 3")) is Lipschitz continuous, and U2(x; m, 3’)- U(x) is
the stable positive solution of (2.3). The limit is uniform in x.

3. The linearized equations.
3.1. Notation. The linearization of (1.3) about U(x, e), V(x, e)) yields a second-

order linear operator with domain X [H2(-L, L)f)H(-L, L)]2 given by

(31) \R] \e2+gP+gR]"
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The partials fu,fv, gu, and gv are all evaluated at (U(x, e), V(x, e)). The stability of
the solution is determined by the spectrum of ; hence, we consider the eigenvalue
problem

In order to implement the theory in [5] it is convenient to rewrite (3.2) as a first-order
system:

P=Q,
(3.3)

Q=(A--f,)P--fR, e,=-guP+(A-g,)R.
It will be desirable to express (3.3) in vector form. To this end let Y (P, Q, R, S)’ C4

and let A(x, A, e) be the coefficient matrix obtained by multiplying the last two equations
in (3.3) by e-; thus (3.3) can be expressed as

(3.3)s =A(x,h,e)Y.
In this scaling, the transition layer in the derivative of u when u y is of width G(e).
Since this system focuses on the slow behavior for u # y we shall call (3.3)s the slow
system.

It will also be convenient to rescale x by setting sc e-ix and introducing fast
variables,

p, q, r, s (at )= P, Q, R, S (at e:).
The equations for p, q, r, s are then easily seen to be

p’ eq, r’ s,
(3.3)f

q’ e[(h f)p fr], s’ -gp + (h g)r.

The partials are now evaluated at (u(, e), v(, e))=(U(e, e), V(e, e)). Setting
y (p, q, r, s) C4 and a(sc, A, e) to be the coefficient matrix in (3.3)z we obtain the
equivalent vector form

(3.3)y y’= a(:, A, e)y.

The range of : is now the interval Iscl =< L where L Le-.
The boundary conditions for Y are that P, R 0 at x +L. Let U be the two-

dimensional subspace of ca:
(3.4) U {(0, Q, 0, S)t: Q, s c}.
A geometric condition for A to be an eigenvalue is that Y(x) U at x +L. In the
fast scaling, the condition is that y(:) U at = +/-L.

3.2. A crude estimate for tr(). Let K C be the simple curve depicted in Fig.
3.1. More precisely K is the union of four segments 1a U l/ U l. U l_, where l. is the
vertical segment connecting +i6 along the imaginary axis, 1a is the indicated portion
of the circle I 1-- A, and l+, l_ are segments connecting i6, -i6 to IAI a which make
an angle b with the imaginary axis. Let L+/- be the ray with initial point at +i6 which
coincides with l+/-, and define

(3.5) S {A C: A lies to the right of L+ U l. U L_}.

LEMMA 3.1. There exists ck > 0 sufficiently small and A > 0 sufficiently large such
that if A S4, with [A[ >-_ A, then A is not an eigenvalue of. The constants 49 and A are
independent of e for 0 < e <- eo for some eo > O.
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FIG. 3.1

We shall give only a brief sketch of the proof of this lemma since it follows with
minor modifications from arguments in [1] and [8]. Let IA[ -1/2 and q= arg A, and
change scales in (3.3)s by setting x 6z. In suitably rescaled variables the equations
are now

(3.6)
/=0,
O=(e’-6f,)P-fR, e$=--g,P+(e’-g)R.

If q is such that A $6, the coefficient matrix of (3.6) is uniformly hyperbolic as both
e and tend to zero. There is a pair of uniformly slow eigenvalues as 8 0 that tend
to +e i*/2, and a pair of uniformly fast eigenvalues that tend to +/-e-le i*/2 as -* 0. The
crucial observation is that the fast eigenvalues remain uniformly separated from the
slow eigenvalues as both e and 8 tend to zero. This is used to control the behavior of
the two-dimensional subspace (x, A, e) satisfying the boundary conditions at x- -L.
This is accomplished by considering the flow induced by (3.6) on the space of complex
lines in C4 or CP (see also 5, below). The eigenvector es associated with the fast
unstable eigenvalue e-le iq’/2 of (3.6) represents a point in CP which is essentially an
attracting rest point that is uniform in its attraction property as both e and 6 tend to
zero. It turns out that contains a one-dimensional subspace of solutions which is
rapidly attracted to the span of ey under the flow induced by (3.6) on CP3. This line
of solutions therefore remains bounded away from the subspace U of boundary
conditions for all Ix[ =< L.

The slow subspace of (3.6) is spanned by the two eigenvectors es andf associated
with the eigenvalues tending, respectively, to e i’/2 and --e iq’/2 as 6- 0. It follows from
an invariant manifold theorem due to Fenichel (see [5]) applied to the projectivized
flow on CP induced by (3.6) that there is a slow, two-dimensional subspace (x, A, e)
of solutions of the perturbed problem (3.6) that remains close to the slow subspace,
Span {e,f} for all x. More precisely, there is an invariant manifold yg for the
projectivization of 3.6) that remains near the image of Span {e,fs} in CP3. The

-1 4subspace s 7r where 7r:C -CP s the projection map. Since (-L,A)= U
and U contains a slow direction, it follows that the intersection fq is one-
dimensional. It follows that contains a slow line of solutions that is rapidly attracted
to the slow unstable direction spanned by e, since the latter is an attractor for the
projectivized flow on CP relative to the flow in the invariant manifold .

It follows that contains two distinct solutions; the fast solution is attracted to
the fast unstable direction ey and the slow solution is attracted to the slow unstable
direction e. In particular, will lie near the space spanned by ef and e at x L. It
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is then immediate that @(L, A, e) is transverse to the space U of boundary conditions
for all small e and 6. Additional details can be found in [1], [6], [7].

Remark. Lemma 3.1 shows that any potentially unstable eigenvalue A of , i.e.,
any A for which Re A >- 0, necessarily lies interior to the compact loop K, where K is
independent of e.

3.3. Construction of (K, e). We can now describe the construction of the bundle
(K, e). It will be convenient to use the slow system in (3.3). Let

Ul (0, 0, 0, 1)t, u2(y) (0, 1, 0, y)t,

so that U Span {Ul, u2(7)} is the subspace ofC4 representing the boundary conditions.
The parameter y will need to be chosen carefully later. We will denote u2(O) simply
by u2. Let V U1, so that V Span {Vl, rE}, where

Vl (0,0,1, 0)’, v2= (1, 0, 0, 0) ’.

The vector bundle (K, e) will be specified by a triple (E, B, r), where E is the
total space, B is the base space, and or" E B is the projection map. The base space
B is homeomorphic to a real 2-sphere. It is defined as the union B B B, Br, where

Bl {-L} x K (left cap),

B, [-L, L] x K (sides),

Br {+L} x K (right cap).

The total space E will be a certain subset of the trivial bundle B x [C4/V x C4/U]
B x C4. The fibers over the caps are defined to be

El Bl x [C4/V x {0}], E,. B,. x [{G} x C4/U].
Here, will be used to denote the zero element of either C4/U or C4/V; which space
is intended will be clear from the context.

It remains to define E over B.. To this end, let @i(x, A, e), 1, 2, be the solutions
of (3.3) satisfying

(3.7) @I(-L, , E)= Ul, O2(-L,/, E)-- u2().

Given b (x, A) B let x(b) x. We define sections Xi" B, B, x C4/V x C4/U by

x,(b, e)= (L-x(b)@,(b, e)+ V, @,(b, e)+ U.
\ 2L /

The fibers of E over B. are defined to be

E, { b, Span {,1 b, e ), X2( b, e })" b 6 B,}.
DEFINITION. The bundle (K, e) is defined to be (E, B, r), where

E=EIUE. UEr,

f(4/V x {} if b Bl,
-1

"n" (b)=lSpan{Xl(b,e),x2(b,e)} if bB,,
l{} X C4/U if b B

In order to check that this is indeed a bundle we need to check the local triviality
condition where the caps fit onto the sides, i.e., over OBl f"l B. and OBr f"l B.. This is
clear for the former set by virtue of the definition of @i, and hence, X at x =-L. In
particular, @1 and @2 span U at x =-L and U complements V. At x +L, @1 and
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: may indeed fail to complement U; this occurs precisely when A is an eigenvalue.
Thus we see that if A is not an eigenvalue of for all A K then (K, e) forms a
bundle over B (see [7] for further details). Although this is generally the case for most
curves K, depends on the parameter e. Since we shall need to let e -* 0 to compute
cl (K, e)), such a generic result would not be particularly useful. Thus we shall need
to locate curves K as in Fig. 3.1 which are disjoint from the spectrum of 5f for all
sufficiently small e. It follows from Lemma 3.1 that if b, A are suitably chosen then
the portion of K along which I 1-A always satisfies this condition. It is the portion
of K near the imaginary axis where all the action occurs. We shall check this condition
in 4 by using the reduced problem (1.4) defined at e 0 to obtain sufficient control
over the solutions l(X, A, e) and 2(x, A, e) used in the definition of (K, e) to
approximate them at x L. These solutions will also play an important role in obtaining
the Whitney sum decomposition

(K, e)= ,(K, e) 2(K, e),

which will be used later to compute c((K, e)).

3.4. Critical eigenvalues. A critical eigenvalue of is a branch of eigenvalues
that tend to zero as e-0. Such eigenvalues typically occur in the linearization
about solutions with transition layers (see Fujii and Nishiura [6]). Here the singular
limit (U(x), V(x)) is continuous, and it happens that there are no critical eigenvalues.
More precisely, we have the following lemma, which generalizes a result of Dancer
[3, Lemma 2].

LEMMA 3.2. There exists Co> 0 and 6 > 0 such that {," Re >= 0 and I1 <= 6} is in

the resolvent set of for all e (0, Co].
Proof Suppose to the contrary that there exists a sequence e, 0 for which there

exist A,-0 with Re A,>_-0 and an associated sequence of eigenfunctions (P,, R,) of
associated with the eigenvalues ,,. We shall drop the subscript n and normalize

the eigenfunction so that PII+ IIRII 1. The proof consists of showing that
(i) (P, R) converges to a limit (P, R) in an appropriate sense, where P satisfies the
variational equation obtained by linearizing (2.3) about U(x), and (ii) P does not
vanish identically. Together, these imply that U(x) is a linearly degenerate solution
of (2.3). However, from [2], it is known that U(x) is a linearly nondegenerate solution
of [2.3], yielding the desired contradiction.

To prove (i) we note that from the first equation in (3.2), {P} is uniformly bounded
in H:f3 H and therefore some subsequence converges weakly in H: and therefore
strongly in H to an H2 limit/3. In particular, P converges to/5 uniformly on [-L, L].
Since {R} is bounded in L2 some further subsequence converges weakly in L: to a
limit/ with [[/11L2_-< 1. From the second equation in (3.2)we have for all q C(-L, L)
that

t

[e(R+tp(guP+(g,)-A))] dx=O.
-L

It follows that (g- A)R is weakly convergent in L2 to both/ and to _,/5; it follows
that R =-(,,,/)P whenever # 0. Since

g-

is only zero at two values of x in (-L, L) it follows that R =-(,/)P almost
everywhere. Now take the weak formulation of the first equation in (3.2) and pass to
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the limit as e- 0; from the above, we have that

-L

for all q (-(-L, L)). Note that the potential term is just dr/dU at U(x), where r
is the nonlinear term in (2.3). It follows that/3 HE (-] H is a smooth solution of

P"+ rv( U(x)m, T)P 0, P(-L) P(L)=0.

Next, we show that P is not identically zero. Let z* denote the complex conjugate
of z and let y-- RR*. A simple computation shows that

e24fi 2e2 I/12 -2gu Re PR* + 2 Re (A g,)y.

Suppose that y(x) achieves a positive maximum at x, (-L, L). It follows that the
left-hand side of the above is nonpositive at x, so that

Re (A gr)y <-- gu Re PR*.

We now use an estimate for gv for small e, namely, that

gv =-2 V(x, e)+ m( U(x, e)-y)<--1/2V(x, e)

for all x e [-L, L] (see Dancer [3, Lemma 1 and display (20)]). Since y _-> 0 and Re A _-> 0,
we have from the above that at x,,- VT <-gu Re PR*

Since g. mV it follows that

y(x,) <-- 2mlP(x,)l’),(x,) ’/2

so that IIRll<=2ml[nllt. If/5 vanished identically, it would follow that Ilnllt conver-
ges to zero, since P converges to P uniformly. By the above this would imply that R
converges to zero uniformly, contradicting our normalization n 2+ R 2L2 1.

AS a consequence of Lemmas 3.1 and 3.2, it follows that K can only intersect
tr() along the segments l_ and l+ in Fig. 3.1. We shall rule out this possibility later.
Assuming this for the moment so that (K, e) is well defined, we see from Lemma
3.2 that the segment l, of K can be deformed through a family of curves l,(y), 0 =< y -< 1
lying inside the semicircle {Re A =>0, IAI 6} with endpoints at A +i6 for all y [0, 1]
in such a manner that (i) l, =/,(0) and [ 1,(1) is the semicircle ]A] 6, Re A _-> 0, and
(ii) tr() does not intersect the curve Kv obtained by replacing l, with l,(y). It follows
that the bundles "g(Kv, e) are all well defined and isomorphic so that c($(Kr, e)) is
independent of y e [0, 1]. Thus if/ K is the curve depicted in Fig. 3.1, then

C1( (K, E)) C,( (K, E)).

in the following sections we shall work with (/, e) rather than the original bundle.
This, as we shall see below, is essential because the fast-slow structure of (3.3) breaks
down near A 0. This splitting is used crucially in obtaining the Whitney sum decom-
position of the bundle and in computing the stability index.

3.5. Projective space. One of our principal goals will be to characterize the behavior
of the solutions aPi(x, A, e) of (3.3)s (see (3.7)) over the interval I-L, L]. More precisely,
we need to characterize the behavior of the span of these solutions. An important tool
for analyzing the behavior of one-dimensional subbundles of is the flow induced
by (3.3)s on the space of complex lines. In general, given a linear flow on C there is
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an induced flow on the space of complex lines in C". The space of complex lines in
C" is called complex projective space and is denoted by CP"-1. CP-1 is a compact
manifold which is obtained from C by the equivalence relation Yl Y2 for Yl, Y2
C"\{0} if Yl cy2 for some c C\{0}. If r" C" - Cp-I is the projection map we also
use the notation 93 for the image 7r(y) in CP"-1 of a point y C"\{0}.

Given a linear system on C",
y’=Ay,

there is an induced (nonlinear) flow on CP"-1, which we denote by

It is easily checked that if e is an eigenvector of A then is a critical point of the
vector field A()3). Furthermore, if/x is the eigenvalue of A associated with e, then the
eigenvalues of d() are /xi-/x, where {/xi} are the remaining eigenvalues of A. In
particular, if/xl is the eigenvalue of the largest real part and Ael =/Xl, el, then 1 is
an attracting rest point of (33). We shall frequently use this observation.

3.6. The spectrum of the coefficient matrix. In order to analyze the projectivization
of (3.3)y we shall need to characterize the spectrum of its coefficient matrix, a(, A, e).
We shall use the notation fu(:), etc., to denote the partial derivatives of f and g at
the singular limit tT(), 3()= U(x), V(x).

LEMMA 3.3. For all A ff U ff;o and all sufficiently small e the matrices a(, A, I)
have eigenvalues tx(, A, e), 1 <=i<=4 with associated eigenvectors e(, A, e). For all

I1 <= L, 1 and tx4 are (1) as e - 0 and satisfy

Re/z4(:, A, e)<0< Re/Xl(:, h, e).

In particular,/1 and 4 tend to nonzero limits/xl., ix4. as e-0, where

The associated eigenvectors tend to limits e.(sc, A) as e->0, where

(3.9) el,( A) (0, 0, 1,/xl.(sc, a))’, e4,(: A) (0, 0, 1, ]g’4,(, /))t.
The slow eigenvalues /d,2 and/x3 are of order e as e --> 0. They may coalesce for some
values of so; however, for sc near +L (so that a(sc), t3(sc) is near (0, 0)), they satisfy

,2(:, a, e) =,/g(:, a)e + e(e:), *3(:, a, e)= v’(:, a)e + e(e:)(3.10)

where

(3.11) g(sc, a)= A -fu(sc) -f(sc)"(:)
a-()

The associated eigenvectors tend to limits e2, e3. as e--> 0, where

( oe,(,a= ,(,a),a_(y
(3.

g()
0e3,( A)= 1, -4g(, A),

A-R()’
The proof of a similar lemma for the same system (where e occurs in the first

rather than the second equation) can be found in [8], and will therefore be omitted.
We remark that

(y)--
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hence for AKU K, where / is the curve depicted in Fig. 3.1 larg (,-())]_-<
(r/2)+ th. It follows that Re (A- Cv(s)) 1/2 is uniformly positive for all s and all such
A. This would not be true had we worked with the original K, since when =y and
A is real and nonpositive, Re (A- v(s))_<--0. Thus the fast-slow splitting breaks down
here. The reason that this problem is controllable is that the singular limit is continuous
at this point, so that the linearization of the reduced equation provides a good
approximation for small A. Problems where the singular limit has transition layers are
much more delicate (e.g., see [8]).

3.7. The fast subbundle. We can now characterize the one-dimensional subbundle
of (K, e) associated with the solution l(x, A, e) of (3.3)s which satisfies

q),(-L, X, e) (0, 0, 0, 1)’.

It will be convenient to change to the fast scaling by setting

i(, A, ) (, A, ).

In this scaling the coefficient matrix a(s, A, e) in (3.3)i has coefficients which depend
on s through the presence of the partials fu,f, gu, gv evaluated at u(s, e), v(s, e). We
claim that a.= (e); to this end we show that u’, v’= (e). The equations for (u, v)
in this scaling are

(3.13) u’- ew, v’- z, w’=-ef(u, v), z’=-g(u, ).

Since w(s) W(x)= U’(x) remains uniformly bounded, ]u’(s)] is uniformly of order
e for all s. Also, let y v-p(u); the equation for y is then

y’= z-p’(u(, e))ew(, e).

It follows that z remains of order e. If this were not the case, say [z(:o)] > 6 > 0 for
some 3>0 independent of e, the condition Iz(:)]> 6/2 would then hold on some
uniform interval 1:- :o[_-< d about :o, since ]z’] _<- K for some K > 0 and all :. It would
then follow that ]y(o+ d)]_-> 6d/2-(e). This contradicts the fact that y(, e)-0 as
e 0 uniformly in e.

We summarize this in a lemma.
LEMMA 3.4. There exists M > 0 independent of e such that [at(se, A, e)] _-< Me for all

-< a U/ o, and e (0, eo].
We now use this to control the solution bl(s, h, e) of (3.3)f and its projectivization

b(s, h, e), satisfying

(3.14) 33’= a(33; , A, e),

together with the condition that b ul at :=-L. In particular, we shall use the
parametrized collection of frozen coefficient systems:

(3.15), )3’= a()3; r/, A, e).

The basic idea is that the family (3.15)n admits a smooth curve of attracting rest points
(r/, A, e). This follows from the remarks concerning projectivized flows in 3.5
together with the limiting forms (3.8) and (3.9) of /Zl(,A e) and el(r/,A, e). In
particular, these estimates imply that if B(r/, A, e) is the matrix dt(g’l(r/, A, e), r/, e)
and/z is any eigenvalue of B(r/, A, e), then there exists tr > 0 independent of r/ and e

such that Re <-tr.
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We can now use the "elephant trunk" lemma of [8]. The idea is to take N(r/, A, e)
to be an attracting neighborhood of 1(7, A, e) for (3.15), and to form a tube I/(A, e)
in the augmented space x Cp3,

and )3 6 N(r/, A, e)}.

Using the uniform bound Re trB(r/, A, e)_-<-tr on the spectrum of B, we see that the
neighborhoods N(7, A, e) can be chosen to contain a ball about ’1 (r/, A, e) of uniform
radius 6 > 0. (For definiteness, fix some metric p on C P3; t can then be set relative
to p and

We now have all the ingredients for the elephant trunk lemma in [8]. In particular,
we have the following.

LEMMA 3.5. There exists Co>0 such that for all e(0, eo], the set fU(A, e) is

positively invariant for the augmented flow
(3.16) :’= 1, 33’= t(y; s, A, e),

relative to the interval [1 <-- L, i.e., if ( 330) 6 +(A, e), then the solution (, fi()) with
this data remains in f+(A, e) for all L ].

This lemma is an immediate consequence of our Lemma 3.4 and Lemma 4.1 in
[8]. We can now state the main result of this section.

THEOREM 3.6. There exists Co> 0 and d > 0 independent of e such that for all
e (0, Co] and A (.J if;o, the solution (, (1(, /, e)) of (3.16) lies interior to f+(A, e)
for all >= -L + d.

Proof Note that from (3.8) and (3.9) we have that

bl(-L, A, e)= u,=1/2(A-g(-L))-’/2[e,(-L, A, e)- e4(-L., A, e)]+ (e).

Thus at : =-L, D1 is close to the fast subspace, i.e., the subspace spanned by 51 and~
e4. Furthermore, it has a nontrivial projection in the el direction for all A K K
and for all e (0; eo]. Let y(:, A, e) denote the solution of the frozen system,

y’=a(-L,A,e)y, y(-L,)=Ul,

so that 33(:, A, e) is the associated solution of (3.15)_/. Since Re/Zl(-L.,A,
Re/zi(-L, A, e) for i= 2, 3, 4, it follows that there exists d >0 depending only on

Re/Zl-Re 2= (1) such that fi(-L +d, A, e) N(-L,A, e). By Lemma 3.4,

lel(:, A, e)-e,(-L, A, e)l_-< Ke

for some K > 0 and all sc [-L, -L + d]. Hence 33(-L + d, A, e) lies interior to
N(-L + d, A, e), too. Finally, it follows from Lemma 3.4 and Gronwall’s inequality that

for some K > 0, e e (0, e0], and all : e [-L, -L + d]. (Recall that 19 is a fixed metric
on Cp3.) Hence (-L, + d, A, e) N(-L + d, A, e) for sufficiently small Co, which,
together with Lemma 3.5, proves the theorem.

We remark that Theorem 3.6 implies that (L, A, e) is near (L, A, e). Since
e(L, A, e) is transverse to the bounda.ry conditions U, this implies that bl(:, A, e) is
not an eigenfunction of 5 for all A e K t_J K. Hence an eigenvalue A of only can
arise through an eigenfunction 2(, A, e) associated with slow behavior.

We also remark that a similar procedure can be used to determine the behavior
of any solution (:, A, e) of (3.14) that is near 4(Le, A, e) when := L. The same
considerations together with Lemmas 3.4 and 3.5 enable us to define a negatively
invariant set f-(A, e) in [-L, L Cp3 containing the curve (r/, 4(7, A, e)) in its
interior. The proof simply requires a time reversal.
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COROLLARY 3.7. For all e(0, eo] and A K U K, there exists a negatively
invariant neighborhood fI-(A, e) of (q, ’4(r/, A, e)) for the system (3.16) relative to the
interval rll <= L.

3.8. The slow subbundle. Next, we shall define and characterize the behavior of
the slow solution O2(x,A, e) of (3.3)s. This will be accomplished by proving the
existence of a certain two-dimensional space of solutions of (3.3)s which remains
uniformly near the slow eigenspace of the coefficient matrix in (3.3) for a precise
definition, see 3.9. Recall that O2 is the solution of (3.3), satisfying

O2(-L, A, e) (0, 1, 0, ,y)t U2

where y is a free parameter. Although an arbitrary choice of y would suffice in defining
the bundle ’(/, e) we shall require a judicious choice of y in order that O_ be
uniformly approximated by the slow reduced equation (1.4) for all x I-L, L]. The
reason for this is that the slow subspace is hyperbolic, so that most solutions near the
slow subspace will be rapidly pushed into a fast direction in either forward or backward
time.

To define 02, let O(x, A, e) be the solution with 3,=0, and let O(x, A, e) be the
span of Ol(X, h, e) and O(x, h, e), so that O(-L, h, e)= U. Next, let i(x, h, e) be
the solution of (3.3) satisfying

W,(L,A,e)=E,(L,A,e),

for 2, 3, 4, where E(x, A, e) e(:, A, e) are as in Lemma 3.3. Let *(x, A, e) be the
span of the W’s, 2, 3, 4. Then W is three-dimensional and is two-dimensional.

Furthermo^re, by Theorem 3.6, tm(L A, e) l(Le, A, e) N(L, A, e) and therefore
lies near El(L, A, e) in CP3. It follows that O1(L A, e) is transverse to W(L, A,
span {E(L, A, e); 2, 3, 4}, and thus, that the subspaces q(L, A, e) and
intersect transversely. Therefore, there is a unique choice of / such that
for all (x, A, e) for some O2 # 0. From the definition of O2 we see that

O2(-L, A, e) u2(3) U,
(3.17)

O2(+L, A, e) Span {E,(L, A, e)" i= 2, 3, 4}.

Note that 3’ /(e) must tend to zero as e -> 0, since if this were not the case, u2(3,)
would have a component in the E1 direction, which is uniformly bounded away from
zero as e-> 0. By the next result, Lemma 3.8, this would contract the behavior of
at x=L.

3.9. Hyperbolicity of the slow subbundle. The behavior of O2 for all x I-L, L]
is determined by the conditions in (3.17). This can be seen by introducing the slow
subspace X(x, A, e) associated with A(x, A, e). By Lemma 3.3, the fast eigenvectors
E and E4 are simple, and hence well defined for all x [-L, L]. However, it is possible
that the slow eigenvalues/z2,/z3 in (3.10) coalesce or become pure imaginary for certain
x I-L, L] so that the associated eigenvectors E2 and E3 may depend discontinuously
on (x, A, e). However, there is a well-defined two-dimensional (generalized) eigenspace
X, (x, A, e of A(x, A, e that does depend smoothly on the parameters (x, A, e ). Further-
more, there exists a basis, E2(x, A, e), E3(x, A, e) for Xs(x, A, e) that depends smoothly
on (x, A, e). For parameter values such as x =-L, L where/x2 and/x3 are simple,
and E3 can be taken to be eigenvectors. When/x2 and/z3 coincide it may be necessary
to choose E2 and E3 to be vectors other than eigenvectors in order to make them
continuous functions of (x, A, e).
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LEMMA 3.8. Let > 0 be given. There exists eo > 0 such that for all x [-L, L],,
(3.18) p(&2(x, A, e), (x, A, e)) <

Proof Select y e 7r-(x, A, e) with  lyll 1 in the Euclidean norm. Since the fast
eigenvectors E(x, A, e) and E4(x A, e) are well defined for all (x, A, e), we can express
y in the form

y Cl E1 + c4E4 + Es
for appropriate E
and the metric p such that if

then (3.18) holds for all (x, A, e). Suppose then that this condition fails to hold at some
(Xo, A, e), say, for example, ]Cl(Xo, A, e)ld. Let o e-Xo and consider the frozen
system

(3.19) y’= a(o, A, e)y, Y(o) Y.

The eigenvalue of largest real pa ofthe frozen system is 1(o, A, e); since Re (-1),
i 1, is uniformly negative for all (, A, e), there exists 1>0 depending only on
Re (- g), 2, 3, 4 such that

(o + 1, (o + 1)) +(A, e),

where y() is the solution of (3.19) and +(A, e) is the positively invariant neighborhood
of (, ) constructed in Theorem 3.6. Let (, A, e) (e, A, e) be suitably renormal-
ized so that y at o. It follows from standard continuous dependence theorems,
together with Lemma 3.4, that (, A, e) is uniformly approximated by () on the
compact interval [o, o + 1], so that

(o + l, 2(o + l, A, e)) a+(A, e)

for suciently small e. This contradicts the second statement in (3.17), provided that
o+lL=e-lL.

In the event that 1c4] d, we obtain < 0 independent of e such that

+ 1, + l,

where -(A, e) is the negatively invariant neighborhood of (, 4) of Corollary 3.7,
provided that o + -L, the argument is the same as for 1Cl1 d after a time reversal.
This contradicts the first statement in (3.17) at x =-L.

It only remains to treat the case where o + is exterior to the interval [ L.
Near each boundary we need only consider one case. For o near -L (respectively,
+L) the case that requires fuher discussion is the one where C41 d (respectively,
c[ d). For o near -L we still use the solution y() of the frozen system 3.19) to
approximate (, A, e) in backward time. We can no longer conclude that 2 enters
-(A, e) in backward time, since the interval [o + l, o] may no longer be entirely
contained in [l L. However, the E4-component is the most rapidly growing com-
ponent of the soution y() in backward time; it therefore follows from the initial
condition that the E4-component of y()/l]yl remains uniformly bounded away from
zero on {-L o}.
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This implies that 33(-L) is uniformly bounded away from :s(-L, e, h), and, in
particular, a2(Y), the initial value for 2 at sC=-L in (3.17). By Lemma 3.4, )3(so)
uniformly approximates on this interval; hence the first statement in (3.17) would
be violated. The second case, where ICll >-d for SCo near L, is treated similarly.

3.10.^Alproximation by the slow reduced equation. We can now show that the slow
solution (P is approximated by a certain solution of the slow reduced equation (1.4).
To this end, rewrite (1.4) as a system

(3.20)

where F, (P,, Q,)’ and

, B,(x, A)F,,

(0B,(x, A)=
(x, A)

here, (x, A) is as in (3.11). Since (3.20) is linear it induces a flow on CP which we
denote by

(3.21) P =/,(, x, A).

It will be convenient to cover CP (=S2) with two coordinate patches: w, P,/Q,
and z, Q,/P,. The equations for w, and z, are easily seen to be

2(3.22) , 1-g(x, A)w,,
2(3.23) :, g(x, A)- z,.

The solution of (3.21) of interest is the solution F,(x, A) representing the boundary
condition at x =-L, i.e., the solution satisfying the initial condition

zr-l’,(-L, A) Span (0, 1).

In terms of the coordinate w, this condition is

w,(-L, A) 0.

and let

LEMMA 3.9. Let

dp2(x,A,e)=(P, Q,R,S) at (x,A,e)

I’(x,A, e)=(P, Q)t at (x,A, e).

Given r > O, there exists eo > 0 such that

<

for all h/ U/o, x (-L, L], and e (0, eo]; here p is a fixed metric on CP1.
Proof We will show that ’(x, A, e) satisfies a system of the form

P’= x,

where /(; x, A, e) is uniformly approximated by /,(’; x, A) for all " in cP,
x e[-L, L], and A e/ U Ko. The lemma then follows from standard continuous
dependence theorems for flows.

The first task is to choose E and E3 so that they depend smoothly on (x, A, e).
The only difficulty occurs when /x2 =/x3. Since the eigenvectors of matrices with
nonsimple eigenvalues can depend discontinuously on parameters, some care must be
taken here. This possibility indeed arises for certain values of x. However, it is easily



STABILITY OF STEADY STATES 115

checked that when this occurs, the generalized null space of A(x, A, e) is spanned by
vectors of the form

(3.24)

where

E= (1, 0, J(x, A), 0)’ + (e), E3 (0, 1, 0, 0)’ + (e),

J(x,x)=

The computation is straightforward though tedious and will be omitted. Note that if

E2 and E are chosen as in (3.24) they span the same space as e2., e3, in (3.12),
modulo (e) terms. This is the required basis for Es(x, h, e).

Next, select

Y= (P, Q, R, S) 7r-l()2(x, ,, E)

to be a vector of unit length. For some coefficients ai we have that

4

Y aiEi(x, A, e).
i=1

Let d (0, 1) be given. Since Es(x, h, e) is spanned by E2, E3 at (x, h, e), it follows
that there exists eo > 0, ?(d) such that (3.18) implies that Jail-<-d and [34[--< d for
h K U K and e (0, eo]. It then follows from (3.24) that

P= a2+(d), Q= a3+(d),
(3.25)

g=a2J(x,A)+(d), S= (d).

Since Y is a unit vector there exists k > 0 depending only on J] and on d such that
max{IPl, IQI}>-_k. Suppose first that IQ]>-k. Then (P/Q, R/Q, S/Q) provides a
coordinate patch on CP at . If w P Q, the equation for w is then

= 1-(,-f,)wZ+fRP/Q2.

From (3.25) and ]Q[_-> k we have that

RP/ Q2= J(x, A)w2+ (d).

Noting that

g(x, )=-f.-

=A-f.-fJ(x,A)

and that fu,fv are uniformly approximated by fu, f for small e, it follows from the
above that

w’= 1 g(x, h)wZ+(d).

Hence if ]Q[_-> k, satisfies an equation which in the local coordinate w uniformly
approximates the reduced equation for w,, (3.22). In the event that [P[->_ k, a similar
computation leads to the equation

= g(x, ,X)- z-+ e(d),

which uniformly approximates (3.24). Hence (x, A, e) is uniformly approximated by
’.(x, A) for e e (0, So] and h e / U/o.
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3.11. The reduced slow subbundle. Suppose for the moment that the eigenvalue
problem in (1.4) is well understood. In particular, suppose that we can locate curves
K as in Fig. 3.1 that are disjoint from the spectrum of (1.4). Later, in 4, we shall
indicate how this can be done in certain situations. The results of the preceding section
suggest defining a reduced line bundle :,(K) whose fibers are defined via the reduced
system (3.20). To this end let

U {(0, Q)" Q C}, V= {(P, 0)" P C}

so that Span (0, 1)’ represents the boundary conditions for (3.20) and C= .
Define a section :," B, --> B, x [C/x C2//]] by

*(b) ( b’ L-x(b) F*(b)+
2L

Q, F,(b) +

for all b B,. Over the caps, put

(b) (b, (0, 1)’+ o, O) (be BE),

’r(b)=(b,),.2,(L,A)+ o) (beBR),

where/2,(L, A)= (1, x/(L, ,)). Finally, define the fibers of 2,(K) by

Span sOl(b), b B1,
(3.26) 7r-l(b)-- Span ,(b), b B,,

Span set(b), b B.

Since we are .assu.ming at this point that K is disjoint from the eigenvalues of (1.4) it
follows that 2,(K) is a line bundle over B.

Next we define another line bundle 2,(/) which turns out to be the limit of
;(K,e) as e-0. To this end, embed the solution F,(x,A) of (3.20) satisfying
F,(-L, A)= (0, 1)’ into C4 by setting for b B,

(3.27) O,(b) (P,(b), Q,(b), J(b)P,(b), 0)’.

Next define a map so, B,- C4/V C4/U by setting

X*(b) (L-x(b) V, cI),(b) + U).
Next, define (b), :(b) over the caps by setting

l(b)=(u2+ V,O), (b)=(O, E2,(b)+ U).

The bundle 2,(K) is then the line bundle over B, 7r’E- B, where

Span (b)), bB,
(3.28) zr-(b) (b, Span X:,(b)), b B,,

(b, Span r(b), b B,..

It is easily seen that this indeed forms a bundle. The local triviality condition is
immediate over BI B,. This condition is also satisfied over Br B,. This is seen by
noting that C4/U identifies vectors with the same first and third components. From
(3.12) and (3.27) we see that

O2,(b) P,(b)E2,(b)+(O, Q,(b)-P,(b)x/,(b), O, 0)’;

thus ,(b) is a scalar multiple of E2,(b) mod U.



STABILITY OF STEADY STATES 117

Finally we note that the bundle 2,(R) is equivalent to 2:(/)o This can be seen
by noting that the sections so’/, 7,, r and :1, X2,, :r can be used to construct an explicit
bundle isomorphism by mapping sC,(b) onto :,(b) and extending linearly. Since
isomorphic bundles have the same Chern numbers we have proved the following result.

LEMMA 3.10. The line bundles?2,(.I) and 2,(f()~ defined, respectively, by (3.26)
and (3.28) are isomorphic, and Cl 2,(K)) Cl 2, K ).

3.12. The Whitney sum decomposition. The Whitney sum decomposition

(3.29) (K, e)= gl(K, e)0) 2(K, e)

can now be specified more precisely. Let

i(A, e)= i(L, A, e)+ U, i= 1,2,

.(A,e)=Ei(L,A,e)+U, i=1,2.

Then { 1, 4S} and {1, ’} both form bases for C4/U. It follows that there exists a
nonsingular matrix f" G/(2; C) such that

(3.30) bj(A, e)=fj,I(A)(A, e)+f.2(A)’E(A, e)

for j 1, 2. Theorem 3.6 and Lemma 3.8 provide certain information about fo(A) as
e 0, namely, there exists k > 0 such that for all A K and e 6 (0, eo],

(3.31)
If,l(A)l, Ifg,2(a)l--> k,

limf,2(A) limf,l(Z) O, uniformly.
e0 e-0

Nowf is only defined for A near K. In order to obtain the Whitney sum decomposition
in (3.29) we need to find a trivialization BR {} (4/U over the entire right cap that
coincides with (3.30) over/ {L}. Let

+f,2(a) g’2(a, s),

+f"a(X) g’,(a, e)./2(a, e)= o(a, e)
f,2(a)

Then {1, /2} is a basis for C4/U for a e/. By (3.31) the second term in each expression
tends to zero uniformly as e 0 for a e/. Let K c/ be a simple closed curve close
enough to/ so thatf(A) is well defined in the region between K and/ for e e (0, eo].
Let (a) be a smooth function satisfying

1 for aeK,
q(a)=

0 for a inside K.
Finally, let

1(/, E)= 1(/, E)
fl(A)

E’2(A, 8)(A),

fl(a)
2(a, e)= g’2(a, e) f2()ti g’l(a,

then {g(a, e), gi(a, e)} is a basis for C4/U for all a e/ U/o and e e (0, eo], which
equals { /l(a, e), /2(a, e)} when a e K.
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Now let 1‘1(b, e) and 1’2(b, e) be the sections of (K, e) restricted to the sides B,,
which were used to define (K, e). The summands gi(K, e) are triples (Ei, B, zr), where

ISpan {(u + V, 0)} if b e B,
(3.32) r-(b) Span 1"(b, e) if b B.,

Span (b, e) if b B,

where u= u(y) is as in 3.8. It follows from the above that g(K, e) forms a line
bundle 1, 2; by construction, we see that (3.29) holds.

We remark that the above construction of the summands is somewhat different
than in the case of traveling waves in which the spatial domain is infinite. The difference
between the two is that, in the latter case, the behavior of each 4i is precisely determined
at +oe by the equations. In the case of boundary value problems, each is only
approximately determined at x +L.

We also remark that the function f(1), which is called the gluing map of g(/, I),
plays a central role in the general theory in 1 and [7] and, in particular, in characteriz-
ing the first Chern number of g(K, A). Briefly, this is seen by noting that f is a map
from/ S into GI(2; C), and so represents a class in rl(Gl(2; C)) ;. It turns out
that Cl(g(/)) can be characterized explicitly as the winding number of the curve
detf(K). Furthermore, the relation between c((K, e)) and the number of eigen-
values of inside K is obtained by proving that the Evans function D(A) is a nonzero,
constant multiple of detf. See [7] for additional details.

3.13. Continuation to the reduced problem. We can now prove the main theorem
of this section. We now return to our origin.al notation wherein K denotes the curve
in Fig. 3.1 passing through the origin and K is the curve in the figure with the origin
in its exterior. All results of the previous section were proved for the bundle g’(/, e).

THEOREM 3.11. Suppose that A K in Fig. 3.1 is not an eigenvalue of (1.4) for all
h K. There exists eo such that for all e (0, eo] the number of eigenvalues inside K of
the perturbed problems (3.2) counting multiplicity is equal to the number of eigenvalues
inside K of the reduced problem (1.4) counting multiplicity.

Proof. The main result in [7] asserts that the multiplicity of eigenvalues of (3.2)
(respectively, (1.4)) inside K is equal to c(g(K, e)) (respectively, c(g2,(K))). The
topological character of c together with our previous approximation theorems will
enable us to equate these two quantities.

To begin with, Lemma 3.2 in 3.4 implies that (3.2) has no spectrum inside the
semicircle, Re h => 0, [hi 6, with 6 independent of e. The same statement is also valid
for the spectum of (1.4); this is because U(x) is a linearly nondegenerate solution of
(2.3) and (1.4) is precisely the variational equation for (2.3) at U(x) when A =0. Even
though the potential in (1.4) is singular for A < 0, the result follows from a similar but
simpler limiting argument for sequences of eigenvalues A 0 with Re A _-> 0 as that used
in the proof of Lemma 3.2; it will therefore be omitted. We can therefore deform the
curve K in Fig. 3.1 to K via the homotopy Kv to conclude that

c,((K, ) c,((/, )), c,(,(K)) c,(,(/)).
The additive property of cl together with (3.29) implies that

Cl(( E:)) Cl(I(/ E:))-- C1(2(/
The proof will be complete if it can be shown that

(i) c($,(K, e))=0 for e e (0, sol,

(ii) c(q2(K, e)) c1($,(K)) for e (0, o].
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To prove (i) we show that Cl(K e) is a trivial bundle for all such e. To this end
we show that there is a global, nonvanishing section of 1(K, e). The existence of such
a section is an immediate conseq.uen,ce of Theorem 3.6, which asserts that I(L, A, e)
lies near E1(L, A, e) for all h K t3 Ko. It follows that the entries f.l,1 (h.) and f1.2(A)
of the gluing map are well defined and continuous for all h K t_J K. Thus the
characterization (3.30) of bl(h, e) is valid for all such A, and we are justified in replacing
gl(b, e) with bl(b, e) in (3.32) when i= 1. Since bl continuously extends Xl(b) to all
of/ t_J/, this provides the desired nonvanishing section.

To prove (ii) we need to show that 2(/, e) approaches 2,(/) as e- 0. Since

cl is a homotopy invariant, these two bundles would then have to have the same first
Chern number; (ii) then follows from Lemma 3.10.

In order to specify what it means for two line bundles to be close together, it is
useful to introduce a certain map g," B CPn-1 associated with a given line bundle
(E, B, r) whose fibers are complex lines in C". Given such a bundle, #(b) is the point
in the compact metric space CP"-1 associated with the complex line 7r-l(b). Thus the
notion of a complex line bundle over B is equivalent to the specification of a continuous
map ’B--->CPn-1. More precisely, let FI(C") be the canonical bundle over CP"-1

i.e., the fiber in Fl(C ") over a point eCPn-1 is the complex line in C associated
with & We then have the commutative diagram

B CP’-"

the pullback *FI(C ") is then isomorphic to E. Thus two complex line bundles
(Ei, B, 7ri) over the same base space are close togeher if their associated maps " B-->
CP"-1 are close in the topology of CPn-.

Let 2(b, e) and e2,(b) be the maps into Cp3 associated with 2(/, e) and ,(/),
respectively. We need to show that 2(b, e) - ,(b) uniformly in Cp3 for b B as
e->0. Over the caps BI and Br this is immediate, since u:z(y)--> u2(O)=u2 and
E2(L, A, e) --> E2,(L, A) as e --> 0. The convergence of 2(b, e) to 2,(b) over the sides

B, will be established if it can be shown that @2(x,A, e) converges uniformly to

2,(x, A), where , is as in (3.27). This follows immediately from the form (3.27)
for 2,, Lemma 3.9, and the expression (3.25) for a unit vector Y 7r-2(x, )t, e). In
particular, Lemma 3.9 states that if

Y= (P, Q, R, S) 7r-lz(X, h, e),, (P,, O,, R,, S,) e -’+,(x, ),

then

(P, Q)"(P,, Q,)^ (in CP1).

Thus we may select the representatives Y and Y, so that (P, Q) approaches (P,, Q,)
in c2. Finally, (3.25) implies that

P= J(x, ,)n + (d), P,= J(x, A)R,,

where the first equation holds for arbitrary d and sufficiently small e depending on d.
Thus ’- ", in CP uniformly for x (-L, L].
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4. Analysis of the reduced equation. We have now shown that the spectrum tr of
the perturbed operator is approximated by the spectrum of the reduced problem
(1.4), which we shall denote by trR. The spectral analysis of (1.4) is complicated by
the fact that it has variable coefficients and that the eigenvalue parameter A occurs in
a nonstandard, nonlinear manner. In this section we shall present a detailed analysis
of the spectrum of (1.4) in the special case that the parameter/z x/ is sufficiently
large. In this case the line v m(u ),) is almost vertical. In terms of the singular limit
((x), (x)) there is a transition layer when Ixl xv is such that /.(x)= 3/; on the
interval Ix[ <= xv the solution remains close to the critical point (, ) in Fig. 2.2. Hence
the solution breaks up into two distinct parts, the outer layers, on the intervals

xv _-< Ix[ _-< L, and the inner layer, on the Ix] =< xv. It turns out that it is the inner layer
that is critical in determining the spectrum of (1.4).

4.1. Asymptotics of U(x; u)for large. Let U(x, tz) denote the maximal stationary
solution U2(x, m, 3’) of the singular limit equation (2.3), where/z2 m and 3, is regarded
as fixed. Thus U(x, tz) solves

(4.1) U+r(U, Ix)=O, U(+/-L) 0,

where

(4.2) r( U,/x) h( U)-/x2 U( U- ?,)+.

The function r(U;/x) is qualitatively a cubic which approaches h(U) as/x 0. As
/x oo the largest root of h(U;/x), which we denote by tT(/x), tends to 3/, The phase
plane in (4.1) with U-> , and large/x is indicated in Fig. 4.1. The stable and unstable
manifolds of the rest point at (a(/x), 0) have slope/x. Upon comparison with Fig. 2.1,
which depicts the phase plane for (4.1) with U-< 3/, we obtain a condition for the
existence of U(x, Ix) for all large/x, namely, that

(4.3) r< 7<b,

where o- is the equal area point of r,

oUr(U;

Ix) dU=0;

hence if (4.3) holds, o- is independent of . A simple calculation shows that

2
(a + b)- (a + b)-2ab(4.4) tr:

FIG. 4.1
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Let U(x, p, Ix) be the solution of (4.1) that satisfies

(4.5) U(0, p, Ix)= 0, (0, p, Ix)= p,

so that U(x, Ix) U(x- L, p, Ix) for some p =p(L). An important tool in our analysis
of the asymptotics of U(x, Ix) as Ix o is the time map for solutions of (4.1):

dU
T(p, IX) x/2p2_2R(U, Ix) Ioc dU

where U(p, Ix) is the value of U(x, p, Ix) when /Q 0, and

U

R( U, Ix) r(s, Ix) ds.

Thus T(p, Ix) is the time it takes U(x, p, Ix) to hit t)=0. The properties of the time
map for this equation were discussed in [2, Appendix]. In particular, the graph of
T(p, Ix) is as indicated in Fig. 4.2: it has a unique local minimum Lo at some positive
P Po, and it has vertical asymptotes at p 0, p =/. For L> Lo the solution U(x, Ix)
is U(x + L, p, Ix), where U(x, p, Ix) is the solution for which T(p, Ix) L and p (Po, P).
This uniquely determines U(x, Ix) for each L> Lo.

Po

FIG. 4.2

We are interested in the asymptotics of T as Ix- . To this end it is useful to

express T as

T(p,

where a (p) is defined by the equation

U(a(p), p, Ix)= y,

and/3 T- a. Note that since r( U, Ix) is actually independent of Ix when U =< y, a(p)
is also independent of Ix. Thus a(p) is the time map for the portio of the solution
where 0 =< U =< y, and/3 is the time map for the remainder 3’ =< U =< U(p, Ix).

Since/3 depends implicitly on p it is convenient to introduce another parameter,

7r= Tr(p)= O(a(p), p, Ix).

Let p =p2 and B 7r2; it can then be seen from Fig. 4.3(a) that B B(p) is monotone
increasing in p, so that 7r(p)- B(p) 1/2 is monotone increasing in p. Let

/(Ix) =/2R((Ix), Ix), (Ix)= 7r(p(Ix)), p =v/2R(% Ix);
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p-R(u,p)

(a) (b)

FIG. 4.3

then/(/z) >p for all /z and/(/z)-py as /z-,oo since t(/z) tends to y for large
More precisely,

a(a)--

where k() tends to some constant ko > 0 as/z -* (at the rate -2). We also see from
the figure that 0 =< r -<_ (/z).

Now let p= P(r) be the inverse function for r= r(p). We can then express
T(p, tz) as (rr,/_), where

f(r, I)= T(p, t-)= T(P(r), I)= a(r)+ b(r, i)

for 0_-< fr _-< (/z), where the partial time maps are

a(l) a(P(r)), b(r, tz)= fl(P(r), t-).

We now regard L> Lo and ), as fixed and set

n() t)(-x(), ),
where -xv(/z) < 0 is the negative value of x, where U(x,/z) y, so that xv(/z) a(p)
for some p. In order to characterize the behavior of U(x, I) for large/ we shall need
to estimate how close 1-I(/z) is to -(/z). This will provide estimates for ]U(x, ) fi()l
for lx xv().

THEOREM 4.1. Let p be the value ofp where the maximum value of U(x, p, ) on
Ox Tis y (see Fig. 4.3b), and let ao=a(pv). Fix Lao+6for 6>0, and let q> 1
be given. ere exists K K q, 6) > 0 such that

(4.6)
U(x, ) () K-l(q+3)/,

IV(x, ) ()1 K--’/,
where V(x, ) 2( U(x, ) y)+ uniformly on the interval

(4.7) [ Ixlx*()’
(x.() xv()- K log /.

Remark. Note that (4.6) implies that V(x, ) has a transition layer at Ix[ xv()
of width (log /). This also implies that a(H()) tends to ao < L as, so that
for large , the amount of time U(x, ) spends in the inner segment is approximately
2(L-ao).
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Proof Let w u- a(/z); for u _>- 3’ the equation for w is

2k2w + 31tx2w2 + 4/z-2w
=/xZg(w,/x),

where

k k(lz) ko > O

1= l(/x)/o> 0

Let w(x) be the solution of the above equation with initial conditions

a
w(0)= v-a()= , F2(0) ,Tr "/’([.1,)-

where a a(/x) tends to ao > 0 as/x - c. We estimate the first time T T(Trl) it takes
for w(x; ) to turn around, i.e., if(T(Trl),/x) 0. Let wl w(T(r),/x); then it follows
that w < 0 and that

(4.8) G(w, )+A,2-t.,

where

Evaluating (4.8) at x =0 gives

G(w, tx)= g(s, tz) ds.

, (a)A=2 "([d’) [d’-q )2 ill’2G 7’ /J

But 7?2/2 =/xZG(w(0),/z) so that # b/z- + U(z-2) where b ax/, and

A -/x-q# + U(/z-zq).

We also have that at x T(Tra),

O ia,2 G( Wl Ia,) + A,(4.9)

so that

w dw
T(’,) - J_a2/t*2 G( w, ]d,) G( w1, jb)] 1/2"

In the following, K will denote a generic positive constant depending on q. Now from
(4.9) we have that

G(w, )= kw+ lw + 74W4

=A#-2

-2)- "()-+ e(-.
K-(q+3)

(4.10) Iw,l g 

so that
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The time map T(Trl) can be expressed as

1 I w, dw
T(I-[1) =- _a/2 [k(W2- W2)+ l(w3- W31)--/Z-2(W4- W41)] 1/2

1 fl-atz-EIw’ ds

txx/ k(s- 1) + lWl(S 1) + -2w(s4-1)]1/2’
where s w Wl. Since q > 1 we see from (4.10) that the upper limit s, is positive and
that

s, -a-Z/Wl ((q-1)/3) +

as . Thus T() can be expressed as

r(= +

The first integral is clearly bounded independently of and therefore contributes a
term of order - to T(q). Also, for 2 s s, we have that

Iwsl, w=g-=,
so that for such s,

[k(s2-1)+ lWl(S3-1)+ w-2(s4-1)-1/2 Ks-1.

We therefore have that

T()N-- K+Klog w
which together with (4.10) yields

(4.11) T(Trl)-< K

for some K K(q).
We have now proved that

log/x

e() _-> n() => , e() -",

where II(/z)= O(-xr(/z),/x). For 71"E[71"1, ’(/./)] let w(x, 7r) be the solution of the
differential equation satisfying

and let

a
w(0, )= ,., (0, )= ,

T(Tr)=- ../.2[G(w./J)--G(w:(’IT),/.i,] -1/2

where w,(Tr) is the solution of

0=G(w,)+ -G -,

T() is therefore the time map for the potion of the solution w(x, ) with values
staing at -a/2 and ending at wa. Since > l it follows that w,()> Wl; thus the
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integrand in T(r) is smooth on I-a/it2, wl]. We can therefore compute T’(Tr) by
differentiating under the integral sign to obtain

r’() ,/ g(w,())w’,()[(w, ,)-(w,()), ]-/ aw.
tf’

Now g(w, it)=kw+6(wz) so that g(w,(Tr))>0. Also, it is easily seen from Fig. 4.3
that w(cr)->0, since w,(r)= u,-% where u, is as in the figure. It follows that
T’(r) 0, so that T(r)<= T(rl) for all 7r rl, "]; by (4.11) we now have that

log It(4.12) T(rI(tz))_-< K

Now let

W(x, g) w(x, ri())
=U(x-x(g),g)-a(,)

be the solution of the boundary value problem with L> ao+ 6 translated so that
W=-a/it2 at x=0, and let P(it)= P(II(it)) so that

L= c(P(it)) +/3(P(it), It).
Since xv(it)= a(P(it)) it follows that W(x,l) is monotone increasing on the interval
O<=x<=fl(P(it),it). Since II(it)[q, (it)] it follows that a(P(it)) tends to ao as

It . For L> ao + 6 it therefore follows that/3 (P(it), It) is bounded away from zero
for large It. Finally, let - T(II(it)); it follows from (4.10)and (4.12) that =<x, in
(4.7), and that

(4.13) 0 >- W(X, It) W -K-(q+3)/2.

Furthermore, W(x, It) is monotone increasing on the interval [, fl(P(it), It)I; thus
(4.13) holds for all x in this interval. Since U(x, It)= U(-x, It), this is equivalent to
(4.6), (4.7).

4.2. The linearized singular limit equation. We can now analyze the reduced
linearized equation

(4.14) P= G(x, A, It)P,
where

and the partials are evaluated at the singular limit U(x, It), V(x, It) of Theorem 2.1.
It will be convenient to-express the variables in (4.14) in real and imaginary parts;
thus let

A a + ifl,

(4.15)

G(x, A, It)= GR(X, A, It)+ iGi(x, A, It),

GR=a-h’(U)+ V+z UV(a + V)
o + V):+

Its UV ]GI 1 (.ce.. SV-._2
where (U, V)= (U(x, It), V(x, It)). The values of G when the singular limit is near
the rest point (t(it), (it)) are of particular importance; thus let

(4.16) G(A, It)= GR(A, It)+ iGI(A, It)
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denote the expressions in (4.15) wherein (U, V) are replaced by (a(ix), 3(ix)). For
simplicity we shall denote the latter by (tT, ).

The existence of pure imaginary eigenvalues h i/3 is of particular importance. Let

(4.17) gR(fl, IX)= GR(i, IX), g,(, IX)= Gi(i, IX);

the graphs of gR and g1 as functions of/3 have a crucial role in determining when
such eigenvalues exist. Since they must occur in conjugate pairs it suffices to consider
/3_->0. Let

(4.18) ill(IX) [IX2t76- 2]1/2;
then i(/3, IX)=0 for /3_->0 if and only if /3=0 or fli(IX). Similarly, let FR
2/(h,(5) 3), and define

(4.19) fiR(IX) [FRIX2- 32] 1/2,

SO that ,R(fl, IX)=0 for /3 => 0 only at /3 =/3R(IX). If fir is infinite or imaginary, then
gR has no real roots. Typical graphs of R and i are depicted in Fig. 4.4.

() /r(
/3

FIG. 4.4

Observe that fiR(IX) and ill(IX) are both (IX) for large IX and that R(fl, IX) has
a horizontal asymptote at the value -h’(

It turns out that the potential for an instability depends on the relative position
of/3i(IX) and fiR(IX). We therefore distinguish two cases:

Case S (stable case), fl(IX)< fiR(IX), or fiR(IX) is imaginary.
Case U (unstable case).

It can be seen from Fig. 4.4 that R(fl, IX) X0 precisely when /3 <>/3R(IX). Thus if
gR(flI(IX), IX) is positive (negative) then we are in Case S (Case U). The transition
from Case S to Case U therefore occurs when R(fl,(IX), IX)=0; this condition leads
to the equation -h’(tT)+2t3=0. Recall that as IX-, (t, if) tends to (3, vv), where
vv--(b- 3’)(3’- a). Since we are interested in the asymptotics as IX- , the asymptotic
critical condition is that -h’(y)/2vv=0. This equation is easily solved for y (see
(1.2)); the solution is y 3’0 x/-a-. We have now proved the following lemma.

LEMMA 4.2. Suppose that 3’o ,d-. Then if y > 3/0 (respectively, 3/< To), Case S
(respectively, Case U) holds for all sufficiently large IX.

Remark. The condition 3/< r (see (4.3)) imposed previously on 3/was needed to
ensure the existence of the singular solution U(x, IX) of (4.1). If 3/0 < cr then Case S
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necessarily occurs for all relevant y. On the other hand, if To > tr then Case U occurs
whenever tr < y < To. If we regard a as fixed and b >> a as a large parameter, then an
inspection of the asymptotic behavior of the expression (4.4) for tr as b shows
that tr remains uniformly bounded for large b. Since To 6(b a/2) we see that tr < To
whenever a << b.

Let P(x, A) denote the solution of (4.14) satisfying

(4.20) P(-L, A)=0, P(-L, A)= 1.

Then A is the spectrum erR of the slow reduced equation if and only if P(L, A)= 0.
The following lemma gives another characterization of trR.

LEMMA 4.3. Let (0, L] and let P(x, A) be the solution of (4.14), (4.20). Then
l O"R if and only if
(4.21)_ P(, A)= -P(-, A), P(& A)= P(-x, A)
or

(4.21)+ P(ff, A)= P(-, A), P(& A)= -P(-, A).

Proof Suppose first that A O"R SO that P(x, A) is an eigenfunction. We will first
show that P(x, A) +P(-x, A). Since U(x, A) U(-x, A), G(x, A, ) inherits a similar
symmetry, so that P(+x, A) are both eigenfunctions. It follows from the fact that
dim P I that all eigenvalues are simple, whence P(-x, A) cP(x, A) for some constant
c. Since P(x, A) 0 it follows that

[P(0, h)l + IP(0, x)l 0.

If P(0, A)#0 then c=l, while if P(0, A) =0, P(0, )#0, so that in this case c=-l.
Thus precisely one of the relations (4.21)+ hold for arbitrary g (0, L].

Now suppose that (4.21)_ holds. Let/(x, )=-P(-x, ), and define

P(x, A) for -L<=x<=,
P.(x,A)= /5(x,A for <=x<=L

by (4.21)_ it follows that P.(x, A) is a C2 solution of (4.14) which satisfies the boundary
conditions both at x =-L and x L, so that A trR. The argument is similar in the
event that (4.21)+ holds.

In order to study the eigenvalue problem for (4.14) it will be convenient to
projectivize (4.14) to get an equation on CP S2. To this end set z P/P and w P/P
to obtain local coordinates covering CPa. The equations for z and w are then

G(x, a, z) z(4.22)
and

(4.23)
respectively. Let

b 1- G(x, h, tx)w2,

z tr + ir, w s + it

then (4.22) and (4.23) are equivalent to

(4.24)
&= G(x, A, IX)- tr2+ r2,
/= G(x, a, Ix)- 2r,

and

(4.25)
g 1 GR(X, A, IX)(S2- 2) + 2GI(x, h, Ix)st,

i= -Gi(x, h, Ix)(s2- t2)--2GR(X, A, Ix)st.
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Condition (4.20) is equivalent to w=0 or z =c at x =-L. In the following, z(x, A) will
denote the solution of (4.22) satisfying z at x =-L. The dependence of z on the
parameters Ix and L will be suppressed for now. In the bifurcation analysis presented
later, the dependence of z on L will be denoted explicitly by writing z z(x, A, L).
The two conditions (4.21)+/- can be incorporated into a single condition,

(4.26a) z(, A) -z(-, h)
or equivalently,

(4.26b) w(, x) -w(-, x).

By allowing X to approach zero in (4.26a) and (4.26b) we obtain the equivalent condition

(4.27) Aecrn if and only if z(0, h)=0 or z(0,.h)=c.

There are two distinct ideas that will be used in determining when A is an
eigenvalue. In order to show that A cannot be an eigenvalue, we shall locate certain
positively invariant sets for (4.24) that prevent the solution z(x, A, Ix) from satisfying
(4.26). In the unstable case, we shall require a topological argument in the A, z plane
to demonstrate the existence of unstable eigenvalues. We first consider the stable case.

THEOREM 4.4. Suppose that cr < 3/0 < 2, and that Ix is sufficiently large. Then
the solution z(x, A) of (4.22) satisfying z(-L, A) does not satisfy (4.27) for any )t C
with Re A >- 0.

Proof. Since eigenvalues occur in conjugate pairs it suffices to consider only
fl Im A _>- 0. We first need to determine the behavior of z(x, A) for x near -L. Since
w(-L, A)-0 it follows from (4.25) that

s(x) (x + I) + (x+ ,)-.
Now for x =< -xv(Ix), Gx(x, A, Ix) =/3 => 0. Suppose first that/3 > 0; the equation in
(4.25) together with the above yields

t(x, A) -fl(x + L) + (x+ L)5,
so that t(x) < 0 for x near -L and x + L> 0, Since (tr+ iz) (s- it) (s2+ t2) -1 it follows
that tr(x, A) > 0 and z(x, h) > 0 for such x. Also, tr(x, h) 6(x + L)-1 while z(x, h)
6(x+L), so that z=tr+iz is asymptotic to the positive g-axis from above as x
approaches -L from above. If /3 =0 then z0 so that z(x, A)= tr(x, A, Ix)=
(x + L)-1 + (1) as x - -L/.

Let ao >- 0 satisfy

a0=> max {h’(u)- v: 0 -< u =< b, 0 -< v -< (a + b)2/4};
we will consider the following four regions in the nonnegative plane separately:

I {A: a > ao,/3 _>-0},

II {A: 0_--< a _--< ao, fl-->- KIX},
III {h: 0 -< a <= ao,/30 --</3 <= KIX},
IV={h: O<-a <=ao, O<- <=o},

where/30 and K are positive and independent of Ix.
Suppose first that A I and let E/ {z: tr > 0}. We will show that z(x, A) remains

finite and inside E/ for all x (-L, L]. This has been demonstrated above for -L< x
and x near -L. Let g (-L, L] be the smallest value of x for which the assertion fails
to be true. If z(g, A)= then w(g, A)= 0. It then follows from (4.25) that

s(x, ) (x- z) + e(x- z),
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so that s(x,A)<0 for x<; since s and tr have the same sign, this contradicts the
minimality of g. Suppose then that tr(g,A)=0. It follows from (4.24) that =
GR(g, A, Ix)+ r2; our condition that a > ao implies that GR, and hence t is positive
at x , again contradicting the minimality of . Hence z(L, A) is finite and nonzero,
so that A is not an eigenvalue.

Now suppose that A II. From (4.15) it is evident that if/3 => K/z and if K is large
then Gi(x, A,/x) > 0 for all x and all sufficiently large/. Let T/ {z: r > 0}; we claim
that z(x, A) remains finite and inside T/ for all x (-L, L]. By the expansion obtained
earlier this clearly holds for x > -L and x near -L. Let 2 be the smallest x >-L such
that either condition fails. If z(2, A)= o then w(, A)= 0. Since G> 0 for all x and
hell it follows from (4.25) that S(X,A)=(X--,)+C(X--)2 and that t(x,h)=
G(g, A,/z)(x g)3 + 6(x g)4 so that 7. -t(s + t2) -1 < 0 for x < g, contradicting the

minimality of g. Finally, if 7.(g, h)= 0 then GI is positive at , again contradicting
the minimality of g. Thus h II is not an eigenvalue.

Before proceeding to III, we shall need to give a finer estimate for K, namely, that

(4.28) Klx < flR tz

for large/x. Recall that K is chosen so that GI (x, A, tz) > 0 for all x and/3 > K/x. Since
(a, ) are the maxima of (U, V) for [x[<_-L, we see that

Hence the condition on G will hold if

v:/,
so that K can be any constant larger than ()1/2. Since we are in Case S we see from
(4.18), (4.19) that

i(]. 4i.2a_ 2 < t()
for large/z, so that <F. Thus if K is chosen so that

x/-< K < F]
G will be positive for all x and fl->_ K/z, and also (4.28) will be satisfied.

Now suppose that A III, so that 0=< a _-< ao and/3o_-< fl _-< K/x. We first consider
the behavior of z(x,A) on the interval -L <- x <= -xv(lz). Since V(x, tx)=-O on this
interval we see from (4.15) that GR a h’( U)+ V is uniformly bounded and in fact,
independent of/3, while GI---13. Thus (4.24) can be expressed as

6" GR 0.2 q- 7"2, "i" fl 2o’7..

If we regard /3 as a large parameter and GR as 6(1) then the phase plane for this
system is as depicted in Fig. 4.5 for each x [-L,-x(/x)]. In particular, the vector
field (c, ?) is nearly vertical in a uniform neighborhood of the origin for large /3.
Consider the region depicted in the figure. The diagonal edge of E near the origin
has slope -1; it is then easily seen that (t, ,k) points strictly into E along 0E so that
is.positively invariant for (4.2-4) relative to the interval I-L,-xv(/x)] provided that
/3->/30 and that/30 is sufficiently large. Note that this condition is independent of
Since the right edge of can be extended arbitrarily close to o-= +o, it follows from
our characterization of z(x, A) for x near -L that z(x, A) lies in for some x
(-L,
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FIG. 4.5

At x -xy(ix) we see that 0-(x, A) >= 0-0 > 0 where 0-0 > 0 is the lower bound for 0-

in E, which depends only on/30. From Fig. 4.4, we see that GR(X, A, IX) is uniformly
bounded from below for large Ix, say

min GR(X, A, Ix) >= -A2

Ixl<-_L

for some A > 0 independent of A and Ix. Thus

GR 0.2 q_ 7.2 _(A + 0.2).

Thus for x => xr we obtain the estimate

(4.29) 0-(x, A) >- A tan [-A(x + xv)+ tan-l(0-o/A)].

From the above, we see that there exists x1E (--X/, 0) and 0-1 > 0, both independent of

Ix, such that o-(x, A) => 0-1 for all h E III and all sufficiently large Ix. We now use (4.6)
and (4.7) of Theorem 4.1 to approximate G(x1,A, Ix) by G(A, Ix). For h III, the
coefficients of U and V in the expressions (4.15) for GR and G have factors of order
at most Ix2. It therefore follows from Theorem 4.1 that

IG(x, A, tz) O(x, )l K--7)/

for all x satisfying (4.7). Fix q > 7 so that X satisfies (4.7) for all large Ix. We therefore
have that G(x, A, Ix)is uniformly approximated by ((A, Ix) on the interval Ixl_-<lx l,
Since (A, Ix) is uniformly positive for A III, it follows that G(x, A, Ix) > 0 for Ixl--<
for all A III and all large Ix. We can now use the same argument that was used for
A I to show that z(x, A) remains finite and inside the right half plane E+ on the
interval ]xl <= IXll. This violates the condition (4.26) with g Ix1], so that by Lemma 4.3,
A E III is not an eigenvalue.

Finally, suppose that A IV. We can no longer construct the positively invariant
region E as in case III. The first step will be to show that 0.(x, A) remains bounded
from below uniformly for x [-L,-x] for some Xl (0, xy), A IV, and for all large
Ix. The second step will be to show that z(x, A) is rapidly attracted to a certain rest
point of the interior layer equation

= ,(, )-z
on the interval Ixl-< Xl. This rest point has positive real part and is of order x/-; thus
z(x, A) violates the eigenvalue condition (4.26) with x for large Ix.
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We first consider the case 0 </3 -< flo. We will show that (r, r) remains finite and
r(x, A) remains positive for all x(-L,-x,(p,)] and h IV. Since Gi=-fl on this
interval it follows that r remains positive for as long as (or, z) remains finite. However,
by expanding (s, t) about a point where (s, t) (0, 0) it can be seen that r(x, h) must
change sign from negative to positive as x crosses . Hence (r, r) remains finite with
r > 0 on this interval. Furthermore, a similar argument implies that (s, t) remains finite
on this interval, since otherwise (or, r) would vanish at some . Since ,k=/3 at : it
would again follow that r changes from negative to positive as x crosses g, providing
a contradiction. It follows that (s, t) is uniformly bounded and continuous and uni-
formly bounded away from (0, 0) on compact subintervals of (-L,-x(g)]. Since
tr(x, h) +o as x--L+ it follows that

K Min tr(x, A)
AIV

--L<=x<=--x3,(tx

is finite. Furthermore, since U, V are actually independent of/x for x<_--x(/x) and
V(x,/x)--0 there, it can be seen from (4.15) that G(x, h,/x)and hence tr(x, h)is
independent of /z on this interval, so that tr is independent of /x. Finally, since
/ =/3- 2err it follows that

0<_r<=?

on I-L,-xv()] where ? depends only on o-.
We next note that the lower bound cr for o’(x, A) can be extended to the interval

(-L, -xl] for some xl < xv(/z). In particular, the term in GR which becomes significant
for x > -x(/z) is always positive (see (4.15)). Hence precisely the same estimate (4.29)
as was used in case III to bound cr from below for x->-xv(/x) applies here as well.

Now fix x < xv(/x) as above; for sufficiently large/x it follows that

K log/x
X < X.y(l.l,)

where K is as in Theorem 4.1. Thus for Ixl<=x, G(x, , tx) is within /-(q-7)/2 of
G(X,/z). Since 0-< a <- ao and 0 _-</3 <=/30 where ao,/3o are independent of ix, it follows
that

On(a,/x) > L/x
for some L> 0 and all large/z (see (4.15)). By the previous estimate it then follows that

GR(X, A,/) > Lt.
for Ix[ _-< X Thus tr(x, A) satisfies the differential inequality

for Ixl =< x. Furthermore, by our estimate of r from below on (-L, -x] it follows that

If [o-] <=L we can integrate the ditterential inequality to obtain

F- e-2tzL(x+x)
or(x, ) >- la,L F + e-2tL(x+x)

where
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Thus for X>--Xl, O’(XA) rapidly becomes positive and of order /zL. Since
er(-xl, A) >= er it follows that z(x, A) cannot satisfy the eigenvalue condition (4.26) with
g xl. Thus A IV is not an eigenvalue, completing the proof.

We next consider Case U, wherein the graphs ofg and g have the aspect depicted
in Fig. 4.6a.

(a)

Z

b)

FIG. 4.6

The next theorem shows that for large L, err contains pairs of complex conjugate
eigenvalues with positive real part. The proof is somewhat lengthy; we therefore give
a brief sketch of the main ideas first. The positive h-quadrant is again divided into
four distinct regions, as depicted in Fig. 4.6b. Here, region IV is defined by taking

(4.30) flo(l) fli(tx)-p > flR(/X),

where p > 0 is independent of/x, to be determined below. The first part of the proof,
Lemma 4.6, shows that err is disjoint from regions I, II, and III. The techniques here
for the most part are the same as in Theorem 4.4.

The next step, Lemma 4.7, treats an approximate eigenvalue problem for pure
imaginary eigenvalues on an interior interval _lxl <= obtained by replacing G(x, A, Ix)
by the constant potential G(A,/x). Thus we consider the problem

(4.31a) = (i[3,/x)-z2, z(-/) (1 + i)[31/2/21/2.
The approximate eigenvalue problem consists offinding a solution of (4.31) that satisfies

(4.31b) z(0)=0 or o.

Problem (4.31) will have solutions at certain distinguished 1 and/ with j 0 or oo

and n >_- 0, satisfying

(4.32)
/3" </7 </3+1, / [flo, fl,],

l-O < iv. < l’-.o+,, ]7,, oo as n .
This determines branches (l) of approximate eigenvalues satisfying (/-) i/3. It
can be shown by direct computation that Re ’(l) > 0. The transverse crossing of each
eigenvalue shows that approximate problem (4.31) has precisely 2(2n+ 1) unstable
eigenvalues for l </< lV, and 2(2n + 2) unstable eigenvalues for ]</< l-,+l.

The last step consists of using (4.31) to approximate erR. TO this end, we note that
the interior interval Ixl =< xv(/z) of the nonlinear problem is implicitly a function of L,
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which we. denote by writing xv x(/x, L). This suggests the introduction of a parameter
xv(/x, L) for the size of the interior interval. In order to obtain the uniform approxi-

mation of G by G, we need to introduce

x,(/z, L) xv(fe, L)- K log/x/re,

where K is as in Theorem 4.1. It follows from the remarks preceding Theorem 4.1 that
xr, and hence x., is a monotone function of L. We can therefore invert this relation
by writing

L= X.(/x, 1).

The proof is completed by showing that (4.31) provides a good approximation to (4.22)
for A along the portion of the imaginary axis satisfying (4.32). This provides a sequence
of exact, purely imaginary eigenvalues i/3 at intervals L X.(/x, l), where/3 and
l are approximated by/ and l. Finally, we show that the eigenvalues of the exact
problem cross the imaginary axis transversally too, with Re A’(L)>0. This provides
an exact eigenvalue count in Re A >-0. We summarize this in the following theorem.

THEOREM 4.5. Suppose that tr < 3’ < Yo, so that Case U holds. There exist critical
interval sizes L, j 0 or o, n >-_ 0 with L, <L< L,+I, and there exists lZo and N(Ixo)
such that iftz > tXo then (i) O’R f’) {Re A --> 0} is emptyfor L < Lg, and (ii) for L, < L < L
(respectively, L< L< L+). trR contains exactly (2n + 1) (respectively, (2n + 2)) pairs
of complex conjugate eigenvalues, for 0 <- n <= N- 1. IfA(L) is the branch of eigenvalues
with Re A(L) 0, then Re A’(L) > 0.

Proof. The proof will proceed in a sequence of lemmas, as outlined above.
LEMMA 4.6. There exists p >0 independent of tx such that if flo(tX) is as in (4.30),

then rR f’) {I U II U III} , where I, II, III are the regions depicted in Fig. 4.6b.
Proof. The proof that I f’l trR is the same as in Theorem 4.4. For A II, we

claim that G(x, A,/.t) > 0 for Ix[-<_ L and all large ; the proof then proceeds as in case
II of the previous theorem. From (4.15), GI will be positive if

2
tx UV <1,

(c + V)+/3
which will in turn be true if

2
tz UV

(a + V) +-From (4.18), the latter inequality is equivalent to

()-- v <(()()- uv)

(recall that fi, 3 are the maxima of U, V). In order to establish this for large/x, note
that for such/x we have that

()+ v<().
Since V-< fi(/x) and U <= fi(/x), the previous inequality is easily seen to imply that the
first inequality holds for Ixl--< L.

Finally, suppose that h III. We shall split III into three regions"

A {A O <_ o <__ Oo, O <__ fl <__ fl,}
B {A" 0 -< a _-< ao, fl,<= fl <- fl(/x)},
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where/3, is large, but independent of/x. For A A the argument is the same as in case
IV of Theorem 4.4.

We next show that A B is not an eigenvalue. For the most part, this is proved
as in case III of Theorem 4.4. In particular, the region in Fig. 4.5 is positively
invariant for x I-L, -x(/x)], and a lower bound tr(x,/x) => tro> 0 for -xv(/x) -<_ x -<_

-Xl is obtained for Xl <xv(/x) independent of/x, exactly as before. If GR(A, Ix)>O,
then G(x, A,/z) is uniformly positive for Ixl _-< Xl and large/x, and the proof is completed
as in the previous theorem. However, since GR(iflR(t.t,), t-t,) --0 it is no longer true that
GR (A,/.t,) will be uniformly positive for A B, so that GR (x, A,/x) may in fact become
negative for some Ixl-< Xl. For A B near iflR(lX) the important observation is that
Gi(iflR(lX), tx) is negative and of order/z, as can be seen from (4.19) and (4.15) so
that IGII >> IGRI for A near ifl. Thus the vector field (t,-k) is nearly vertical for (tr, ’)
near the origin. Consider the region F depicted in Fig. 4.7 to the right of the union of
line segments consisting of the two vertical rays connected by a line segment with fixed
positive slope. By the above remarks, F will be positively invariant for (t, ?) for all

Ixl-< Xl since (t, /) is nearly vertical near the origin. Since tr(-xl, A) fro 0 it follows
that z(-xl, A) F. The usual argument now shows that z(x, A) remains finite and inside
F for Ixl _-< Xl. Finally, as in part IV of Theorem 4.4, tr(-xl, A) is positive and of order
/x 1/2. It then follows from the above that for large , -z(-Xl, A) F, so that Z(Xl, A)
-z(-Xl, A). Thus A B is not an eigenvalue.

Next, suppose that A C, so that

(4.32) flR(/X) <- fl <- fl, (/X)--p.

For all A with 0_-< a _-< ao and fl <-_ flR(l), there exists M independent of/x such that
IGR(X, A,/)l--< M or all Ixl<_-L (see (4.15)). Let

(4.33) x.(/x) xv(/x)- K log/x//x,

where K K(q) is chosen as in Theorem 4.1 with q > 7. (For the moment, we shall
suppress the dependence of x. on L.) For Ixl _<- x.(/x), G(x, A,/x) is uniformly approxi-
mated by G(A,/x). Now GI(A,/z) is large and negative for A C. It is easily seen from
(4.15) that, given N > 0, there exists p > 0 independent of/x such that GI(A,/x) <-N
for A C with p as in (4.32). Now, given the uniform bound M for IGR(A, tx) for
A C, set N--N(M) so that the region F in Fig. 4.7 is positively invariant for- z--((A,/x). In particular, choosing N large relative to M ensures that (t, /) is
nearly vertical near the origin. For Ixl _-< x.(/x) it follows that F will also be positively
invariant for (4.24) for large /x. The proof that A O"R is nOW obtained in the same

FIG. 4.7
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manner as for h B, by showing that z(x,(h), IX) # -z(-x,(ix), h). The proof will then
be complete if it can be shown that z(-x,(ix), A) lies in F. This fact will be proved in
the next lemma, where a sharper estimate for z at -x, is obtained.

LEMMA 4.7. For h IVt_J C (see Fig. 4.6b), the solution z(x, A) of (4.22) satisfies

[z(x,(ix), A) Ffli/2[ =< C log IX,

where F= (1 + i)/x/, C > 0 is independent offl and Ix, and x,(ix) is chosen as in (4.33).
Proof. The proof consists of two estimates; first, we approximate z on the outer

layer -L<-_x<=-x,(ix), and next, on the interval from -xv to -x,, which is of length
K log IX/IX. For A in this range, a is (1) and/3 is if(ix), so that/3 and Ix are of the
same order of magnitude; in the following, we shall treat them as equivalent parameters.

Since z= at -L it is convenient to work with w= z-1, which satisfies (4.23)
together with the condition w 0 at -L. Let

so that " satisfies

(y) [31/2w(_L+ -1/2y),

(4.34) 1 (G/)’2, ’(0) 0.

For x I-L, xv(ix)] and A III t.J C we have that

G/ + (fl-1).

Dropping the (/3 -1) terms in (4.34) we obtain an exact solution

1 1 e-2ry
*(Y) F 1 + e-2ry

which for large y>0 is exponentially close to F-1. Let A(y)= r(y)--,(y); then A

satisfies the equation

(4.35) A= -(G/fl)(+ ,)A+ ’(fl-1), A(0) 0.

Let c(y) be the coefficient of A on the right-hand side of (4.35), so that

c(y) (-i + ?(fl-))(A + 2’,).

Since ’, is close to F-1 for large y and Im F-1 -2-1/2 it follows that given
there exists e > 0 and Yl > 0 such that for e, y _-> y, and large /3, we have that
Re c(y)<-y. Note that Yl depends only on ’,(y) and hence is independent of/3.

We first estimate A(y) on 0-<y-<_yl. To this end let D(y) be the maximum of
Izx(t)l on 0_-<t_-< y. Then from (4.35) we obtain

D(y) <- Kf1-1 et(t) dt

for some constant K >0. We claim that D(y)-< 1 on [0, Yl]. Let y, [0, Yl] be the
smallest y > 0 for which D(y,)= 1. It then follows from the above that

D(y,) <= Kfl-l(eY,-1);

since Yl and y, are bounded independently of/3, the right-hand side can be made
strictly less than 1 by choosing /3 large. Hence Y,>-Yl and D(y)<-Ig2f1-1 for /
K(ey, 1) on [0, Yl]. Thus for large/3 we will have that D(yl) < e, so that Re c(yl) <
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Set /3 so large that /(L+ y-,)fl-1 < e where L=1 exp Y’ c(r) dr at. For all

Y -> Yl for which Re c(y) < -y we have for Yl --< -<_ y that

expIc(r) dr e-3(y- t)

for such y. It then follows that

exp [’J,y c( r) dr dt

exp Re c( r) dr dt+ Kf1-1 e-y(y-t) dt

//-(L+ y-).

Thus IA(y)l<e for such y. It follows that ]A(y)]Kfl-e for all y
[0, /2(L-x())] and some (new) K >0. We therefore have that

I(Y) r-’l K-’ + (e-:’/:).
Returning to z it then follows that

z(x, x, ) ’/r+ (-’/)
for x e I-L, -xv()].

We finally estimate z on the interval [-xr,-x,], where x, is as in (4.33). On this
interval, G(x, , ) undergoes a rapid transition from to G(h, ), which is negative
and (1), and [G[ remains uniformly if(l). Let zr= z(xr, h, ) and set = z-zr, so
that (xr)=0 and

E (x) 2z ,
is of order on [-x, -x,]. From the previous estimate, Re zrwhere E(x)= G-zv

is close to fla/2/, and so #r is large and positive. We then obtain

I(x)l e-%(x-’lE t) dt + e-%- I(t)[= dL
XT XT

Let D(x) be the maximum of l(x)l on [-xr,-x]; we then have for some C > 0 that
lE(x)l C, so that

O(x) c[ e-%x+,]+[ e-%+x,]O(x).
Since r //+ff(-/) it follows for some constant C>0 and x e [-x, -x,],

1 e-%(+,} N Cr log/
/2=C log/

since and are of the same order. For large , we can therefore arrange that

0 N[1 e-%(x+x,] < C log/

for x e [-xr, -x,] and some C > 0. From the above inequality for D(x) we then obtain

(4.36) D(x) < C log + C log /]D(x)

for some C > 0 independent of and for x e [-xr,-x,]. Choose so large that
C log /< 1/4. Since D(x) =0 and (4.36) holds for x [-xr, -x,], it easily follows
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that D(x)<-_2C log/z for all such x. Since z and Ffl 1/2 differ by an error of order
fl-i/2, the proof of Lemma 4.6 is complete.

We shall also require the following estimate for z,(x, A) on the interval [-L, -x.].
LEMMA 4.8. For A III and x I-L, -x.], the solution z(x, A) of (4.22) satisfies

I, )1-< c-/.
The proof, which uses the fact that is uniformly (7(1) on this interval for all

such A, is similar to and-simpler than that of Lemma 4.7, and will therefore be omitted.
Finally we describe trR fq IV. We have now determined z(x, A) on the interval

I-L,-x.(/x)]; the crucial estimate is

z(-x.(tx), h) Ffl 1/2 + (log/x).

On the interior interval the potential G(x,h, tx) in (4.15) is uniformly
approximated by the autonomous potential, G(A,/x) in (4.16). For h III, G(A,/x) is
uniformly bounded for all/z. Thus the projectivized, nonautonomous flow on Cp1 (as
given by (4.22), (4.23) in local coordinates) is uniformly approximated by the
autonomous projectivized flow, which in local coordinates is given by

(4.37) e (h, /./) Z
2

(4.38) ff 1 ((h,/x)w2

on the interval Ixl--< By the remark following Lemma 4.3 we have that h O’R if
and only if z(0, h) =0 or oo (see (4.27)). We therefore see that h will be an approximate
eigenvalue of (4.22) whenever there exists a solution (x, h) of (4.7) satisfying

e(-x,(), ,)= z(-x,(),
(0,,X)=0 or c.

Since (4.37) is autonomous, this suggests introducing a new parameter for the size
of the interior interval. Ultimately, will have to be related to the entire interval size
L. Recall that x. depends implicitly on L, which we have suppressed until now. The
precise relation follows from the estimates in 4.1, namely,

x,(/x; L)= L- ce(pv) + ’(log

so that x.(/x, L) and L essentially differ by a constant. Our strategy will be to first treat
the autonomous eigenvalue problem consisting of (4.37) together with the condition

e(o, a)= z(-x,(,; ), a),
(4.39)

(/,A)=o or .
The values for which (4.37), (4.39) has a solution will then determine approximate
eigenvalues of the exact equations provided that L is chosen so that x.(L,/x). Exact
eigenvalues will then be obtained by a transversality argument. This strategy is made
feasible by Lemma 4.7, which estimates z(-x.(/x; L), A). In fact, even though this
point depends on L, it is of the form

z(-x.(/x; L), A)= Ffl/2+ (log
it follows that the error induced in the solution of (4.37) due to the log/x term is of
order log/x/ix/2, which can be seen by explicitly solving the equation. It follows that
the values for which (4.37), (4.39) have solutions depending on L only up to an
error of order log/x//x/2. Hence in locating approximate eigenvalues it is sufficient to
drop the (log/x) error terms in the above and treat z at -x. as essentially Ffl 1/2.
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We first consider the existence of purely imaginary eigenvalues A ifl. Let (x, ifl)
be the solution of (4.37) with initial value (0, fl, )-Ffl 1/2. Let y-x/t(ifl, p.), so
that for fl <.fli(I-e), y is a repeller and -y is an attractor for (4.37). It follows that the
solution (x, ifl) must remain exterior to a neighborhood of y for all x-> 0 and must
eventually tend to -y as x -, /oo. Since this is actually a flow on Cp1, may blow up
in finite time; by using (4.38) in place of (4.37) at such a point x 2, the usual argument
applied to (4.25) shows that

limRe ---oo, lim Re /oo,
X-- x->

and that Im z tends to zero as x- 2 through positive (respectively, negative) values
as x --> 2- (respectively, x -* 2+). Hence if blows up at 2, it is asymptotic to the negative
r-axis from above for x < 2 and to the positive a-axis from below for x > Z We
therefore see that since Im z _-< 0 is positively invariant for the flow induced by (4.37),
(4.38) on the Riemann sphere, including the point at infinity, there exists a uniquely
determined finite time (fl) > 0 for which

Im (1(), ifl)-0

(or where oo), provided that fl < (/). Note that when fl fli(), G -0 so that
all solutions of (4.37) are periodic; the particular solution never crosses Im z -0 and
winds about the center y infinitely often in the clockwise direction. Given N> 0 select
1(/) (flo(tX), fl()) such that (x, ill) winds about y exactly N times on the interval
[0,/(ill)]. (See Fig. 4.8.) (More precisely, if we connect the points at x-0 and
x- l(fll) with a line segment, the resulting closed curve has winding number -N with
respect to y.) Suppose that the interval [flo(/), fll(/)] contains no eigenvalues. It
follows from our previous estimates that Re (l(flo), ifl) 0 since such A also lie in
region C. In view of our characterization of near a point 2 where blowup occurs
and our assumption that O"R (-] ioil , it follows that

for all/3 6 [/30, ill].
Let

0<Re Z fl, tz ), fl < oo

D= {(x, ifl)" flo()<-_fl l(/.t),0X /(fl)}

o >.....,,L

N,

../i/
..."

..,,--o /

"--....

FIG. 4.8
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so that D is a 2-cell. The solution maps D into the hemisphere of CP1 corresponding
to the Im z >_-0; since never hits the point y for (x, ifl)e D we may regard as a
map from D into the punctured disk in Cp1 consisting of Im z _>- 0 minus the point y.
Furthermore, since we are assuming that [flo, ill] contains no eigenvalues, the (real)
curve (l(fl, ), ifl) remains in the ray 0< Re z < c for all fl [flo, ill]. The behavior
of the map as a map from 0D into the punctured disk is therefore as depicted in
Fig. 4.9; in particular, our assumption that there are no eigenvalues imply that the
image of the curve BC lies in the ray Im z 0, Re z > 0, and therefore has zero winding
with respect to the deleted point y. Thus (OD) represents a class -N in "/’/’I(S1),
where is an appropriate generator for rl(S1) and -N is the winding of segment (3)
about y, as defined earlier. This provides a contradiction, since extends to a continuous
map from D2- S1, so that ’OD- S is homotopic to a constant map. Hence our
assumption that [flo, ill] contained no eigenvalues must have been false.

7

D C
.-,p

,8(/)
J=== B

FIG. 4.9

The above argument actually shows that with N as above, ( (/3), i/3) must pass
through both zero and oo at least N times. We shall see next that each crossing must
be transverse in the counterclockwise direction in Fig. 4.9, so that the point C must
cross zero and o in the counterclockwise direction as/3 is decreased from/31,, to/30.
Hence, there are exactly 2N values of/3 where approximate eigenvalues occur, which
we denote by/3.,/3., n 0,. , N- 1. We shall also see below that the time (/3) is
monotonically increasing with/3, near each/, and that the approximate eigenvalues
occur at interior interval sizes

=/(tiff), lV=/(#7),
with

(4.40) l 1 1+1.
Let Z(fl)-(1(/), ifl), so that Z(/) is real and Z(/)-j for j-0, oo. We first

consider the case where fl is near fl,o. The solution (x, ifl) of (4.37) with initial data

z. Ffl 1/2 has the implicit form

(4.41)
lg Y+ 2yl+lgY+Z*

y-z y-z,

z, z(-x,(m L), #,

however, some care must be used in specifying the branch of the log for/3 near/3.
To this end let z re6 and define

Log z log r + (hi
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with -r<th-<r. From Fig. 4.8 it is evident that for x<_-l(fl), g(x, fl) remains in
Re z _-> 0 and winds n => 0 times about the rest point at y in the clockwise direction. It
follows that (y + )/(y ) winds n times in the counterclockwise direction about zero,
so that the angle of (y+g)/(y-g) must increase by 2rn on [0,/(fl)]. Also, z. is of
order fll/2, so that (y+ z.)/(y-z.)=-1 + (fl-1/2). We therefore obtain

Log )’+1 2T-- (2n + 1)ri+(fl -/2)
Y-- lx=/(/)

with n_->0. Now for near zero, we have that (y+)/(y-)=l+2y-l+(2);
recalling that y2= t we then have for such that

07- (n +1/2)i + (-/)+( ).
The defining condition for l(fl) is that Im(l, fl)=0. Let y=yR+iyt and
Z(fl) ( (fl), ifl); we then obtain

t) (n +)/,+(-/)+(-),

2(-) +(n +), +(-/)+( ).
From Lemma 4.8 we have that [z.[ 6(fl-/2); it therefore follows that

lV(flo) (n+) G
It can be seen from (4.15) that G >0 and is (1) for fl [flo, fl]; it is also easily
seen that IGR (fl-). Since y , TR < 0 and yi > 0, so that the second term in

’ is positive. A simple computation shows that

G,, 0, .21.l=. 0;(4.42) TR 2iT
thus the first term in P is negative. In order to determine the sign of P, let lle6,
so that (, 3/2), and

Let a Il/ll and b Il/ll; we then have that

(4.43) YR=--[ll/2[1--a]’/22 y ,G11/2 [1 a3 ’/2.
Combining the above we obtain

(n+),l/a[ bl+a la]- : +

The sign of l(fl) is therefore determined by the quantity in brackets. Since
and 0 a, b 1, we have that the latter quantity is positive if and only if

(l+a)z

4
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which clearly is valid for all a (0, 1). We have therefore established that l’(fl,)> O.
We also have that

2’(/ .+.P+ (n +-y+(-/,

since GR- (fl-1), so that from the above and (4.42), ,,(fio)< 0.
Next, we characterize the behavior of l-(fl) and (1, ifl) for fl near fi. To this

end introduce the local coordinate " (/z on Cp1; the equation for (is then

-= , f(0, ) /. ..
This is the same equation as for z; only the initial condition ’. is different. Here
(. (fl-1/2) is near zero. Since sr(l(fl), ifl)= 0, this suggests introducing the time
l(fl) (defined for fl near/) for which Im ’( 1, ifl)= 0. The formula for (is therefore
given implicitly by (4.40) with , z., and replaced by sr, ., and !, respectively. The
main difference is that sr and st. are both near zero. Since " must wind in the clockwise
direction about y it follows that (y + ’)/(y ’) must wind (n + 1) times about the
origin in the counterclockwise direction as x increases from zero to l(fl). It follows
that the equation for ( and ’ is

Log
y+ " 2yf 2zr(n+ 1)iq-(f1-1/2),+

Let ’a (fl) ’( (/3), fl); we then obtain

-() 4f ’rr( n q- 1)’yi + (fl-1/a) q-( fin )2.

The argument now proceeds exactly as before to show that ’(fi)>0 and that
(.)<0.

The behavior of (x, fl) can now be determined. Let -1 so that w ’/(.
Since R(n < 0 it follows that w(l(fl), ifl) lies along the span of 1/G; since R(7) <
0, its behavior for fll < fl < f12 is as depicted in Fig. 4.10. It is easily seen that this is
equivalent to the point ( (fl), ifl) moving in the clockwise direction through the point
at infinity in Fig. 4.9 as fl increases through fi. From Fig. 4.10 it is evident that
$(l(fl), ifl) also moves in the clockwise direction about the equation Im z 0. Also
from Fig. 4.10, we see that

/-(ill) < f(fll), l-(f12) > f(]2);

FIG. 4.10
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hence

(f12)- (fl,)< l--(fl2)- l-(fl),
and since "(/) > 0 it follows that /-(/3) is strictly monotone increasing for/3 near/3.

We also need to show that the critical intervals l satisfy (4.40). This is easily
established from our formulae for the lr, namely,

+ (/3-’/),

/’/7"/" //
In order to establish (4.40) it suffices to show that the function (yR/G) is monotone
increasing in ft. This will be the case if (YRGI3--TRGI)>O; from (4.42), (4.43), and a
bit of algebra, this is equivalent to

which, since < I 1, is clearly valid.
Our analysis of (approximate) imaginary eigenvalues is now complete. It remains

to describe the multiplicity of all unstable (or neutrally stable) approximate eigenvalues
for a given I. To this end we take /3 near/{ and near lr{, and reverse their roles,
i.e., we treat as the independent variable. Our goal is to show that the purely imaginary
eigenvalue An-j i/ lies along a branch of eigenvalues (l) for near l; in the
following, we shall drop the sub- and superscripts. This is accomplished by the implicit
function theorem. Moreover, we shall show that a’(IJ,) >0, where a(l)= Re A(l). This
implies that eigenvalues can only cross from the left (stable) half plane into the right
(unstable) halfplane, and that the crossing is transverse. Hence, the unstable eigenvalue
count is

0 for < 1o,
2(2n+ 1) for l-, < < l,
2(2n+2) for

(counting complex conjugates).
The computation proceeds as follows for the case j 0. The case j c is treated

similarly using the variable ff G/z, and will be omitted. Let if(x, h) be the solution
of (4.37) satisfying (0, A)-- Ifl 1/2, SO that (1",, i/,) 0. Assume the existence of a
curve (l) of eigenvalues with (/-) i/3-., we see that A(l) must satisfy (l, A(1)) =0,
so that at I,,

’(1) _l.
zx

These partials can be computed directly from (4.41), yielding
(modulo terms of order/3-1/=). From the display preceding (4.15) we see that x
1 + (/3-2), so that ]’(l) -2/l+ (/3-1/=). Since h -fu + (/3-), by taking real
parts we finally obtain 6’( 1-,) 2f,/l+ (/3-1/2), where the partial is evaluated at the
rest point (tT, 3). Since we are in Case U it turns out that (fi, 3) must lie on the left
branch of v (b- u)(u- a) in Fig. 2.2, so that f, > 0. We have therefore proved that
a’(/,) > 0.
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We now return to the exact equation (4.22). There are two issues that need to be
addressed: (i) the outer interval size L must be determined in some manner by the
inner interval size l, and (ii) the autonomous potential G must be replaced by G(x, A,
on the interval Ixl<-x,(/x; L). We first determine interval sizes / that determine
approximate, purely imaginary eigenvalues on the full interval Ix[ <_-L. To this end,
note that the inner interval size x,(/x, L)- xv(/x, L)-K log/x//x of the underlying
solution depends on L through xv(/x, L), and that by the time map estimates 4.1, we
have that

x(/z, L) L- a(p) + (/x-1).
Furthermore, it also follows from the time map estimates of 4.1 that X,L XvL
1 +(/Z-). In particular, this is proved by differentiating T=-x,+ L in (4.5) with

2’ with respect to L and noting that the constant R(y,/z) =/x-2g(/z, L) where gL
is uniformly bounded. Thus x,(/x, L) can be made to monotonically sweep through
any desired range of values by suitably varying L.

Next, we explicitly denote the L dependence of the exact solution z by writing
z z(x, A, L) for the solution of (4.22) satisfying z -oo at x -L and w w(x, fl, L)
for z-1. We shall now approximate z and w by and ff -, respectively. Recall that
the overlapping coordinate patches Izl=<2 and Iwl_-<2 cover the Riemann
sphere Cp1.

LEMMA 4.9. There exists K > 0 depending only on L such that

(i) Iz(x, A, L) (x + x,(i, L), A)[-< K log

on Ix[-<_ x,(/x, L) whenever Il <_- 2;

(ii) Iw(x, A, L)- #(x + x,(tx, L), A) < K log

on Ixl <= x,(,. L) whenever 2.

Proof Since # and w are if(/3 -/2) at x =-x, we begin with the w-estimate. Let
x e [-x,, x,] be the largest x > x, such that 2. Let A w(x, ,, L) #(x + x,, A);
by Lemma 4.7 we have that [A(-x,) if(log/z/), so that

A(-x,) if(log

Recall that G and t are uniformly bounded for A IV of Fig. 4.6, so that for
I1 _-< 2 the coefficient of A is uniformly bounded, by some constant C > 0. By Theorem
4.1 IG-(1 is uniformly of order/-q-7) for Ix[ <_-x,,so that for q 8 this term is of
order g-. An application of Gronwall’s inequality yields the estimate in (ii) where K
depends only on exp C(Xl- x,)].

At x x, 2 so that [1 -<- 1/2- Let x2 [x, x,] be the largest x such that I(x, A)[-<_
2. We apply a similar estimate to the equation satisfied by z- to obtain estimate (i)
on [x, x2]. Continuing in this manner we obtain at least one of the estimates in (i) or
(ii) for all Ixl _-< x,.

Lemma 4.9 can be stated more compactly in terms of the projection r" C2- CP.
For F C2\{0} let " r(F) span F and with a slight abuse of notation let ;? r(1, z)
(respectively, r(w, 1)), so that for w z-, = . Also, let = r((1, 0)) and
r(0, 1). If p is a fixed metric on CP, then for Ixl-< x,(, L) we have that

p((x, A, L), .(x + x,(tx, L), A)) <= K log

Let 2Lo be determined by the equation N-1 X,(/Z, Lo). We first determine 6 > 0
so that ,(fl)= ((fl), ifl) is uniformly bounded away from and o for ]fl-/]_->
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j=0, o, and n =0,-.. ,N-1. For j =0 this follows from Z’(/3) < 0 and for j c,
from ff"(/g) > 0 for if" 2-1. For [/3 i,[ _-> 6 and x _>- 0 there exists e > 0 such that

p(Z^(x, i), 6) > e.

This is because z(x, i) crosses Im z =0 exactly once, at x 1(/3), at which point
Re 0 by our condition on/3. For x near zero, (x, i/3) starts near , however, since
w’= 1 +6(w2) for w near zero, there exists a small xl >0 such that p( (xl, i/3), o) >0.
Using our condition on/3, we have that

p($^(x, ifl ), ) >- e

for x-> x. Now by Lemma 4.9, we have that

p((O, ifl, L), ^(x,(tz, L), ifl)) <= K log

For/3 fi-I + 6 we then have that (0, ifl, L) {, c} for all L. Finally, for L <= Lo it
follows that lr > 1--1 for all n > N and all j. We then have that the orbit segment

(x, ifl) on x<-x<-x,(iz, L) lies uniformly in the region {Imz->e} for some e>0.
It once again follows that (0, ifl, L)

_
{0, } for large

We next show that there is an exact imaginary eigenvalue ifl at an interval size
L near/, where/ is determined by the equation l x,(/z,/). To this end, note
that for fixed /3 6 [/3,- 6,/3, + 6 ], (1-(/3), ifl) ( + (z2), so that crosses Im z 0
transversally at x l(fl). It follows from Lemma 4.9 that for such /3 there exists a
unique L--- L(fl) such that Im z(0, ifl, L())=0. Furthermore, we have by Lemma 4.9
that ]x,(tz, L(fl))-(fl)l<-K log p//z. Now let fl+=fl,+6; since 2’(/3,)<0 we have
that there exists c > 0 such that

(4.44) Z(fl+) < -c6 < c6 < Z(fl_).

For/3 =/3_ and/3+ we have that

[z(0, ifl, L(fl))-(X,(la., L(fl), i/))l < K log

Since x,(/z, L(/3)) =/(fl)+’(log/z//x) we have from (4.44) that

Re e(x,(/z, L(fl+), ifl+))< 0< Re e(x,(/z, L(fl_), ifl_)).

Combining the last two inequalities we see that z(0, ifl, L(fl)) is positive at/3 =/3+ and
negative at /3=/3_ for large /z. Thus there exists /3,[/3_,/3/] such that
z(0, i/3,, L(/3,))= 0. The critical interval size is therefore L, L(/3,). The argument for
/3 near/3 is similar, only now we have to use the variable r G!z rather than w in
order to get the transverse crossing of Im sr 0; with this modification, the proof is the
same as for fl =/3..

In order to complete the proof we need to show that Z’(/3.)>0 and that
W’(fl)<0; this will imply that iflJ is the unique exact-imaginary eigenvalue for
I/3-/3Jl --< 6; combining this with our previous result that ifl is not an eigenvalue for
I/3 -fl[_-> 6, n _-< N- 1, and L<-_ Lo, we see that iflJ. are the only imaginary eigenvalues
that occur for L<= Lo. Finally, we need to show that if A(L) is a branch of eigenvalues
with )t (L) i/3, then Re A’(L) > 0.

The crucial ingredient needed in proving the above assertions will be a description
of the dependence of z(x, , L) on the parameters A and L. To this end, let

A(x, X, L) z(x, A, L)- (x + x,(tx, L), A),

6(x, h, L) (x, A, L)- (x + x.(t-,., L), h),

where sr Gz and sr G/. We then have the following lemma.
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LEMMA 4.10. Given q > 0 sufficiently large in Theorem 4.1 there exists p > 0 and
K > 0 such that for h IV,

(i) lal =< g(-" + -’/’-) for Ixl <= x.(Ix, L), whenever Il <= 2, and )Sxl <= K (ix-p +
--1 /=) fo I,1 <- ,(,, L) whenever Icl <- 2.

(ii) IAI _-<-/ fo ,<,,, whenever lel <- ad I1--< g*-/= for I1 <-

x.(tx, L) whenever Icl-<- ,
Proof (i) We extend (0, A) analytically by defining e(0, A)= V, since F/3

.v/. Thus A =A-1/2=(/z-’/2). Next, we estimate za at x=x.. Note that Gx
1 + 7(/,-2); the equation for wx is

1,Ox -Gxw2- Gwwx, wx(-L, ),L) =-- O.

Since G is approximately i/3 and w is approximately ’/3 -/z on [-L,-xr], Re Gw is
positive and of order/3 /. It follows that [wl<= Klx-3/2 on [-L,-xr], so that
K-/ for such x. On [-xr,-x,] the change in za is of order log/x//x, so that

Izl <= KI.-/2 at -x,. We therefore have that IAI =<K-/ at x =-x,. This also yields
the estimate 16 <= KI.-3/ at x =-x,.

In order to obtain the desired estimate on the interior layer Ixl-<_ x,(/x, L), we use
the equation

G [ + ]

for 6 whenever Isr =< 2, and the equation

A:--2[zA+a]
whenever lel--< 2 is in the proof of Lemma 4.9. By Theorem 4.1 we have that IGa (a]--<
Ktz-(q-7)/2tz-2= KIz-(q-3)/2. Combining this with our initial estimate laxl_-< KIz-3/2 at
-x., together with Lemma 4.9 to estimate 6 itself, we obtain the desired estimate for
Aa and 6a as in Lemma 4.9.

(ii) We first need to estimate zL on the outer layer I-L,-xr]. The equation for
wL is

G 2ww, w(-L, a, L) O.

Clearly, GL is determined by U and V (see (4.15)) and on I-L,-xr] V=0, so that
GL is determined by U here. It is not difficult to check using the time map (4.5)
that U=(1) on [-L,-x]. Now, by the outer estimate of Lemma 4.7, we
have that [w-/3-/2[ <= K/x-3/2; using this to approximate w in the equation for w
we obtain the estimate Iwl =< Ktz-3/2 by the usual Gronwall estimate. Since z -wt/w2

we obtain IzL]-<_ Klx-1/-.
In the interval I-x, x.] the partial V, =/,ZU also needs to be estimated. In order

to estimate U here, we use the time map

x x. C R(s, )]-/ ds,

where C=C(L)=R(y,l)+x-g(L,x) and Igl is bounded. Differentiation with
respect to L yields

u=-[c-(u,.]/-g [c-(s,l]-/ as.

On the interval I-x,-x,], IU-"/I -<- K-; it then follows that
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Using this in the above expression for UL yields the estimate lULl K/.-3, so that
[VL[ KI-1 and ]GL[--<-- K/z-.

Using the above estimate for [GL in [-x, x,] in the equation

,L G-2zz,

together with our previous estimate for z at xv and the estimate of Lemma 4.7 for z
on [-x,-x,], we obtain

IZL(--X, , L)I g-’/ + K log /2
K-/2.

Now (0, A) is independent of L, so that the above estimate for ZL at --x, yields the
estimate IALI K-1/2 and ILI K-3/2 at x =-x,.

The equations for L are

L GL-- 2ZAL-- 2LA,

G-2-2,
since L0. The estimates for IALI and 16L[ on xlx,(, L) now follow from the
estimate for L at x =-x,(, L) together with the estimates of Lemma 4.9 for A and
6 (w-)/. In paicular, as in Lemma 4.9, we estimate 6Ll when lffq2 and
when [ 2. The details are similar to previous arguments and will be omitted.

We can now complete the proof of Theorem 4.5. We first note that for fl near fl,
evaluation of (i) of Lemma 4.9 at x =0 and L= L(fl), together with the defining
conditions

Im (l(fl), ifl)=0, Im z(O, i, L(fl))=0

for (fl) and L() leads to the estimate

()-x.(, L())I K log /.
The estimate in (ii) of Lemma 4.9 leads to a similar estimate for fl near ft,. The
equation for L(fl) leads to the formulae

L’(fl =-Im iz/Im ZL, lV(fl =--Im ff/Im .
Lemma 4.10 provides the estimate

z(0, i, L)= e(x.(, L), i) + (-/),
z(0, i#, L) (x.(, L), i)x.+ (-/).

Since X,L 1 + (-1) we have from the above and our previous estimate for IF-x,[
that

z (0, ifl, L) (lfl), ifl + (-1/2),
z(0, i#, L)= (l), i)+ (-/).

Using these in the above we obtain the estimate

IL’( ’( )1 K-/.

We had previously shown that l’(fl) > 0, from which we obtain L’() > 0. This finally
leads to the estimate

Re iz + ZLL’(fl)) Re i + l’(fl)) + (-1/2)
=2’() + (-/).
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We had shown earlier that Z’(/3) < 0; it then follows that Z(/3) z(0, i/3, L(/)) has a
negative derivative at/3 =/3,. The proof that st(0, i/, L(/3)) has a positive derivative
near/3 is the same as the above for/3-/o. We have therefore established that the
only purely imaginary eigenvalues that occur for L <- Lo are i/3, which occurs at a
uniquely determined interval size L-L.

It only remains to show that there is a branch A(L) of eigenvalues for L near L
with A(L)= i/3 for which Re A’(L)>0. We again provide the argument only for
j-0; we therefore need to solve the equation z(0, h, L)-0. We have that a solution
exists for (h, L)= (i/3, L,), and that if A(L) is such a branch, then

z,xh’( L) + zL O;

by Lemma 4.10 we then obtain

;t’() -zidz -1 + (-/)
where we have used that z/= ;+(ix-1). Since (1/20, A(L) exists by the
implicit function theorem. Moreover, we have already shown that

Re (-/ga) > 0,

which completes the proof of Theorem 4.5.

5. Concluding remarks. We conclude by combining the results of 3 and 4 to
obtain some rigorous results on the stability and Hopf bifurcation of the perturbed
problem with e > 0. Recall that by Lemma 4.2, Case S (respectively, Case U) holds
if 3’ > (respectively, 3’ < x/-a-) and Ix is sufficiently large.

THEOREM 5.1. Suppose that Case S holds and that tx is large. Then there exists

eo > 0 such that the perturbed solution (U(x, e), V(x, e)) of (1.3) is a stable solution of
(1.1) for 0 < e < eo for all L > Lb.

Proof. By Theorem 3.11 it suffices to show that (1.4) has no eigenvalues inside K
in Fig. 3.1. Theorem 4.4 implies that (1.4) has no eigenvalues in Re A_>--0 in Case S.
Since the spectrum of (1.4) is discrete, (1.4) will have no spectrum inside K if the
angle b in Fig. 3.1 is small enough.

THEOREM 5.2. Suppose that Case U holds and that Ix is large. Let the angle 49 in
Fig. 3.1 be O, so that c1( (K, e)) measures the number ofeigenvalues of in Re A >- 0.
Then there exists e > 0 and interval sizes LJ(e) which approach LJ as e- 0 such that

for 0 < e < eo,

(i) (U(x, e), V(x, e)) is stable for L<Lg(e);
(ii) For L near L(e), the perturbed operator & admits a branch of eigenvalues

hE(L) such that h(LJ(e))=i(e) for some (e) near J, and Re h’(L{(e))>0.
Hence a Hopf bifurcation occurs as L crosses each LJ( e ).

(iii) Let N > 0 be given. The stability index Cl((K, e)) is 2(2n + 1) for L(e) < L <
L(e and 2(2n + 2) forL(e < L< L,+l( e ), for all n <- Nand all sufficiently small e > 0.

Proof. For L < Lo(e) the stability proof is the same as in Case S. In order to prove
(ii) consider L near L{ and h near i/3{. Let C be a small circle about i/3{, so that for
L near L{, C is disjoint from rR, and for each such L, there is a unique eigenvalue
h,(L)e rR inside C, so that A,(L)= ifl and Re A(L)>0. For such C we may
therefore form the bundles %,(C) and ,(C) for the reduced problem as in 3.11;
for each L near L, c(2,(C))=c(2,(C))= 1. Using the same procedure as was
used to decompose (K, e), we form the perturbed bundle (C, e) and decompose
it into a fast and slow summand

(c, )= ,(c, )(R) %(c, ),
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where, as in the case of K, el( l(C E))--0, and the fibers of the slow summand
2(C, e) are uniformly near those of 2,(C) over the whole base space. Now each
bundle 2(C, e) and 2.(C) depends on the parameter L; by rescaling x and introduc-
ing L as a parameter into the equations, it is easily seen that the solutions, and hence
the bundles, depend analytically on L. This is seen by employing standard theorems
on the analytic dependence of solutions of o.d.e.’s on parameters. Each bundle has
its own Evans function, which we shall denote by D(A, L) and D*(A, L), respectively.
By the previous remark, both D and D* depend analytically on both h and L. Since
2 is approximated by ’., it follows that D(A, L) approaches D*(A, L) for fixed L
and A C. By the Cauchy integral formula, they are therefore also close over the
interior of C. By Rouche’s theorem it follows that D and D* have the same number
of roots inside C counting multiplicity, so that D (A, L) has a simple root A(L) for
each L. Now Re A.(Ln)>0 so that Re A.(L) is positive (respectively, negative) for
L/> L + (respectively, L_ < L-)for fixed, small 0. Since D(A, L)uniformly
approximates D*(A, L) for A inside C, it follows that

Re A(L_) <0< Re A(L+)

so that A(L)= i(e) at some L= L(e) near L. Again using the analyticity of D
and D* in both A and L, it follows from the Cauchy integral formula and the uniform
approximation of D by D* that D and D approach D* and D* as e- 0. Hence

lim Re A’(L(e)) lim Re D/D
e->0 e-0

=Re A(L) > 0,

so that Re )t’(L e )) > 0 for small e > 0.
We can now complete the proof. Let 6 > 0 be so small that Re A.(L + 3) 0 for

all n, j with n <= N 1. If L is such that IL- L >= 6 for all n, j then rR has no imaginary
eigenvalues for this L. We therefore have by Theorem 3.11 that the eigenvalue count
for the perturbed operator inside K is given by that of the reduced problem (1.4),
which, by Theorem 4.5, is as specified in (iii) of Theorem 5.2. Finally, for It-t[ _<-3

we see from the previous paragraph concerning the behavior of the branch (L) inside
C that the eigenvalue count inside K increases precisely by 2 as L crosses L(e). More
precisely, we form the curve K O(Kt3 CU C), where C is the complex conjugate
of C. By previous remarks, we may form the bundle (Ka, e), which will be well
defined for L near L. If K2 0(K\ C ()) then K winds about all the eigenvalues
with strictly positive real part, while C (respectively, ) winds about i(e) (respec-
tively, i/3 (e)). We then have that

C1(’2(K,, e))= c1(c2(K2, g))- c1(2(C, E))-Ji-Cl(C2(C,

hence the eigenvalue count is precisely as specified in (iii) for all L.
We finally remark that the direction of bifurcation has not been determined. It

seems likely, however, that the asymptotic methods of 4 could be used to compute
the higher-order asymptoties of the bifurcating solutions needed in such a computation.
We conjecture that each Hopf bifurcation is supereritieal, so that the first one at
L Lo(e) gives rise to a stable periodic solution.
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Abstract. For a two-dimensional predator-prey system, proposed by Bazykin and depending
on several parameters, a complete local bifurcation analysis with respect to all parameters is achieved.
The major part of the paper is devoted to the unfolding of a degenerate codimension-2 bifurcation
occurring for a one-dimensional subset of parameters. The main problem here consists in studying
parameter dependent integrals which are not algebraic.
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1. Introduction. The starting point of this paper is the predator-prey system
O12XlX2

1 OlXl OllX,
(1)

1 - lXl21XlX2 C22;T222- 2x2+
1+1xl

with x(t), x2(t) the prey and predator populations, and positive parameters ai, ij,/.
This system was first proposed by Bazykin in [2], [3], where a detailed discussion
concerning ecological motivation and possible behavior of solutions is presented. A
rigorous treatment of (1) has been carried out in [9]. There, besides some results on
Hopf bifurcation, we mainly aimed at basic questions such as the location and stability
of equilibria and the existence of periodic orbits. In the present paper, this former in-
vestigation is supplemented by a fairly complete bifurcation analysis of (1) depending
on all the parameters. Apart from a regular codimension-2 bifurcation which occurs
in a two-dimensional parameter region, we are primarily concerned with the unfolding
of a degenerate codimension-2 bifurcation occurring in a one-dimensional parameter
region. This interesting bifurcation phenomenon can be observed at parameter values
where three equilibria coalesce to a single one (cusp point).

The paper is organized as follows. In 2 we first summarize those facts from [9]
that are needed in the present context. We introduce the manifold jA in the parameter
space, describing the set of equilibria of (1); it can be reduced to a cusp surface with
two folds C+, C_ and a cusp point Co. Then we characterize those parameters for
which codimension-2 bifurcation occurs on C+ U C_ (regular case) or at Co (degenerate
case). A transformation defined in 3 shows that the corresponding linearization is of

nilpotent type (001). In 4, the regular case is treated and, using known methods,
a complete unfolding of this bifurcation problem is achieved. The subsequent 5-12
are entirely devoted to the degenerate case. The main task here is to investigate the
quotient of parameter dependent integrals which, contrary to the cases found in the
literature, are not algebraic. Various analytical results, partly supported by numerical
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tFachbereich Mathematik, Universitt Kassel, Heinrich-Plett-StraSe 40, D-3500 Kassel, West

Germany.
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calculations, finally yield the complete unfolding of this degenerate bifurcation, which
is presented in 12. Some remarks conclude the paper.

2. Preliminaries and auxiliary results. Let us first summarize some simpli-
fications and results from [9]. By rescaling xl,x2, t suitably, the parameters al, a2,

and/ in (1) adopt the value 1, and without restriction, we may assume a2 > a2.
In [9] it turned out to be useful to introduce instead of x1,x2,a2,a,a21,a22 the
variables x, y and parameters c, , 7, 5 defined by

x a(1 + x),
--1(2) "= a2,

:(1+),
System (1) then turns into

=-(x-a). [;,.7
() x>_a,y>_O

and, as justified in [9], the variation of the remaining four parameters may be restricted
to

(4) 0 < a </ < 7, 5 > 0.

The only equilibria of (3) are two trivial saddles (a,0) and (7,0), which are ignored
throughout the paper, and the intersection points of the two curves

(5) y= (parabola) and y=5 (hyperbola).
7-a x

Depending on the parameters there exist at least one and at most three such equilibria
(,y). Introducing the variable instead of 5, the dependence of these equilibria

(6) (,Y) (, a(7 a)-(7 ))

on the parameters is best characterized by identifying these equilibria with the points
of a four-dimensional manifold AA in (a,/, 7, 5, )-space, defined by the equation

(7) 5 2( )( )-(_/)-, 0 < </ < < .
(Note that (7) cannot be solved for uniquely. Thus, for convenience, we shall consider
(a,/, 7, ) instead of (a,/, 7, 5) as parameters.) For any fixed (a,/), J[ reduces to
a two-dimensional surface of cusp type in (7, 5, )- space, with upper fold C+, lower
fold C_, and cusp point Co. A qualitative picture of this surface is given in Fig. 1.

In [9] it was shown that

(8) C0 (, 5, ) "= (9, 27a2(9/ a)-1, 3);

moreover, for increasing 7 E (9fit, x), we have

(9)
(10)

On wC_, is strictly decreasing from 3/ to 2,
On wC+, is strictly increasing from to .
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FIG. 1. The surface

In [9], the stability of the equilibria represented by (7) has been investigated via
linearization. Denoting the corresponding characteristic equation by

(11) A2 +pA + q 0,

we obtain for p, q the following functions on :

(12)

(13)

Furthermore, we know that q 0 exactly on C_ U Co tA C+, q < 0 on the middle sheet
of jt/I (corresponding to saddles) and q > 0 on the remainder of AA. In the points of
C+ t2C_, saddle-node bifurcation occurs (with 5 as the varying parameter). Moreover,
the points on I yielding p 0, q > 0 were investigated for Hopf bifurcation in [9].

In the present paper, we are interested in bifurcations occurring at points where
both p and q vanish, corresponding to equilibria with double eigenvalue zero. Such
points must be located on the curve

(4) := c_ Co c+.
By virtue of (8)-(10), C can be parametrized by E (2/3, oc). Since q 0 on C, we
obtain from (13) (see [9]):

(15) 22 (7 + 3Z) 2/7 on C.

The following lemma shows that, in a neighborhood of any point on C, we may regard
(p, q) instead of (’7, ) as parameters of the surface A.

LEMMA 1. For any fixed (a, ), 0 < < , we have

(16) A := pq pcq > 0 on C.

Proof. From (12), (13) we calculate the partial derivatives

P’r _--1(’7 o)-2(2 a)(

(17)
pC_-- -2(’7 )-1(’7 Cg ’7 -b 22),
q. --2/3-(’7 a)-2( a)[(2 3/3 a) + 2aZ],
q =/3-1’-3(’7 a)-x [2"3 ’(a’7 + 3a/3 + 2/3’7)
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Then, using (15) repeatedly, a lengthy calculation yields

A ---2(,--O)-3(-- 2/)-1{2(--)3 + (--a)[(6--6/--5a) + 22-+-0/2]}_
-1-4(/_ cg)-2{2( )3 .+. ( 0/)[32 (6 + a) + 22 + 2a]}.

%,

Since > 2 on , we obviously obtain A > 0; B is a quadratic polynomial in whose
zeros are less than 2/, whence B > 0, too. This yields A > 0. 73

Using this lemma, we can prove the following.
LEMMA 2. On the curve C, p is strictly increasing from (2/)-1(1 + c 2) to-, as runs through the interval (2, c).
Proof. From (15) we obtain

(18) "y -: () (- 2)-(2- 3) on C.

Since (a,/) is fixed, p and q in (12), (13) are functions of (’, ) only. Eliminating /
by (18), we thus have

p p(/(), ) =: (), q q(-(), ) -_-- 0 on C.

Differentiation with respect to yields pT. 3, + pc 15, qT. ff + q 0. From this and
-Lemma 1 we obtain by Cramer’s rule ’q7 -A < 0, and since q7 < 0 (see (17)), we
finally get i5’() > 0 for each e (2/, ). The remaining assertion follows easily from
(12) and (18). [-3

LEMMA 3. Let 0 < a < be arbitrarily fixed.
(a) If2 < 1 + a, we have p > 0 everywhere on C.
(b) If 2 > 1 + a, there is just one point P E C satisfying p O. Moreover,

we have

P =Co if T(a,):=92-3/(a+6)+2a =0

EC+ >0

(See Fig. 2.)

2.
T(,fl

FIG. 2. Illustration to Lemma 3.

Proof. From (8), (12) we calculate

1
(19) P 3(9___
Now, all the assertions follow from Lemma 2. [-3

in Co.
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3. Another transformation. As was already mentioned above, we will con-
sider only neighborhoods of points of A/[ satisfying p q 0. By Lemma 3, such a
point exists if and only if

(20) 2/3 > 1 + a.

Therefore, in addition to the requirement 0 < a < /3, we assume inequality (20)
throughout the rest of the paper. Let P P(a,/3) denote the unique point of
yielding p q 0. Then the parameters (’7, 4) corresponding to P satisfy equation
(18) (from q 0), and by exploiting p 0, we obtain from (12) and (18) the additional
condition

Nz(21) a in P P(a, )
where

(22) N1 :=/32 + 3/3 2 2/32 (’7 a)-1( 2/3)-2/32( _/3) > 0,

(23) N2 :=/32 + 5- 22 32 > 0.

Now we consider parameters (a, , , ) such that (a, ) satisfies (20) and (7, )
defines a poim on the surface M which is sufficiently close to P(a,D). Then the
parameter dependent affine transformation

(1 1)(24) x=+ X,
1 1

turns system (3) into the following system for X(t), Y(t):

2 Y + Y) -qx + Y)

Here we calculate

(26)

with

(X, Y) a( a)-x[O(x, y) (’7 a)-(x )2],

{(X, y) :--- --1(’7 )--lx--I(x )[(’7 )(X ) (’7 ()y -- ((’7 )].

On the right-hand side of (26), (x, y) has to be expressed in terms of (X, Y) according
to (24). q and are at least quadratic with respect to (X, Y) and real-analytic
(rational) functions of X, Y, a,/3, "7, ; by virtue of Lemma 1 they are also real-analytic
functions of X, Y, a,/3, p, q for (p, q) sufficiently small.

The linearization of system (215) at the point (X, Y,p,q) (0,0,0,0) is
0 0

In what follows, we have to investigate (215) in a neighborhood of this point, which
corresponds to P(a, ) 3/1. For this purpose, we need the second and some higher-
order derivatives of , ’ with respect to (X, Y), evaluated at (X, Y, p, q) (0,0,0,0).
For simplicity, we do not explicitly express , in terms of (p,q), but retain the
parameters (’7, () which then have to satisfy (18) and (21). In the following formulae,
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9’ and a have been eliminated by (18) and (21). The calculations yield (we omit the
arguments)

(27)

(29)

xx -2N-1-3-4( )4( 3),
xY --i<-3Ni(- /)[2(- )2 2],
XX -2-2-3N-1( _/)3( 2).

LEMMA 4. Assume (20), and let P P(a, 1) be defined as above. Then we have
xx < 0 and xY < O. Moreover, xx is > 0,= 0, < 0, whenever P E C_,
P Co, P C+, respectively.

Proof. The assertions on xx and xx follow from (8)-(10). It remains to show
that R := 2(- fl)2_/2 is always positive. For P Co we have 3; hence
R -/2(8- 3/). This is positive, since by (19)

(30) 9fit(/- 2)
3-2

in the case where P Co,

s Now the admissibleand thus, to obtain 0 < a </, we necessarily have 2 </ < .
domain 0 < c < , 1 + a < 2 in the (a,/)-plane is connected (see Fig. 2), hence it
is enough to show that R is nowhere zero. Assuming 2 2({- fi/)2 and inserting
this into (21), we obtain , which is forbidden. [-3

Since xx # 0 for P C_ J C+, we shall not need any higher derivatives in this
regular case. But the degeneracy Pxx 0 in case P Co necessitates the calculation
of some more and higher-order derivatives. Using (30) and 3/ in (27)-(29) and
also in calculating the additional derivatives written down below, we finally obtain the
following derivatives.

Derivatives required in the degenerate case P Co:
16 1

)XX XY81/33(3- 2)’ 92’

xY 2(8- 3) pyy 4

(31)
813(- 2)’ 272(- 2)’ s

16 32(3-4)
2 < < .

)XXX --355(_ 2)’ XXX --376(_ 2)2

16(3- 4) 29(3- 4)!I’XXY --375(_ 2)2, XXXX 310/38(_ 2)3

4. The regular case P C_ t2 C+. Throughout this section the parameters
(a,/) are assumed to satisfy

9/(fi/- 2)(32) 0<<, l+a<2, :fi 3- 2

(see Fig. 2) such that, by Lemma 3, the unique point P P(a, ) is lying on C+ t_J C_.
In a neighborhood of P, system (25) adopts the form

(33)
Y + allX2 -[- aI2XY + a22Y2 -- (-93,
-qX -pY + biX2 + b2XY + b22Y2 + 03.

Here, the terms (93 are power series in (X, Y,p,q) with powers XiYjpkq satisfying
+ j + k + >_ 3 and + j _> 2, and with coefficients depending analytically on

((,). aij,bij are given by Taylor’s formula, e.g., ai xx, the derivatives being
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i Oxx :/: 0; hence for q 0evaluated at (X, Y, p, q)
we may rescale in the following way:

]qbiil1/2, p -"--Ib 11/2eT,
(34) X-" e2y, Y-"

For definiteness we now assume q < 0. (As for the case q > 0, see Remark 1 at the
end of this section.) From (33), we then derive the following system for y(t), y2(t)
with small parameters e, -:

1_ 2I Y2 Jr alllblll-:yl d- 04,
()

2 Yl W ey d- Ty2 - :bl21bll1-1/2 YlY2 W (.04 :---- sgn bll.
Here, and in what follows, the terms Oa are analytic in all variables, at least of second
order both with respect to (yi, y2) and (e, T). Such systems have been treated in the
literature; see, e.g., [10]. To establish the standard situation we transform (yi, y2) into
(U, V) in such a way that the two equilibria of (35), located at (0,0) and near (-e, 0),
turn into (U, V) (0,0) and (-e, 0) exactly. We can choose this transformation as
follows:

1 2

(36)
U yi

Y y2 d- eaii]bii]-1/2y2i + 04
and obtain the transformed system

Y + 11-1/2V[eY + V(1 + V)] + O,
()

V + V +Y + 11-1/2VY[e + 1(1 V eV)] + O.
The unperturbed system (37) with e T 0

(as) v, ? v + v.
is Hamiltonian with the first integral

() g(v, v)= 1/2y- 1/2V. v.
Thus for system (38), there exists a homoclinic orbit filled up with periodic orbits
encircling (-e, 0). To find out for which parameters (e, T) the perturbed system (37)
still has periodic orbits or a homoclinic orbit, we use the method and results from [10].
Calculating the derivative (U, V) of H along solutions of (37) we obtain

(a0)
(v, v) y +

x [(av + av)-y: + v(i + v):]} + o.
Now, for 0 < b < 1, let % denote the half orbit of (38) in the upper half plane with
initial point (-eb, 0) and endpoint (-ec, 0), where, owing to (39), c c(b) > 1 is given
by

(41) c (3 2b + V12b(1 b) + 9 ).
Then it is known from [10] that the orbit of (37) through (-eb, 0) is periodic if and
only if

B()(a2) -e + O(),A()
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where A(b),B(b) are the following integrals determined by //(U, V)"

A(b) :- b -V dV,

(43/ B(b) .= Ibll-1/ f{(2 + b)VY

dV
l[(av +VlV + v(1 + Vl.l}-ff-.

To simplify B(b), we apply partial integration, using dV/dV U(1 + eV)/V:

Ua(1 + eU)2- U3(1 + eU)dV- dU (3U2 + 4eU31V dU,

thus obtaining

(44) B(b) Iblll-1/2 (2all + b12) b UV dU.

Lemma 4 implies 2all xx < O, bl Oxy < 0. Hence we get

k :- Iblll-1/2(2all A-b121 > 0,(45)

and introducing

(a61 s(, ):= L uv au

fb V dU
(e sgn 5111

we obtain

(aT) B(--A) s(,).A(b)
Now, from [11] or [5] we gather that S(b,-11 has positive derivative in 0 < b < 1 and

6
(48) lim S(b,-1)=- lim S(b,-1)= 1;

b--.04- 7 b-* 1-

moreover, S(b, 1) -S(b,-1). Via (42), this yields existence and uniqueness of
periodic orbits for (37), if and only if the small parameters (e, -), e > 0, approximately
satisfy the sector condition k < 7 < k in case e -1, and -k < 7 < -k in case
e 1. Beyond that, we now can state the following theorem.

THEOREM 1. (a) Unfolding of the bifurcation at P E C+ (upper fold): Assume
0 < c < andc < 9(-21(3fl-21-1 Then, in the (,71 half plane > O, a
neighborhood Lt of the origin is subdivided by two curves

(49) LI T ke + O(e2), L2 T ke + O(e21
into sectors I, II, III such that the local flow of the original system (3) with parame-
ters corresponding to (e, T) Ll is qualitatively given in Fig. 3. (Note that the third
equilibrium, far away towards the "southwest," is not involved in this statement.) In
particular, a periodic orbit only exists in sector II; it is unique and unstable. On
there exists an unstable homoclinic orbit, and the points on L2 are origins of subcritical
Hopf bifurcation with respect to the parameter T ( fixed).

(b) Unfolding of the bifurcation at P C_ (lower fold): Assume 0 <
1 + a < 2 and a > 9(- 21(3- 21- (see Fig.2). Then, in the (, T) half plane
> O, a neighborhood of the origin is subdivided by two curves

(50) L3"T -ke + O(2), La’T -k + O(e2)
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FIG. 3. Unfolding at P E C+.

FIG. 4. Unfolding at P C-.

into sectors IV, V, VI such that the local flow of the original system (3) with param-
eters corresponding to (e, -) E ; is qualitatively given in Fig. 4. (Again, the third
equilibrium, now far away towards "northeast," is not involved.) In particular, a peri-
odic orbit only exists in sector V; it is unique and asymptotically stable. On L3, there
exists a homoclinic orbit which is asymptotically stable (from inside). The points on

L4 are origins of supercritical Hopf bifurcation with respect to the parameter T.

Proof. Existence and uniqueness of periodic orbits has already been settled. The
existence of a homoclinic orbit again is known from the literature [10], [4], [5]. The
statements on Hopf bifurcation are easily verified. Thus, we still have to prove the
assertions concerning stability. As for the homoclinic orbits, we apply [5, p. 357]. Since
the linearized right-hand side of (37) has trace T, the assertion follows from T > 0 on

L1 and T < 0 on L3. To prove the stability results for the periodic orbits, we refer
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to [1, Thm. (23.9)]. (We note that [7, Thm. 4.1] could be applied, too.) Having set
T ke S(b, e) + O(e2) in the right-hand side of (37) which will then be denoted by
f(U, V), this system has a T-periodic orbit F through (U, V) (-eb, 0), described
by (U(t), Y(t)), 0 <_ t <_ T. To calculate

(51) D :-- f0
T

div f(U(t), V(t)) dt

we proceed similarly to the derivation of (44), obtaining

(52) D 2ke [S(b,e) fb V-ldU- b V-1UdU] + 0()

Setting

C(b) / UVdU

we calculate the derivatives with respect to b (see also [5])

C’(b) (b b) V-1UdU A’(b) (b2 -b) V-IdU

Thus (52), (46) yield

D 2kee(b- b2)-[S(b, e)A’(b) C’(b)] + O(e2)

>o

Hence, D > 0 if e -1, and D < 0 if e 1. In virtue of the theorem in [1] mentioned
above, the statements on the stability of F are now proved.

Remarks. (1) Before establishing equations (35) we assumed q < 0. This means
that the origin (U, V) (0,0) of system (37) corresponds to a point on the middle
sheet of the cusp surface Ad. It is easy to see that the alternative assumption q > 0
would essentially amount to a translation by the vector () in the (U, V)-plane. Then
the origin (U, V) (0,0) would correspond to a point on the lower sheet of 3d (if
e 1), respectively, upper sheet (if e -1); but no new insights would be attained.

(2) Returning to the parameters (p, q), q < 0, via (34), we get the relation

(53) T__ iblll1/2 p_
e q

but an admissible range of (e, T)
0 < 5 <_ I’rl <

corresponds to the admissible range IPl -< x/T0, which is not the intersection of a
full neighborhood of (0,0) with the lower half plane q < 0. This drawback could be
overcome by a modified scaling similar to the one described in the degenerate case
(see 11). We do not go into details here.

(3) The phase portraits illustrated in Figs. 3 and 4 may easily be carried over
to the cusp surface 2Vl in the (,-, )-space. Using (53) and Lemma 2, we obtain
a corresponding subdivision of the intersection of a neighborhood of P P(a, fl)
with the middle sheet of 3/l. Figure 5, respectively, Fig. 6, shows this subdivision
projected parallel to the negative 5-axis. Here, I’ corresponds to I, etc., and the
curves L2,L4 are just the projections parallel to the {-axis (onto the middle sheet
of 3/1) of the curve p 0, q > 0.
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FIG. 5. See Remark (3).

FIG. 6. See Remark (3).

5. The degenerate case P Co; Transformation to normal form. Begin-
ning with the main objective of the paper, we henceforth assume

8(54) a 9(- 2)(3fl- 2) -1 2 </ < ,
which means that the point P P(a, ) yielding p q 0 is now the cusp point Co.
Lemma 4 yields xx 0; hence system (25) has to be expanded beyond quadratic
terms. It turns out that the following expansion will suffice:

(55) - Y + allX2 + al2XY + a22Y2 + alllX3

+ all2X2Y - a122XY2 + a222Y3 + 4,
-qX -pY + blpX2 + b2qX2 + b12XY + b22Y2+ blllX3

+ bl12X2y + b122XY2 + b222Y3 + bllllX4 + (94.

Here, Oa means terms of at least fourth order with respect to (X, Y); the coefficients
in (55), well defined by Taylor expansion of , at (X, Y) (0,0), are real-analytic
functions of the parameters (,p, q), c being eliminated by (54). To transform (55)
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into normal form, we choose the near identity transformation

(56) Y w2 + dllw + dl2WlW2 +dw
+ d2ww2 + d22ww22 + d222w23

where the coefficients are obtained from those in (55), evaluated at (p,q) (0,0).
Writing := a]p==o etc., we have

c=(2+b2), d=-, d2=22,
Clll (2 + 31222 +2 + 2112 + 122)(z)

1(122 + b22) dlli -11b2 111,Cl12

d b + b2, d b222, d222 -222.
We then obtain the normal form system for (w, w)"

w2 + pg + qg2 + h
(s) --+A+ +

+ Dpw + Eqw + Fw +pg + qg + h.
Here, g and h are real-anMytic functions of (w,w2,p,q,), with
(w, we,p,q) in a neighborhood of (0,0,0,0); moreover, with respect to (w, w2), all
terms of gj are at least of order 2 and all terms of h are at least of order 4, other
than those already written down in (58) explicitly. As for the coefficients A,... F, a
straightforward calculation using (57) yields

A 2 + b2, B =-b2 + b,
C -b22 + a2b12 + b2b22 +3 + b2,

(59) D + b, E (b22 12) + b2,

F -ha-b(2 + b22) + b22 b2

+ a12b111 + b22b111- 111

While j, bj,1,b11, b112, and b111 are determined by (31), bi are calculated as
follows:

b 1 XXp(x,Y,p,q)=(o,o,o,o) (xxp + xz4p)
(o)

xx.I =(o,o,o,o) l(xx + xx.).b2 (X,Y,p,q)

On the right-hand side, is considered as a function of (X, Y, , 4), with derivatives to
be evaluated at (0, O, 9, 3), and the derivatives p, q, p, q are calculated by using
(54), putting 9fl, 4 3 in (17), and then inverting the matrix

q

In this way we obtain

(61) ")’p =0,

and from (26)

()

lS/,,.,fq--___3 ’P 16--3f q-"- 16"3f

4(9/2 16) xxOxx 37fiI6( 2)’
2(92 72 + 80)
365( 2)
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From (59) we now compute

26
A-- 2(16-3/)

<0, B-- <0,
813(- 2) 38f6(/- 2)2

1
C

375(/ 2) 2 (9/
2 132D + 224) < 0,

(63) 2(9/2 60 / 16)D= <0,
813(- 2)(16- 3)

E 93 362 / 32 / 64 32(20 9)
>0, F=

543(/- 2)(16- 3) 311/s(fit- 2)3

6. Scaling; an auxiliary "unperturbed" system. From now on we assume
q 0. Then, in system (58), the variables (wl, w2, t) and the parameters (p, q) may
be rescaled as follows:

(64) p -eT w eA-u w2 e2A-v t e-t

This leads to the following system for u(),v() with small parameters (e, T), e > 0

(henceforth we omit the tilde in )"

(65)
i v + R(u,v,e,r),
i -fu + TV + UV au3 + ebu2v + TCU2 fdu2

+ eu + R(u, v, , ).
8Here we have the following: For any fixed/ E (2, ), Ri are bounded functions for

(u, v) in an arbitrary bounded domain and (e, T) in a sufficiently small neighborhood
of (0,0); moreover, Ri are real-analytic functions of (u, v, , T), whose lowest terms are
at least quadratic both with respect to (u, v) and (e, T). Finally, f := sgn q, and the
coefficients a,... e are given by

(66) c

B 16 C 3(92 132/ / 224)
a- >0, b-

A2 (16- 3/)2 A2 4(16- 3/)2

D 92 60/ + 16

A (16- 3/)

d
E 3(93 362 + 32 + 64) F 12(9 20)
A 4(16 3)2 A3 (16 3)3

We first investigate the unperturbed system for U(t), V(t), resulting from (65) by
setting (, T)= (0,0)"

(67)
V,

f sgnq.
-fU + UV aU3,

This system is invariant under (t, U, V) (-t,-U, V), and it has the first integral
I(U, V) given by

1 1 4aY (f + aU2)
(68) I(U, V)"= inN + arctan

(Y + aV)
where

(69)

(70)

1
a := v/8a- 1

16- 3/
(-9/2 + 96- 128)1/2 > 0,

N N(U, V) 2aV V(f + aU2) + (f + aU2)
(8a)-{(4aV f aV2)2 if- ry2(f if- aU2)2}.
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We calculate

(71) OI(U, V) 2aU
(-V + f + aU2) OI(U, V) 2aV

OU N OV N

Owing to I(-U, V) I(U, V), the phase portraits are symmetric with respect to the
V-axis. In case f 1 (q > 0), system (67) has the only equilibrium (U, V) (0,0),
and we easily check that each orbit is periodic (see Fig. 7). For f -1 (q < 0), there
are three equilibria (U, V) (0,0) (hyperbolic saddle point) and (:i:a-1/2, 0) (source
and sink), and the phase portrait is qualitatively shown in Fig. 8. In particular, there
is a homoclinic orbit, and all orbits intersecting the positive V-axis are periodic.

FIG. 7. Phase portrait of system (67), f 1.

FIG. 8. Phase portrait of system (67), f ---1.

7. Looking for periodic orbits of system (65). Now, returning to the
perturbed system (65), we have to investigate whether some of the periodic orbits
of (67) or the homoclinic orbit in case f -1 do survive for certain parameters

# (0,0).
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Let (u, v) denote the derivative of I(u, v) along solutions of (65). Using (71), we
obtain

2av
(TV + bu2v + (TC- fd)u2 + eu4}i(u, v)

N(u, v)(72) 2a
+ N(u, v) {u(-v + f + au2)R1 (u, v, , T) + vR2(u, v, , T)}.

For arbitrary r > 0, let (V(t), Y(t)) be the (periodic) solution of (67) with (V(0), Y(0))
(0, r) and (U(+to), Y(=l=to)) (0,-r0) for some to > 0 and r0 > 0 depend-

ing on r (to minimal). Analogously, let (u(t), v(t)) denote the solution of (65) with
(u(0), v(0)) (0, r), intersecting the negative v-axis for the first positive time tl at
(0,-r) and for the first negative time -t2 at (0,-r2). Then we obtain

v(t)] k,V(t)] + O(x/2 + T2) uniformly in It <_ max{to, tl,t2}

and hence from (72), again uniformly in this t-interval:

2aY(t) {TV(t) + bU2(t)V(t)/;(u(t), v(t)) N(U(t), V(t)
(73) + (TC- fd)U2(t) + eUa(t)}

+ O(e2 + 2) =: H(t) + O(e2 +
Using (71), we see that (u(t), v(t)) is periodic if and only if

(7) (o,-) (o,-).

Since t to =-O(v/9 + 7"2), we conclude

(75) I(O,-rl) I(0, r) i(u(t), v(t)) dt

fo’
and similarly,

tO
(76) I(0,-r2) I(0, r) H(t) dt + O(e2 + T2).

The symmetry of (67) yields U(-t) -U(t), V(-t) V(t) and hence, H(-t) H(t),
which again implies

fo
-t

fo
t

(77) H(t) dt H(t) dt.

Thus, setting

(78)
t

K(r,e, ) "= I(0,-rl) I(0,-r2) 2 H(t) dt + O(e2 + Tg),

(74) is equivalent to K(r, , T) 0, or, by the implicit function theorem, to

K(,0,0)(79) T + O(e),Kr(r,O,O)



MULTIPARAMETEI:t BIFURCATION 165

whenever the denominator does not vanish. The quotient

(80) Q(r)
K,(r, 0, 0)

fo v(t) [bV(t)V(t) fdU2(t) + eU4(t)]dtg(u(t),y(t))
v(t)fo N(U(t),V(t)) IV(t) + cU2(t)]dt

can be expressed by line integrals along the curve

(S) r r():= {(u(t), y(t))lo <_ t <_ to},
resulting in

(82) Q(r) -fr N-l(U, V)[bU2V fdU2 + eU4]dU

fr N-I(U, V)[V + cU2]dU
Moreover, in the case f -1, let Fo denote the homoclinic semi-orbit of (67) in the
half plane U >_ 0 (see Fig. 8). Then, by arguments similar to the preceding ones (see
[10], [4]), we find the condition for a homoclinic orbit of (65) to exist. Here, the role of
(u(t), v(t)) above is played by those pieces of the local unstable, respectively, stable,
manifold of the saddle (0,0) of (65), which start out into the upper half plane. We
may summarize with the following lemma.

LEMMA 5. Let r, 0 < r <_ , be such that Q(r) exists. Then the solution of (65)
passing through (0, r) is periodic if and only if 7 T() is a well-defined real-analytic
function

+
Moreover, in case f -1, system (65) has a homoclinic orbit joining the saddle (0,0)
to itself, if and only if 7- T() iS a well-defined (real-analytic) function
(84) T Qoe + (.9(e)

where

(85) Q0 := -fro N-(V’ Y)[bU2y + dV2 + eU4]dV

fro N-(U, V)[V + cU]dU
and N(U, V) is given by (70) with f =-1.

Remark. As will be seen in 12, the denominator of Q0 does not vanish.

8. Manipulating the integrals involved in Q(r). We now have to investigate
Q(r) as a function of r > 0. For this purpose, we first apply partial integration to the
individual integrals in (82) in such a way that the boundary terms are zero. Using

(86)
dY

U
V dN VN dV

=dr,d-- (f + aU2)’ d-- V Y
we calculate (all the integrals occurring subsequently do exist; we write f instead of

i U2 l i U3
d () l iU4dU(87) ---dU -5 dU- 5 NV > 0,

dU=
N V

(88)
1 7 U.d (V-N) 1 i- - dU - --- f + aU2 dU > O,
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(89)

(9o)

-dU N Y -(f + aV2)dU > O,

f du=l f U alum. af V4- --dU -a NV dU dU > 0

At this stage, it seems useful to introduce the following "polar" coordinates (0, 99) in
the (U, V)-plane:

(9) f + aU2 4aV fo sin 99, a(f + aU2) focos99.

We calculate

(92) N(U, V) 02 0 99
--’Sa (U, V) nv

Defining, for convenience, the variable s by

(93) r =: -fs r > 0

the integration curve F F(r), defined in (81) and also given by I(U, V) I(0, r), is
described in terms of (0, 99) as follows:

(94) 0 v/G(s)e-, 990 < 99 <_ 991 (logarithmic spiral)

where

(95)
(96)

G(s) := v/2as2 + s + 1 exp(-a-1 arctan[cr-l(4as + 1)]);
990 99o(s):= arctan[a-(4as + 1)]

and 991 991(s) are consecutive zeros of the function

(97) h2(99, s) f(a-1 x,/-aG(s) cos 99e-X 1)

which, for fixed s, is positive between 990 and 991 > 990 (for f -1, see Fig. 9). Let
h(99, s) denote the positive square root of h2(99, s) in 990 < 99 < 991. On F F(r), we
then get

+aV+4-all

---0

FIG. 9. Illustrating 990, t91 in case f -1.
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1 2f G(s)(cos a sinu a(V, ), V V
(9S) dU

x/’fG(s) (cos asin)e-lda2h(tp, s)
dU 2

Together with (87)-(94), this yields

j; U 2 fl h3(,s)e-2-ld > OdU 3a3/2aG2(8

fF U2V du 4 f h3(,s) cose_a_ld > O
N 3faa2G(s)

fr 4 f h(,s)cose__d > O(99) dU
f2G(

5fa2a2G(s)
h3(, s) cos e-a-’d

ha(, s)e-2-ld > 0.
5fa5/2aG2(s)

Now, let us introduce the variable

(100) (s):= lnG(s) + a- arctana-yielding

lim (s) 0 ls-e exp[a-(arctana
s0

(101) d 2as
d=2as2+s+l, (s) > 0 for s # 0.

Then the following functions Hi(), 1, 2, 3, are well defined:

H() :=
G(s)

h(’s)cse--Xd’

(lO () :=
a() h(, o__la,

ff f’l ha(, s)e--d

Obviously, from (99) we get

(lOa) H() > 0, fH(() > 0, Ha() > 0 for all > 0.

Using (99) and (102), we obtain from (82)
( + a)() (a +(lO (r) a() +

hence, by (66)

a()+ .a()(lO) ()
4Sl() +
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with coefficients
A := (9fl2 / 12/- 40) > 0,

(106) # :- -93 + 108fl2 200fit + 80 > 0,
u := 92 60fl / 16 < 0.

Furthermore, we easily calculate

(107) /-I(HI()- H3()) vG2(s h(fl, s)e-2a-ld99 > O,

(108) f-(g() + H2()) fala
h(, s) cos2 d > 0.

Owing to (107), the denominator in (105) may be written as

(109) T := 48H1() + uH3()

Now, u < 0 and

(0)

hence

ufa fl(48 + u)HI()- G2(s) h(’s)e-2a-d"

848+p=(3-16)(3-4)<0 for2<fl< 5;

(111) T<0 forf=-l, >0.
9. Differential equations and limit relations for Hi(). Next, we investi-

gate the functions Hi(). As a first step, we derive a system of differential equations
for these functions, which correspond to the Picard-Fuchs differential equations con-
sidered in [11].

From (t00), (101)we obtain

(112)
dG 0h ds fx/-G s cos e-1

d
G,

Os d 2ah(, s)
Moreover, it follows from (96), (97) that 0 and, by the implicit function theorem,
also are real-analytic functions of s satisfying h(o(s), s) h((s), s) O. Using
these properties, we can easily calculate the derivatives of the functions Hi().

LEMMA 6. Let us define the additional function

(lla) o(() := h-(, s) cos d.

Then H, H, Ha sisf he followin9 linear ssem of differential equations:
1+

(114) H H + m,
H H 2H3.

Proof. We shall only prove the second equation, the rest being similar. Using
(102), (108), and (112) we obtain

H d G2 h3(, s) cos-e--d 3f
a

h(,s) cos d
1-H2 + (H + H2)= H + H2.

Next, we investigate the limits of Hi() as tends to , respectively, to zero. By
the way, recall the relation between r, s, and given in (93) and (100).
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LEMMA 7 (The limit

./:(a) ,.lim X/[H((s))

(b) lim
g2((s)) 4 cos e d =" f L2.

Proof. From (95)-(97) we obtain for r

ah2(,s) G(s) e
()_ Ico,
(o,) -, incaseI= 1,

(o,) in case f -1.

If f 1, the assertion for H,H2,H3 now follows easily from (102). For Ho, the
integrand is unbounded, but a careful investigation also yields the assertion in case

f 1. The case f -1 is treated similarly, and a final translation + then
gives the desired result.

LEMMA 8 (The limit s 0 ( 0)). g f 1, the interval [o,] shrinks to the
point X := arctan a-. ff f -1, [o, 1] tends to the interval [X, ], where # > X is
the zero next to X of the function

(15) () := (1- -cos-(-)) 0.

The functions H satisfy the following limit relations:
(a) Case I 1:

(116) limHo() k
0

(117) lim HI()_ k_
o 2’

Hi() 3k
(118) lim

e--,o 8’ i=2,3.

(b) Case f -1:

(119) limHl() -ea-x
-o

g() cos e- d 11 > 0,

limH2() e-x ga(o) cose--d =" 12 < 0
0

--i(121) m(() e x ga()e-a-
8a d 13 > 0,

Ho(())(122) lim
so -lns 4a"

Pro4. The assertions concerning the interval [o,i] follow from (95)-(97),
which show that tan a-, G(0) e--x, and h2(,s) tends to -fg() if
e [o, 1]. Then, using h(i(s), s) 0, 0, 1, the expansion of

(123) I(, s) := h(#(s) + , s)
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at (, s)= (0,0) yields

(124) fo(, s) -4afa-2[as + + (9(2 + s2)]
4afa-2F(, s),

(125) f1(, s)= fa-l[1-atanzg+
with 1-atan < 0. Let us now consider the case f 1 (s < 0). We obtain
from (124) (s)- o(s) -as + O(s2) =" 5(s), and further, by the Weierstrass
preparation theorem [5], F(, s) (5(s)- )/q(,s), where the functions F, 5, and
q are real-analytic, q(, s) 1 + O( + s2). From (113) we now calculate

Ho() cs2((s) + )
de

() 1 + o(4 + Sos x 4(() )
de

5(s)

() ) 4(()-)
a de () O(4 + s) de4a 4( +

Wff2

4a
e o(),

which proves (116). Since, trivially, H() 0, 1, 2, 3, we can successively calcu-
late the one-sided derivatives of H() at 0 using (114):

limH() { if i=l,

o =H(0)=_ 0 if i=2,3,

which proves (117); then for 2, 3,

lim H() ,, 3 3k
Ho =H(0)= (0)=

This obviously proves (118). Now consider the case f -1 (s > 0). Formulae
(119)-(121) are simple consequences of the definition (102). Thus, we only have to
prove (122). om (124), (125) we see that, s s 0, the integrand in Ho becomes
critical at the lower limit o(s) while it remains well behaved near the upper limit
(s). Therefore, we subdivide the interval [o(s), (s)] into [o(s), o(s)+ W] and
[o(s) + W, (s)] with some Y > 0, independent of s and sufficiently small. It is easy
to show that the integral over [o(s)+ W, (s)] is uniformly bounded with respect to
s. Thus it suffices to investigate the imegral over [o(s), o(s) +

:= h-(, ) os a os(o() +
[+ + o( + )]

Since, if 0, s > 0,

+ + o( + ) (e + )(1 + o( + ))
( + )(1 + o(4 + )),
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we obtain
a2 j0v l+O(v/2+s2)

d.4v a + )
Writing

+ +
h :=I1 :=

4((rs + b) --n
we calculate

hence,

1 + 0(42 + s2) de,
+)

[ ( 1 )]fo-i- deI1= 1+O
i1nsl V/(as+)

1+O lnl In .2 lns1+2v/l+asIlns
asllns

lim
11 =limln(sllnsl) =1.

Similarly, we obtain

I2 [1 + O(V//2 + s2)] In (2/+ as)In s + 2 In s/
as In s 2 2v/1 as In s

O(ln ln sl) o(I In

This completes the proof of (122) and thus, of the whole lemma. 73

10. Properties of Q(r); Monotonicity in case f -1. Let us now re-
turn to the quotient Q Q(r) in (105). Though inaccurate, we shall write Q(r)
Q(s) Q() for simplicity. Using the preceding lemmata and (103), (106), (110), we
immediately obtain Lemma 9.

LEMMA 9. (a) It the case f- 1, the numerator Af of Q

(126) iV" AH2() + ItH3()

is positive for all > O, while the denominator , defined in (109), satisfies the limit
relations

(127) lim
T) 3VTrcr2

lim X/:D (48 + )L1 < 0
--.o a s--.

Thus, contrary to the case f -1 (see (111)), D T() has at least one zero in
0 < < ec with change of sign.

(b) For any f =kl, the quotient Q satisfies
Q 3A L2

<0(128) rlirn Is-- 5(48 + ) n
(c) In the case f 1, we have

(129) lim Q-- _3. A + It _3 (3/32 6/ + 2) > 0.
-0 5 64 8

(d) In the case f -1, we obtain from (109) 48/1 + 13 < 0, and hence

3 Al2 -4-
(130) lira Q

--,o 5 48/1 A-



172- J. HAINZL

Remark. The quotient L2/L1 occurring in (128) can be expressed by the gamma
function. From formula 19 in [6, p. 138] we calculate

L2_ 20r2a(9a2 + 1)e ( i)n-’ (1 + 2562)(1 + 2sinh2 4-) IF + I-4" [:]

From Lemma 9 we see that, for f 1, Q(r) is unbounded at some point r r0 > 0.
Further results on the behavior of Q can be received from the derivative -. Using
(114), a straightforward calculation yieIds

(1 1)
Z "=5---f3 (48HI + t’H3)2

dQ ()=72(A+#)H2+A 72-u H1H2

From this expression, combined with Lemmata 7 and 8, we obtain

(132)

133
r--. r d lirnc d-- 5(4:8 + u) L-

for f 4-1,

(134) limdQ 1 dQ_ 3(A+#)
>0 if f=lo -- lxrno 2at dr 320

1 dQ 18v/a2 A/2 + #13 if f -1.(135) lim
o -r In r dr 5 (48/ + ul3)

Let us now investigate the case f -1 more closely. The integrals involved in
/2, la (see (120), (121)) can be calculated numerically, and it turns out that

(136) A12 +/.tl3 < 0

Thus, by (135),

8for each e (2, ).

lim
dQ

f 1)(137) -o d
and the function Z, defined in (131), satisfies

(138) lim Z c, lim Z (48 + u)LL2 > 0 (f -1).

This suggests trying to show that Z > 0, or equivalently, dQ/d < 0 for all > 0 and
f -1. For this purpose we look for positive constants cl, c2 such that

(139) H2() -4- clH3() < 0, c2H3() HI() < 0 for all > 0 (f -1).
Note-that, from (107), we necessarily have c2 < 1.
introduce

(140) P :--
vG2(s)

(141) P :=
VrG2(s)

Moreover, it seems useful to

h-" (o, s)e-2a-Xdp > 0,

h(, 8)e-2a-ld99 > 0

Then (107) and a short calculation yield

(142) Ha H P2
(143) H0 2H. + Ha P

(f -1),
(f 4-1).
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Now, eliminating H0 from Z by (143), and using (142) and the inequalities

H > c:UlH3 -HIH3 > c’U_H2 (f -1),(144)
we otin

Z =72(A / #)H2 + 24#H32 + (24A- Au)HiH2 -(96#- Au)HiH3
+ A(24 / -52 v)H2H3 24P1 (AH2 + #H3)

(14)
>[72c(A + .)- 72, + AulHHa + (48A + Au)HHe
+ 24#HaP. + I(24 + u)HP-- 24P(h +

Since e < 1, we have 7c(a + .) 7. + a. < a(ea + . < o. h, by (144) we
further obtain

>0

where

72(A / #) ( )-w(,) :=
(48 + .)

R := 24#H3P2 / (48-4- 5v)H2P2-24P(AH2 -4- #H3)
>0 ’

>0

Before continuing here, we have to determine the constants cl, C2. For this purpose,
we use the following lemma.

8LEMMA 10. Let ll,12,13 be the integrals defined in (119)-(I21), where E (2, )
is arbitrarily fixed.

(a) If ci > is such that 12 + cll3 < O, then

H2() + cH3() < 0 Ior > 0 (f -1).
(b) If c2 satisfies 1/2 < c2 < t and c213- < O, then

c2H3() H_() < 0 for all > 0 (f -1).

Proof. (a) Setting F()"= e-(H2()+ cH3()) and using (114), (142), we
calculate

dF 1 -[3(1 + cl)Hi() 5clH3()]d--- e
< e- (3 2c)H3() <_ 0.

Since limo+ F() 12 + cll3 < 0, this implies F() < 0 for all > 0 and thus proves
the assertion.

(b) Using a similar trick, we set /:= 2-1/(2c9.)and F():= en(c2H3()-Hl()).
From (114) and (143) we obtain

d- =-1/2en P + --(-3c22 + @2- 1)H < 0.
C2

>0

Now the assertion follows as in the proof of (a).
13-11 <0. Thus by theNumerical calculations have shown 12 + 6/3 < 0 and

preceding lemma, (139) holds for

ci 6 c2
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Now a simple estimation yields W(6, 5) > 0. Moreover, from (106) we see that # < 6A,
which, together with H2 + 6H3 < 0, gives AH2 + #H3 < 0. Thus R > 0, too, and
hence Z > 0. We have proved the following lemma.

LEMMA 11. In the case f -1, dQ/d is negative for all > 0 and arbitrarily
fixed 1 E (2,-s3). Moreover, lims-0+ Q =: i < 0.

Let us now consider the case f 1. It seems difficult to attain analytical results
on the behavior of Q beyond those already stated in Lemma 9 and in (133), (134).
But extensive numerical computations (carried out by Frank Rehrmann) produced the
following results.

(149) Numerical results .for f 1, fit e (2, ). The denominator 7:) of Q(s) vanishes
at exactly one point so < 0. For so < s < 0, Q(s) is strictly decreasing from c to 0.
Moreover, dQ(s)/ds vanishes at exactly one point Sl < so; Q(s) is strictly increasing
in (-c,sl) from -c to m := Q(sl) < 0, and strictly decreasing in (Sl, S0) from m
to -Co

Figure 10 shows the graph of Q(s) for/ 2,3 (f +/-1). For other values of/,
8Q(s) behaves quite similarly: As/ increases from 2 to , so ranges from -2,2 to

-1,9, Sl from -2,93 to -2,95, m from -41 to -34, and M := lims-0+ Q(s)
from .. -64,3 to -18,8.

4

FIG. 10. The quotient Q(s) for 2, 3.

11. A modified scaling. Before pronouncing the main result on the unfolding
of the degenerate bifurcation at the cusp point, we will briefly revisit the scaling chosen
in (64). This scaling is unsatisfactory in a double sense. First, an admissible range of

(150) 0 < e <_ co, ITJ <_ TO (eo, TO sufficiently small)

leads to an admissible range

(151) Ipl < 0 < Iql <- e
in the (p, q)-plane which, obviously, is not just a full neighborhood of (0,0) with p-axis
removed. The second drawback refers to the admissible range of (u, v) and, thus, of r.
While the results of 6 and 7 are valid only for (u, v) in a bounded domain and (, T)
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sufficiently small, Lemma 7 contains results for r cx and thus, for arbitrarily large
v. To remedy this we follow the same procedure as in [4, p. 78]: In (64), we replace
the scaling e X/ by

(152) e a-l, 0<a_l

with a new parameter a. Repeating the former calculations, it turns out that all the
formulae and definitions in 6-8 remain valid, if we simply replace f, where it occurs
explicitly, by fa2. Moreover, in (65), the functions Ri(u, v, , T) become real-analytic
functions Ri(u,v,e, T,a), at least quadratic both with respect to (u, v) and (,T),
which are again bounded for (u, v) in an arbitrary bounded domain, 0 < a <_ 1, and
(e, -) as in (150). Now, the admissible range of (p, q) is

(153) Jp] _< tc-lT0, 0 < Jql <-- 2.
Therefore, given Iql e (0,e], if a varies in [elV/, 1], then p covers the interval
[0, e0T0]; hence, (p, q) covers a full neighborhood of (0,0) except q 0. As for the
second drawback mentioned above, we note that after the new scaling, all the former
statements are again valid for any bounded region B "lul < no, Ivl < vo. In the original
scaling, B corresponds to lul < a-luo,lv < a-2vo, and since a - 0 is allowed, the
original statements are valid for any (u, v) E R2.

12. The unfolding in the cusp point. From the results in the preceding
sections we now derive the following theorem concerning the unfolding of the degen-
erate codimension-2 bifurcation in the cusp point. Recall that for this phenomenon to
occur, the parameters (a,/) have to satisfy (54) and, given/, the parameters (, )
must be sufficiently close to (9, 3), or equivalently, (p, q) must be sufficiently close
to (0,0).

THEOREM 2. In a neighborhood bl of the origin in the (p, q)-parameter plane there
exist curves

51" p iq + O(Iql ), q < O
(m,M as in (149) and Lemma 11)

L2 p -mq + O(q q > 0

and a subdivision ofLt into regions I-V generated by L1, L2, the p-axis, and the positive
q-axis (see Fig. 11) such that for system (58) the following statements hold locally,
i.e., in a neighborhood of (w, w2)= (0,0) (for an illustration of these statements, see

Fig. 12)"

FIG. 11. Subdivision of l.
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V

FIG. 12. Phase portraits for the regions of Fig. 11.

(a) (p, q) 6 I: There is no periodic orbit, but there exist two heteroclinic orbits
joining the saddle (0,0) to the sink in the left half plane.

(b) (p, q) 6 LI: There is a homoclinic orbit joining (0,0) to itself and surrounding
the two other equilibria; it is asymptotically stable (from outside).

(c) (p, q) 6 II: There is exactly one periodic orbit; it encircles all three equilibria
and is asymptotically stable. It approaches the homoclinic orbit just mentioned, if
(p, q) tends to a point on LI. Its size (e.g., its diameter) is -of order as (p, q) tends
to the point (, 0). Moreover, there exist two heteroclinic orbits joining the source in
the right half plane to the saddle (0,0).

(d) (p, q) 6 III: There are exactly two periodic orbits; the outer one is asymp-
totically stable, while the inner one is unstable. As (p,q) tends to (,0), the size of
the outer periodic orbit is of order , while the size of the inner one decreases to zero
linearly with q. On the other hand, if (p, q) crosses the curve L2 at (, q, the two
periodic orbits first coalesce to a single periodic orbit--with size of order --and then
disappear.

(e) (p,q) 6 IV: No periodic orbit exists. As (p,q) approaches and crosses the
positive q-axis transversely, supercritical Hop/bifurcation occurs.

(f) (p, q) 6 V: Exactly one periodic orbit exists; it is asymptotically stable. It
shrinks down to a point as (p, q) tends either to (O,q or to (, 0), ( > O, < 0).
More precisely, its size decreases like in the first limit, and like q in the second
ofte.

Proof. First we note that for q 0, system (58) is equivalent to (65); hence we
may use all the results on system (65) derived in the preceding sections. Moreover,
by (64), the curves L, L2 correspond to the curves T Q(s)e + O(e2) (see (83)) with
s --, 0+ and s s, respectively. We also note that any (nonconstant) periodic orbit of
(65) must surround all three equilibria and, therefore, crosses the positive v-axis. The
assertions on the precise number of period orbits now follow from Lemma 5 combined
with Lemma 11 in case q < 0, while in case q > 0, the analytical results of Lemmata
5 and 9 do not suffice for their proof; we also need the numerical results (149). As for
the size of the periodic orbits starting at (Wl, w2) (O,A-11qlr), most statements are
easy consequences of (64) and the limit relations (133), (134). But the two assertions
concerning their shrinkage of order q again use the numerical results (149). The
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existence of a homoclinic orbit follows from Lemma 5, since Q0 in (85) is easily seen
to coincide with M. The fact that this homoclinic orbit is the limit of the periodic
orbits in II if (p, q) tends to L1 is proved along the same lines as analogous results in
[10, p. 339] and [4, p. 70]. To prove the asymptotic stability of the homoclinic orbit
we apply [5, p. 357]: Inserting f -1 and T Qo + O(2) into the right-hand
side of (65), the trace of its linearization at (u, v) (0,0) is Q0e + O(2), which is
negative since Q0 M < 0 and > 0. Hence, the homoclinic orbit is asymptotically
stable. Next we prove the stability assertions for the periodic orbit of system (65)
starting at (u,v) (0,), where > 0, > 0 are fixed and T Q() + O(2).
Let r > 0 be sufficiently close to , and recall the definitions of I(U, V), N(U, V),
H(t), and g g(r,, T) in (68), (70), (73), (78). Obviously, g(,, T) 0, and
from OI(U, V)/OV 2a < 0 for V < 0, we easily see that 9 is asymptotically
stable (respectively, unstable) if (r- )K < 0 (respectively, > 0), or a fortiori if
dK/dr]r=e < 0 (respectively, > 0). Now, using the previous notation we obtain

Q() /r N-I(V + cU2)dU

-’: gl (r)

+ +

J2(r)

+ O(e:).

Owing to Q(r) -J2(r)/J(r) (see (82)), we calculate

dK
-daeJ() --z-__ Ir=e + O(e2)

dr ar

The desired stability properties now follow from (111), Lemma 9, Lemma 11, and--in
case f 1--the supplementary numerical results (149). As for the heteroclinic orbits,
we assume (p, q) E I U II and r > 0 arbitrarily fixed. By essentially repeating the
preceding calculation, we obtain

K(r, e, T) 4a J (r)(T eQ(r)) + O(e2 + T2).
<0

Now, in case (p, q) e I, we have T- eQ(r) :> 0 and thus K(r, e, T) < 0. If (p, q) e II,
there exists > 0 sufficiently small such that T- eQ(r < 0 (see Lemma 11); hence
K(,e, T) > 0. By (71), this implies the existence of a positively invariant compact
region P in case (p,q) I, and a negatively invariant compact region Af in case
(p, q) II, as shown in Fig. 13. The existence of heteroclinic orbits as claimed in the
theorem now easily follows by standard arguments using Poincar-Bendixson theory,
the hyperbolicity of the three equilibria, and the fact that P, Af contain no nonconstant
periodic orbit. Hopf bifurcation of system (65) with f 1 and parameter T at
(u, v,, 7) (0, 0,, 0) is verified in the usual way (see [8]). Since we already know
that it is supercritical with asymptotically stable Hopf cycles, we omit the details.
Finally, to prove the phenomena claimed when (p, q) crosses L2, we again rely on the
computations (149). This ends the proof of Theorem 2.
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(a) ())

FIG. 13. Illustrating the proof of Theorem 2. (a) (p, q) E I, (b) (p, q) EII.

13. Concluding remarks. (1) The phenomenon described in Theorem 2,
which occurs as (p, q) crosses the p-axis upwards, can be regarded as a counterpart to
Hopf bifurcation: Three equilibria first coalesce to a single equilibrium, from which a
family of periodic orbits then emanate. As we have seen, the growth of these periodic
orbits is not of order vf as in standard Hopf bifurcation, but only of order q.

(2) It is easily verified that, in addition to the heteroclinic orbits addressed in
Theorem 2, system (58) has a continuum of heteroclinic orbits connecting the two
equilibria (0,0); this is true for any (p, q) sufficiently small (q 0).

(3) Returning to the surface A/I in (, 5, )-space defined by (7), with (c, ) sat-
isfying (54), the results of Theorem 2 and the phase portraits given in Fig. 12 may be
carried over to a neighborhood L/’ of the cusp point Co of A/[. Looking at/4’ parallel
to the negative 5-axis, we obtain a subdivision of L/’ which is described qualitatively
in Fig. 14. Here, the phase portraits in I’, L,... are equivalent to those in I, L1,-...
Moreover, Fig. 15 shows a vertical projection of//’ onto the original parameter plane
(, 5) with corresponding decomposition I", L’,.... It is interesting to note that the
restriction IPl -< XT0, given in (151), is essential here for q > 0, since otherwise,
there would exist parameters (p, q), q > 0--corresponding in Fig. 15 to the points of
III" and V" between C+ and C_--for which system (58) has three equilibria, contrary
to our previous results.

FIG. 14. The neighborhood U of Co.
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FIG. 15. Vertical projection of .
(4) The local phase portraits of Fig. 12 could be translated back to the original

(x, y)-plane, via the near identity transformation (56) and the orientation reversing
transformation (24). Figures 16 and 17 show such phase portraits corresponding to
regions II, respectively III. Note that all statements were of local nature such that,
e.g., in Fig. 16, only the flow in a common neighborhood of the three inner equilibria
is guaranteed.

cx# " x

FIG. 16. Phase portrait for region II in the (x, y)-plane. The curves (5) are indicated, too.

ii
IIII

FIG. 17. Phase portrait for region III in the (x, y)-plane.
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(5) The parts of this paper concerning the unfolding of the degenerate codimen-
sion-2 bifurcation in the cusp point can be treated in a more general setting. This has
been done and will be published separately.
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QUALITATIVE ANALYSIS OF ONE- OR TWO-SPECIES
NEUTRAL DELAY POPULATION MODELS*

YANG KUANG

Abstract. In this paper neutral delay models of single population growth, predator-prey, and
competition interactions are introduced and investigated. These systems are more general than
previous ones by allowing per capita growth rates to be nonlinear and delays to be of the general
distributed type. Conditions are given for solutions of these systems to be bounded for proper initial
functions. For neutral delay single population models, sufficient conditions for solutions tending to
the positive-steady states are also presented.

Key words, qualitative analysis, neutral delay equation, predator-prey system, competition
system, distributed delay
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1. Introduction. The autonomous logistic delay differential equation

(1.1) k(t) rx(t)[1 x(t :)/g],

where "."= d/dt, r,K, T are positive constants, has been widely used as a model
equation capable of showing oscillations of single-species population sizes in constant
environments closed to both immigration and emigration (see-Cushing [2], Gopalsamy
and Zhang [10], Hale [13], Kuang and Feldstein [19], and Pielou [27]). It has been
the object of intensive analysis by numerous authors (see the references cited in [10]).
Indeed, it is a natural generalization of the following well-known logistic single-species
population equation:

(1.2) 2(t) rx(t)[1 x(t)/g].

Here r is called the intrinsic growth rate of the species x, K is interpreted as the
environment carrying capacity for x, and r[1 -x(t)/K] is the per capita growth rate
of x at time t. Based on his investigation on laboratory populations of Daphnia
magna, F.E. Smith [28] argued that a growing population will use food faster than a
saturated one; thus the per capita growth rate in (1.2) should be replaced by r[1-
(x(t) + pic(t))/K] (for details see Pielou [27, pp. 38-40]). This leads to the following
equation"

(1.3) (t) rx(t)[1 (x(t) + p(t))/K].

We may think of x as a species grazing upon vegetation, which takes time T to recover.
In this case, it will be even more realistic to incorporate a single discrete delay T in the
per capita growth rate, which results in the following neutral delay logistic equation

(1.4) k(t) rx(t)[1 (x(t T) + p2(t T))/K].
This equation was first introduced and investigated by Gopatsamy and Zhang [10].
Subsequently, it was studied by Freedman and Kuang [6], and Kuang and Feldstein

*Received by the editors July 25, 1990; accepted for publication (in revised form) April 5, 1991.
This research was partially supported by a College of Liberal Arts and Sciences Summer Research
Award at Arizona State University.

tDepartment of Mathematics, Arizona State University, Tempe, Arizona 85287-1804.
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[19]. The focus of these works was the qualitative behavior of the solutions, such as
boundedness, asymptotic stability, and oscillation. In a recent paper Gopalsamy, He,
and Wen [9] studied the existence and linear asymptotic stability of periodic solutions
of equation (1.4), when r, p, and K are replaced by periodic functions of period w,
and T nw for some positive integer n.

Assume the population x(t) described by (1.4) is a prey species, and suppose
there exists a predatory species y(t) that preys on species x(t); then it is natural to
propose the following mathematical model to describe their interaction:

2(t) rx(t)[1 -(x(t- T) + p2(t T))/K] y(t)p(x(t)),
(t) (t)[-- + ,((t- ))].

Here c, , and a are all positive constants, and p(x) is the predator response function
for the predator species y with respect to the prey species x. A slightly more general
version of (1.5) was introduced and studied in Kuang [16], where the focus of the
study was the local stability and oscillation analysis of system (1.5). An even more
general version of (1.5) was proposed and studied in [18] where sufficient conditions
were obtained for its solutions to be bounded.

Assume x(t) described by (1.4) is the population of a species competing with
another species with population y(t) for a shared limited resource--space or a nutrient,
for example; then the following system may model their interaction:

(1.6)
2(t) rx(t)[1 kx(t) ax(t T) 32(t ’0) cy(t ’2)],
(t) r2y(t)[1 c2x(t T3) k2y(t T4)].

Here all parameters except are assumed to be positive constants. We have included
klx(t) into the per capita growth rate of x(t), which may reflect the possible instan-
taneous interference within species x. System (1.6) was first introduced and studied
in Kuang [17]. Again the focus of that work was the local stability and oscillatory
analysis of system (1.6). Sufficient conditions for solutions of (1.6) to be bounded can
be found in [18].

Although extensive literature exists on functional differential equations and their
applications (cf. [2], [3], [7], [13], [29]), works on global asymptotic stability and bound-
edness of solutions for nonlinear equations or systems are relatively few. Most of these
existing results only apply to systems with special kernel in the distributed delays (cf.
the references cited in [1], [2], [5], [20]), or with a strong nondelayed self-crowding
effect (e.g., [8], [12], [22]-[25]). However, these requirements are rather artificial and
restrictive, and very few real systems may satisfy them. Thus, there is an urgent need
to study these questions for more general and realistic models. An effort along this
line was documented in [11], [21].

As the reader may already be aware, many real systems are quite sensitive to
sudden changes. This fact may suggest that proper mathematical models of the sys-
tems should consist of some neutral delay equations. Even though the delay lengths
may be short, and the neutral terms relatively small, it is still necessary, for the sake
of rigorousness, to justify that the neutral term effects are not important. Indeed,
most of the time we may find that neutral term effects can be quite significant. This
is largely due to the fact that neutral delay equations are not structurally stable in
the sense that the introduction of neutral delay terms may destabilize an asymptoti-
cally stable equilibrium. For example, 32 -x has a globally asymptotically stable
trivial solution, while the same solution in 2 + 22(t- T) --X becomes unstable for
any T > 0. This is because the corresponding characteristic equation of the neutral
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equation may have roots bifurcating from infinity [6], [13], a phenomenon that cannot
occur in retarded equations. This indicates that it is important to deal with neutral
delay equations in real mathematical models.

Although neutral delay equations have been studied extensively (see the references
cited in Hale [13]), most of the existing works are related to fundamental questions
such as existence, uniqueness, local stability analysis, etc. Recently, there seems to
be a growing interest in the oscillation theory for neutral delay equations (cf. [7], [10],
[16], [17]). The literature on global asymptotic stability for general nonlinear neutral
delay equations is scarce. The main difficulty in this kind of analysis is probably the
lack of compactness for bounded solutions (indeed, even the boundedness of solutions
is usually hard to establish). Frankly speaking, the results to be presented in this
paper are rather limited and primitive.

This paper is organized as follows: In the next section the system is described in
detail and some preliminary results are presented. Section 3 deals with boundedness
of solutions of a scalar neutral equation and 4 contains a discussion of domain of
attractivity for the unique positive steady states. Section 5 considers the boundedness
problem for the full system. The final section is devoted to discussion and presents
some numerical simulations.

2. Preliminaries. In this paper we propose to study the following general
neutral delay systems, which may model a two-species interaction (x and y) in a
closed environment and include both systems (1.5) and (1.6) as special cases:

&(t) -x(t) g(x(t + s))d#l(s) p k(t + s)d#2(s)
T1 T2

-q(x(t)) y(t + s)d#a(s)

)(t) =(t) + b x(t + s)q(x(t + s))d#(s) c (t + s)d#(s)
7"4 T5

where T, 1,... 5, p and c are nonnegative constants, and a and b are real numbers.
We always assume the following:

(nl) #(s)is nondecreasing and foT" d#(s)- 1, i= 1,..., 5;
(n2) g(x) is continuously differentiable such that g(0) > 0, g’(x) < 0 for x >_ 0,

and g(1) 0;
(H3) p(x) xq(x) is continuously differentiable, p(0) 0, p’(x) > 0 for x >_ 0,

and limx-.+ p(x)
Clearly, when a < 0, b > 0, c 0, and g(x) r(1- x), then system (2.1) reduces

to a slightly more general form of (1.5). We may refer to this resulting system as
Gause-type neutral delay predator-prey system (cf. [16]). When a > 0, b < 0, we see

(2.1) has (1.6) as a special case. System (2.1) is more general than the one considered
in [18] in the following two aspects: (i) we allow the per capita growth rate of x to be
nonlinear when y is absent, (ii) all delays are of the distributed type.

Let TO max{- 1, 2,..., 5} and R+ {r’r >_ 0}. We always assume that
the initial conditions for (2.1) are of the type

x(s) 1 (s) >_ 0, s e [--TO, 0], 1(0) > 0 and
(2.2)

y(s) 2(s) >_ 0, s e [--TO, 0], 2(0) > 0 and

e C([-0, 0], R+),
e C([-0, 0], R+).
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We say (x(t), y(t)) is a solution of (2.1) on [--TO, ) if both x(t) and y(t) are positive
continuously differentiable functions and satisfy both the above initial conditions and
system (2.1).

We note that the first equation of system (2.1) can be rewritten as (provided
x(t) > 0)

lnx(t) + p x(t + s)d(s)
(2.3)

/2
By legging u() ln(), we cn see ha system (2.1) fMls into the class of neurM
systems considered in HMe [13, 0hp. 12]. Thus, locM existence, uniqueness, nd
continuous dependence of solugions re guaranteed [13, 12.2]. The following resul
ensures gh he solution ((),()) of (2.1) nd (2.2) is positive nd exists for 11
0.

PROPOSITION 2.1. Assue (H1)-(H3) in (2.1). Then
oI (2.2) is positiv > o. Moreover,
constants A and B (depending on initial functions and 2), such that x(t) AeB.

Proof. Suppose the maximal imerval of existence for x(t) and y(t) is [0, w). The
positivity of x(t) and y(t) follows from the fact that the system is of Kolmogorov form.
Assume first w < +. Then equation (2.3) implies that, for t [0, w),

which leads to

T2 2

Thus, for t e [0, w),

(2.4) ln(t) < ln(O)+ 0 41(s)d.(s) +

(0)exp (0f. l(S)d.(s)), B (0), then we see that (2.4)impliesLet that

for t < ,
(2.5) x(t) < AeBt.

Hence, limt--. x(t) < AeB < +oc. Clearly, (2.5) holds for all t E [0,w). The second
equation of (2.1) implies that, for t E [0,w),

which leads to

(2.6)

(ln y(t))’ < lal +

lim y(t) < y(O)exp (wtla + Ib[p(AeBw)]) < +.

By the well-known continuation theorem (Theorem 12.2.4 in [13]), we conclude that
w +, proving the proposition.

In the rest of this paper II(s)ll max{(s),s e I--T0,0]} is denoted for any
continuous function (s) defined on [--TO, 0].
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3. Boundedness of x(t). Our main object in this section is to obtain conditions
under which x(t) will be bounded. To this end, we will analyze the system independent
of y. We need the following lemma. Its proof can be found in [18]. For convenience
and completeness, we repeat its proof here.

LEMMA 3.1. If 0 < <_ e-l, then there exists a A(a), 1 < A(a) < e such that
exp(a()) (a) and exp(ax) > x for x

Proof. If e-1, then we easily see that ex >_ x for all x E R and eax x if
and only if x e. Clearly, for x > 0, ex is strictly increasing with respect to a. Thus,
we see that if 0 < < e-1, ex will. intersect with x at exactly two distinct points,
say xl(a) and x2(a) and xl() < x2(a). Then, we must have 1 < xl(a) < e < x2(a).
Let (a) xl (a); then the conclusion of the lemma holds. El

The following theorem is the main result of this section. It generalizes Theorem
3.1 in [18].

THEOREM 3.1. Assume a g(0)T1 4- p <_ e-1, and let /k(a) be defined as in
Lemma 3.1. Assume further that the initial-function 1 for x satisfies I1111 < 1.
Then x(t) < )t(a) for t > --TO.

Proof. Since x(t) > O, y(t) > 0, we have

[; ; ](3.1) &(t) < x(t) g(x(t + s))dltl(s) -p 5c(t + s)d#2(s)
T1 T2

If x(t) is not bounded by A(a), then there must exist t* > to > 0 such that x(t*)
(), x(to) 1, 1 < x(t) < A(a) for t e (to, t*) and x(t) < A(a) for t e [--TO, t*). It is
easy to see that (3.1) implies that, for t > to,

x(t) < x(t0)exp g(x(T + s))dttl(s) dT
T1

Since x(t) > 0, for t >_ --TO, we have

(3.3)

p :b(T + s)d#2(s) dr -p C(T + s)dT d#2(s)
T2 T2

T2 7"2

<

If t* _< to + 7.1, then

(3.4) g(X(T + s))d#l(s) dT < g(O)dT < g(0)71.
T1

If t* > to + T1, then X(T + S) > 1 for s [-7-1,0], T [to -7-1,t*], which implies
9(x(T + s)) < 0 by (H2). Thus

(3.5) g(x(7- + s))d#l(s) dT < O.
+rl rl
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Hence, we have

(3.6)

g(X(T + s))d#l(s) dT
T1

(; )g(X(T + s))d#l(s) dT
T1

+ g(X(T + s))d#(s) dT
.3ff T1 T1

That is, in both cases, we have

g(X(T + s))d#_(s) dT< g(O)T.
T1

Therefore, (3.2) yields

(3.8) A(c) x(t*) < exp(g(O)T + pA(a))< exp(aA(c)).

Clearly, this is a contradiction to the definition of A(a). Therefore, x(t*) must be less
than A(a), and the theorem is proved.

We call a function x(t) (defined on [0, +z)) oscillatory about x* (see also [7], [10],
[16], [17]) if there exists a sequence {tn} --* + as n +, such that x(tn) x*,
n- 1,.... Otherwise, we call it nonoscillatory about x*.

If x(t) is unbounded, then the following theorem may roughly characterize its
behavior.

THEOREM 3.2. In system (2.1), /f x(t) is unbounded, then x(t) is oscillatory
about 1.

Proof. Assume that x(t) is unbounded and not oscillatory about 1, then there
must exist a to > 0 such that, for t >_ to, x(t) > 1. Let t to + T1; then we have for
t>tl,

and

g(X(T + s))d#l(S) d- < 0,
T1

-p 2(T + s)d#2(s) dT

-p [x(t + s) x(tl + s)]d#2(s)
7"

< p x(t + s)d#2(s).

Hence, from (3.2), we see that, for t > tl,

x(t) <_ x(tl)exp p x(tl + s)d#2(s) <
T2

which implies that x(t) is bounded. This is a contradiction to our assumption, and
the theorem is thus proved.
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4. Attractivity of the positive steady states in single population mod-
els. In this section we restrict our attention to the following neutral delay single
population model, which results from (2.1) by taking y(t) =_ 0:

(4.1) 2(t) x(t) g(x(t + s))d#l(s) p 2(t + s)d#2(s)
T1 T2

We always assume that the initial function of (4.1) satisfies the requirements stated in
the first part of (2.2). Clearly, (4.1) has exactly two steady states. They are x(t) =_ 0
and x(t) 1. The variational equation of (4.1) about x(t) =_ 0 is 2(t) g(O)x(t).
Thus, we see x(t) 0 is always unstable. In fact, we have the following stronger
result.

PROPOSITION 4.1. Let x(t) be the solution of (4.1); then

limsupx(t) >_ 1.

Proof. Otherwise, there is 0 < e < 1, T > 0, such that, for t >_ T, x(t) <_ 1- .
Then for t > to >_ T + T1 + T2,

(4.2) g(x(r + s))d#(s) dr >_ g(1 )dr g(1 e)(t to),
7"1

(4.3)
-O 2(r + s)d#2(s) dT

T2 f-p [x(t + s) x(to + s)]d#2(s)
T2

> --p x(t + s)d#2(s) >_ -(1- )p.
T2

Therefore

x(t) x(to)exp g(x(r + 8))d#1(8) dT
T1

.exp -p C(T + s)d#2(s) dr

>_ x(to)exp{g(1 )(t to) (1 e)p},
which implies that

lim x(t)=

a contradiction to the assumption that x(t) _< 1- for t _> T. This proves the
proposition.

In order to prove our global stability result we need the following simple lemma.
LEMMA 4.1. For 0 < r < 1, there is a strictly decreasing function h(r), such

that h(r) exp{r(h(r)- 1)}, limr_o+ h(r) +x, limr__,-h(r) 1, and x
exp{r(x- 1)} for x e (1, h(r)).

Proof. Clearly, for 0 < r < 1, er(x-) always intersects with x at x 1.
(d/dx)(er(x-))lx= r < (dx/dx)lx= 1, we see that er(x-l) will intersect with x
at another point, say h(r). Clearly, this h(r) has all those properties described in the
lemma.

As in Theorem 3.1, we denote

a g(0)r + p,
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and define A(a) as in Lemma 3.1. Assuming a

_
e-1, we define

G(a) max{Ig’(x)l x e [0, A(a)]}.
We denote

max{. }.
Now we are ready to state and prove the main result of this section.
THEOREM 4.1. In system (4.1), assume 0 < < e-, and
(i) A(a)p < 1,
(ii) G(a)T1 + 2p h-(A(a)),

where h-i(-) is the inverse function of h(r) dCned in Lemma 4.1. Then we have
that limt+ x(t, ) 1, provided that its initial function (s) satisfies that (s) E
Ci([-, 0], R+), (0) > 0, and [[ max{l(s)l s E [-, 0]} < 1.

Proof. By Theorem 3.1, we know that x(t) < A(a), where 1 < A(a)- e, and
a g(0)Ti + p e-i. Denote

(4.4) v limsup Ix(t)- 1[;

then 0 v e- 1. In the following, we assume v > 0. We claim that x(t) must
be oscillatory about 1. Otherwise, there is a T > 0 such that, for t T, x(t) > 1 or

x(t) < 1. We assume first that x(t) > 1 for t k T. Let k T + Ti + 2, such that

If( O, we hve

( + px( (+ s)d,2(s) (1- A()p)&(,
T2

and

x(t-) g(x(/ s))d#l(s) < A(c)g(0),
T1

which implies that (since ()p < 1)
()(o)
1 )(a)p"

If k(t-) < 0, we have

it(t-) + px(t-) 5c( + s)dtt2(s) <_ (1 A(c)p)(t-),
T2

and

which implies that

(t-) a(x(+ ))d,()> (.)a((.)).
T1

Hence, for all t >_ T + T1 + T2,

(,)((,))
1

()(0) -(c,)(()) }(4.5) 12(t)l _< max
1 -,(a)p’ 1 &(a)p

This, together with the assumptions v > 0 and x(t) > 1 for t >_ T, implies that

lira-max g(X(T -t- 8))dT’8 C rt[--Wl, 0] --Oe.
t---+c
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Thus

lim g(X(T + s))dttl(s) dT
t--’+’-[-O0

T1

lim g(X(T + s))dT d#(s) -.
t+

T

Therefore, we hve, for any to T,

since

exp -p 5C(T + s)d#2(s) dT

exp -p [x(t + s) x(to + s)]dtt2(s)
T2

<: exp{pA(a)} <
This clearly contradicts the assumption that x(t) > 1 for t T. The case of x(t) < 1
for t T can be dealt with similarly. This proves the claim.

Now, since x(t) is oscillatory about 1, we see that there is a sequence {Ti},
1,..., such that 0 < T < < Ti < Ti+l < ..., limi+Ti +, and

x(Ti) 1. Denote
u lira sup x(t),

w lira inf x (t).
t+

Then, either u- l+v or w 1-v. Assume first that u l+v. Then, for any
0 < e < v, there is an i(e) > 1 such that, for t Ti, 1-v-e < x(t) < u+e.
Cleary, thee is a t* t*() T + such that (t*) > u- , ad (t*) is the
maximum in [Tj,Tj+] for some j i. Without loss of generality, we may assume
that 1 < x(t) < x(t*) for t e (T, t*). W hve

ii’(; > ;n ( + .)d(.) d -n Ix(t* + .) x(Ts + .)]d.(.)

< o(u + e 1).
If t* Tj N rl, then

a((: + )):() : : :(-)( + < :):() :
T1 T1

: e(-)::( +: :),
since

Ig(X(T + S)) Ig(x(T + S))-
[g’(OX(- + S)+ 1 --O)(X(7 + S)- 1)[

<_ G(a)(v + ) G(oz)(u + e 1),
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where 0 E [0, 1]. If t* -Tj > T1, then
,

(f
Tj

g(X(T + s))d#l(S) dT < O,

and

g(x(T + s))d#l(s) d- <_ G(a)TI(u + e 1).
T1

Thus, in both cases we have

(4.6)

Since (4.6) is true for all 0 < e < v, by letting e - 0 we obtain

(4.7) u _< exp{[G(a)T1 + 2p](u- 1)}.
This is a contradiction to assumption (ii), since if G(a)T1 + 2p <_ h-l(A(a)), then for
1 < x <_

x > exp{[G()r + 20](- 1)}.
This indicates that u - 1 + v if v > 0.

Now we assume w 1- v. Then a similar argument as above yields that, for any
0<e<v,

1 v + e > exp{--[G(a)T1 + 2p](v + e)},
which implies that

Thus,

1 v >_ exp{--[G(a)T1 -t- 2PLY}.

w >_ exp{[G(a)T1 + 2p](w- 1)}.
This is impossible for w < 1 and G(c)T1 q- 2p <_ h-l(,(a)), since h-l(A(a)) < 1 by
Lemma 4.1. This proves that w 1 v if v > 0. Hence, v must be zero, proving the
theorem, n

In particular, for the equation

(4.8) k(t) x(t) r[1 x(t + s)]dttl (s) p 5c(t + s)d#2(s)
T1 T2

where r > 0, we have the following corollary.
COROLLARY 4.1. In (4.8) let a rrl -b p. Assume a < e-I, ,k(o)p < 1 and

rT1 + 2p <_ h-l(A(a)). Then the conclusion of Theorem 4.1 is valid for (4.8).
Proof. We note in this case g(x) r(1 x). Thus g(0) r and G(a) r. The

rest follows from Theorem 4.1.
Remark 4.1. It should be mentioned here that assumption (ii) in Theorem 4.1

can be replaced by
(ii’) G(a)T1 -+- 2p < (e- 1) -1,

which is more restrictive, but easy to verify. This is because 1 < A(a) < e for
0 < a < e-l; thus by Lemma 4.1 we have

h-l((c)) > h-l(e) --(e- 1) -1.
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Remark 4.2. As mentioned in the Introduction, our results are rather limited and
primitive. This can be seen by taking p 0, i.e., when (4.1) is reduced to

(4.9) &(t) x(t) g(x(t + s))dtl(s).
T1

For (4.9) Theorem 3.2 in [15] implies that if GT1 <_ 1, where G is any upper bound
of Ig’(x)l, x >_ 0, then x 1 is globally asymptotically stable with respect to initial
function , E C([-, 0],R+), (0) > 0. This is clearly much sharper than the
conclusion implied by Theorem 4.1.

5. Boundedness results for system (2.1). We consider first the case when
c > 0 in system (2.1). This will include the neutral competition system (1.6) as a
special case. When a < 0, b > 0, system (2.1) can be used to model the predatory-
prey interaction with self-crowding effect on predator. The following result generalizes
Theorem 4.1 in [18].

THEOREM 5.1. Assume c > O, ( g(0)T1 -p

_
e-1, (ot) is defined as in Lemma

3.1, and I1111 < 1. Then solutions of (2.1) are bounded. Moreover, if x(t) < i((), for
t >_ --TO, and

(i) If a < O, b > O, and max(0, bp((a)) + a), then

lim sup y(t)

_
(ii) Ira > O, b < O, then

limsupy(t) <_ c-icea.

Proof. The assertion on x(t) follows from Theorem 3.1. Thus, in case (i) we have

(.1) )(t) _< (t/ p(a()/+ ( + )a.(

It is thus clear that if bp(())+a 0, then limt+ (t) 0. Assume bp(())+a
> 0, then (.1) implies that (t) (t). Hence, for t to, (t) (to)e(t-to,

which leads to
(to) (t)-(-o).

Therefore,

y(t + s)d#5(s)

_
y(t)eZsd#(s)

(.)
<_ --- (t)a.() ---(t),

since y(t) > 0 for t >_ 0. A substitution of (5.2) into (15.1) yields

9(t) < u(t)(Z- -u(t)).

Clearly, solutions of

(5.4) 9(t) y(t)(1 c-le-ry(t))

satisfy

(5.5) lim y(t) c-le.
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Therefore, solutions of (5.3) must satisfy

limsupy(t) <_ c-le.

This proves case (i). For case (ii), we have

(5.6) )(t) <_ y(t) a- c y(t + s)d2(s)
T5

Thus (t) ay(t), which implies that y(t + s) y(t)ea, for s 0. Therefore

(t) y(t)(a ce-y(t)).

Hence, by repeating the above argument, we can show that

limsupy(t) c-ae.
This completes the proof.

In the rest of this section we assume c 0, a -5 < 0, b > 0. System (2.1) thus
reduces to

&(t) x(t) g(x(t + s))d#(s) p ic(t + s)d#2(s)
T1 T2

(5.7) -q(z(t)) y(t + s)da(s)

(t) (t) - + b p((t + s))d,(s)

When delays are absent from the above system, it reduces to the so-called Gause-type
predator-prey system (el., [4], [16]). For (.7) we have the following boundedness
result which generalizes Theorem 4.2 in [18].

THEOaEM 5.2. In (5.7), assume g(0)T1 + fl e--l, () i8 defined as

in Lemma 3.1, and < 1. Let > 0 be the unique solution of bp(x) 5,
min{q(x) x e [0, A(a)]}. Denote -[g(0)+ pA(a)+ ln((a)/2)],

max{y(0),}, A exp{[bp(A(a)) 5](T3 + 4 + 1)}. Then, for t O, x(t) < (),
y(t) < A. Moreover, if () < , then limsupt y(t) O; and if () 2, then

limsupy(t) exp{[bp(A(a))- 5](T3 + T4 + 1)}.
t+

Proof. Again, the assertion on x(t) follows from Theorem 3.1. In the following
we assume y(t) is not bounded by A. Clearly, in this case 2 must be less than
since if 2 > A(a), then (t) < 0; which implies that y(t) <_ y(O) < A.

The first equation in (5.7) gives us, for t _> to,

x(t) x(to) exp g(X(T -[- s))d,l(S) dT
T1

p ic(7 + s)d#2(s) dT
T2
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which leads to

x(t) <_ A(a)exp(g(0)(t- to) +

.ex 
0

J-r3
y(r + s)dT d#3(s)

The second equation of (5.7) implies that

<

which leads to

(5.9) y(t) < y(to)exp{[bp(A(a))- 5](t- to)}, t _> to.

Since y(t) is not bounded by A, there must be t2 > tl > 0, such that y(tl)
y(t2) A, and y(t) > fl for t 6 It1, t2]. From (5.9) we see that t2 t > T3 + T4 + 1
In (5.8) we let to t + T3 and to + 1 < t < t2, then y(T + S) > 1 for T 6 [t0, t],
S e I--T3, 0]. Thus,

x(t) <_A(a)exp{g(0)(t to) + pA(a)} exp{-79(t- to)}
_<A(a) exp{g(0)(t- to) +

exp{-[g(0) + pA(a) + ln(A(a)/2)](t to)}
_<A(a) exp{-ln(A(a)/2)} exp{-[pA(a) + ln(A(a)/2)](t- to 1)}
=2 exp{-[pA(a) + ln(A(a)/hc)](t- to 1)}.

Hence, for t e [to + 1, t2], x(t) <_ 2. From the second equation of (5.7), we have

(5.11) y(t) y(to)exp -e + b p(X(T + s))d#4(s) dT
r4

Let to t in (5.11), then for t + T3 + T4 + 1 _< t _< t2,

Clearly -5 + b f_r, p(x(t + s))d#4(s) < bp(A(a)) 5. For tl + ’3 + T4 + I <_ t <_ t2,

--5 + b for4 p(x(t + s))d#4(s) <_ O. Therefore, for t + T3 + Ta + 1 _< t _< t2,

y(t) < 0 exp{[bp(A(a))- 5](T3 + T4 + 1)} A,

a contradiction to the assumption that y(t2) A. This proves that y(t) < A.
Next we prove the second part of the theorem.
Clearly, if A(a) < 2, then (t) < 0, and limsupt__,+ y(t) 0. Assume now that

A(a) >_ 2, and there is a y(t), such that limsupt__.+oo y(t) > flexp{[bp(A(a))- (](T3 -"
T4 + 1)}. We claim that there exists a > 0 such that y() . Otherwise, for large t,
y(t) > . From (5.10) we see x(t) < 2 for large t; indeed, in this case, limt--.+oo x(t)
0. This clearly implies that limt-+oo y(t) 0, a contradiction. Obviously, for any
T > 0, there is a > T such that y() >_ flexp{[bp(A(a))- 15](T3 "-T4 + 1)}. Thus, for
such a large {, we can find a {, { < { such that y({) 9 and y(t) > fl for t 6 [{, t.
Now we can repeat the previous argument (by letting t, t2) to derive a
contradiction. The proof is thus complete. 13
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6. Discussion. In order to facilitate our discussion, we would like to present
some numerical simulations of the neutral delay systems studied in the previous sec-
tions. Consider first the single-species neutral delay equation

(6.1) rx[1 x(t 1) cc(t 1)].

Figures la, lb, and lc depict three solutions of (6.1) when r 0.1, c = 5. Clearly, we
see that solutions of (6.1) seem to be very sensitive to initial functions. The solution
with initial function as constant 0.2 seems to tend to a periodic solution with three
peaks, while the solutions with initial function as 1.2 + 0.2t and 0.1 seem to approach
the steady state x(t) 1 monotonically (for t > 10). This perhaps can explain
(roughly) why our main results require initial functions to satisfy some conditions.
However, such a drastic change of behaviors cannot happen if c 0. (Indeed, all
solutions tend to x(t) 1. See [30].)

DX(T)/DT R X(Y) X(T-1) DX(?-i),/D?

TIME

FIG. la. Numerical solution of (6.1) with r 0.1, c 5, and x(t) 0.2, _< 0.

TIME

FIG. lb. Numerical solution of (6.1) with r 0.1, c 5, and x(t) 1.2 + 0.2t, S 0.
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TIME

FIG. lc. Numerical solution of (6.1) with r 0.1, c 5, and x(t) 0.1, _< 0.

Fo. 2a. Numerical solutio x/g/2r, and x(t) 0.9, _< 0.

TIME

Fc. 2b. Numerical solution of (6.1) with r 0.05 4--/v 1.8638, c /-/2r- 0.04,

x(t) 2.0 + t, <_ o. l(r,c) 1.8197 < r.
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TIME

FIG. 2c. Numerical solution of (6.1) with r r/-- 0.06, c V/2 + 0.02, x(t) 0.98,_
0. /(r, c) 1.8103 > r 1.7538.

Denote

(6.2) l(r, c) v/1 rc arc cot[-rc(1 r2c2)-/2].
The following statements are proved in [6]:

(i) If l(r,c) r, then the characteristic equation of (6.1) about x(t) =_ 1 has
roots +iw, w > O.

(ii) If l(r, c) < r, then x(t) 1 is locally asymptotically stable.
(iii) If l(r, c) > r, then x(t) 1 is unstable.

Figures 2a, 2b, and 2c confirm these results. Clearly, these figures may suggest that a
Hopf bifurcation takes place when the local stability of x(t) 1 changes from stable
to unstable.

We consider next the following neutral delay predator-prey system:

x(t x’.(t) +

[ ](t) y(t) -0.1 + x2(t + 1

When p 0 (i.e., no neutral term), Figs. 3a and 3b indicate that solutions tend to
the positive steady state (1/2, q) monotonically. Figures 4a and 4b seem to show that
when p increased to 2.9, the solution (x(t), y(t)) with initial functions x(t) 0.35,
y(t) 2.21, t _< 0, tends to a periodic solution surrounding the positive steady state.
Indeed, by a local stability analysis as presented in [16], we can show that the positive
steady state is unstable when p 2.9, T 1. This may suggest that the existence
of the neutral term resulted in a Hopf bifurcation, thus producing a stable periodic
solution. Other numerical simulations of system (6.3) strongly suggest that solutions
of (6.3) are oscillatory when p 0, in contrast to the monotone behavior depicted in
Figs. 3a and 3b when p- 0.

As pointed out in the beginning of this paper, one of the most useful features of
delay equation in population dynamics is its ability to show oscillations of population
sizes observed in real systems. Our numerical simulations seem to suggest that neutral
delay models may serve better for this purpose.
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TIME

FIG. 3a. Numerical solution of x(t) of (6.3) with p O, 1, and (x(t), y(t)) (0.5 t, 1.5),
t<O.

TIME

FIG. 3b. Numerical solution o y(t) of (6.3) with p O, 1, and (x(t), y(t)) (0.5 t, 1.5),
t<O.

It is well known that the dynamics of the simple-looking Wright’s equation 2(t)
rx(t)(1- x(t- 1)) is already very complicated (cf., [13], [14], [26], [30]). With the
addition of a neutral term, we can only expect the dynamics to become even more
complex. Numerical simulations depicted in Figs. 2a-2c, and Figs. 4a and 4b seem to
suggest that periodic solutions exist and persist. These periodic solutions appear to
be the outcome of a sequence of Hopf bifurcations as in the case of Wright’s equation.
Unfortunately, there seems to be no general Hopf bifurcation theory for nonlinear
neutral systems to confirm this observation theoretically. A similar phenomenon is
expected for system (2.1). This is an open problem left untouched in this paper.
Another important question left unresolved is the domain of attractivity analysis for
system (2.1). Indeed, this question is open even for system (2.1) when p 0. These
questions will be pursued in the future.
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TIME

FiG. 4a. Numerical solution ol x(t) o] (6.3) with p 2.9, r 1 and (x(t),y(t)) (0.35,2.21),
t<O.

TIME

FIc. 4b. Numerical solution of y(t) o] (6.3) with p 2.9, T 1, and (x(t),y(t)) (0.35,2.21),
t<O.

Our boundedness result in 3 indicates that if initial population is less than the
carrying capacity of the environment (in our case, it is 1), and both the delay T and
the neutral coefficient p are small, then the population stays bounded by ,(a), where
,(a) is between 1 and e, as defined in Lemma 3.1. Our global stability result in 4
suggests that, under slightly more restrictive conditions, the population approaches the
environment carrying capacity as time goes by, a phenomenon observed for Wright’s
equation (for small delay) and logistic equations. This somehow partially justifies that
the neutral delay effect can be ignored, provided that the delay length and neutral
coefficient are expected to be small.

The results in 5 imply, to some extent, that the dissipativities of the considered
systems are maintained for small delay T1 and small neutral coefficient p. They are
certainly not surprising. However, for large T1 and p, the local stability analysis of
[16] and [17] indicated that the neutral delay terms can be destabilizing.
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A BOUNDARY VALUE PROBLEM WITH MULTIPLE SOLUTIONS FROM
THE THEORY OF LAMINAR FLOW*

S. P. HASTINGS,’, C. LU:t:, AND A. D. MACGILLIVRAY

Abstract. The equation considered is

f’’ + R(ff....f’f") =0,
with boundary conditions

f(0)=f"(0)=0, f(1)=l, f’(1)=0.

It is shown that for all R there is at least one solution, and for sufficiently large R there are at least three
solutions. The asymptotic behavior as R -m is also studied. This equation arises in studying laminar flow
in a porous channel.

Key words, boundary value problems, laminar flow

AMS(MOS) subject classification. 34B15

1. Introduction. In 1953 Berman 1] introduced and studied a mathematical model
that describes the laminar flow of a viscous fluid between two porous walls through
which fluid is injected or removed. This model arises in a number of applications,
including transpiration cooling and the separation of U235 from U238 by gaseous
diffusion.

Berman reduced the boundary value problem involving the steady-state Navier-
Stokes equations to a boundary value problem involving a fourth-order nonlinear
ordinary differential equation

(.1) f’" + n(f’f" -ff’) O,
with boundary conditions

(2) f(O) =f"(O)=0,
(3) f’(1) =0, f(1)= 1,

where f(r/) is an unknown function related to the stream function, and r/ is the
normalized transverse coordinate (r/= + 1 are the walls).

R Vd/l is a Reynolds number based upon V, the normal outward velocity,
the viscosity, and d, where 2d is the distance between the walls. V> 0 corresponds to
suction (as in the process of isotope separation of uranium) and V< 0 corresponds
to injection (as in the process oftranspiration cooling.) There have been many numerical
studies and asymptotic analyses published; see [8] and the references listed there.
R. M. Terrill studied the formal asymptotics of some solutions in [5] and [6]. In 1978
rigorous analytical results were obtained by Skalak and Wang [4], who showed that
any solution must have one of three possible types of behavior and found each of
these three types numerically. In 1987 Shih [3] proved the existence of solutions for
R < 0 using the Leray-Schauder fixed point theorem. Finally, in a preprint received
after this paper was accepted for publication, Wang and Hwang gave a different proof
of the existence of at least three solutions for large R [7], and they also proved the
uniqueness of solutions for negative R.

* Received by the editors May 23, 1990; accepted for publication (in revised form) April 29, 1991.
? University of Pittsburgh, Department of Mathematics and Statistics, Pittsburgh, Pennsylvania 15260.
t University of S. Illinois at Edwardsville, Department of Mathematics, Edwardsville, Illinois 62026.
State University of New York at Buffalo, Department of Mathematics, Buffalo, New York 14214-3093.
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The plan of this paper is as follows. We find it convenient to introduce g Rf.
First, in 2 and 3, we give a simple proof of the existence of a concave down solution
for R > 0. The method is a topological shooting argument based on a technique of
Serrin and McLeod [2]. The uniqueness of this solution remains open. These solutions
are increasing. In 3 also we obtain a second family of increasing solutions, but these
change concavity. They exist only for sufficiently large R. In 4 we consider solutions
such that g is initially decreasing. First we obtain a family of solutions with g decreasing
on [0, 1], so that R < 0. This result is not new, having been obtained by Shih [3], but
we give a simpler proof. Finally, in 5, we find a family of nonmonotone solutions,
which also exist only for sufficiently large R. In the course of the proofs we obtain
information about the asymptotic form of the solutions for large negative R. We will
strengthen this result and discuss asymptotic behavior as R-->+ in a second paper.

2. Statement of main result and first part of proof. Our main result in this paper
is the following theorem.

THEOREM 1. For each R, the boundary value problem (1)-(3) has at least one
solution. For sufficiently large positive R, (1)-(3) has at least three solutions.

Proof. With g Rf, (1), (2), (3) become

(4) gi + g’g"-gg’"=O,

(5) g(0) g"(0) 0,

(6) g’(1) 0, g(1) R.

Consider the initial value problem consisting of (4)-(5) and

(7) g’(0) A, g"(0) =/x,

where A and/z are to be found so that the solution g gx., of (4), (5), (7) also satisfies
(6). The dependence of g on (A,/z) will usually be suppressed in our notation.

In the (A,/x) plane define sets A and B as follows:

A= {(A,/x)lg’(1) <0 or g(r/) blows up before 7 1},

B-- ((;t, )]g’(1) > 0}.
It was shown in [4] that gi< 0 if 0 (see below), so solutions can only blow

up by tending to -. Since solutions of (4) depend continuously on initial conditions,
A and B are open subsets of R. If a point (A,/z) is not in A or B, then g,, solves
(4)-(6) for some R. We shall first show how to find some continua in the (Z,/z) plane
which lie in the complement of A U B, and then discuss the range of values of g,(1)
for points (A,/z) in these continua.

Since g,o(rt) -= Z 7, it is clear that the positive )t axis (Z > 0, 0) is contained in
B, while the negative A axis is contained in A.

3. Existence of solutions with g’(0)>-0.
LEMMA 1. For each A > 0 there is a/_(A) < 0 such that ifl <-_/_(A), then (A,/)

A.
Proof From (4), (5), and (7) it follows that gi(0)= gi(0)=0, and

(8) gV=_g,,2+ggi.

From this we have giO(7)=- exp g(r)drg"(s) ds, so that if /x0, then
g < 0 as long as the solution is defined.

Hence g" is decreasing, and if/z < 0 and is sufficiently large (depending on
A), then g’(r/0) <0 for some 7o in (0, 1), and g’(r/) <0 so long as the solution exists
to the right of r/o. This proves Lemma 1.
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Since A is open,/X_(A) can be assumed to be continuous in A for A > 0. For any
A2 > A > 0, let

n n,, ((, ,)1a, =< _--<, _() _--< _--<0}.

Then B contains the top boundary (/x 0, A =< A -< A2) of g and A contains the bottom
boundary (/x =/x_(A), A1 =< A -< A2). By a result in [2], there is a continuum
connecting the left and right sides of 1 such that y,,= f’l (A U B) is empty.

Since g, is a continuous function of (A,/x) on ,,, the existence of a solution
for any R > 0 is a consequence of showing that for sufficiently large A2 and small A,
with (Aa,/x) and (A2,/x2) in Y,,x=, Aa and A2 can be chosen so that g,,,,(1)< R and
g, .2(1 > R.

Since we are dealing with solutions such that g’> 0 and g" < 0, we have gx,(1) < A,
so we simply choose A1 in (0, R).

To choose A2 we integrate the inequality g" </x twice to show that for a solution
of (4)-(7), 0=g’(1)<A+/x/2. Also, g(a)>g()>g’(1/4)>1/4(A+/x/4)>A. Hence, to
obtain gx,.(1) > R, we just pick A2 > 8R.

To obtain further solutions, we consider A => 0,/x > 0.
LEMMA 2. For each A >= O, there is a/x+(A) > 0 such that if/x >=/x+(A), then (A,

A.
Proof We first show that for sufficiently large/x (depending on A, which for the

moment is fixed), there is an 7. in (0, 1) with g"(7.)=/x/2. Also, lim._ 7. 0. To
see this, use (7) and (8) to show that as long as g"=>/x/2,

2 4

g’--</X-.
48

Hence, r/< (24//X) TM. Furthermore, from (8), gv <0 in (0, r/,), so giv is decreasing.
By the mean value theorem applied to g",

giv( Tq) <-- -c/xS/4
for some C > 0 independent of

Also, gi continues to decrease as long as g >0, so beyond 7,, as long as g’>0,
we have

(9) g

Integrating this twice and using the initial conditions shows that for sufficiently large
/x, either g(1) is not defined, or g’(1)<0. In either case, (A,/x) A. This proves
Lemma 2.

We now see that if A2> 0, then there is a continuum o,a connecting A =0 with
A A2 in the region/x => 0, and o,, is in the complement of A t.J B. In fact, since the
positive A-axis is contained in B, the continuum 8o,x2 lies in/x > 0 except possibly at
A 0. But just below, in Lemma 3, we shall show that in 8o,x2,/x > 0 when A 0. The
corresponding solutions of (4)-(6) satisfy g’>0 on (0, 1), g">0 on an initial interval
(0, a), and g"< 0 on (a, 1).

Also, g(1) varies continuously on 6o,a2. However it will be shown that g(1) does
not take on all positive values R.

LEMMA 3. inf {g,,(1)lA -->_ 0,/x > 0, and g,,)(1) 0} > 0.
Proof ofLemma 3. Expand gx,,(/) in a Taylor series in (A,/x) around (0, 0). The

lowest order terms are

6(n)+ 6(n)x,
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where b and satisfy

" 1, (0) ’(0) "(0) 0,

g/"= 0, g,(0) "(0) 0, ’(0) 1.

Here $ Og/Otzl(x,,)=(o,o), d/-- og/oXl..)=o,o). Since b’(1) > 0 and ’(1) > 0, it follows
that there is some p > 0 such that, if/x => 0, A => 0, and p >/z2+ A2> 0, then g,,(1)> 0
and (A,/x) B. Also, g(a,.)(1) > 0 if A>0,/x>0 and g’>0 on [0, 1), while gx..)(1) < 0
for large/z. It follows that

inf {g(,,)(1)[0 <- h _-< p,/x > 0, g,,)(1) 0} > 0.

We shall show later that for large h, g(x,,)(1) is large if ga.,)(1)= 0, which will prove
Lemma 3.

We now show that there is a solution of this type for any sufficiently large R. It
is convenient to introduce another scaling. For h 0, let

h rl
g rl

Then

(10)

where e 1/IA I. Also,
(11)

eh iv -h’h" + hh’",

h(O) h"(O)= O, h’(O)= 1, h’"(O)= elx.

We have shown that for each e > 0 there are at least two values of/z, one negative
and one positive, such that

(12) h’(1) =0.

Let h denote some solution of (10)-(12) with /x>0. We must show that
lim_o+(h(1))/e =c. In fact, we show more.

LEMMA 4. lim inf_o h (1) >_- 1.

Proof. Suppose, for some fixed r < 1, that hj(1)< r for some sequence of ej- 0.
Since h’>0 on [0, 1), and h’" is decreasing, it follows that hj(r)< 1. Hence there is

between two cases. Either h((1 + r)/2) 0 or, for some subsequence if necessary, and
some 6>0, h((l+r)/2)<--6. In the first case, h-0 uniformly on [rb, (l+r)/2].
But this implies that h((1 + r)/2)> r for large j, contradicting an earlier assumption.
In the second case, h_-<-6 on [(l + r)/2,1], and since h’(r)<l, we obtain a
contradiction using (8). This proves Lemma 4 and establishes the existence of a second
solution for large R.

4. Monotone solutions with , < 0. To obtain further solutions we now consider
h < 0. If/x < 0, then g, g’, g", and g’" are all negative and decreasing on (0, 1). If/x 0
then g(7)= At/. For/x > 0, the following lemmas are useful.

LEMMA 5. If h < O, tX > O, then g’" > 0 as long as g’ <= O.
Proof. We have seen that giv< 0 if/x 0. But from (4) it is apparent that at the

first zero of g’", where g"> 0, sign (giO)=-sign(g’). Hence g’>0 at this point.
LEMMA 6. Let

b (r/) 0gx,,(r/).

Then qb, c’, qb" are all positive as long as g’<= O.
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(13)
Proof. Integrating (4) shows that

g’" A2 + tx g,2 + gg,,.
Differentiating with respect to Ix shows that

c’" l 2b’g’ + d?g"+ gch",

with

4,(0)- b’(O)= b"(O)= O, b’"(O) 1.

At the first zero, if any, of th", b’" > 0 if g’_-< 0, a contradiction. This proves Lemma 6.
Still taking a fixed h < 0, we consider the solutions for Ix > 0. If Ix is small, then

g’(1) < 0, and, by Lemma 5, g"> 0 on [0, 1]. Lemma 6 then implies that b’(1)> 0.
LEMMA 7. For sufficiently large Ix, g’(rl) 0 for some in (0, 1).
Proof. On an initial interval g’ < 0, and as long as this inequality persists, we have

hg’<0, hr/_-<g(r/)<0, g">0, and giV>-hg’".

Hence g’"_-> g’"(0) e’. For fixed h, integrating two times shows that g’ becomes positive
at some 7 < 1, if Ix--g’"(0) is sufficiently large, completing the proof.

Recall that g’(1)< 0 if Ix- 0, h G 0. Lemmas 6 and 7 show that there is a unique

Ix Ixi(h) > 0 such that g’ G0 on [0, 1] and g’(1) 0. (Here "i" stands for "intermedi-
ate." The solution is unique because Lemma 6 shows that g’(1) is strictly increasing
in Ix whenever g’ G 0 on [0, 1) and g’(1) 0. Hence g’(1) can only increase from negative
to positive as Ix increases, so long as g is negative.) The region 0_-< Ix G Ixi(h) is contained
in A. Since Og’,(1)/Oix[=,()>O at /= 1, B contains an open set of the (h, Ix) plane
with Ix Ixi(h) as its lower boundary for h < 0.

An additional simple result clarifies the picture further.
LEMMA 8. For Ix > Ix(A), g’ has exactly one zero in the initial interval where g < O.
Proof. If not, then there is a point in (0, 1) where

g’=O, g"<O, g’"<O, g<O.

However, from (13), g’" is positive if g’-0, gg">O. This proves Lemma 8.
The curve Ix Ix(A), h G 0, gives solutions for at least some negative values of R.

Note that this curve is continuous, from the implicit function theorem, because
can be viewed locally as a solution to the equation

g.,(1) =0.

and from Lemma 6 we know that Og’.,(1)/Oix 0. The existence of solutions for
negative a is not new, as it was shown in [3] that there is a solution to (1)-(3) for any
R 0. To obtain this from our arguments, we must show that if/ =/(,X), then g(1)- 0
as h - 0-, while g(1) o as h -.

The first of these is trivial, since g(1)-> h. For the second we again let h(7)=
g(I)/[h[, so that h satisfies (10), but with

(14) h(0) h"(0) 0, h’(0)-- -1, h’"(0)

We now wish to use he to denote the solution of (10), (12), (14) with h’ G0 on 1-0, 1).
The asymptotic form of he is given by the following theorem.

THEOREM 2.

limo he(n)=
2

sin /

"
uniformly on 0 <- 1 <-- 1.
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LEMMA 9. lim_.o e2/ 0.
Proof Suppose, on the contrary, that there is a iS > 0 and a sequence of e’s tending

to zero such that e2tx> iS, where /x =/xi(-1/e). Thus h’(0)= e/x-* oe. We have seen
that for the solution under discussion, on [0, 1],

h’">0, h">0, -l<h’<0,

so

eh’’’>- iS + hh".

On some initial interval [0, c], h"_-< 2. In this interval, h’’’>- (iS+2h)/e. It follows
easily that for sufficiently small e, either h’= 0 or h"= 2, before . But we are
assuming that h’ < 0 on [0, 1). If h"(a) 2, then h"> 2 on (a, 1 ], and h’(1) > 0, which
again is impossible. This proves Lemma 9.

Hence, there is a iS(e)>0 such that iS(e)-0 as e-0 and O<eh’"<-iS(e)=e21x
eh’"(O) on [0, 1]. The equivalent of (13) for h is

(15) eh’" 1 + e2tx- h’2+ hh",

so that on [0, 1],

-iS(e)<__ 1 h’2+ hh"<__O.

Since h’< 0 on [0, 1), h’ can be expressed as a function of h:

h’(q)= Q(h(r)).

Then Q(0) -1, -1 < Q < 0 on (h(1), 0), and

Q2_ 1 iS <- hQQ’ <-_ Q2_ 1 < O,

or

QQ’ 1 QQ’
Q2-1- h Q2-1- iS(e )"

These inequalities can be integrated from h(1) to h(r/) (the resulting improper integral
is convergent) giving, first,

h(n)2

h(1)2’

and then, integrating from zero to

-h(1) sin
\ i] -< h(r/)_-< -h(1) sin

Since h(r/) is decreasing exactly on [0, 1], with h’(1) =0, the only possibility as
e - 0 is that h (1) - 2/r, and Theorem 2 follows.

5. Nonmonotone solutions for , < 0. As pointed out earlier, a region above /x

/xi(A), A < 0 lies in the set B. Also, a neighborhood of the segment {A 0, 0 </x < pA 0,
0-<_/x < p}, lies in B. We wish now to show that these regions overlap.

First we observe that limx_o-/Xi(A) 0. This is apparent because g’(1, 0, )>0 if
/x is positive and sufficiently small.

Again, let dp(rhA, Ix)=(Og/Otx)(rhA, tx). We have seen that b’"( r/, 0, 0) --1, so
4,’(1, 0, 0)=1/2. Hence, b’(1, A,/x) =>1/4, for (A,/x) in some neighborhood of (0, 0). There-
fore there are /Xo>0, Ao<0 such that b’(1, A,/x)>0 for 0 -< /x =< /Xo Ao=<A--<0. Since
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g’(1, A,/zi(A))=0, we see that g’(1, A,/x)>0 if ]Ao] is small enough to ensure that
/zi(Ao) </Xo, and Ao-<A <0, /x(A)</z </Zo. This proves that B contains an open set
bounded below by/x =/z(A) for A-<0 and by/z=0 for A>0.

To obtain our final set of solutions we need Lemma 10.
LEMMA 10. For each A<0 there is a /x+(A)>0 such that if/x>=/x+(A), then

(h,/x) A.
Remark. After proving Lemma 10 we will have defined /x/(h) for all h. The

component of A containing the region /z ->/x+(h) must be separated from B by a
continuum y which extends over the entire A-axis. We have seen that in y, g(1) +o
as h +o. After proving Lemma 10, we will show that in y, g(1) - +oo as h - -o, as
well. This will give three solutions for any sufficiently large positive R.

Proof For large/z, as long as g">0 and g’<-x/tx/2 we have, from (13),

/xr/ _-> g" > 0, g’>A, g>Ar/,

and

g,,, > t, +
2

a/zr/2"

If r/<l/(2x/), then g"’>=lz/4, and integrating this three times, using the initial
conditions on g, enables us to conclude that before r/= d241al/z, either g=0 or
g’ v//x/2.

On the other hand, g"-< zr/, g’<_-a+tzr/2/2, so g’(v/241al/t,)_-< lll)tl </z/2 for t*
large. Hence we have shown that for large t*, g 0 before v241al//z. Furthermore,
at g=0, g’"_>-a2-/x/2+/x >=/x/2 and 0=< g’_-< llla I. From here the proof that g’(1) <0
proceeds with estimates which are very similar to those in Lemma 2, and we omit the
details. This proves Lemma 10.

The proof of Theorem 1 will be completed by showing that

lim ga.,(1) m.
A

gx,)(0) =0

Once again, let h=g/IXl, and consider (10), (12), (14). For small e>0, we assume
/x > 0 has been chosen so that h’(r/1) 0 for some r/1 in (0, 1) and also h’(1) 0. We
must show that he (1)! e - m (at least for some sequence of e’s tending to zero). Suppose
this is not the case and there is an M>0 such that h(1)Me for all small e.

Equivalently, h() Me for all and small e. For each e the solution h h has the
following qualitative behavior.

h’V<0 on(0,1],

h’<0 on some interval [0, r/l), h’> 0 on (r/l, 1],

h"> 0 on [0, r/2], h" < 0 on (r/2, 1],

h’"> 0 on [0, r/3), h’" < 0 on (r/3, 1],

h<0 on(0, r/n),h>0 on(r/4,1],

where 0 < r/1 < r/3 < 9"]2"

LEMMA 11. r/2 > r/4"

Proof This is obvious if r/3 r/4. If r/3 < r/4, then

0> eh -h’h"+ hh’’’> -h’h"

on Jr/3, r/4], which implies that h"> 0 on this interval, as desired.
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LEMMA 12. h’(’02) > 1.

Proof Since h’"(’02) <0 and h"(’02) =0, the result follows from (15).
Continuing with the proof of Theorem 1, there is an ,/5> */2 with h’(’05)= 1. Also,

h"<0 on (*/2, ’05], so it is clear that h(1)->h(’05) >- "05-’02, and thus "05-’02<=Me.
Also, h’" is decreasing, so

h"(’05) h"(’05)
h’"()<_--<

(*/5-’02)- Me

However, since h’(’05)= 1, we have from (15)

h(’05)
h’"(’05) e + h"(’05) >= Mh"( "05).

e

These inequalities are inconsistent if e < 1/M2. We were using the assumption that
h(1)/e <= M, which therefore is impossible for small e. This completes the proof of
Theorem 1.
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Abstract. A natural differential operator series is one that commutes with every function. The only
linear examples are the formal series operators e’z19 representing translations. This paper discusses a
surprising natural nonlinear "normally ordered" differential operator series, arising from the Lagrange
inversion formula. The operator provides a wide range ofnew higher-order derivative identities and identities
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coefficients and classical orthogonal polynomials, a number of which are new.
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1. Introduction. An operator @ is called natural if it commutes with arbitrary
functions, i.e.,

(1) (u) (u)

for all scalar functions . In this paper we will take u(t) to be a formal power series
in the variable t, and to be a formal series of differential operators. A simple example
of a natural operator in this context is the exponential operator ez, where D ddr,
which, by Taylor’s theorem, coincides with the translation operator eZu(t) u(t + z).
The proof that ez is natural is then elementary:

(2) (ezDu( t)) (u( + Z)) eZDdp(u( t)).

In fact, it is not hard to show that the translation operators ezD are essentially the
only linear natural differential operator series. It is therefore rather surprising that
there exist nonlinear natural differential operator series! The main result of this paper
is that the series operator

zn
(3) D-1

"ezDu" D= 1+ E D’-I" un" D
n=ln[

is natural, i.e., for any analytic function (u), and any formal power series u(t),

(4) D-1 :eZU: Dp(u)=dP(D-1 :eZ: Du).

In (3) the colons mean that the operator is "normally ordered," meaning that all the
multiplication terms appear after all the differentiations. This is reminiscent of the
Wick ordering in quantum mechanics [4], although not quite the same. I do not know
if the identity (4) has any bearing on this subject.

Two proofs of this identity will be discussed. The first is an application of the
classical Lagrange inversion theorem [3], [7]. In fact, it will follow that the operator
(3) formally represents the implicitly defined variable translation x + zu(x), which
explains its naturality. The second proof uses techniques from the Frobenius theory
of partial differential equations, a method of independent interest, and appears in an

* Received by the editors January 3, 1990; accepted for publication (in revised form) February 21, 1991.
This research was supported in part by National Science Foundation grant DMS 89-01600.

" School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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appendix. By choosing different elementary functions in the identity (4), we are led
to a large class of interesting new identities involving higher-order derivatives of scalar
functions. Moreover, specializing the resulting derivative identities to various elemen-
tary types of functions u(x), leads to, among others, the Hagen-Rothe binomial
coefficient identity [5], the Abel identity [3], and a number of interesting identities
among classical orthogonal polynomials, including Hermite, Legendre, and Jacobi
polynomials, that I have not been able to find in the literature. In another direction,
using the standard connection between higher-order derivatives of compositions of
functions and the Bell polynomials [3], 10], these derivative identities are easily shown
to be equivalent to a large collection of apparently new identities for Bell polynomials.

This work arose from an ongoing investigation into the canonical forms for
bi-Hamiltonian systems [9], and applications of these results to the precise integrability
of canonical bi-Hamiltonian systems can be found there.

2. Differential operators and normal ordering. We will be concerned with formal
power series whose coefficients are differential operators. These in turn can be applied
to analytic functions or formal power series, leading in turn to further formal series.

Let be a scalar variable. We use D to denote the derivative operator d/dt. Let

(5) F()= cz

be a formal power series in the scalar variable z. We can form the operator series

F(zD)= , czD
n=O

which, when applied to any analytic function f(t) results in a formal power series

(6) F(zD)f(t) , cz"f")(t)
n=O

in the derivatives off")= D"f d"f/dt off. For example, by Taylor’s theorem, the
exponential operator

1
(7) eDf( t) --o zf)( t) f( + Z)

coincides with the operator of translation in z. If

f(t) fit
i=0

is itself a formal power series, then (6) is a formal power series in both z and whose
coefficients depend on the coefficients f of f. In particular, evaluating this identity at
t- 0 leads to the formal series

(8) F(zD)f(t)l=o= L n!c.f.z".

Note that, under the natural identification of the coefficients off with the derivatives
of f at 0, which is f, (n !)-f(")(0), we recover the original equality (6). In fact,
we can replace zero by any other value of t; hence we can use (8) to evaluate the
series (6). This remark will be of use later on.
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We now wish to extend our range of operators to certain types of nonlinear
operators. By "nonlinear" we mean that the operator itself depends on an analytic
function or a formal power series u(t), so that the operator will, in general, be a
nonlinear function of u. However, it still acts linearly when applied to other power
series. The most elementary operators associated with a formal power series (5) are
the nonlinear operators

(9) F(zuD)= cnz"(uD)" and F(zDu)= c,z(D u).
=0 =0

Note that since the operators of differentiation D and multiplication by u do not
commute, these two operators are not the same; their commutator

(10) [D, u] D" u-u" D= u’
is the operator of multiplication by u’= u (1). For example,

eZUDv n nv
=o --. uD

1 2v,, ,)v + zuv’ +- z(u + uu’v

1
+- z3(u v’" + 3 u2u’v’’ + uu’v’ + u2u"v’) +"
6

eZO"v 2 (O.
n=O

1
v+ z(uv’+ u’v)+- z2(uv"+ 3uu’v’+ (uu"+ u’)v)

1 Z3(U Vm +6uZu,v,,+(4UU,,+ 7UU,.)V+6
+ (u2u’’’+ 4uu’u"+ u’3) v) +. .

A further type of operator is found by ordering the factors in the series in yet
another way.

DEFINITION 1. Given a formal power series (5), the normally ordered operator
series is defined to be

(11) "F(zDu)’= Y. czD" u’.
n=O

Thus the action of "F(zDu)" on a function f(t) is given by

F(zDu)’f= E c,,z"D"{u"f}.
n=0

The colons in the notation (11) are to distinguish this operator from the more standard
operator series (9). For example

ezu" v z (u"v)
=on!

1
v’ u ’z)=v+z(uv’+u’v)+-z(uv"+3uu’ + 2(uu"+ v)

1 3V 2tVtt 2U+- z3(u +9u +(9u + 18uu’Z)t
6

+(3U2U’"+18UU’U"+6U’3)V)+....
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The colon notation is borrowed from quantum mechanics. Indeed, these operators
remind us of the Wick ordering used in quantum field theory [4], in which all the
creation operators appear to the left of all the annihilation operators. (Indeed, the
commutation relations (10) are also reminiscent of the standard commutation relations,
but only coincide when u t.) However, this is not really the ordering adopted here,
since in the harmonic oscillator, the creation and annihilation operators are certain
combinations of derivative and multiplication operators.

3. Natural operators. Certain formal series differential operators play a distin-
guished role, in that they commute with functional evaluation. We make the following
definition.

DEFINITION 2. A series differential operator is called natural if it commutes
with all functions, i.e.,

(12) (u) (u)

for all scalar functions and all formal series u.
A simple example is provided by the translation operator ez, as shown in the

introduction. It is not hard to show that the following is essentially the only linear
example.

azDPROPOSiTiON 3. The operators e a a constant, are the only naturalformal series

linear differential operators of the form @ F(zD).
Proof. Let

F(zD)= E c,,z"D".
n=0

First set z=0 in (12), which gives (CoU)=Co(U). For this to hold for all , the
leading term of must be Co 1. Now, assume by induction that we have shown that
cj=aJ/j!, for j<- n-l, where a =Cl, and n>=2. Let (u)= u2. Then the coefficient of
z" in (9) is

2CoCUU(" + 2lCn_ltl’tl (n-l) +

This readily implies that c, a"/n !, completing the induction. (Note that in fact we
only needed to check (12) for quadratic functions to prove this result.)

The main result of this paper is the following example of a nonlinear natural
differential operator.

THEOREM 4. Let u(t) be a formal power series and let D= d/dt. Then the series

differential operator

Z
(13) D-1

"ez"" D 1+ D-1 u". D

is natural, i.e., for any analytic function d(u),

(14) D-1
"ezu" D(u)=(D-1

"ezu" Du).

Proof This result follows as a direct consequence ofthe famous Lagrange inversion
formula: cf. [3, p. 150] or [7, pp. 113,114]. According to equation (5) of Melzak
[7, p. 113], if u(t) is any analytic function (or formal power series), and we define
x sO(z, t) implicitly by the formula

(15) x + zu(x),
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then, for any analytic function f(t), we have the classical Lagrange inversionformula
zn

(16) f(x)=f(t)+ Y. .I.{D"-l" u(t)" D}f(t)= D- "ezu" Df(t).
n=l

Now set f(t)=dp(u(t)), so that (16) becomes

(17) (u(x)) D-1
"ezDu" D(u(t)).

On the other hand, according to the formula at the bottom of page 144 of [7],
for any analytic function g(x), evaluated at (15),

Oz
g(:(z, t))lz=0 D"-l(u(t)Dg(t)), n >- 1.

Therefore, taking g u, we find the expansion

u(x) Z U((z, t))lz=on=on] OZ

Zn
Du(t)+ Y (u(t)"Du(t))

n=0

D-1
"ezu" Du(t).

Substituting this into (17) completes the proof of (13).
In view of the proof, then, it is no longer surprising that the operator series (13)

is natural, since it corresponds to the variable translation (15) via Lagrange inversion.
More generally, we can introduce the translation

(18) x= +air(z, u(x), u’(x),""", u(")(X)),
which has a corresponding differential operator series, which will also clearly be natural.
For example, the operators

D-1
"e

zot’(u’u ): D,

where is any analytic function of u and its derivatives, are also natural. An interesting
problem that I have not tried to investigate is whether there exist other classes of
natural differential operators, although it seems reasonable to conjecture that only the
operators associated with such translations are natural.

4. Derivative identities. Just as generating function identities leads to com-
binatorial identities, so any natural differential operator leads to a large class of
derivative identities, obtained by considering different functions in the basic condition
(14). Here we present some of the more elementary derivative identities to be found
as a consequence of the main theorem. We first compute the basic formula

(19)

Z
’(u) D- "ezu" Du u+ Z D"-I(u"u’}

.=in!

More generally, we find that, for (u)--l/k,

(20) D_ .eZO,. Duk= y,. k z D,(u,+k)
,,=o n+k n!

_
z"

D.(u.+,)"
=o(n+l)!
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As long as k is not a negative integer, (20) is valid as it stands. It also remains correct
when k--j is a negative integer, provided we interpret the term corresponding to
n-j in the summation according to the general "rule"

(21) lim --1 D,,(u lim Dn-l(um-lU’) D"(log u), n _-> 1.
mO m mO

Note that if n =0, the term (k/(n + k))D"(u "+k) u k is not a problem. Now, according
to Theorem 4, the series (20) is the kth power of the series (19). This implies certain
unusual identities among higher-order derivatives of powers of u. For instance, taking
the case k 2, the series identity

Z Dn(un+l)
.=o n+2 n! =o (n+l)!

implies the following derivative identities:

D.(un+2) n+2 (7) Di(ui+l).D,,_i(u,,_i+l)"
,=o2(i+l)(n-i+l)

More generally, if we apply the identities corresponding to (u) being u k+, u k, and
u , then the series identity

k+l Z"D +k+t ( k z"
Z-- (u )=
,,=o n+ k+ nV .=on+k n!\ =on+l n!D (u+)

implies the additional derivative identities

(22)

k+l
n+k+l

D,(u ,,+k+’)

-,=o(i+k)(n-i+l) Di(ui+k). Dn-i(u i+l).

These identities are valid for arbitrary (positive and negative) values of k, l, provided
we use the rule (21) if either n + k + 0, or any of the summation terms + k 0 or
n-i+l=O. For example, if we take k=-l, l= 1, we find that the series

1 u’ z
r/(u) z--+ D’(u"-

u u _-2 (l-n)" n!

is the series inverse for (19), i.e., 7(u)= 1/’(u), and hence we have the series identity

1 z--+ D (u
=o(n+l)! u u ,,=2(1-n).n!

Rearranging the terms of degree n in z in this formula results in the derivative identity

1 (n+l) uDi(u,_l)D,_(u,,_+)(23) D"(u"+’)=(n+ 1)u’D"-’(u")+ -1i=2

valid for n _>-1. The identities (22), (23) appear to be related to, but interestingly not
the same as, some derivative identities appearing in Adams and Hippisley [1, 7.37,
p. 160]. Many more examples can be deduced by choosing other types of elementary
functions for @(u) in (14).
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5. Binomial and orthogonal polynomial identities. We now specialize the above
derivative identities for particular functions u(t), and find that they reduce to a wide
range of identities among binomial coefficients and orthogonal polynomials. Some are
known, but the orthogonal polynomial identities are apparently new. (However, I have
not attempted a completely exhaustive search of the literature.)

1. First consider the case

u(t)=t, so--D
n!

Then (22) reduces to the identity

n+k+l n i=o(i+k)(n-i+l) n-i

This is equivalent to the Hagen-Rothe identity [5], [6, Eqn. 3.142], which generalizes
the classical Vandermonde convolution identity for binomial coefficients,

(r+s)= . ()( s )/I i=o r/--i

which follows from (24) in the limit a O, ka - r, la - s. In (24), we use the definition

()=/3(/3-1)...(/3-n+l)n!
for the general binomial coefficients, so that

is well defined even for 0. As another example, the formula (23) in this case reduces
to the identity

n+l n n-1 =(i-1)(n-i+l) n-i

which is similar to the Van der Corput identity; cf. [6, Eqn. 3.147].
2. Let , SO On mn

Then (22) reduces to the identity

i=ok+/
(i+k)i-l(n-i+l)-i-"

If we set k -x/z, -n (y/z), we deduce

which is very similar to the Abel identity [3, p. 128],
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Indeed, they are essentially equivalent identities, since if we denote (27) by An(x, y, z),
and (26) by Bn-l(x, y, z), then we easily verify the relation

An(x, y, z)+ nzAn-l(X, y, z)= Bn(x, y, z).

Consequently, we can use Theorem 4 to give yet another proof of the Abel identity.
3. Let

-t Dnu,,, )n n/u=e so (-1 m 2Hn(v/-t) e

where Hn denotes the usual Hermite polynomial [2, 10.13]. In this case, (22) reduces
to the identity

(n + k + l)(n/2)-lH,(v/n + k + t)

(28) (7)-=o (i+k)(/-l(n i+l) /-lH(x/i+kt)Hn_(x/n i+lt),

which we can interpret as an Abel-type identity for Hermite polynomials. It is not the
same as the usual addition formula, since the arguments of the Hermite polynomials
appearing in the summation depend on the summation index i. If either n + k + 0,
/ k 0, or n + 0, then we view the corresponding term in (28) according to the

rule

12rn (-1)"m("/2)-lH’(v/-- t) l-2’0,
n--l,
n=2,
n>3,=

stemming from the rule (21).
4. Let

1
u e-t -’m--"-n(mt),SO ontl e L

n!

where L are the generalized Laguerre polynomials [2, 10.12]. Again (22) reduces
to an Abel-type identity

(29)

k+l
n+k+l

L(n+k+l)’-"((n + k + 1)t)

kl
,=o(i+k)(n-i+l)

((i+ k)t) (n--i+t)oz +i((Ln-i n-i+l)t)

for Laguerre polynomials. As in the previous example, we make the convention

lim
1 a t,
L’-n(mt)

[ ),,-1/morn [(-1 n]a,

stemming from the rule (21), for any exceptional terms in (29).
5. Finally, consider the case

u (1- t)(l + t) t3.
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Then

1
Dnu (-2)"(1 t)ma--n(1 + t)ma-" P(a-"’m’-n)(t),

n!

where P’’) are the Jacobi polynomials [2, 10.8]. In this case (22) reduces to the
Hagen-Rothe type formula

k+l pn+k+,)-n,(n+k+,),-n)(t)
n+k+l

(30) kl p(i+k)_i,(i+k)_i)(t)p((,ri+,)_n+i.(n_i+,)_,+i)(t
,=o(i+k)(n-i+l)

which again does not appear in the standard literature on Jacobi polynomials. Again,
we need a rule

lim
1 p(ma_n,ml3_n)(t [a(t+ 1)"-fl(t-1)"]

n >_- 1,
m->om [n(-2) n]

for any exceptional terms in (30).

6. Bell polynomial identities. The Bell polynomials arise in the formula for the
nth derivative of the composition of two functions [3], [10]. Specifically, we have

(31) dtnf og i-----1

where the B’ are polynomials in the derivatives g(k of g. Thus, the above derivative
identities can be rewritten as identities involving Bell polynomials. Surprisingly, these
identities have not appeared in the literature.

First, according to (31) (see [10, Ex. 22, p. 46]),
d min{m,n} mum E um-iBn(32) - i--, (m-i)!

()"

Therefore, (19) can be rewritten as

ZnU n+l-i
(33)

= i= (n+ 1-i)!

Furthermore, according to (14), (19), for k a positive integer,

(34) (u)k u k + ., znu Bin(u).
=1 =1 n!(n+k-i)!.

For example, if k 2, then . 2(n+l) nun+k_iBr(u(u) u+ z ).
=i=l(n+2-i)!

If we compare this with the square of the series (33), we deduce that

2(n+l) 2 1
(n+2_i)B’.](u)=(n+l_i)B’(u)+ Y’. BP(u)Bq(u),

p+q=,,(p+ 1-r)!(q+l-s)!
r+s=i

which is equivalent to the identity

(35) 2(i_l)B(u)= y (n+2-1)BPr(u)B_,.(u),-p

p,r p+l--
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By way of contrast, consider the Bell polynomial identity coming from squaring the
standard exponential series

zig
(36) e’ 1+? --.B’;(u).

=1 i=1

Equating e2zu-- (eZ")2 and rearranging terms, we deduce

(37) 2(2i-’- l)BT(u)= , (np) B,(u)BT:f(u).
p,r

which is quite similar to (23), but, except in very special cases, a different identity.
More generally, the equation e(a+b)zu e ebz" leads to the further standard identities

(38) ((a+b)i-ai-bi)B(u)= (np)arbi-rBP(u)BT_-f(u),
p,r

valid for any a, b. On the other hand, the identity (u)a/b= (u)a(u)b leads to yet
more complicated identities

(39)

.(a + b)(n + a + b-1)
ab

(n + a-1)( n + a + b-

b( n + a + b-

(n+b_l)(n+a+b-i)a

a( n + a + b- Bi (u)

(np)(n+a+b-i)p+a-r
E B(u)Bi_r(U).
p,,. (n+a+b-2)p+a-1

More identities can be constructed by using different functions (u) in the fundamental
theorem. The number of different identities satisfied by the Bell polynomials is
remarkable!

Appendix: Alternative proof of the main theorem. An alternative proof of Theorem
4 is based on the properties of certain first-order partial differential operators or vector
fields; cf. [8]. As such, this proof may be adapted to give an alternative proof of the
Lagrange inversion formula. The mathematical methods have not been used in the
subject before, and thus are of some interest, possibly being of use in other problems.
Let

tl tin tn
nO

be a formal power series. We will also work with the associated formal series

V Vntn
U n=0

and

w log
u

Wntn.
0
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We will regard the coefficients of u and v, i.e., Uo, ul, u2," ", and Vo, Vl,/)2, as
providing different local coordinates on the space of formal power series. They are
connected by formulae of the form

u,, R,,(Vo, v,, v,,), v,, R,,(Uo, Ul, u,,),

where the rational functions R, can be explicitly expressed using determinants; cf.
[10, Ex. 20, p. 45]. We can also use Uo, Wl, w2," ", as yet another set of coordinates,
connected by formulae of the form

(A1) u uoB,,(w, w_," ", w,,),

where B, is a Bell polynomial coming from the relation u Uo eW. We now write out
the basic series

(A2) (u) D-1
"ezD’" D(u)=

n=0

where, according to (13),

Note that we are using the identification between series coefficients and derivatives
given in (8) in this formula. In particular, the coefficient , depends on the first n
coefficients uo, u,. ., u, of u. We can also re-express ,, in terms of the coefficients
vo, v,. ., v, of v I/u, or, alternatively, in terms of uo, w, w,. , w using (A1).
It will be very convenient to permit such changes of coordinates during the course of
the proof.

The elementary first-order partial differential operators

0 0

Ou Ov ON
will be regarded as vector fields acting on the functions of the coefficients of the formal
power series u, and its associated power series v 1/u, w log (u/uo). As such, they
can all be re-expressed in any of our three coordinate systems. Note that

(A4) (u) -v ---5 -u, j =0, 1, 2,...,

(AS) (u) (uo e) tuo e u, j 1, 2, 3,. ..
Using these and similar formulae, it is not too difficult to verify the following change
of variables formulae for these vector fields"

0 0
(A v Y UmU 2 U j O, , ".

m,n =0 Ol,’lm+n+j =0 OWn+j

(In the second summation, we use (A1) to re-express the u’s in terms of the w’s.) Also

(A7) w= u,- v,, j=1,2,3,....
=0 On+j =0 ODn+j

Finally, we define the vector fields

(A8) y w + zv_, j 1, 2, 3,. ,
where z is a scalar parameter.
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LEMMA A1. The vector fields Ys all mutually commute:

(A9) [ys, Yk] 0 for all j, k 1, 2, 3,’...

The proof is simplest in the v coordinates. We just re-express w using the second
formula in (A7), and do a simple direct computation.

LEMMA A2. Let W(u)- D-1 :eZD": DriP(U). Then

(A10) y[W(u)]=0 forallj-l,2,3,....

Proof. Note that since we are now working with formal power series, the vector
fields v,w commute with the derivative operator D-d/dt. Using (A3), (A4), we
compute

vj[W(u)] 2 D v(u)
=o Ou =o

z
+2,(u=-oD{tsu

whereas, using (A3), (A5), we find

ZDOEU)w(u)}
Z
O Jun+

n=o

Note that

[D t] D t- t. D nD-1"

hence, upon evaluation at 0,

D"" tl,=o nO"-ll,=o
Substituting this into the previous sum, we find (since j-> 1)

WJ[It(U)] =1 (n 1). vn-l{tJ-l"n+lO’(u)}[t=

z,+
D, tS-u"+O’(

Comparing with the previous summation, we deduce that

(All) .s[.(u)] -zvs_l[*(u)], j 1, , 3, ,
which clearly implies the lemma.

If we write out the coecient of z" in the previous formula (A11), we find that

(AI) .s[..(u)] -Vs_l[V._(u)], n 1, e, 3,. .
Since . only depends on Uo, Ul," ", u,, only the first n of the equations in (A12)
are nontrivial. We now regard (A12) as a system of first-order paial differential
equations for the coecients , of the series (A2). The commutativity Lemma A1 will
imply that the system is in involution in the sense of Frobenius [8], and hence can be
uniquely solved using suitable initial data. In fact, since the w coordinates straighten
out the vector fields ws, we can explicitly solve the system.
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LEMMA A3. Let n, n 0, 1, 2,..., be functions depending on the coefficients wj

of the formal series w which satisfy
(i) n(Uo, Wl, w2," ", w,) depends only on the first n coefficients of w.
(ii) n(Uo, 0, 0,’’ .,O)=Oforn>O.

(iii) 0._ Yj_l[q),n_l] j 1,..., n.

Then , are uniquely determined by the function Vo(Uo)= @(Uo).
Proof. According to Lemma A1, the integrability conditions for the elementary

system of partial differential equations (iii) are satisfied. Therefore, the value of, is
uniquely determined by its noncharacteristic Cauchy data prescribed by condition (ii).
This completes the proof.

Now, to complete the proof of Theorem 4, it suffices to notice that ’(u), as defined
by (A1), being a particular case of (A2), satisfies the three conditions of Lemma A3.
But then the series @(’(u)) also satisfies them since, for example,

r((u)) ’((u))y((u)) o.
Also, the leading-order term of (’(u)) is (Uo), which agrees with that of (u) as
given by (A2). According to the uniqueness result in Lemma A3, the series must agree,
i.e., (’(u))= (u). This completes the proof of the main theorem.

Acknowledgments. I would like to express my gratitude to two anonymous referees,
one for observing how the main theorem easily follows from Lagrange inversion, and
the other for encouraging me to investigate the consequences of the new derivative
identities (22), (23) which are discussed in 5.
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AN ALGEBRAIC THEORY OF WAVELETS. I. OPERATIONAL
CALCULUS AND COMPLEX STRUCTURE*

GERALD KAISER

Abstract. In wavelet analysis, a function f is split into two parts at each iteration. The first
part, Hf, represents a smoothed version of f, sampled half as frequently, while the second part, Gf,
represents the detail lost by filtering through H. Although the operators H and G have very different
interpretations, they exhibit a remarkable symmetry in their algebraic properties. We examine this
symmetry by developing an effective, basis-independent operational calculus for wavelets and use it
to show that the symmetry is due to the existence of a complex structure, i.e., a map J such that
j2 -I where I is the identity. This implies that the space Va of (real) functions at the scale 2
(( E Z) may be regarded as a complexification VC+l of the space V+I of functions at the next
(coarser) scale. Roughly, the low-frequency parts Hf of the functions span the real part of VC+l
while their high-frequency parts Gf span the imaginary part. The map J mediates between the two
and relates the corresponding operators H and G. Furthermore, at the scale -1, J transforms
the fundamental function associated with H into the "fundamental wavelet" associated with G.

Key words, wavelets, multiscMe analysis, complex structure, operational calculus
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1. Operational calculus. In wavelet analysis (see Daubechies [1988], Mallat
[1989], Meyer [1990], Strand [1990], and the references therein), one deals with the
representation of a function ("signal") at different scales. We begin with a single real-
valued function of one real variable which we take, for simplicity, to be continuous
with compact support. It is assumed that for some T > 0, the translates Cn(t)
(t- nT), n e , form an orthonormal set in L2(]R) (such functions can be easily
constructed). The closure of the span of the vectors Cn in L2(IR) forms a subspace V
which can be identified with/2(Z), since for a real sequence u =_ {Un} we have

(i)

We introduce the shift operator

(2) (Sf)(t) f(t- T),

which leaves V invariant and is an orthogonal operator on L2(IR) (we shall be dealing
with real spaces, unless otherwise stated). A general element of V can be written
uniquely as

n
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where u(eT) is the square-integrable function on the unit circle (11-< r/T) having
{un} as its Fourier coefficients and u(S) is defined as an operator on "nice" functions
(e.g., Schwartz test functions) ](t) through the Fourier transform, i.e.,

(4)

For the purpose of developing our operational calculus, we shall consider operators
u(S) which are polynomials in S and S-1. These form an abelian algebra :P of oper-
ators on V. Moreover, it will suffice to restrict our attention to the dense subspace of
finite combinations in V, i.e., to T’, since our goal here is to produce an L2 theory and
this can be achieved by developing the algebraic (finite) theory and then completing
in the L2 norm. Note that the independence of the vectors Cn means that u(S) 0
implies u(S) O. Our results could actually be extended to operators u(S) with
{Un} e () C /2(), which also form an algebra since the product u(S-)w(S)
corresponds to the convolution of the sequences {Un } and {Wn }. We resist the temp-
tation.

Let us stop for a moment to discuss the "signal-processing" interpretation of
u(S), since that is one of the motivations behind wavelet theory. It is natural to think
of u(S) as an approximation to a function ("signal") f(t) obtained by sampling f
only at tn nT. Let f0 denote the band-limited function obtained from f by cutting
off all frequencies with I1 > /T. That is, i0 coincides with ] for I1 <- /T but
vanishes outside this interval. The value of f0 at tn is then

1 fr/T de-inT](),(5) fo(nT)
J-,/T

which is just the Fourier coefficient of the periodic function

(6) /0()-- E Tf(nT)einT
n

obtained from ]0() by identifying / 2r/T with . In the time domain,

(7) Fo(t) ETfo(nT) 5(t nT).
n

This has the same form as u(S), if we set un Tfo(nT) and (t) 5(t) where 5
is the Dirac distribution. Hence the usual sampling theory may be regarded as the
singular case 5, and then u(S) characterizes the band-limited approximation f0
of f. For square-integrable , the samples u, are no longer the values at the sharp
times tn but are smeared over Ca, since u {Ca, u(S)/" In fact, acts as a filter,
i.e., as a convolution operator, since (u(S))^() u(eT)(). Roughly speaking,
we may think of as giving the shape of a pixel.

Next, a scaled family of spaces V, a 6 Z, is constructed from V as follows. The
dilation operator D, defined by

(8) (Df)(t) 2-/2f(t/2),
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is orthogonal on L2(]R). It stretches a function by a factor of 2 without altering its
norm and is related to S by the commutation rules

(9) DS S2D, D-1S2 SD-.
Hence D "squares" S while D- takes its "square root." A repeated application of
the above gives

(10) DS S2D a E 2.

Define the spaces

(11) V=DcV,

which are closed in L2(lR) (V0 V). An orthonormal basis for Va is given by

(12) Cn(t) --DaSn(t)= 2-a/2 (2-at- nT),

and Va can also be identified with 12(). The motivation is that Va will consist of
functions containing detail only up to the scale of 2a, which correspond to sequences
{u} in t2() representing samples at tn 2anT. For this to work, we must have
Va+ C Va for all a. A necessary condition for this is that must satisfy a functional
equation (taking a =-1) of the form

(13) Ehn D-EhnSn =- D-Ih(S)
n ?

for some (unique) set of coefficients ha. Since we assume that has compact support, it
follows that all but a finite number of the coefficients hn vanish, so h(S) is a polynomial
in S and S-, i.e., h(S) P. This operator averages, while D- compresses. Hence

is a fixed point of this dual action of spreading and compression. De h(S),
called a dilation equation, states that the dilated pixel De is a linear combination of
undilated pixels Ca. An integration with respect to t leads to

(14) hn x/ or h(I)= x/-I,

giving a constraint on the coefficiants hn (other constraints will emerge). Note that
the singular case 5 associated with sharp sampling satisfies the dilation equation
with h(S) viii, where I denotes the identity operator on V. Since 5 is not square-
integrable, this solution does not fit into the L2 theory considered here.

On the other hand, the coefficients hn uniquely determine , up to a sign. For if
we iterate D-h(S) h(S/2)D-, we obtain

N

(15) [D-h(S)]N H h (S2-) D-N.
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Since the Fourier transform of D-N satisfies

(16) 2N/2 (D-N)^() (2-g) -+ q(0) as N oo,

we formally obtain

N

(17) (0) lim H 2-/2h ($2-)] 5.
N c

The normalization is determined up to a sign by I111 1. In general, the function
determined by h(S) is highly irregular. Daubechies [1988] has classified all h(S) E P
that give functions possessing some regularity. The simplest (and least regular)
of these is related to the classical Haar basis. It will be used throughout the paper
to illustrate the various operators as they are introduced. For the general case, the
actions of these operators on bases are given in the appendix.

Example 1 (The Haar system). Let be the indicator function Xi0.1) for the
interval [0, 1). Then

(lS)

1 1

1
(x + s) ;

hence satisfies the dilation equation with h(S) (I + S)/x/.
The next step is to introduce a "multiscale analysis" based on the sequence of

spaces Va. We shall do this in a basis-independent fashion. Since shifts and dilations
are related by DS S2D, we have

(9) Da+lu(S) Dau(S2)D Dau(S2)h(S).

This defines a map Hg,: Va+l --+ Va, given by

(20) HaDa+lu(S) Dah(S) u($2).

Since the two sides of this equation are actually identical as functions or elements of
L2(IR), Hg is simply the inclusion map which establishes Va+l C Va. This shows
that the relation De h(S) is not only necessary but also sufficient for Va+l C
Although a vector in Va+l is identical with its image under Hg, as an element of
L2(IR), it is useful to distinguish between them since this permits us to use operator
theory to define other useful maps, such as the adjoint Ha: Va -+ Va+l of Hg. Since
the norm on Va is that of L2(IR) and Hg, is an inclusion, it follows that HaHg
the identity on Va+l. In particular, Ha is onto; it is just the orthogonal projection
from Va to Va+l. Hg is interpreted as an operator that interpolates a vector in
Va+l, representing it as the vector in Va obtained by replacing the "pixel" with
the linear combination of compressed pixels D-1h(S). The adjoint Ha is sometimes
called a "low-pass filter" because it smooths out the signal and resamples it at half
the sampling rate, thus cutting the freqency range in half. However, it is not a filter
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in the traditional sense since it is not a convolution operator, as will be seen below.
The kernel of Ha is denoted by Wa+l. It is the orthogonal complement of the image
of H, i.e., of Va+l, in

(21) Wa+l ker Ha Va HVa+I Va Va+.
Note that H is "natural" with respect to the scale gradation, i.e.,

(22) HDa+ DarteD.
Our "home space" will be V. All our operators will enjoy the above naturality with
respect to scale. Because of this property, it will generally be sufficient to work in V.
Define the operator H*" V V by

(23) H* H)D.

We will refer to H* as the "home version" of H. Home versions of operators will
generally be denoted without subscripts. Note that while H preserves the scale (it
is an inclusion map!), H* involves a change in scale. It consists of a dilation (which
spreads the sample points apart to a distance 2T) followed by an interpolation (which
restores the sampling interval to its original value T). Thus H* is a zoom-in operator!
Its adjoint

(24) H D-Ho

consists of a "filtration" by H0 (which cuts the density of sample points by a factor
of 2 without changing the scale) followed by a compression (which restores it to its
previous value). H is, therefore, a zoom-out operator. It is related to Ha by

(25) HaDa Da+H.

The filtration performed by H (which will be detailed below) represents the (possible)
loss of information due to zooming out.

The operators H and H* are essentially identical with those used by Daubechies,
except for the fact that hers act on the sequences {Un } rather than the functions u(S).
They are especially useful when considering iterated decomposition and reconstruction
algorithms (3).

To find the action of Ha, it suffices to find the action of H. Note that H*u(S)
h(S)u(S2), where u(S2) is even in S. This will be an important observation in what
follows, hence we first study the decomposition of V into its even and odd subspaces.

An arbitary polynomial u(S) in S, S-1 can be written uniquely as the sum of its
even and odd parts,

(26)
U() E U2n2n "- E U2n+l2n-}-i

n n

=_ +

Define the operator E* (for even) on V by

(27) E*S 5’2E*, E* .
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Then

(8) E,(S) (S) u.
n

Also define the operator O* (for odd) by O* SE*, so that

() o,(s) Su(S) .+.
n

H* is related to E* by H* h(S)E*. Hence to obtain H it suffices to find the adjoint
E of E*.

LEMMA 1. Let v(S) E :P and denote the adjoints of E* and O* by E and O.
Thn

EE* O0* I,
(o)

OE* EO* O,

(b)

(31)

(c)

(32)

(d)

(33)

n

Ov(S) v_(S) v+,
n

Ev(S)E* v+(S) D1--1 Iv(S) + v(-S)] D,
O(S)O* +(S),

1D-IS- Iv(S) v(-S)] nOv(S)E* v_(S)
Ev(S)O* s_(s)

(note that (a) is a special case with v(S) I), and

E*E + O*0 I.

Proof. For u(S), v(S) e :P, we have

EE*u(S), v(S)) E*u(S), E*v(S)
(34)

u($2), v($2) u(S), v(S) >,
where the last equality follows from the invariance of the inner product under S S2,
i.e.,

(35) $2n, $2m 5,m Sue, Sine >.
Hence EE* I, so OO* ES-ISE I. EO* OE* 0 follows from the
orthogonality of even and odd functions of S (applied to ). This proves (a). To show
(b), note that due to the orthogonality of even and odd functions,

(E*(S), v(S) (S), (S) (u(S), +(S)
(36)

E*u(S),E*v+(S) u(S), v+(S) ),
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where we have used (a). This proves the first equation in (b). The second follows
from O ES-1 and S-Iv(S) v_(S2) + S-v+(S2). To prove (), note that
u(S2)E E*u(S) and Su(S2)E O*u(S); hence

(37)

Ev(S)E* E(v+(S2) / Sv_(S2))E
EE*v+(S)/ EO*v_(S) v+(S),

Ov(S)O* ES-v(S)SE v+(S),
Ov(S)E* O(v+(S2) + Sv_(S2))E

OE*v+(S)+ EE*v_(S) v_(S),
Ev(S)O* E(v+(S2) + Sv_(S2))SE

EO*v+(S)+ EE*Sv_(S) Sv_(S).

Lastly, (d) follows from

(38)
E*Ev(S) + O*Ov(S) E*v+(S) + O*v_(S)

+(S) + S_(S) (S).

Remark. The algebraic structure above is characteristic of orthogonal decompo-
sitions and will be met again in our discussion of low- and high-frequency filters. E*E
and O*O are the projection operators to the subspaces of even and odd functions of
S (applied to ),

(39) v ((s’) (s) e p), vo {s(s) v(S) e

and

(40) V ge V.
This decomposition will play an important role in the sequel.

PROPOSITION 2. The maps H" V -- V and Ha: Va ---, Va+l are given by

(41)

Hu(S) Eh(S-)u(S)
[h+(S-)u+(S)+ h-(S-)u-(S)] ,

HDau(S) D+E h(S-)u(S)
D,+ [h+(S-)u+(S) + h_(S-)u_(S)] .

Proof. Since H* h(S) E*, it follows that H E h(S-1) and HaDa D+H
D+IEh(S-). D

Example 2 (The Saar system, continued). For h(S) (I + S)/v and Xio.1),
we have h+ (S) h_ (S) 1 /x/. Hence

(42)

1
H*n h(S)2n - (2n + 2n+)

1
) s EUCn=-E(I+S- = / (S’/S-)

1 [ Sn/2 , n even,
S(-)/, nodd

1
/
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2. Complex structure. Up to this point, it could be argued, nothing extraor-
dinary has happened. We have a filter which, when applied repeatedly, gives rise
to a nested sequence of subspaces Va. However, the next step is quite surprising
and underlies much of the interest wavelets have generated. It is desirable to record
the information lost at each stage of filtering, i.e., that part of the signal residing
in the orthogonal complement Wa+l of Va+l in Va. The orthogonal decomposition
Va Va+ @ Wa+ is described by filters Ha and Ga, where Ha is as above and Ga
extracts high-frequency information. For this reason, Ha and Ga obey a set of alge-
braic relations similar to those satisfied by E and O above. What is quite remarkable
is that there exists a vector in V-1 that is related to the spaces Wa and the maps
Ga in a way almost totally symmetric to the way is related to Va and Ha. This
is not merely a consequence of the orthogonal decomposition but is somehow related
to the fact that Va+ is "half" of Va, due to the doubling of the sampling interval
upon dilation, as expressed by the commutation relation DS S2D. However, the
precise reason for this symmetry has not been entirely clear. The usual constructions
are somewhat involved and do not appear to shed much light on this question. It was
this puzzle which motivated the present work. As an answer, we propose the following
new construction. Begin by defining a complex structure on V, i.e., a map J: V -- Vsuch that j2 -I. (To illustrate this concept, consider the complex plane as the
real space IR2. Then multiplication by the unit imaginary is represented by a real
2 2 matrix whose square is -I.) J is defined by giving its commutation rule with
respect to the shift and its action on :
(43) JS -S-1J,

where (S) is an as yet undetermined function. It follows that for u(S) E P,

(44) Ju(S) (S)u(-S-I).

We further require that J preserve the inner product, i.e., that J* J I. Combined
with j2 -I, this gives J* -J. That is, J will behave like multiplication by also
with respect to the inner product, giving it an interpretation as a Hermitian inner
product.

In order to study J, we first define two simpler operators C and M as follows.

CS S-C, C ,
(45)

MS -SM, Me .
Note that CM MC and that C* C and M* M, since

(46)
Cu(S). v(S) <.(s-.).

).

where we have used the symmetry of the inner product and u(S)* u(S-) (both of
which depend on the reality of V), and

(47)
Mu(S), v(S) u(-S), v(S) (u(S), v(-S)

(u(S), Mv(S) ),

where the invariance of the inner product under S H -S was used. (C* C could
have been proved more simply by noting that the inner product is invariant under
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S S-1, which follows from the orthogonality of the Cn’S; however, this orthogonality
does not appear to be a fundamental feature of the theory, so we avoid it whenever
possible.) Since C and M are also involutions, i.e.,

(48) C2 M2 I,

it follows that they are orthogonal operators. Hence they represent symmetries, which
makes them important in themselves, especially in the abstract context where we
begin with an algebra and constructs a representation (see the remark at the end of
3). In fact, the orthogonal decomposition V Ve @ V is nothing but the spectral
decomposition associated with M, since Ve and V are the eigenspaces of M with
eigenvalues 1 and -1, respectively. C has a simple interpretation as a conjugation
operator, since for u(S) E P,

(49) c(s)c u(S- u(S),.

In terms of C and M,

(40) J (S)CM.

PROPOSITION 3. The conditions J* -J and j2 -I hold if and only if (S)
satisfies

() (-s) =-(s), (s-)(s) .
Proof. We have

(52) J* MC(S-) M(S)C (-S)MC (-S)CM;

hence J* -J if and only if e(-S) -e(S). Assume this to be the case. Then

(53) j2 e(S)CMe(S)CM (S)e(-S-) -6"(S)6(S-1);

hence j2 -I if and only if e(S-)e(S) I. 0
Remarks. (1) J is determined only up to the orthogonal mapping e(S). This

corresponds to a similar freedom in the standard approach to wavelet theory, where a
factor ei() in Fourier space relates the functions H() and G() associated with the
operators H and G (Daubechies [1988, p. 943], where T-- 1). The relation between
e(S) and A() is given in the Appendix.

(2) The simplest examples of a complex structure are given by choosing

(54) e(S) :i=S2p+, p e .
More interesting examples can be obtained by enlarging :P to a topological algebra,
for example, allowing u(S) with {Un} ().

(3) The above proof used the symmetry of the inner product. Later we shall
complexify our spaces and the inner product becomes Hermitian. However, this proof
easily extends to the complex case (when transposing, also take the complex conju-
gate). C then becomes (-antilinear and is interpreted as Hermitian conjugation.

At an arbitrary scale a, define maps J: V --, Va by naturality, i.e.,

(55) JD DJ,
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which implies that j2 -Ia and J -Ja. Ja is related to S by

(56)
S2"JD S2" D J D SJ D JS-

-JDS-1 -JS-2"D,
showing that

(57) S."J. -J.S-."

In particular, note that S1/2j_I -J_S-1/2; hence

(58) SJ-I +J-S-.
We are now in a position to construct the basic wavelet , the spaces W and an

appropriate set of high-frequency filters in a way that will make the symmetry with, Va, and Ha quite clear. Consider the restriction of Ja to the subspace Va+l of Va,
i.e., the map K: Va+l Va defined by

(59) K JH.

K is natural with respect to the scale gradation, and its home version will, as usual,
be denoted by K* =_ KD JH*. It will turn out that its adjoint K is essentially
equivalent to the usual filter G (to be introduced below) but is more natural from the
point of view of the complex structure. Define the vector E V_ by

(60) K* J_D-h(S) D-Jh(S) =_ D-g(S),

where the function

(61) g(S) =(S)h(-S-)

will play a similar role for the high-frequency components as does h(S) for the low-
frequency components. Namely, g(S) is a "differencing operator," just as h(S) is an
averaging operator. (We will see below that for the Haar system, g(S) (I- S)/x/.)
For w(S) E 7, we have

(62)
K*w(S)- JH*w(S)-- Jh(S)w(S2)

9(S)(S-:) g(S)E*C(S);

hence

(63) K* g(S)E*C g(S)CE*.

PROPOSITION 4. The adjoints of K* and K are given by

(64)
Kv(S)- ECg(S-)v(S)- Ev(S-)D,

KDv(S) D+IECg(S-I)v(S)-- D+Ev(S-1)D.

Proof. Since K ECg(S-) and KD D+IK, we have

(65) Kv(S) ECg(S-)v(S) Eg(S)v(S-) Ev(S-1)D
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and

(66) KaDav(S)- Da+IEg(S-1)v(S)-- Da+IEv(S-)D.

Example 3 (The Haar system, continued). Returning to h(S) (I + S)/f and
choosing s(S) S, we have

(67)

J,=-S(-S-)n=(-1)-n_,,
1 1

(I-S)(s) -s- (,- s-)

1 1
D-I--(I S) ()[0,1/2,-

1
K* Cn gs* Cn - g (2n +

1- (- _.),

1
Ken ES-nD ---ES-’(I

/ "Z
1
E(S-
1 I S-n ’/ S(-)/ ,
(-I)n

v -I-/I.

n even,

n odd

It can be easily checked that the functions Cna DaSn (a, n E 7],) are mutually
orthogonal. They form the Haar basis of L2(IR).

Note. The "time-reversal" associated with K and K* (i.e., n -- -n) is due to
the presence of C in J. It is harmless, since ultimately it is only KK* and K*K that
count. However, it can be removed by replacing K and K* by

(68)
K* =_ JaHC KC,
K’* =_ K*D K*C.

For then

KK* I K’*K K’K,
(69)

KH O, HK* O,

with similar formulas for Ha and K. Hence H and K lead to an orthogonal decom-
position of V equivalent to that given by H and K. Furthermore, K does not reverse
time. For the Haar system,

1
K’*n K*CCn K*-n (2n 2n+1),

(-1)n
(70) K’, CKCn ----C -[,/2]

(-1)n--
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We prefer Ka and K because they are "cleaner" with respect to the complex structure.
For example, the complex decomposition and reconstruction algorithm given in 3 is
less natural if K’a and K’ are used.

PROPOSITION 5. The pairs of operators {H, K} and {Ha, Ka} satisfy

(7i)

HH* Eh(S-1)h(S)E I,
KK* Eg(S-I)g(S)E I,
HK* Eh(S-)g(S)E*C O,
KH* CEg(S-*)h(S)E* O.

and

(72) HaH KaK Ia+, HaK KaH O.

Proof. (Note that HaH I+, has already been shown; it is included here for
completeness, since it belongs with the other identities.) The first equation follows
from H* HD and H)Ho I. The second follows from the first and K* JH*,
since J*J I. The last two equations follow from Lemma 1, since h(S-*)g(S) and
g(S-)h(S) are odd functions hence their even parts vanish. This proves the identities
for H and K. The other identities follow by naturality.

PROPOSITION 6. The pairs {H, K} and {Ha, Ka} give orthogonal decompositions
of V and Va. We have

(73)
HV KV V,

H*V V, K*V W,,
H*H+K*K I,

(b)

(74)
HaVa KaVa

HYa+l Ya+l, KVa+, Wa+l,

HHa+KKa

Proof. We have

(75) HV D-HoV D-*V, V,

and since K -HJ, it follows that KV HJV HV V. Also

(76) H*V- HDV- H)V V.

KK* I and HK* 0 (Proposition 4) imply that K* is injective and its range is
orthogonal to that of H*, i.e., to V. Hence K*V C W. To show that K*V W,,
let u(S) e "P. We need to find v(S), w(S) e "P such that

(77) u(S) H*v(S) + K*w(S) h(S)v(S2) + g(S)w(S-2)

or, equivalently, dropping ,
(78) u(S) h(S)v(S2) + g(S)w(S-2).
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Use Lemma 1 to decompose this equation into its even and odd parts:

(79)

u+(S) Eu(S)E* E [h(S)v(S2) 4- g(S)w(S-2)] E*
h+(S)v(S) 4- g+(S)w(S-1),

u_(S) Ou(S)E* 0 [h(S)v(S2) 4- g(S)w(S-2)] E*
h_(S)v(S) + g_(S)w(S-1),

which can be written in matrix form as

(80) [u+(S) ] [ h+(S)u_(S) h_(S)

But Proposition 5 is precisely the statement that the matrix U(S) is unitary, i.e.,
U(S)* U(S) I. Multiplying by U(S)*, we obtain the unique solution

which shows that V V1 @ Wl H*V @ K*V. Applying H and K to (77) gives

"(82) v(S) Hu(S), w(S) Ku(S),

which proves that H*H+K*K I as claimed. For the range ofK we have KVa+I
KDa+V DK*V DaW1 Wa+. Finally,

(83) HH, + KK, D(H*H + K*K)D- Is. D

We now construct the usual "high-frequency filters" Ga. First note that elements
in W K*V can be written in the form

(84) K*w(S) g(S)w(S-2) w(S-2)D Dw(S-1).

It follows that is a "basic wavelet," i.e., that

(85) Wa

and the vectors

(86) =_ DaSn Da-IK*S-n D-1Kd)a+l

form an orthonormal basis for Wa.
Since K" V1 --* V is injective and its range is W1, it can be factored uniquely as

a;R ,

where R" V1 --* W is an isomorphism and G)" W1 V is the inclusion map. From

(88) K)Dw(S) Dw(S-) g(S)w(S-2)

we read off

(89)
RDw(S) Dw(S-1),

GDw(q-1) g(q)w(S-2).
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For the home versions, we have

(90) GoR1D GDR* G’R*,

where

(91)
R*" V =_ Vo W Wo

is an isomorphism and G*" W --+ V, though injective, is not an inclusion map. (This
is the price for working with the home versions, which do not preserve the scale.) Note
that R*R Iw and RR* Iv; hence K RG implies that G R*K and

(92)
GG* R*KK*R Iw
GH* R*KH* O,
G*G K*RR*K K*K

(hence H*H + G*G I). Therefore H and G give an orthogonal decomposition of V
which is equivalent to that given by H and K.

Defining R*" DaRa Va Wa and G Wa+ Va by RDa and GD
DaG*, we get a graded family of filters Ga related to Ka by

(93) K GR+.
The operators Ga are, in fact, the usual high-frequency filters, for the latter are defined
analogously to Ha, namely, by substituting g(S) for the dilated wavelet De:

(94)
GDa+u(S) GDau(S2)D/2

Dag(S)u(S2) DaG*u(S).

The orthogonal decomposition of V given by H and G induces an orthogonal decom-
position of Va by Ha and Ga which is, in fact, the usual wavelet decomposition and
is equivalent to the one given by Ha and Ka in Proposition 6.

Example 4 (The Haar system, final visit). For the Haar system, (87) and (90)
give

(95)

Remark. We have stated that Ka is more natural than Ga from the point of view
of the symmetry associated with Ja. The reason is that both Ha and Ka map Va
to Va+l, whereas Ga maps Va to Wa+. This symmetry is reflected by the simple
relation K JailS, whereas the relation

(96) G JaHRa+l
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is somewhat more complicated. A more concrete divident of this symmetry will appear
in the next section, where the complex combinations H + iK will be considered.
The corresponding combinations H 4-iG do not make sense, as the two operators
have different domains.

We now prove an identity which will be useful later.
PROPOSITION 7.

(97)
K*H-H*K=J,

KHa HK J.

Proof. For u(S) H*v(S) + K*w(S) E V, we have

(98)
(K*H- H’K)u(S) K*v(S)- H*w(S)

JH*v(S) / JK*w(S)- Ju(S).

The identity at arbitrary scale follows from naturality:

(99) (KHa HaKa)D Da(K*H- H’K) DaJ JD,. D

It is natural to wonder whether the complex structures Ja extend to define a
"global" complex structure on L2(IR). We now show that this is not the case.

PROPOSITION 8. The complex structure Ja on Va is not an extension of Ja+l.
Proof. The statement that Ja is an extension of Ja+z means that J(+z is the

restriction of Ja to Va+, i.e.,

(100) K JH HJa+l.

If this were true, then left-multiplication by Ha would imply

(101) 0 HaK HaHgJa+I Ja+l,

which contradicts j2 -Ia+l E]c+l

3.1. Complex decomposition and reconstruction. The decomposition/re-
construction algorithm of the last section can be iterated, and when repeated indef-
initely gives a unique representation of any function f E L2(IR) as an L2-convergent
infinite orthogonal sum of "detail" functions at finer and finer scales. We develop the
algorithm formally in the home version, which will .be seen to be much more conve-
nient. For a rigorous treatment, see Daubechies [1988b]. Given any Dva(S) V,
write

(102) va va(S) V

for brevity. Since

(103)

I K*K + H*H K*K + H*(K*K + H*H)H
N

E(H*)-K*KH-I + (H*)NHN,
=1
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we have

(104)

where

N

vO E(H,)-IK,KH-lvo + (H*)NHNva
f=l
N

E(H,)-IK,wo+ + (H*)Nv+N,
f=l

wa+ =_ KH-lva,
(105) v+N Hgva"

The vector va+N represents an N-fold smoothed version of va, while w+ represents
the detail filtered out at the/th iteration. The terms in the above sum are orthogonal,
since for > we have

(106)
(H*)-lg*wa+’ (H*)-ig*w+’

w’+, K(H*)-K*w(+ O.

To see what this expansion means in terms of the scale-preserving filters, apply D
and use naturality (see Appendix)"

N

* "’H* K* w+D’v’ EHH+ +-2 ,+-D+

+ HH+I... H* 1Da+gva+ga+N-

This formula shows the advantage of the home versions of the filters, which "zoom" in
and out to get the detail at any desirable scale and can therefore be used repeatedly
without changing operators.

It can be shown that va+N 0 in L2(IR) as N --, oc, which gives the orthogonal
decomposition

pava Da (n*)-K*w+.(108)
B=I

Since

(109) L2(IR) U V,

any L2(]R) function can be approximated as accurately as desired in the form of (108).
We need only choose a "cut-off" scale a, which means that all detail finer than 2 will
be ignored. Moreover, since

(110) W+ c Va _1_ W,

the above gives the orthogonal decomposition

(111) L2 (]R)=
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Let us now look at the reconstruction and decomposition formulas in light of the
complex structure. A single iteration gives

(112) va H*va+l + K*wa+ H*va+l + JH*w+,

where

(113) va+l Hv, w+l Kva =-HJv.
Since J is like multiplication by +i, let us define the complex conjugate pairs of vectors

va + iwa

(114) va _iwa=
where the / in the denominators is for later convenience. 4a and a belong to the
complexification of V, i.e., to

(115) Vc V @iV ((R) V.

We endow Vc with the Hermitian inner product obtained from V by extending C--
linearly in the second factor and antilinearly in the first factor (this is the convention
used in the physics literature). Note that under this inner product, iV is not orthog-
onal to V, and hence the direct Sum V iV is not an orthogonal decomposition. We
now extend all operators on V to Vc by -linearity, denoting the extensions by the
same symbols. Substituting

(116) va+ w+

into the reconstruction formula, we obtain

(117) v- + 2

where the operators Z*, *" Vc Vc are defined by

H* iK* H* + iK*
(118) Z* Z*

Therefore

(119) z H + H H
H (I J

The operators

I = iJ
(120) P+

2

are the orthogonal projections in Vc to the eigenspaces of J with eigenvalues +i, since

JP+ =kiP+,
(121)

(p+), p+ (p+)2.
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We have the orthogonal decomposition

(122) Vc V+ $ V-, V+ P+/-K

The above shows that the operator Z: Vc --, Vc and its adjoint satisfy

(123) Z-- x/HP+, Z* v/P+H*.

Since H* is injective, it follows that the range of Z* is V+ and the kernel of Z is V-
Similarly,

(124) 2 x/HP- 2" xP-H*,

so the range of Z* is V- and the kernel of Z is V+.
PROPOSITION 9. The operators Z and 2 satisfy

ZZ* I, ZZ* I,
z2, =o, 2z, =o,
z,z P+ 2,2 P-

Proof. By Proposition 5, we have

(126)
ZZ* 2HP+P+H* 2HP+H*

H(I- iJ)H* HH* -iHg* I,

and

ZZ* 2HP+P-H* -O.

Furthermore, by Propositions 6 and 7,

(128)
2Z*Z (H* iK*)(H + iK)

(H*H + K’K) + i(H*K K’H)
I-iJ 2P+.

The other equalities follow from complex conjugation, which exchanges Z and
Z. F]

Proposition 9 gives a new, complex decomposition and reconstruction algorithm.
Given a E Vc, define a+l, Xc+I E Vc by

X+I 2a x/HP-.
Then a can be reconstructed using

(130)
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Like the real algorithm, this can be iterated. By Proposition 9,

I 2,2 + z,z 2,2 + z,(2,2 + z,z)z
N

(131) E(Z*)c-12*2Zc-I -{-(Z*)NZN.

Hence for any 40 E Vc and N E IN,

N

0 E(Z,)c-12,2Za-l0 ._ (Z,)NZNO
N

(z,)-12, + (z,),

where

(133) Xa 2Za-10, N ZNO.
The convergence and significance (in relation to the usual frequency decomposition)
of this algorithm will be studied elsewhere. Here we merely note that the terms in the
above sum are mutually orthogonal, since for/3 > a Proposition 9 implies

(z*)-2*x, (z*)-2*x) x, 2(z*)-2*x o.

Just as the filters H and K have associated averaging- and "differencing" opera-
tors h(S) and g(S), there are operators associated with Z and Z. If

Z*(S) 2-1/2 (h(S)(S2) ig(S)(S-2))

(h(S) ig(S)C
V

then Z* z’E* and, similarly, Z* 2*E*, where

h(S) ig(S)C h(S) + ig(S)C
() z, ,
Note, however, that these operators do not commute with S, since they contain C.

PROPOSITION 10. The operators z and 2 satisfy

zz* z*z 22* 2*2 I.

Proof. A straight computation gives

(138)

1
(h(S) ig(S)C)(h(S-1) + iCg(S-1))Z* Z -1- (h(S)h(S-1) + g(S)g(S-1)) -- (h(S)g(S) g(S)h(S))C

1- (h(S)h(S-1) + h(-S)h(-S-1))

DEh(S)h(S-1)E*D- I
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by Proposition 5, and the other identities are proved similarly. [:]

Furthermore, there is a natural complex function which stands in the same rela-
tion to z as do and stand to h(S) and g(S), respectively. Consider the function
e V_+ defined by

(139) D: Z* z*
h(S) ig(S)

"
Using De h(S) and De g(S), we get

-i(140) = q

Similarly, we define X V_- by

(141) X =- D-2" + i

The functions and are somewhat reminiscent of the cosine- and sine-function. By
that analogy, X and ; correspond to the complex exponentials! It may be that X and
), which combine averaging and "differencing" in a complex way, play a similar role
in wavelet analysis as do the complex exponentials in Fourier analysis.

Finally, note that the Hermitian inner product in Vc has the decomposition

(,’) (,P+} + (,P-’),

which is the sum of the inner products in V+ and V-. Now the restriction of P+ to
V C Vc maps V one-to-one onto V+, although it cannot preserve the inner product
since V is real while V+ is complex. In fact, for _-- P+u and P+u in V+, we
have

1
(,’) (u,P+u’ -(u,u’)- -(u, Ju’)

_1
u, ’) i(, u’),

which states that imaginary part of the Hermitian inner product in V+ is the skew-
symmetric bilinear form w. This form is known as the symplectic structure determined
by the complex structure J together with the inner product on V. It plays a funda-
mental role in a broad variety of subjects, e.g., group representation theory, classical
mechanics, and quantum mechanics (see Marsden [1981]). I do not know whether
it has any significance for wavelet analysis, but that seems to me a question worth
exploring.

Some final remarks. (1) Although no attempt has been made here to work in
an abstract setting, the algebraic approach clearly lends itself to such generalizations.
We have made use of just a few facts about our initial set-up, for example, that the
inner product is invariant under S and D and also under C and M. This suggests that
it is necessary to begin with an algebra whose generators include S and D and other
operators such as C and M, subject to certain relations, and to look for representations
of this algebra, i.e., for a vector space on which the elements of the algebra act as
operators. In our case, the vector provides a representation on L2(IR). is a cyclic
vector because its orbit under the algebra spans L2(IR), and the representation is
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irreducible. The representation is also orthogonal in the sense that the generators
are represented by orthogonal operators. Solving the dilation equation De h(S)
therefore amounts to constructing the entire representation!

(2) The complex combinations H =l= iK are reminiscent of certain operators that
occur in quantum mechanics in connection with coherent states and that are also
associated with time-frequency localization. See Kaiser [1990], Kaiser and Streater
[1991].

4. Appendix. Here we assemble various information for the reader’s conve-
nience. We begin with a summary of the operational calculus.

4.1. Operational calculus and basis representations. We list the actions of
various operators in their "home versions," both intrinsically and on the orthonormal
bases {Ca} of V V0 and {Ca} of W W0. (See Daubechies [19885].) Since (S) is
odd, it may be written in the form e(S) k ek S2k+1.

H*u(S) h(S)u(S2),

Hu(S)--

K*u(S) g(S)u(S-2),

Ku(S) Eg(S)u(S-),

Gu(S)-- Eg(S-1)u(S),

Ju(S) e(S)u(-S-) ,

4.2. Naturality. Naturality relates the scale-preserving filters Ha, Ks, G, and
Za to one another and to their home versions, which involve changes of scale. We
give the relations for Za; the others are similar. The last two equations show the
advantage of the home versions for iterated decomposition and reconstruction.

ZaDa DaZo Da+Z,
ZD+ DZD DZ*,

Zc+NZa+N-I’" ZaD Da+N+IZa+N+I,

ZZ+I Z+NDa+N+I D(Z )y+l.

4.3. Relation to Daubechies notation. Upon taking the Fourier transform,
our operators u(S) become functions u(eiT) on the unit circle. Their connections
with those occuring in Daubechies’ paper, where the sampling interval T 1, are as
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follows: Write (S) S_($2). Then

h(ei) H(),
h+ (ei) (),
h_(ei) (),
_(e) -e(),

a_

U(ei)

4.4. Analogy with complex numbers. We give a "pocket dictionary" of the
correspondence between wavelet operations and operations on complex numbers. This
is done for the relation Vo V1 ( iV1, although the same analogy holds at every scale.
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ITERATIVE RECONSTRUCTION OF MULTIVARIATE BAND-LIMITED
FUNCTIONS FROM IRREGULAR SAMPLING VALUES*

HANS G. FEICHTINGER AND KARLHEINZ GRtCHENIGt

Abstract. This paper describes a real analysis approach to the problem of complete reconstruction of
a band-limited, multivariate function f from irregularly spaced sampling values (f(xi))i. The required
sampling density of the set X (xi)i depends only on the spectrum [ of f. The proposed reconstruction
methods are iterative and stable and converge for a given function f with respect to any weighted LP-norm
l_<-p<=oo, for which f belongs to the corresponding Banach space LP("). It is also shown that any
band-limited function f can be represented as a series of translates Lyjg (with complex coefficients) for a
given integrable, band-limited function g if the Fourier transform satisfies (t) 0 over fl and the family
Y (yj)jj is sufficiently dense. Moreover, the behavior of the coefficients (such as weighted p-summability)
corresponds precisely to the global behavior off (i.e., membership in the corresponding weighted LP-space).
The proofs are based on a careful analysis of convolution relations, spline approximation operators, and
discretization operators (approximation of functions by discrete measures). In contrast to Hilbert space
methods, the techniques used here yield pointwise estimates. Special cases of the algorithms presented
provide a theoretical basis for methods suggested recently in the engineering literature. Numerical experi-
ments have demonstrated the efficiency of these methods convincingly.

Key words, irregular sampling, iterative reconstruction, approximation of convolutions, multivariate
band-limited functions, function spaces

AMS(MOS) subject classifications. 10G99, 65D99, 42A65, 42B99

1. Introduction. According to the classical sampling theorem attributed to
Whittaker, Shannon, Kotel’nikov, and several others, a band-limited function can be
reconstructed from sampling values over any sufficiently fine lattice. Because of its
great importance in information theory, electrical engineering, signal processing, and
other applications, a lot of work has been carried out on improvements and extensions,
e.g., to lattices in higher dimensions [PM], [Me], [DM]. Reviews and extensive
references on these investigations are given in [Bu], [Je], [Hi2], [BERS], [BSS], and
[Ma] (some of which mention the irregular sampling problem).

The regular sampling theorem is based on Fourier series and Poisson’s formula.
This limits the possible sampling sets to lattices, in other words, to discrete sets that
arise from the standard lattice Z

_
m through application of an invertible real n n

matrix (cf. [Co]). However, in many applications, e.g., optics, tomography, synthetic
aperture radar, computer graphics, signal processing, meteorology, and geophysics it
is necessary to deal with situations where sampling values are not available on a regular
grid [SA], ICe], [PK], [St], [So].

In this paper a new iterative approach to the irregular sampling problem is described
which represents a constructive solution to this question. The proposed algorithms use
only standard operations which are also well suited for numerical implementation.

1.1. The requirements for an irregular sampling theory. As a simple model for
sampling theory let us recall the regular sampling theorem: Given a band-limited
function (of finite energy)f L2() with spectrum in [- 7rW, 7rW],f can be represented
as a cardinal series

f(t) E f(k/W) sinc (Tr( Wt- k))

* Received by the editors March 29, 1990; accepted for publication (in revised form) April 29, 1991.
t Institut fiir Mathematik, Universitit Wien, Strudlhofgasse 4, A-1090 Wien, Austria.
Department of Mathematics, U-9, University of Connecticut, Storrs, Connecticut 06269.
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where sinc (x):= x- sin (x) for x 0 and sinc (0) 1; cf. [Bu], [BSS], [Pa]. The series
is convergent in the L2-sense and uniformly. In the case of oversampling, i.e., if sampling
values (f(ak)kZ) for some a < 1/W are known, the nonintegrable sinc-function can
be replaced by other "windows" (cf. [Sch], [BERS]) with a more rapid decay. Then
the series converges with respect to weighted LP-norms as well, whenever f belongs
to such a weighted LP-space (cf. IF4, Thm. 2]). Such alternative windows with rapid
decay are also required if band-limited tempered distributions must be reconstructed
from their regular sampling values (cf. [Ca], [BERS], [Se]).

The regular sampling theorem combines two aspects:
(a) Any band-limited function can be completely reconstructed from its sampled

values over a sufficiently fine lattice by means of a simple series expansion with the
sampled values as coefficients.

(b) Any band-limited function can be expanded into a series with translates of a
single function g as building blocks.

For the irregular sampling problem we will discuss these two aspects separately;
see Theorems 3.1 and 3.2. Practical considerations impose the following requirements
on an irregular sampling theory. They are satisfied in the case of regular sampling, at
least for fast decaying kernels. The theory should be

(1) Constructive, i.e., a possibly iterative algorithm should allow numerical
reconstruction;

(2) Multidimensional, so that it can be used in signal and image processing or for
the interpolation of sequences of images;

(3) Local, so that the value of a band-limited function at a point is essentially
determined by the adjacent sampling values, and more distant sampling values have
no influence. Estimates with respect to weighted LP-norms are a suitable tool to describe
decay conditions and the locality properties of the reconstruction operators.

(4) Stable, so that small perturbations of the parameters cause only small errors
in the reconstruction.

1.2. The real analysis approach of this paper. To achieve these objectives we choose
a real variable approach. We start with thej observation that a band-limited function
satisfies a convolution equation of the form f=f, g, and then analyze this convolution
equation carefully. The main tools are pointwise estimates (a) for spline type approxima-
tions of smooth functions and (b) for the approximation of a convolution by a weighted
sum of translates, see Lemmas 4.1-4.4.

Iterative algorithms arise through repeated application of these approximation
operators to the remainder term. The resulting sequence converges to the original signal
at a geometric rate. These reconstruction methods satisfy all the requirements stated
above.

In contrast to many previous papers on irregular sampling, we do not use methods
from analytic function theory. This is one of the reasons why the results extend easily
to multivariate irregular sampling. Our techniques allow for a treatment of irregular
sampling in a very general class of Banach spaces.

Discretization operators which are dual to the spline operators lead to non-
orthogonal series expansions of band-limited signals in terms of translates of a single
function. The coefficients depend in a linear way on the expanded function, and the
coefficient mapping is continuous with respect to any of the norms under consideration.
Similar techniques can be used on nonabelian locally compact groups to derive very
general results on atomic decompositions for function spaces [FG1], [FG2], [Grl].
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1.3. Review of the literature. Most papers concerning the irregular sampling
theorem deal with signals of finite energy, i.e., work in the Hilbert space L2(ff) [DS],
[Bel,2], [Wi]. In general, such arguments are not applicable to the important class of
almost periodic functions or even trigonometric polynomials. Unweighted LP-spaces
are treated in [Go] for regular sampling and in the important but nonconstructive
paper by Beurling [B]. Only in a few cases [SA], [BH2], [PM] are two-dimensional
problems discussed, however, with additional conditions on the sampling set.

In the mathematical literature very strong uniqueness theorems are found for
band-limited functions, both in one dimension IBM], [Wa] and in higher dimensions
[La], [B]. These results, which use complex analysis and operator theory, are of high
theoretical interest, but they have had no practical implications because they are not
constructive.

For small deviations from regular sampling the perturbation theory of orthonormal
bases in Hilbert spaces yields irregular sampling theorems [Hill, [Ye], [Ka], [Yo],
[Ral,2], [BH1,2]. In principle, these methods are constructive, but they seem to be
too difficult to use for numerical computations. For instance, a reconstruction through
a Lagrange type interpolation involves functions which are given as infinite products.
A reconstruction by means of the biorthogonal system requires that these functions
be computed first. Besides the computational complexity of this task, it is also known
that the biorthogonal system depends on the sampling set in an unstable way, so that
a small change of a single sampling point affects all functions of the biorthogonal
system in an unpredictable way [Sp]. Moreover, sampling theorems of this kind are
restricted to the Hilbert space L2(E"), and they cannot treat sampling sets with strong
variations of the local density.

The results in [CPL], [So] are based on the idea of transforming the irregular
sampling set into a regular one. They give exact reconstruction, but only for certain
classes of functions which are not band-limited and which depend heavily on the
sampling geometry in a nontransparent way.

For numerical computations iterative methods are most useful for recovering a
band-limited function from irregularly sampled values [Wi], [SA], [MA]. They are all
derived from the fundamental paper of Duffin and Shaefter [DS] on nonharmonic
Fourier series and a theorem in [Sa]. The convergence of these methods is known only
for the Hilbert space L. The description of convergence therefore lacks the much
desired locality.

The numerical implementation of [SA] is quite successful in image restoration,
although for their third method no proof of convergence is known.

1.4. A short overview. The plan of this paper is as follows: Section 2 begins with
a description of a family of Banach spaces of functions and measures on R’, which
will allow us to describe convergence of the iterative methods with respect to a variety
of norms. Together with these spaces, suitable operators such as spline type approxima-
tions and approximations through discrete measures are introduced. They are not well
defined for LP-spaces, but bounded on the auxiliary spaces introduced in this section.
These concepts are also crucial in order to adapt the approach described in [F3] for
Ll-spaces to L2([m) or to weighted LP-spaces. The main results of this paper are stated
in 3. In contrast to known results, we need not assume a positive minimal distance
of the sampling points and can thus treat local variations of the density. For numerical
applications this means that all information in regions of high sampling density can
be used. For LP-spaces and with positive minimal distance between the sampling
points, the results allow a much simpler and more accessible formulation. Therefore
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we state them explicitly as corollaries. Section 4 contains the technical parts and the
proof of the results. The underlying estimates are formulated in a series of lemmas.

2. Function spaces and operators. First let us fix some notation. We denote the
space of all Radon measures (regular Borel measures on m) by R(R’). By the Riesz
representation theorem we identify it with the topological dual of fff(R"): ,f(m) :=
continuous, complex-valued, with compact support}. A point measure , is character-
ized by 5,(f) f(y) dSx(y):=f(x). For the uniform norm we use the following symbol:
Ilflloo: SUpz If(z)l.

Submultiplicative weight functions, i.e., continuous functions satisfying w(x)>= 1
for all x and w(x+y) <- w(x)w(y) for all x,y", are important because
the weighted Ll-spaces Lw(’):-{f[fwtl(m)}, with the norm Ilfll,:--

If(x)lw(x) dx, are Banach algebras under convolution (cf. [Rei], IF1] for details)

(2.1) f, g(x):= Imf(x-y)g(y) dy for f, g Llw(").

If w= w.’y-(+lyl), for some a>=0 we write L(’) instead of Lw(’).
We shall describe our approach in the setting of solid BF-spaces (or Banach

lattices). Formally we make the following general assumptions"
(81) (B, I1) Z,o( is a Banach space of locally integrable functions on

and for any compact set Q c_ :m there exists Co > 0 such that

I [f(x)l-<- collfll for all f B.dx

(B2) (B, I1) is a Banach module over (C(Rm), 1[) with respect to pointwise
multiplication, i.e., hf B and Ilhfll < Ilhllllfll for h CO andf B.

(B3) (B, I1) is translation invariant in the following sense: The translation
operators Ly, y, given by Lyf(X):=f(x-y), map B into itself and for some a >-0
we have Iltfll_-< CB(1 /lyl)"llfll. for all f B.

(B3’) (B, I1) is a Banach convolution module over La("), i.e., we assume that,
forf B and g LI, g,f B and IIg*fll.--< cllglll,ollfll.

Remark 2.1. It follows from (B3) that B is a space of tempered distributions, i.e.,
(B, IB) 9’() Consequently, the Fourier transform f and the spectrum specf:=
supp f (equals the support of f) are well defined forf B. For any closed set
the set

B" := {f B, specf ll}

is a closed subspace of B.
Examples. The most natural examples satisfying (B1)-(B3’) are the spaces

LP := {flfv Lp(m)}, with norm Ilfllv,p :-- If(x)v(X)[p dx

for 1 _-<p < oo (and a sup norm for p oe); cf. IF1]. The function v is assumed to be
a continuous and positive function which is moderate with respect to the weightfunction
w,, i.e., it satisfies v(x + y) <- Clwa(x)v(y) for all x, y e R". Note that obviously Wb is
a moderate function (with respect to wa) for any b e I-a, a]. Our general approach
also includes (weighted) mixed norm spaces in the sense of Benedek-Panzone, or
weighted variants of rearrangement invariant Banach spaces such as Lorentz or Orlicz
spaces [LT] or spaces of bounded p-mean IF5].
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In order to extend the results stated in [F3] to LP-spaces (with p > 1) the Wiener
type spaces W(M, B) and W(C,B) are an important tool IF2]. For B= Lp they
coincide with amalgam spaces in the sense of [FSt]. We shall describe them briefly,
using the symbols MB and CB, and give a new simple proof of a convolution theorem.

DEFINITION 2.1. For a fixed open, bounded subset Q_ R" we define the local
maximal function x --f(x) by f*(x) := SUpzQ+x If(z)l. Then

(2.2) CB := {f[f continuous, f B}.

defines a Banach space with the norm

(2.3) Ilfllc :-IIfll.
We shall denote the space CL(R’) by CI(N"). Note that the Schwartz space

6e(N") is continuously embedded into these spaces" (N") C(N") for any a eR.
The second space associated with B in a natural way allows us to deal with discrete
measures with a certain global behavior.

DEFINITION 2.2. For Q as above we set

(2.4) MB {/,, G R([m), with q, "x I l(x / Q) B},

(2.5) I111 :-II qt[.
For a discrete set X (xi)ii in " we shall write MBx for the closed subspace

{/x Yii h6x,,/x MB} of measures in MB supported on X.
In the last two definitions different bounded sets Q1, Q2 generate the same space

and equivalent norms; hence g CB if and only if g# B. For any positive k

I 1" kll is also an equivalent norm for MB. These facts are used in the sequel (e.g.,
for (2.9) below) without notice.

Next we describe basic properties of these spaces.
TI4EOREM 2.1. Let (B, satisfy the general assumptions (B1)-(B3’). Then the

following hold"
(i) CB and MB are Banach spaces satisfying properties (B1)-(B3’), with the

following continuous embeddings"

(2.6) CB B MB.

(ii) MB . C _
CB, and II* gllc <-- c01lll," Ilgllc’ for all I MB and g C1.

(iii) The spaces MB, B, and CB coincide, and the respective norms are equivalent
for any compact subset ", i.e., any tx MB is represented by a function f CB,
and there exists a constantC> 0 such that Ilfll c -<- cllfll <- C[[f l[,for allf

(iv) IfYf(R’) is dense in B, then it is dense in CB.
Remark 2.2. In view of the examples above we assume that (2.6) holds in the form

Ilfll, -<- Ilfll --< Ilfllcs forallf CB.

ProofofTheorem 2.1. The verification of (i) and (iv) is left to the interested reader;
cf. IF2]. For (ii) we have to verify (/x,f)# B. By direct computation the following
two pointwise estimates can be obtained:

(2.7) </x .f) -<_ *f,

and for any k 6 Y{("), k => 0, with supp k
___
Q =-Q and k(y) dy 1,

(2.8) h**k>=lh I.
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Combining these two estimates we obtain

(2.9) (,g)<-lzl,g<-_ll,(k,g)=(lzl,k),g n,tln

whenever Ix MB and g* e LI, i.e., g C1, and the proof of (ii) is complete.
Since spec Ix

_
f, Ix Ix g holds for any g C1 with if(t) 1 on 1). Consequently,

ix ix * g MB CI
_
CB by (ii). This also gives the required estimate (cf. Remark 2.2)

(2.10) [lll<-I[ll<-IIllc-II,gllc<-II(,g)ll<-cllll,llgll,o.

Besides these convolution relations two special types of operators on CB and MB
are needed. Both involve so-called &PUs.

DEFINITION 2.3. We call a family of nonnegative (measurable) functions
(bi)it a &partition ofunity (6-PU for short) if the following is satisfied: ii i(x) 1
on m, and supp p K(x) for I for some discrete family X (x)I in ". Here
Ks(x) denotes the open ball of radius 6 centered at x. We shall use the symbol
for the infimum over all numbers 6 such that is a &PU.

Note that X has to be &dense in ", i.e., g"= U i K(xi) for any 6-PU .
Examples of &partitions of unity. (a) If X is any &dense family and (P)x is a

partition of g such that Pi c__ K(xi), then the family of indicator functions (Cp,)ii is
a 6-PU. The use of Voronoi regions is most natural for our task (cf. [FG3]).

(b) If o(X) 1 -Ixll for Ixl--< and rio(X) 0 for Ixl > then L,Oo, n 7/is a
continuous &partition for .

(c) For irregular sequences in we can take triangular functions with Oi(x)= 1
and supported by [X_l, x/l]. The natural analogue for R2 can be described as follows.
Starting with a triangulation induced from the set X, choose the functions to satisfy
(xi) 1 and to be piecewise linear over the triangles having x as a vertex; cf. [SA].

(d) For any &dense family X in m we can find smooth &PUs. In the regular
case smooth PUs in " of the form L,o, n 7/m, can be obtained using B-splines.

Remark 2.3. In many cases it is convenient to work with families X (x)ix which
are well spread in the following sense" X is &dense and relatively separated in ’,
i.e., X is a finite union of subfamilies, such that [x xj[ -> 6o > 0 for all j in the same
subfamily, for some 60>0. In this case the covering through the balls K(x) is of
finite height. Of course a sequence is relatively separated in if [xn- n l--< c for all
n (cf. [BH2] for a two-dimensional version).

Remark 2.4. If the family Y is well spread and v is a moderate function, then
x jr Cj6y, (MLPv)y if and only if (LJ [JlPD(YJ)P)I/P < 00. For well-spread families
it is also easy to check that LJ [f(YJ)I%(YJ) < cPvllfll pcLop for allfe CLP The estimate
given in Theorem 2.1(iii) is thus a generalization of Nikolskij’s inequality to general
p and m dimensions (cf. [Ni, pp. 123-125], or [BH2, Thm. 1] for special cases with
p=2).

Using &PUs we define the following operators.
DEFINITION 2.4. Given a 6-PU associated with a family X we denote by Sp,r

(actually we should write Sp,l,,X) the operator defined for continuous f:

(2.11) Sp.(f) := f(x)qt.
iI

We also use the same symbol Sp, in order to describe a related operator which maps
sequences A (h) into functions on m.

S.(A) := E
ieI
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Remark 2.5. Note that IlSp.(f)lloo Ilflloo for fe cb(R"), and Sp,(f) Cb(m)
if in addition consists of continuous functions. If consists of piecewise polynomials
of fixed order, then Sp.(f) is a spline approximation (or quasi interpolant) off which
explains our notation. If is a system of triangular functions on R, then Sp.f is the
piecewise linear interpolation of the sampling values of f at X. Basic properties of
Sp. are collected in the following proposition.

Proposition 2.2. Assume that (B, s) satisfies (B1) and (B2).
(i) There is a constant Cs >0 such that []Sp,i,flls < Csllfllcsfor allf CB; The

family Sp,I, of all spline operators with continuous and I*1 <- 1 acts uniformly bounded
on any space CB.

(ii) supp (Spry)c__ supp (f)+ KI(0); hence Sp,(Y((r")) c__ Y((’)for
(iii) Sp,i,f f with respect to [[ for I’’]- O, for anyf yC(), and consequently,

Sp,i,f-f in CB for any f CB, whenever {(") is dense in B.
(iv) For fixed X the operator Sp, may be considered as a bounded operator from

MBx into B, i.e., we have

Proof. (i) It is easily verified that SUpzx+o [Sp,i,f(z)] <= SUpzx+o, If(z)J for Q1 :=
Q+ KI(O), because supp qi c_ K(xi) for all I. Taking the B-norm with respect to x
on both sides proves both statements of (i). The simple proof of (ii) and (iii) is left
to the interested reader. (iv) follows from

i I qi(x)O

with/z h6, and Q := KI(0), if [qt] __< 1, by taking the B-norm on both sides.
Next we introduce an operator which replaces a given function by a discrete

measure. In order to avoid confusion with the PU q used above we now write (%)jj
for a PU associated with Y (y)j in

DEFINITION 2.5. The discrete measure obtained from f Loc(W") through con-
centration of mass by means of ap is denoted by

jGJ

with {f, %)= Ia %(x)f(x) dx.
The following properties of these operators are of interest to us.
PROPOSITION 2.3. Assume that (B, liB) satisfies (B1)-(B3’).
(i) There is a constant CD > 0 such that for all f B and all AP with lap] <= 1,

(ii) Assume that [(m) is dense in B. Then D.f. h f. h in CB, hence in B and
uniformly over compact sets, for h C 1, as lapl O.

Proof In order to determine the norm of D.f in MB we observe that

[D.fl(x + (2)-- E [(f,
{j[yex+Q}

[f(y)%(y)l) If I* co,(x)

where co, is the indicator function of Q1 := Q+ gl(0). Since If I* co, e B,L
_
B by

(B3’) we obtain IID./II- --< Cl1111,. The proof of (ii) is left to the interested reader.
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Remark 2.6. Note that both Sp,I, and Da, are not bounded on B itself, and that
the auxiliary spaces CB and MB are essential for our approach.

3. The main results. With the notations of 2 we now describe the results about
reconstruction and series expansions of irregularly sampled band-limited functions.
The main theorems will contain two parts. The first part asserts the existence of a
reconstruction operator. This formulation reveals the stability of the reconstruction
and the correct norm estimates. The second part realizes the reconstruction operator
as an iterative procedure. This form emphasizes the algorithmic aspect ofthe reconstruc-
tion. The corollaries make clear that for well-spread families the results can be described
using natural Banach spaces of sequences instead of MB.

The first theorem deals with the complete reconstruction of band-limited functions
from their sampling values.

THEOREM 3.1 (General sampling theorem for band-limited functions). Let 12 be
a compact subset of ’. Then there exist 6 6 (12) > 0 and C C(6, ) > 0 such that
for any 6-PU on " there is a bounded operator B:B- B with

(3.1) I1()11
which inverts Sp,I, on B", i.e.,f B(Sp,f for allf B". Consequently,fcan be completely
recovered from the sampling values (f(xi)i ).

The operator B can be realized by the following iterative algorithm: Fix a pair of
band-limited functions g, h LI such that ,( t) =- 1 on 12 and f( t) =- 1 on spec g. Set

(3.2)

Then

bo := b and bk+l := bk * h Sp,i,(dpk * h);

(3.3) B(th) ( ’k=o bk) * g.

Formula (3.1) expresses the stability of the reconstruction. The algorithm satisfies
all the other natural requirements discussed in the introduction. For more precise
statements about the locality, see Theorem 3.4 and [FG4].

The operations involved can be easily implemented and our first numerical experi-
ments have shown that the algorithm works efficiently. As has been shown in [Gr2],
the required sampling density (at least for the one-dimensional case and a natural
choice of ) is just the Nyquist rate.

If lq =[-1, 1], g= h =sinc, and is a system of triangular (or pyramid) type
functions on or E2, then the algorithm can be shown to be equivalent to method (2)
suggested in [SA] (without proof for the irregular case there). Since sinc L, our
argument for the convergence of the algorithm cannot be applied directly, but the
arguments given in 4 are easily adjusted to this case.

COROLLARY A. Given a compact set f
_
" there exists 6 6(12)> 0 such that for

any 6-dense, well-spread family X in " the following is true: There exists a bounded
linear operator R from the sequence space 1 := {AI(Z,, Ih,lPv(x,)V) /p <} into Lv(")
such that R provides a complete reconstruction of f from its sampling values, i.e.,
R(f(x)) ffor allfe (L"o)a. For given fl, X the same R and 6 workfor all a-moderate
weights v and 1 <- p <-_ c.

A "dual" variant of Theorem 3.1 yields series expansions in terms of translates
of a single function.

THEOREM 3.2 (Series expansions for band-limited functions). For any g L with
,(s) 0 on a compact set 1 " there is a positive number y 3,’(12, g) > 0 such that
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for any 3/-dense family Y (Yj)jI there is a bounded linear operator D from Ba into

MBy satisfying

f D(f) g for all f B.
Writing D(f)= Yjj C/3yj, this means

(3.4) f= cjLyjg.
jJ

The coefficients are obtained as cj := Yk=O (q,fk), where the sequence (fk)k=O is given
iteratively (using an auxiliary function gl) by

(3.5) fo:=f, g and f/ := (f- D.f), h,

Remark 3.1. Since the sampling sets in m do not have any natural order, we
understand convergence of a series h it hi in the following sense: for any exhausting
sequence Fn c__ I of finite subsets of/, i.e., Fn c_c_ F,+I and U =1 F, =/, the sequence of
partial sums YiF. hi converges to h. Consequently, these series converge uncondi-
tionally, i.e., they converge for any fixed enumeration of L If I 7]’, the interpretation
as a multiple iterated sum is also admissible.

COROLLARY B. Under the assumptions of Theorem 3.2 for any q-dense family Y
in m there is a bounded linear operator C" (LP)a lP such thatf(x) r (Cf)g(x- yj)
holds for every f (LP)a. The series converges uniformly over compact sets and for
1 <-p < oe also in the norm of Zp.

The next theorem offers an alternative reconstruction algorithm which is easier
to implement numerically and computationally less intensive, but the required sampling
density for this algorithm may be higher.

THEOREM 3.3 (Method of aaptive weights). Given 1)’ compact, g L with
,(t) =- 1 on 1) and h L with h(t) =- 1 on spec (g), there exists 7 rl(l), g) > 0 such
thatf B can be reconstructedfrom its sampled values (f(xi)ii) on any rl-densefamily
X by the following algorithm" Set wi d/i(x) dx and

dpo E f(xi)" wi" ,, e MBx,
iI

(3.6)
6k+ qb * h- Y. 4)k(Xi)" Wi" L,,h.

iI

Then f= ,=o 49, * g and the right side depends only on the sampling values (f(xi)i).
Remark 3.2. The proof will show that the partial sums

(3.7) f("):= Z Wi 6k(Xi)’L,g
iI k=0

are convergent to f at a geometric rate.
The following variant of Theorem 3.1 is of interest if many functions with the

same spectrum are to be reconstructed from samples taken over the same family X or
if X and [l are given in advance.

THEOREM 3.4. Under the conditions of Theorem 3.1 there is a family (ei)i in C
such that f B can be written as f=iif(xi)ei. The series converges uniformly over
compact sets and, if(’) is a-dense in B, in the norm of CB.

Theorem 3.4 expresses the locality of the reconstruction. In contrast to the sinc-
functions in the classical cardinal series the ei’s have much better decay properties. In
applications the collection of functions (ei)i may be calculated in advance, using
only the knowledge of ll and the sampling set X. Given the sampling values (f(xi))iI,
the reconstruction of f is then obtained quickly by ordinary summation.
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Remark 3.3. The representation off as a series in (ei)iet is not unique. In contrast
in Kadec’s 1/4-theorem the functions (ei)iex are not linearly independent in general and
thus do not constitute a basis. On the other hand, these series expansions work
simultaneously for all p, 1 _-< p <. The nonuniqueness of the expansion is closely
related to numerical stability.

In our last theorem we combine the two aspects of the regular sampling theorem
and show how for a given family Y a suitable sequence of coefficients for a series
expansion ofthe form (3.4) can be computed directly from the sampled values off alone.

THEOREM 3.5 (Combined sampling and expansion). Given g LI with (x)=-1
on a compact set

_
g’, there exist two constants (l’I, g)> 0 and ), T(f, g)> 0

such that for any two families (xi)ix and (yj)jj which are and T-dense, respectively,
there is a linear mapping M from the space of sampling values {(f(xi)), f B} into
MBy satisfying

(3.8) f= M(f(x,))* g E cjLyjg.
jJ

The coefficients can be obtained from a sequence defined iteratively by

(3.9) fo := f, fk+l :=fk * h -(D,Sp,vfk)* h,

through

k=0

COROLLARY C. If in the situation of Theorem 3.5 the sets X and Y are well spread,
there exists a bounded linear operator N from lP(I) into lP(J) such that forf (LP),

f(x)= E N(f(xi)ie,)jg(x-yj),
jJ

with convergence in LP for 1 p <.
4. Proofs.
LEMMA 4.1. For any compact subset m___ there exists some constant C1-

C(E, a)>0 such that uniformly for all -PUs and spaces B satisfying (B1)-(B3’)

Ilfll for allf B.
Proofl We discuss the one-dimensional case first and check that the condition

specf E implies f’ CB. Since f’(t)=2itf(t) for all it is sucient to choose
some u () such that is in (infinitely differentiable with compact suppo) and
satisfies (t) 2it on E. Then f’ =f, u, and since (m) C this implies f’ CB,
and by Theorem 2.1(ii),

(4.1) [lf’l[ c CollfilllUllc.
The mean value theorem implies

If(x)-f(y)[ sup [f’(z)[. for x, y with Ix-yl -zeK(x)

It follows therefore that (note that supp K(x))

(4.) I(f(x) f(x,))g/,(x)] N 3. sup If’(z)l.
zK(x)
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By summation over I, using the properties of a 8-PU we obtain

[(f- Sp,f)(x)[ <- Y [(f(x)-f(x,))4,,(x)[ <-_ . sup If’(z)l,
i Ks(x)

and, after taking B-norms on both sides,

(4.3) Sp,f f <= 8 f’ cn <- 8. cllfll,
for C:= Co" IlUllcS. This completes the proof in the one-dimensional case.

In the case m _-> 2 we use that the partial derivatives on B-" can be represented as
convolution operators, i.e., of/oxk =f*Uk for all fe Bz if Uk (Nm) satisfies tk(t)
27ritk on ... Thus

Igradf(x)l (of/ox(x))
=1 k=l k=l

Setting u(x):= 2= lu(x)l, we have u e C and

(4.4) Igradf(x)l(Ifl*u)(x) for all

Invoking the mean value theorem we obtain for any y B(x)

If(x)-f(y)llx-yl sup Igradf(z)lN6. sup (Ifl.u)(z).
zeK(x) zeK(x)

By Theorem 2.1(ii) we have Ifl* u CB and the same arguments as above apply (with
f’ being replaced by ]fl* u).

Remark 4.1. Observe that in the above situation we have the inequality

(4.5) Igrad fl
Using (2.7) and (4.4) we therefore derive the estimate

(4.6) Ilgradflc C. Ilfll forfe Bz.
This result is a generalization of Bernstein’s inequality from Lp to general function
spaces B.

Proof of eorem 3.1. Given ON compact, we fix a pair of band-limited
functions g, h e L(N) such that (t)= 1 on , and (t)= 1 on spec g (any pair of
Schwaz functions if, e satisfying the condition will do). Consequently,

(4.7) h g g, f. g =f=f. g. h for all fe Ba.
In order to define the operator B on the Banach space (B, ) we define for e B a
sequence, staing with o
(4.8) k+l := k * h Sp,(k * h).

Since h is band-limited the functions k*h are band-limited and Lemma 4.1 is
applicable with E := spec h. Hence (using (B3’))

(4.9) I1+11 " cll hll " C._ Cllhll,allll.
If 1 <= , such that . CCllhll, =: y < 1, then

It follows that the operator B given as

(4.11) B()=(=o )*g
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is well defined on B, with values in B, and bounded due to the estimate

n=0 B
(4.

< (1 T)-

In order to verify that B inves the spline operator Sp over B we have to
consider the sequence ()g%o, now staing with o := Sp forf B. We also use
the sequence (f)o, given by recursion (4.8), and staing with fo:= because it
satisfies the following identity"

(4.13) f=f+’*g+( =o Sp,(f .h)),g.
Equation (4.13) is clear for k=0 by (4.8) and follows immediately by induction for
k>0. Moreover, since Ilf+* gll0 at a geometric rate, (4.13) yields the following
representation of f as an absolutely convergent series in B"

(4.14) f= Sp,(f, h) g.
=0

It will now be sufficient to verify that

(4.15) Sp,(fk * h). g k * g,

because then (4.14) implies the required identity

(4.16) B(Sp.f) * g 2 Sp,(f. h). g =f forfe Ba.
=0 k =0

In order to verify (4.15) we show first that

(4.17) f+ =f 4 for k 0.

This is clear for k 0 by (4.8) and follows for general k 1 by induction:

fk k fk-1 * h SPw(fk-1 * h) k-1 * h + Sp,(k-1 * h

(fk-1- 6k-l) * h SP,((fk-1-- 6k-l) * h)

fk * h-- Sp,(fk * h) fk+.
Equation (4.15) is true for k=0 and follows from (4.17) by induction for k 1,
using (4.8)"

Sp.(A+ , h), g Sp.(A , h), g- Sp.(6 h), g

6 * h g- Sp,( h), g 6+* g.

The proof of Theorem 3.1 is thus complete.
Remark 4.2. Note that both Lemma 4.1 and the proof of Theorem 3.1 work

simultaneously for all function spaces B that are convolution modules over the same
Beurling algebra L. Thus the same constants arise for all such spaces having the same
constant C in (B3). This will be impoant for Theorem 3.4.

Proof of Corollary A. We define the reconstruction operator R from l into L as
follows" For A= (h) e l we set R(A):= B(Sp,(A)), i.e., we form iteratively

(4.18) o := 2 h# and k+ := k* h Sp,(k* h) for k e 1.
iI
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Then R(A)= k=O bk)* g, the series is well defined in LPo and spec R(A)___ spec g. A
combination of Theorem 3.1, Remark 2.4, and Proposition 2.2(iv) then yields the
boundedness of R as an operator from lP into LPo. Evidently, R applied to the sequence
A--(f(xi))ir yields R(A)=B(Sp,I,f)=f. Thus R is indeed a reconstruction
operator.

The following result will play the same role in the proof of Theorem 3.2 as Lemma
4.1 in the proof of Theorem 3.1. The operator D is as in Proposition 2.3.

LEMMA 4.2 (Discretization of convolution). For any compact subset .. _ R" there
exists some constant C C(.., a) > 0 such that uniformlyfor all ,/-PUs and all spaces
B satisfying (B1)-(B3’),

(4.19) II(f D.f), hllcn < rl" C

for any band-limited h Lla with spec h
_ .. andf B.

Proof. Given an r/-PU (qj)jj we consider for fixed j e J

(4.20) [(fo (f, );,). hi_-< I [h(x-y)-h(x-y)llfl(y) dy=: I.
Kn(yj)

Next we observe that the mean value theorem implies for fixed x, y, y:

Ih(x- y)- h(x- y)l <-_ . grad h(:)l,
with between x-y and x-y; hence sr Kn (x-y), and we may continue the estimate
by

I <- f r/. grad hi (x y)lfl(y) dy <-_ . IfjI * (grad h)(x).
K(yj)

By summation over j J we obtain from this the pointwise estimate

(4.21) I(f- D.f) hi <- . (IfI* (grad h) ).
Since spec (f- Df), h

_
spec h .., the CB-norm is equivalent to its B-norm

by Theorem 2.1(iii) for these functions. Using (B3’) we obtain as in (4.4) (cf. Remark
4.1)"

(4.22)
II(f- Da,f * h c II(f- D,i,f * h 111fl*l grad

--< " cllfll grad hl#lll, -< " C,C. Ilhlll," Ilfll-
Thus C3=_ := Ca" C is an appropriate choice.

Proof of Theorem 3.2. By the theorem of Wiener-Levy (cf. [Rei, Chaps. 1, 6.5])
there exists a band-limited function gl LI such that ffl(t)= l/if(t) on 1-/. Next we
choose a band-limited function h Sf(Rm) Lla with/(t) 1 on spec g U spec gl. Then

(4.23)
g*h=g, g*h=g,

f* h =f* g * g =f for all f B".
We want to show that in the identity f= (f, gl)* g the factor f, gl can be replaced by
a discrete measure. To this end we start an iteration procedure similar to that of
Theorem 3.1, but with a different approximation of the convolutionf-f, h. We define

(4.24) fo:=f* g, A+I := (fk-- Dafk) * h,

with D" B MB as in Lemma 4.2. It follows by induction that

(4.25) f=fk+l*g+ ( .=o Da,f)*g.
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Substituting (4.24) and (4.23) into (4.25), we obtain for k 0

fl * g + (Dfo)* g =f* gl * h g- D,(f, gl)* h g

+D,(f, g), g=f.
The step from k to k+ 1 is also clear, if we again use g, h g. If we now choose
r/-- r/(l), g)< 1/(C3 Ilhll,.), or y:= r/. cllhll, < 1, then Lemma 4.2 implies for any
r/-PU
(4.26) IIA+,II--< " IIAII-<- y+lllfoll for k => 0.

Taking the limit as k-> o in (4.25) the series representation for f follows"

(4.27, f=(,=o D,(f,))*g=D(,=of")*g"
The interchange of brackets is justified by the fact that the series F:= =of, is
absolutely convergent in B, by the continuity of D, from B into MB, and by the
continuity of convolution by g C (Theorem 2A(ii)). Thus

(4.28) f (DF), g= E (qgj, F)Lyg
jeJ

yields the desired expansion off in terms oftranslates of g. The continuous dependence
of the measure Da,F follows from Proposition 2.3(i) and (4.26)"

IID.FII, <-- CDIIFI[, <- CDIIFII--< Co. E IIfll
k=0

(4.29)
<- CD (k=0 Y)Ilf0ll--<-- CDC(1-y)-lllg, ll,,llfll.

Thus the operator D is given as D(f):= D,F.
Remark 4.3. If (t)= 1 on f, the auxiliary function gl is not necessary and the

reconstruction of f is much simpler. The iteration is then fo =f
(4.30) fk+l =fk * h (D,fk) * h

where h(t)--- 1 on spec g. The rest of the argument is the same.
Proof of Corollary B. It is no loss of generality to assume that X is well spread

(by selecting a 8-dense and separated subfamily, and setting the coefficient equal to
zero for the omitted points). Thus all we have to show is that in (4.29) I[D.FIILC is
equivalent to (E,, I(,, F)]Pl)(Xi)) 1/p" This follows from Remark 2.4.

For the proof of Theorem 3.3 we have to use a different discretization operator
(only valid on B but not defined on all of B), which will take the same role as D,
in the proof of Theorem 3.2. Forf CB we set

(4.31) D(f):=(f ,(y) dy)f(x,)8,.
These operators D; combines the features of Sp. and D,v. Since D, maps CB

into MBx and uses sampling values of f CB it can be used as an approximation
operator in both Theorems 3.1 and 3.2. Lemma 4.3 provides the necessary estimate.

LEMMA 4.3. Let (B, IIn) satisfy (B1)-(B3) (for some a>0). Then there exists

CD+ > 0 (depending only on a) such that for any 8-PU ,
(4.32) IID,I,(f)-D,(f)IIMB<=8. CD+IIfIIB for allfB.
In particular, for any e > 0 there exists 80 > 0 such that

(4.33) II(D;f)* h -f* hllc <- e.

for all f Ba and all 8-PU with 8 <-80.
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In the proof we shall use the following a priori estimate.
Remark 4.4. Given complex-valued sequences (ci)ii and (di)i satisfying Icl _-< di

for all I we have

(4.34) /x d3x, MB implies , := cdx, MB and ’ Ms -< .
iI iI

Proof ofLemma 4.3. The mean-value theorem implies for i I:

(4.35) I If(Y)-f(xi)ld/i(Y) dY<--3" f Igrad fl*(Y)d/i(Y) dy.

After summation over i I Remark 4.4 implies

MB(4.36) ----< " [ID,Igrad fl II.
Applying Proposition 2.3(i) and Remark 4.1 we obtain

D*lgradf]* MS <- CD" III grad fl
(4.37) co Ilgrad
Thus IIDf- Dfll, <= . c311fll for all fe Ba. Combining this fact with Lemma
4.2, the proof is complete if we choose 30 -< e. min (1/2, 1/2C).

Proof of Theorem 3.3. We refer to the proof of Theorem 3.2 for the iterative
procedure, indicating only that D. has to be replaced by D,. Furthermore, gl may
be chosen to be identical to g (cf. Remark 4.3). By using Lemma 4.3 instead of Lemma
4.2 geometric convergence of the sequence (fn)n=0 can be verified for sufficiently small
3. In analogy to (4.27) we obtain

(4.38) f= D; g.

Proofof Theorem 3.4. We use the operator B from Theorem 3.1 in order to define

(4.39) e, := B(
Since q Ll, Theorem 3.1 implies e e L(N") and spec e c__ E, thus ei e C la for e !
by Theorem 2.1(iii). If yg(Nm) is dense in B, then obviously

lim E f(x,)
n-oo iFn iI

in B for any increasing sequence of finite subsets F _/, exhausting I. Therefore by
the boundedness of B

f B(Sp,i,f) B( lim i f(xi)ti)
(4.40) lim f(x)e, f(xi)e,,

n-oo iFn iI

i.e., the series converges in B. Since the family (e) has joint spectrum we may apply
Theorem 2.1(iii) to derive convergence in CB, hence uniform convergence over compact
sets in ’.

The direct method of obtaining suitable coefficients from the sampling values as
described in Theorem 3.5 requires the following technical lemma.

LEMMA 4.4 (From sampling values to coefficients). Given .. ", compact and
p > 0 there exist 3 3() and 7 3’(, h) > 0 such that

(4.41) IIf* h -(D.Sp,i,f)* hll --< p" Ilfll for allf B-and uniformly for all &PUs q and all y-PUs
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Proof We combine Lemmas 4.1 and 4.2 and obtain forf B

Ilf* h D,Sp,i,f * hll
--< II(f- D,f). hll / IIO(R)(f- Sp.f). hll (by Lemma 4.2)

<=’Cllhll,ollfll / CollO(R)(f- Sp.I)II,," lib IIc’ (by Theorem 2.1(ii))

(by Proposition 2.3 and Lemma 4.1)

Now choose % small enough so that the coefficient of Ilfll is less than p.

Proof of Theorem 3.5. The proof is similar to those of Theorems 3.1. and 3.2. We
choose h L band-limited with/(t) 1 on spec g and define

(4.42) fo := f, fk+ :=fk * h-(D.Sp,i,fk)* h.

Then fk B= for all k, and if and 3’ are small enough, by Lemma 4.4

(4.43) IIA/, --< o"
with p < 1. Since f f* g f* h g and g g, h we have for n => 0

(4.44) f=f* g ---fn+l * g + D.(Sp,i,fk)* g.
k=O

Since p < 1 it follows

(4.45) f= Y, D.(Sp.fk) * g.
k=0

Since the series of discrete measures Yk=O D.(Sp,i,fk) D.(k=O Sp,i,fk) is supported
on Y (y)j and absolutely convergent in MB, the result can be written asj c,
with c := (q, k=O Sp,fk}. This sum is unconditionally convergent in MB, and norm
convergent, if ,g(Nm) is dense in B. It follows therefore that f=j cLyg, as was
required.

As in (4.29) we verify that the coefficient mapping (it can be described by an
infinite matrix) M: f- C (c)j, is continuous. Finally, we show as in the proof of
Theorem 3.1 that the fk’S and therefore (c)j depend only on the sampling values
(f(x,))i,.

Corollary C follows from Theorem 3.3 in the same way that Corollary B follows
from Theorem 3.2.

Note added in proof. Since the submission of this manuscript we have obtained
further results on the algorithms of Theorems 3.1-3.3: (a) [FG4] contains a detailed
error analysis ofthese algorithms and shows their stability, again in the general function
space setting. (b) The results of numerical experiments have been very convincing; see
[FGH], [FCH], [FCS]. Particularly, the adaptive weights method described in Theorem
3.5 using the D,-operator has turned to be simple and extremely effective.

Acknowledgment. We thank the referees for their valuable comments which helped
to improve this paper.
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ASYMPTOTICS OF THE SWALLOWTAIL INTEGRAL NEAR THE
CUSP OF THE CAUSTIC*

D. KAMINSKI

Abstract. The asymptotic behaviour of the "swallowtail integral" is examined, a generalized
Airy function, given by

S(x,y,z) exp{i(tb/5 + xt3/3 + yt2/2 + zt)}dt,

for large values of its parameters. In particular, its caustic is briefly discussed, and asymptotic
expansions of S are obtained which are uniformly valid near cusps of the caustic as Ixl+lyl+lzl +cx.

In obtaining the asymptotics of S, the quartic transformation f(t) z4/4- z2/2 + }z + 0 is
used. Exact expressions for the parameters in this transformation are obtained, displaying , r/, and
0 in terms of the known function f at its critical points.

Key words, uniform asymptotic expansions, swallowtail integral, diffraction integrals, caustics

AMS(MOS) subject classifications. 41A60, 30E15, 33A70

1. Introduction. The swallowtail integral is a function of three real variables
defined by

(1.1) S(x, y, z) ei(ts/5+xta/3/Yt/2+Zt)dt.

By deforming the path of integration into the complex t-plane so that it begins at
cxe9"i/1 and ends at cx)e"i/1, we see that S can be extended to an entire function
in C3. The swallowtail integral occupies important niches in several fields of mathe-
matics and physics--in physics, S appears in both geometric optics and applications
of catastrophe theory, paralleling the role played by Airy’s integral (see [Gill) and the
Pearcey integral (see [Bri] and [Pea]).

The swallowtail integral arises when considering the large A asymptotics of inte-
grals of the form

(1.2) G(A; a) g(z; a)eif(z;)dz,

where g and f are typically analytic, and a (a,..., an) is a collection of auxiliary
parameters varying in some set A. If the saddle points of the integral (i.e., critical
points of the phase function f) are all simple, then the asymptotics of (1.2) is given
as a sum of terms each of order A-/2. In the event that two simple saddles undergo
confluence as a -- a0, then the uniform asymptotic behaviour of (1.2) contains terms
involving the Airy function and its derivative multiplied by powers of A-/3. If three
simple saddles coalesce as a -- a0, then the uniform asymptotic behaviour of (1.2) can
be described by terms containing the Pearcey function and its first-order derivatives,
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each multiplied by powers of A-1/4, where the Pearcey function is given by

(1.3) P(x, y) ei(t4/4+xt2/2+yt) dt.

The swallowtail integral enters the picture when four simple saddles of (1.2) un-
dergo confluence as c -- a0. In this case, the uniform asymptotic behaviour of (1.2)
will be governed by terms involving S, Sx, Sv, and Sz, each multiplied by powers of
A-1/5. Ursell, in [Urs], discussed the uniform asymptotic theory for integrals with
several coalescing saddle points using an integral closely related to (1.1).

One factor serving to limit the utility of integrals of the type in (1.1) and (1.3)
is the shortage of tables of values of these functions and a comparative lack of in-
formation regarding the large parameter behaviour of (1.1) and (1.2). The past few
years have seen a growing body of work dedicated to resolving this difficulty. On
the numerical side, Connor and his associates [Conl, Con2, Con3, Con4] have done
significant work in developing tables for both P and S, but correspondingly little has
been done in examining the large parameter behaviour of S (the Pearcey function has
been analyzed in [Kam2, Par, Sta]).

In this work, we will develop asymptotic expansions of S(x, y, z) which remain
valid as three saddle points coalesce. The plan of the paper first involves a number of
preliminary steps, collected in 2, where a description of the so-called "caustic" as-
sociated with the swallowtail integral is presented. The type of asymptotic behaviour
to be found for S near the caustic is briefly discussed, as is a detailed description of
the behaviour of the saddle points of S.

The interesting case of large negative x behaviour of S, which serves as the focus
of this paper, is taken up in 3, with an examination of a quartic change of variables
first used by Ursell in 1972; see [Urs]. In the process of developing the asymptotics of
S(x, y, z), we will provide the first "concrete" application of the Pearcey integral to
uniform asymptotic theory.

Section 4 briefly examines the conformal mapping determined by the quartic
transformation and shows why the attention we pay to the use of full steepest descent
contours is important.

Section 5 examines the limiting forms of the uniform expansion obtained in 3
and determines the values of the first three coefficients in the uniform expansion, at
the caustic.

In the final portion of the paper, we present our results in the form of a theorem
and show why restrictions imposed in earlier sections can be relaxed. A brief exami-
nation of the termwise differentiation of the uniform expansion is also undertaken.

2. Preliminaries.

2.1. Caustics. Let F(t) t5/5+xt3/3+yt2/2+zt be the phase function of the
integral (1.1). It is well known from stationary phase philosophy that the asymptotic
behaviour of (1.1) is governed by the number and order of critical points of F, and
in particular, by the number and order of those critical points that are real (if F has
only complex critical points, S is of exponentially small order as

For to to be a zero of F of order two or more requires that F (t) t4 +xt2 +yt+ z
and F (t) 4t3 + 2xt + y both vanish simultaneously at t to. If to is a zero of order
three, then we additionally must have F(t) 12t2 / 2x equal to zero when t to.
Finally, we observe that zeros of F of order four can occur only when to 0.
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x<O

FIG. 1. Locus of points (x, y, z) for which F’ and F" have simultaneous real zeros.

From F’"(to) 0, to 0 implies that x must be zero, and resubstituting these
two values in F" 0 and F’ 0 shows that F’ has a zero of order four only when
x y z 0. Therefore, in our problem of determining the large Ixl / lYl / Izl
behaviour of S, we see that we never encounter a stationary point of order four.

Proceeding similarly for zeros of F’ of order three shows that such zeros (for real
to) can occur only when x <_ O, as F’"(to) 12t + 2x never vanishes for positive x.
If x is positive, then S can have stationary points only of order _< 2. In the latter
setting, the method of Chester, Friedman and Ursell [CFU] can be applied; this is
briefly discussed in the last part of this section.

Interesting behaviour can therefore be expected for S when x _< 0, and we shall
find it convenient to characterize the saddle point structure of S after the fashion
of Gilmore [Gill. We accomplish this by plotting those parameter values of (x, y, z)
for which F’ has (real) zeros of order two or more. The result of this exercise is
frequently referred to as a caustic, and is displayed in Fig. 1. We will examine this
self-intersecting surface by taking plane slices x constant for x > 0, x 0, and
x<0.

For x > 0, say x 1, we have F’ t4 + t2 -{- yt + z and F" 4t3 -+- 2t + y whence,
if F’ and F" vanish simultaneously, (y,z) (-2t- 4t3,t2 + 3ta). The resulting
parametric curve in the yz-plane is the set of y and z values (x 1) for which F has
coalesced real critical points. Notice also that replacing t by -t in the parametric
forms for y and z results in only a change in sign of y.

The plane slice x 0 results in a similarly shaped curve.
The negative x constant plane slice reveals a more complicated structure. For

the purpose of illustration, we take x -1. In this case, F"’ 12t2-2, so that critical
points of order three exist precisely when t +/-l/v/-d. The parametric equation of
the curve in the yz-plane along which F has critical points of order two (or higher)
is (y, z) (2t- 4t3, -t2 -{- 3t4); see Fig. 2. Note the presence of two cusps, which
correspond to those values of y and z for which F (with x -1) has critical points
of order three. Other points of the curve are associated with critical points of order
two.

At points off the surface in Fig. 1, F has at most simple real zeros. The reader
interested in a more detailed discussion of these plane sections is directed to [Gil, p.
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FIG. 2. The plane slice x -1 o] Fig. 1. The bounded region contains those values (y, z) for
which F’ has exactly four distinct real zeros. Confluence of zeros of F’ occurs only for (y, z) on the
curve. Elsewhere, F’ has either two distinct real zeros, or only complex conjugate pairs of zeros.
This illustration isreferenced later in the text, with y and z replaced by b and c, respectively.

2.2. Reduction of S. Since the critical points of the phase function F of S
can undergo a confluence only for points on the caustic, and since all such conflu-
ences involve only a pair of critical points except at the cusps, it suffices to restrict
our attention only to the case of negative x. Elsewhere on the caustic, the method
of Chester, Friedman, and Vrsell (cf. [CFU]) can be applied to obtain the uniform
asymptotic behaviour of S, as has been done in [Kaml].

Furthermore, we may, without loss of generality, assume that y _> 0 in our treat-
ment, as the case of y < 0 follows upon conjugation, since S(x,-y, z) and S(x, y, z)
are complex conjugates. For notational convenience, we replace x by -x and consider
S(-x, y, z) with x > 0.

If we introduce the change of variables t xl/2u, then S(-x, y, z) has the integral
representation

(2.1)
Aooeri

lO

S(-x, y, z) x1/2 ]’ooe9/lo eiZS/2I(u;Yz-a/"zx-)du’

where

The uniform asymptotic behaviour of S(-x, y, z) for large positive x can therefore be
obtained from the uniform asymptotic behaviour of

(2.3)
_ooeri/10

I(A) ]e9.,/lo exp [iAf(t; b, c)] dt,

with A -- +oo. We shall work exclusively with this integral, recovering the desired
behaviour of S at the end through the use of (2.1).

To proceed further requires detailed knowledge concerning the behaviour of the
saddle points of I(A).
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2.3. Zeros of quartic polynomials. It is well known that a solution of quartics
by radicals is available, and several works in the theory of equations present formulae
for this purpose. Regrettably, the form the zeros take is often unwieldy, due to the
nested radicals that appear.

An elegant solution to the problem of extracting the roots of quartic polynomials
can be found in the work of A. Greenhill [Grel, Gre2], published in the late 19th
century. Greenhill’s approach involves the use of Weierstrass elliptic functions, and
the expressions he obtains for the zeros of quartic polynomials reduce in short order to
the more familiar forms provided by classical techniques, such as the use of Lagrange
resolvents.

Let

U xa + 6Cx2 +4Dx + E,

and set g2 E / 3C2, g3 CE D2 C3. (Note that every quartic can be given
the form possessed by U through the use of a linear change of variables.) Denote by
9(z; g2, g3) the Weierstrass elliptic function formed with the invariants g2 and g3. Let
c (in the fundamental period parallelogram) be that number for which p(2a; g2, g3)
-C, ’(2c; g2, g3) -D; for the existence of such c, see either [Grel, p. 271-272] or
[Gre2, p. 152-153]. Put

483 g28 g3

and let the discriminant of this cubic (called the discriminating cubic of the quartic
U) be

Denote the zeros of S by ei, i 1, 2, 3, and those of U by xj, j 0, 1, 2, 3. Greenhill
found that

X0 V/3(20)- eI + V@3(2o/)- e2 + V/9(2o)-

x2 -V@9(2o) el + /9(2o) e2 V/9(2o)-+

We note here that there is no ambiguity in the previous set of equations, as the square
roots are chosen by

a(z + wi)

In this equation, wi is an irreducible half-period, and the numbers are determined
by (w). The functions and a are, respectively, the Weierstrass zeta and
sigma functions. A number of well-known properties of p and relations involving the
constants w, i, and e can be found in [Cop]. Of interest to us is the fact the square
root determined in the previous equation is always +/- the principal branch; see [Cop,

This latter piece of information, together with the equation ga(2a) -C, a’(2a)
-D, give us the more familiar Lagrange form for the zeros of the quartic U, only with
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additional information regarding the branches of the square roots that appear. From
this, we find that the zeros of f(t) t4 t2 + bt + c are given by

Here, the ei’s are the roots of the discriminating polynomial, given by

((2.5) S 4s3 c + s + - 16 26
use of the trigonometric solution of cubics allows us to express the ei’s as

(2.6)

e, + sin(./3-+), + 6 sine, e3 -? + 6 sin(’/3 +

with the angle given by

(2.7) sin 3b c/6 + b2/16 1/216
(c/3 + 1/36)3/2

Before proceeding with our discussion of the asymptotics of I, a few observations
regarding the ei should be recorded.

Along the caustic, we have

(2.8) - 16 216 5 +

since the discriminating cubic must have repeated zeros when two or more ti’s coincide;
thus, this equation gives the caustic in the bc-plane. This is precisely the x -1
caustic of 2.1, with y and z replaced by b and c (recall Fig. 2). The cusp points
are easily found to have coordinates (+/-4/3v/,-1/12). As we pointed out in 2.1,
because of the symmetry in the caustic with respect to the vertical axis (in either y- or
c- coordinates), we need only consider those values (b, c) with nonnegative ordinate.

Along the caustic, (2.7) must become sin3 +/-1 or +/-r/6. At the point
(b,c) (0, 0), we find -r/6, and at (b,c) (0, 1/4), we have r/6. Thus,
on the lower arch of the caustic (that segment joining (0, 0) with (4/3v/-,-1/12)),

must be -r/6, and on the middle segment of the caustic (that portion joining
(4/3v/,-1/12) to (0, 1/4)), we have r/6; see Fig. 2. By similar reasoning, we find
that all level curves sin3 T, with -1 < T < 1, must also pass through the cusp.

At the point (b,c) (0,0), we find to tl 0, t2 1, and t3 -1 since
-r/6, el 1/6, and e2 e3 -1/12. For (b, c) (0, 1/4), we have r/6, el

e2 1/6, and e3 -1/3 whence we find to t3 -1//, and t t2 1/x/.
Finally, at the cusp itself, where (b,c) (4/3x/,-1/12), all ei’s vanish since the
discriminating cubic (2.5) reduces to S 4s3. In this case, we have to t t2
1/V/-, and t3 -3/x/-.

Piecing together these special values for the roots of f 0 shows that

(2.9) t3 _< to <_ t <_ t2.
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Equality can occur only when (b, c) lies on the caustic. Hence, (2.9) is, in fact, strict
inside the caustic. If we restrict (b, c) further so that b >_ b0 > 0, then we find that
the zero t3 is isolated from the other three zeros.

With this restriction on the parameters b, c, we note the following. Inside the
caustic, all four zeros of f are real and distinct. On the lower arch, to and t coalesce
and then separate into a complex conjugate pair as we pass below the caustic. On
the upper arch (between the cusp and the point (0, 1/4)), tl and t2 coincide, and then
separate into a complex conjugate pair as we rise out of the caustic, t3 remains real
throughout this range of values of b and c.

The (nonuniform) asymptotic behaviour of I is readily available. For (b, c) inside
the caustic, we have

(2.10) I(A; b, c) E eAi](t;b,c)+-sgn (f’’(t;b,c)) 2r
t,,

as/ -- +oc, with (b, c) fixed. On the caustic (but not at the cusp), we have either
t0 t or t t2. For the purpose of illustration, assume that to tl. Then, for
large A and fixed (b, c), we have

(2.11)

. (y,, 27r
I(A;b,c) eAif(t;b,c)+ sgn (t;b,c))

j=z lf"(t;b,c)l
21/31-’(1/3)e+ 31/(f’"(to; b, c))/a"

In (2.11), notice that f’"(to) 0 since we have fixed (b, c) : (4/3v/,-1/12).
At the cusp, we have the triple zero to tl t2 1/v/ and the simple zero

t3 =-3/v/. Hence,

4 -1 31/SF(1/4)eri/s-i/45v 33/4

(2.12)
I(A; 3x/’ 12 27/8/1/4

q- 2--/4 v-.eTAi/5V--Tri/4
+

23/833/863. F(3/4) e3,i/s_xi/a5v
32.25/k3/4

If (b, c) lies outside the caustic, then the asymptotic behaviour of I(); b, c) is given
by two terms from (2.10). One of these two terms arises from the real saddle t3--the
other stems from the remaining real saddle. The other two saddles, which now form a
complex conjugate pair, provide only an exponentially negligible contribution to the
value of I due to considerations of the topography of the saddles.

3. Uniform expansion of I.

3.1. The quartic transformation. Because the zeros to, t1, and t2 undergo
various confluences, with all three zeros coinciding at the cusp, we introduce the
quartic transformation first examined in [Urs]:

(3.1) f(t; b, c)
z4 z2
4 -+z+O.

This requires the determination of the parameters if, ?, and 0 as functions of b and c
which provide for a (local) uniformly analytic, one-to-one transformation from t to z.
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In particular, we shall require that the saddles of f correspond with the saddles of the
right-hand side of (3.1). For notational convenience, we will denote the right-hand
side of (3.1) by g(z; , ?7, 0); frequently, we will suppress the parameters , ?7, and .

From the trigonometric solution of cubic equations, we have, as zeros of gr (z; , ?7, 0)
za Cz + ,

(3.2) zl 2V sin(r/3 )

with the angle given by

z2 2 sin ,

(3.3) sin3
33/2?7
23/2

Z3 -2-3sin(r/3 + ),

An examination of the functions sin(r/3 ),sin , and -sin(r/3 + ) for e
r/6, r/6[ reveals that when the zi are real, they satisfy the inequality

(3.4) z3 < z2 < zl.

Note, too, that the quartic g must have > 0 in order to have three real saddles, and
that these saddles zi, for i-- 1, 2, 3, coincide for (, ?7) (0, 0).

The inequalities (2.9) and (3.4), together with the observation that t3 remains
isolated from to, t, and t2 for b _> b0 > 0, strongly suggests that the correspondence

t2 -*Zl tl -+z2 to-z3

be made by the uniformly analytic, one-to-one solution of (3.1). How shall the pa-
rameters , ?7, and 0 be determined? The straightforward substitution of the ti’s and
their associated zj’s into (3.1) rapidly leads to an unappealing system of nonlinear
equations. A more elegant approach, adopted here, entails the use of some classical
theory of equations.

For a polynomial p(x) xn +a_lX- +...-Palx -ao with zeros x,x2,...,x,
nit is well known that if we put s Yi=l x, s2 i<i xix, sa i<j<k xxjx,

", s l-Ij_ xy, then the si’s, the elementary symmetric functions of the roots of
p(x) 0, are-related to the coefficients ao, al,...,an-1 via the formulae

(3.5) ao (-1)nsn, al (--1)n+18n-1, a2 (1)n+28n--2 an--1 --81.

We note that the saddles z, Z2, and z3 are zeros of the polynomial Z3 --Z --?7. Hence,
a straightforward application of (3.5) yields

(3.6) Z1 + Z2 -{- Z3 0, Zl Z2 + Zl Z3 -- Z2Z3 --, Zl Z2Z3 --?7.

If we form the functions

(3.7)
cr f(to) + f(t) + f(tz),
(r: f(to)f(tl) + f(to)f(tz) + f(t)f(tu),
aa= f(to)f(t)f(t),

then use of the correspondence between the ti’s and the zj’s and equation (3.1) permits
us to express the functions (3.7) as functions of the zj’s. Subsequent use of (3.6) then
provides us with expressions for the ai’s as functions of the parameters , ?7, and .
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These last expressions will prove solvable and will permit the computation of , ??, and
0 in terms of the known roots to, tl, and t2.

Before proceeding with the computations, we note that this approach was imple-
mented by Connor and his colleagues in ICon2]. However, the equations they used did
not yield , ??, and 0 as functions of the ti’s--the parameters were instead obtained
by applying a numerical scheme to what will, in our treatment, appear as interme-
diate results. Furthermore, because of the extensive computation involved in solving
for (, ??, and as functions of the ti’s, we shall provide details only for one of the
three equations we require; additional details regarding the equations we obtain can
be found in the appendix of [Kaml].

We have, from (3.1) and the first equation of (3.7),

1
3 3 3

4 2
O’1 f(to)+ S(tl)+ f(t2) Z zi 2

y zi + ??Z zi + 30.
i--1 i--1 i--1

By the first equation of (3.6), this reduces to

+ + + zl + 30.

To calculate the sums of squares and of fourth powers, we proceed in the following
fashion: squaring the first equation of (3.6) gives (zl + z2 + z3)2 0 which reduces to

Zl
2 + z22 +z 2 in view of the second equation of (3.6). Equation (3.8) now becomes

+ + + 3o.

Upon squaring the expression for the sum of squares, we find that 42 (z2 + z22 +
z3)2 z + z + z + 2(zz + zz + zz). The latter term can be evaluated by
squaring the second equation in (3.6). Thus, we have 2 (zlzz + zlz3 + z2z3)2
22 22 2Zlz2 + Z1Z3 + ZZ since Zl + Z2 + Z3 0. Therefore, ZlZ222 + z2z + zz so the

expression for the sum of fourth powers becomes 42 z + z2
a + z] +22. Use of this

in (3.9) gives

2(3.10) a
2 + 30.

Proceeding in a similar fashion gives

9772 02 + 309.(3.11) 32 16 8

and

27??4 ?723 04 97720 022(3.12) a3=-6----+ 32 - 16 8 2
4-03"

It is with equations (3.10)-(3.12) that we shall obtain expressions for , ??, and 0.
From (3.11), we see that 320 303 + 022/2 04/16 97720/8 022/2. Use of

this in (3.12) gives

(3.13) 33 6-- + 32 + 320 -- 203.
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From (3.10) we have

and this in (3.11) gives

(3.15) 2 3 8(a2-3a2)
54 27

Equation (3.14) can be applied to (3.13) to eliminate all occurrences of 0. The result
of doing this is:

27/4 /23 1 2a3 2 6(.) -+ + 5(o -) (1 ) +

If we replace every instance of 2 by the right-hand side of (3.15) and multiply the
resulting equation by 2562, we obtain

Note that

(3.18)

Equation (3.18) will prove to be of value in later discussion.
Put Z 2 in the octic (3.17). The resulting quartic,

(3.19)

z -(1 3)z +(9 7)z- -- o,

can be solved using Greenhill’s formulae (cf. 2.3). To that end, we calculate the
invariants of the required elliptic function.

From g2 E + 3C2 and g3 CE D2 C3 in 2.3, we have

(3.eo)
g2 -76(a 3a2)2 + 3[- fi(al2 3a2)] 2 0,

.3( 3:)3 (91: 13 23)g3-- ----The first of the two preceding equations represents a happy state of affairs, as the
discriminating cubic takes the form , 4s3 g3. Hence, the zeros of are given by
wJ (g3/4) 1/3, j 0, 1, 2, where w is the cube root of unity w e2"i/3, and (g3/4)/3 is
taken with its principal value. Use of (3.20) permits us to write

(3.21) 16(a12 3a2)[1 JV’/)] 1/3
9

where we have set

(3.22)
Af- (9ala2 2a3 27a3)2

T) 4(a2 3(Y2)3.
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Also, from p(2() -C (cf. 2.3), we have p(2a) (a 3a2).
For the sake of notational ease, let

(3.23) X-- I-

upon applying Greenhill’s formulae with the ej’s replaced by the wJ(g3/4) 1/3, we
obtain

(3.24)

where the first surd, V/a2 3a2, is taken to have its principal value. The other surds
must have their branches chosen with care although, from our discussion in 2.3, we
know the remaining square roots are +/- the principal branch. To make the appropriate
selection of these branches, we examine the Zi’s for values of (b, c) on the caustic.

On the caustic, the discriminating cubic associated with the quartic in Z has
repeated roots. Hence, at least two ti’s coincide (whence at least two f(t)’s coincide)
and from the discriminant g23 27g (recall 2.3), we get 0 and

(a3 3ai (a2 3a2) 27a3)2 4(al2 3a2)3;

for the sake of argument, assume that we have to tl # t2, so that f(to) f(tl) ://:
f(t2). Equation (3.7), together with some arithmetic, provides us with 9ala2 2a3
27a3 2If(t0) -/(t2)]3 and a 3a2 [/(to) f(t2)] 2. Use of these two equations,
together with (3.18), establishes (3.25). Similarly, we can obtain (3.25) in the case
to # tl t.

Equation (3.25) leads to the conclusion that JV" :D on the caustic, whence the
expressions for the Z’s reduce to

(3.26)
4Z0 V/a12 3a2(-4-1 +/- 1 +/- 1),

4Z2 V/a2 3a2(:F1 +/- 1 :F 1),

Zl V/al2 3a2(+/-1 :F 1 :F 1),

Z3 V/a2 3a2(:F1 :F 1 +/- 1),

where in only the first row are the signs independently chosen, the choice of signs sub-
sequently determined according to the pattern used for the xy in terms of V/(2a) ek
in 2.3. With (3.25) and (3.19), the quartic in Z reduces to

(3.27)

The form of the Z’s in (3.26) strongly suggests putting Zi (a2 -3a2)1/2ei. In
this event, (3.27) yields the reduced equation

4

(3.28) ei 2e + 1 0.
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Experiment is now easy and shows, for example, that if we choose the square roots
appearing in the first equation of (3.24) to be all principal branch choices, then e0 3
does not satisfy (3.28), but if we choose the square roots so the first two have their
principal branch, the last one being the negative of the principal branch, then we have
0 el 2 1 and 3 --3. This latter choice provides e’s, all of which satisfy
(3.28). Hence, we make this latter selection of branches for the surds appearing in
(3.24).

All other choices of branches for the surds in (3.24) amount to a reordering of the
Zi’s under either of the two choices of branches discussed above. With our choice of
branches, (3.24) becomes

V/i2 3a2 Ix/1- X + x/1 -wX- v/i w2X],z0

+-- V/al aa [/1 X + /1 -oX: + v/1 -oXZa

where all surds are taken with their principal branch.
For our change of variables (a.1), we require > 0 (inside the caustic); recall that

Z (. Hence, we must determine which of the Zi’s is real and nonnegative. With
all square roots chosen to be the principal branch, we know that v/ is the conjugate
of V’, whence the observation that w and w are complex conjugates implies that

1 -wX: and V/1 -wX are conjugates. Thus, of the Z’s in (a.29), we see that only
Z and Za can be real.

To determine which of Z or Za gives rise to real square roots, we examine the
limiting behaviour of Z and Za as we approach the caustic. Prom (a.25), we know
that for near ero, the ratio N’/ is approximately 1, in which case X is tending to
zero. Applying the binomial theorem to the expressions for Z and Za gives us

-V/1 X + V/1 oX + v/1 oX 1 + X + O(X/,
V/1- X+ v/1-wx+ v/1-oX a +

Thus, Z2 is positive, Z3 is negative, and so- +/-/al2- 3a2V/-v/1- x + v/1-cox + v/1-w2x

Use of the fact that must be positive inside the caustic yields

This, together with (3.14) and (3.15), give computable expressions for the parameters, v], and
Before continuing with the development of the uniform expansion of I, we note

that the term a2 3a2 _> 0 inside and on the caustic, and is real outside the caustic
(although it may be negative). Furthermore, in (3.15), when taking the square root
to obtain 7, it is chosen so that ] is negative on the arc of the caustic joining (0, 0) to
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FIG. 3. t-plane integration contours for the integrals Ij(A; b, c).

(4/3Vr,-1/12), and positive on the arc joining (4/3x/,-1/12) to (0, 1/4). Additional
details may be found in [Kaml, p. 84-85].

It is interesting to note that we have obtained closed form expressions for the
parameters /, and appearing in (3.1). Ursell, in examining the quartic transfor-
mation (3.1) remarks that these parameters can, in principle, be constructed from
convergent power series (a consequence of using Levinson’s theorem; see [Levi), and
that the power series approach is not practical computationally. He further states
that the parameters can be obtained without explicit reference to the uniformly an-
alytic one-to-one solution to (3.1), but does not go on to provide expressions for the
parameters; cf. [Urs, p. 64-65]. This has been accomplished here.

With our transformation (3.1) completely determined, we can proceed to the
uniform expansion of I.

3.2. The expansion of I. Since t3 remains isolated from to, tl, t2 for b > 0, we
rewrite I(A) as the sum of two path integrals:

(3.31) I(A; b, c)= [ eiI(t;b’c)dt + [ eiI(t;b’)dt I(A; b, c)+ I2(A; b, c),
JF d[2

where Ij(A; b, c) denotes the integral of eiAf(t;b’c) over the contour Fi, with the Fi as
depicted in Fig. 3.
F may be taken to be the steepest descent curve through t3 beginning at e9i/

and ending at e3i/. Thus, I has an asymptotic expansion of the form

A/e
j:l

as A - +oc. The leading term has the coefficient al(b,c) V/2r/(-f"(t3;b,c)),
which is well behaved for b >_ b0 > 0. Note that f’(t3) < 0 since t3 gives a local
maximum of the quintic f.

For the integral I2, we invoke the quartic transformation (3.1) and introduce the
function sequences {p}, {qn }, {rn }, {gn }, and {h}, defined by

(3.33)

go(z; , l) Po + qoz + roz2 + (z3 z + )ho(z; , ),

0
-zhk(z; , ) gk+l (z; ,

Pk+ + qk+z + rk+Z
2 + (Z3 Z + l)hk+ (z; , ),
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where g0(z; , r) dt/dz (cf. eqn. (3.1)), and k 0, 1,.... The coefficients Pn, qn and
rn are functions of and r/which, in view of our expressions for , r/, and in terms
of b and c, in turn can be regarded as functions of b and c.

Through repeated substitution and partial integration, we obtain the expansion

j=o

[pF0(; , ) + qF(; , ) + F(;, V)]

as , -t-o, uniformly valid for (, r) "near" the caustic 27r/2-43 0; i.e., uniformly
valid near the caustic in the bc-plane with b _> bo > 0, and (b, c) within a band of
fixed distance from the caustic.

The functions Fk appearing in the previous equation are given by the integrals

Fk /C ei(z4/4-z2/2+vz) zkdz’

with k 0, 1, 2. C is a contour in the z-plane beginning at ooe9i/8 and ending at
cei/s. With the change of variables u z/)1/4, we find

F2 (); , V) -2i-3/4px(-1/2,

where the function P(x, y) is the Pearcey function in (1.3), and the functions Px and
Py are the first-order partial derivatives of P(x, y) with respect to x and y, respectively.
Use of the above expressions for the Fk in the expansion (3.34) yields the expansion

j=0

(3.35)

as A -- +cx, uniformly valid for (b, c) in a band of fixed distance from the caustic
with b _> b0 > 0 for some fixed b0.

The expansion of I is therefore given by the sum of (3.32) and (3.35). In particular,
we have the uniform approximation

i [ (5)]1(; b, ) x(,;,)-/4
-l"(ta; b, )

1 + O

(3.36) +ei [-iPp(_1/2,3/47)_ _py(_iqo1/2, )3/47)

o1

where the O-symbols are independent of (b, c).
The expansion of S(-x, y, z) now follows directly from S(-x, y, z) x1/2. 1(x5/2;

yx-3/2 -2ZX ).
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4. Conformal mapping. We shall devote the next few pages to an analysis of
the conformal mapping determined by the "uniform change of variables" (3.1), for
primarily two reasons: first, (3.1) is not as well known as the cubic transformation of
[CFU]; second, we have been performing our computations under the assumption that
(3.1) gives a solution that is uniformly analytic and one-to-one over an integration
contour for I (more accurately, over the contour F2 used in (3.31)).

The latter point is important, for if we use only the local properties of the transfor-
mation (3.1), we can still obtain the asymptotics of S in the case where three saddles
coalesce, but at the cost of replacing the "=" signs in (3.32), (3.34), and (3.35) by ""
signs. This in turn means that if a theory of error bounds should emerge for uniform
expansions developed through the use of (3.1), we can directly compute the errors in
our asymptotic approximations. Without the use of the full steepest descent contour
I2, it is unlikely that we could obtain full precision in our expansions. Additional
discussion on why full contours should be used in asymptotics can be found in [Olv].

A full treatment of the conformal mapping (3.1) would involve an analysis for each
of the cases where there was no confluence of the ti, two of the ti coalesced, or three of
the ti coalesced (recall: at most three ti can coalesce for the large parameter behaviour
of S; see the discussion in 2.1). For the purpose of illustration, we shall examine
only one case; the reader will find a treatment of other saddle point configurations in
[Kaml, pp. 90-100].

We begin by supposing that a point (b, c) lies inside the caustic (recall Fig. 2).
Then there are four real saddles for the integral I, t3 < to < tl < t2 (cf. (2.9)), of
which only to, tl, and t2 are involved with confluence since we have taken b _> b0 > 0.
We proceed by first determining the curves for which Im f(t; b, c) O. It will prove
to be convenient to introduce an intermediate variable Z in (3.1):

Z4 Z2

(4.1) z
4 + +

Clearly, the real t-axis is mapped to the real Z-axis in the following fashion:

]-x, t3] ]-cx, f(t3)], [t3, to] --* If(to), f(t3)],
[to,t] [f(to),f(t)], [tl,t2]--* [f(t),f(t)],

we recall that f is a quintic with four relative extrema. The remaining curves in the
t-plane sent by f to the real Z-axis can be found by solving the equation

(4.2) Im y(t) 0 Im [y(t) y(t)], (k 0, 1, 2, 3),

since, in the present case, each of the tk’s real implies that f(tk) is real. We note that
since the left-hand side of the (4.2) is independent of k, the solution curves arising
from the right-hand side are the same for each k (in other words, we can select a
convenient tk without affecting the solution).

For each k, we develop f into its Taylor expansion centered at tk; the right-hand
side of (4.2) then has no constant terms. By use of changes of variables of the form
t- tk a + iT, where we have suppressed the dependence of a on k, we obtain easily
solved equations which express a as a function of T, or vice versa. Plotting these
curves results in Fig. 4.

These curves, which include the real axis, partition the t-plane into several disjoint
regions. We shall consider only those labelled R1,... ,R4, as our integration contour
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FIG. 4. Curves in the complex t-plane for which Im f(t; b, c) O. The real axis is included as

such a curve.

FIG. 5. Curves in the complex z-plane for which Im g(z) O. As in Fig. 4, the real axis is

such a curve.

for I2 of equation (3.31), F2, can be chosen to lie entirely within R1 J R2 (-J R3 [-J Ra,
or this union’s closure.

We will see that the (local) uniformly analytic, one-to-one solution of (3.1) is
indeed one-to-one on this union.

Since the saddles of g(z; , 7, ) under the tranformation (3.1) correspond with
the ti’s in the fashion t2 --> Zl,tl +-4 Z2,t0 Z3, we have Z3 < Z2 < Zl for (b,c) inside
the caustic (this can also be seen from (3.2)). Hence, the z-plane curves for which
Im g(z) 0 partition the z-plane into the disjoint regions displayed in Fig. 5. Again,
the real axis is a curve for which Im g 0.

We will be concerned with the regions labelled Ftl,..., Ft4.
Consider R in the t-plane as depicted in Fig. 6. The arc BD is the steepest

descent curve of if from t2 to xei/lO. The arc BC is the upper extent of the region
R1. Under (4.1), the image of R1 is the upper half of the Z-plane depicted in Fig. 6.

The map z -, Z on , defined by (4.1), produces a similar effect also displayed
in Fig. 6. In the illustration, the curve BD is the steepest descent curve of ig(z)
beginning at Zl and ending at cxe"i/s. BC is the upper extent of gtl. Under (4.1),
t maps to the half-plane depicted in Fig. 6.

Thus, under (4.1), the region R maps to tl.
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t-plane

z-plane
//C

D

Z-plane

FIG. 6. Effect of the mappings Z, z Z on the regions R1 and 1, respectively.

D

R2
/

"I
IE

/A /
Z-plane

//
z-plane

FIG. 7. Effect of the mappings Z, z Z on the regions R2 and 2, respectively.

We now direct our attention to R2. In Fig. 7, the arcs CD and BA bound the
region R2; these are curves for which Im f 0. The arc BE is the steepest ascent
curve for if from t2 to cxe3i/1. Under (4.1), the region maps to the half Z-plane as
illustrated in Fig. 7.

It is easy to see that B, C reverse ordering upon application of the map t -- Zsince tl is a local maximum of f, and t2 is an adjacent local minimum.
Consider z - Z acting on gt2; refer to Fig. 7. CD and BA are curves for which

Im g(z) 0; these two arcs bound 2 on two sides. BE is the steepest ascent curve
of ig(z) from Zl to xe3i/8. Under (4.1), t2 maps to the half Z-plane depicted in
Fig. 7.

As was the case for R1 and 1, we see that f(t) g(z) provides us with a
one-to-one map from R2 onto

Similar analysis applies to the mapping from R3 to ’3 (see Fig. 8).
Finally, we turn to R4 -- 4. In Fig. 9, CE is the steepest descent curve of

if from to to cx)e13i/10, and the corresponding curve in the z-plane is the steepest
descent curve of ig from Z3 to CX:)e9i/8.
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D A

D

Z-plane

FIG. 8. Efect of the mappings Z, z Z on the regions R3 and 3, respectively.

Z-plane

FIG. 9. Effect of the mappings Z, z Z on the regions R4 and a, respectively.

We note here that f decreases steadily from +c to - as t moves from A
ooe6i/5 to B t3, to C to and thence to D ooe7i/5. Similarly, g decreases
steadily from +cx to -oc as z moves from A +oc to C z3 to D ce5"i/4. Since
g(z3) f(to), this implies the existence of a point B’ in the interval c, z3[ such
that g(B’) f(t3). This is indicated in Fig. 9.

Thus, R4 -- 4 in a one-to-one fashion. To obtain the mappings of the regions
conjugate to the Ri to regions conjugate to the gti, we merely "flip" all illustrations
about the real. t, z, and Z-axes, and replace "ascent" by "descent" and vice versa.

This concludes our look at the mapping (3.1) in the case where all ti’s are real
and separated.

5. A limiting case. As an example of the use of the quartic transformation
formulae developed in 3, and as a check on the validity of our results, we determine
the limiting form of the coefficients P0, q0, and r0 in the approximation (3.36) when
the parameters (b,c) tend to the cusp (4/3v/,-1/12). This calculation showcases
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the determination of the parameters , y, and 0, and makes explicit use of the formula
for presented as (3.30).

We begin by taking (b, c) to lie on the caustic. From the discussion leading to
(2.9), it is readily seen that the -r/6 level curve in the bc-plane contains the
lower arch of the caustic joining (0, 0) to (4/3/,-1/12), and the r/6 level curve
contains the upper arch of the caustic joining (4/3V,-1/12) to (0, 1/4); see Fig. 6.
We will take (b, c) to lie on that part of the caustic joining (0, 0) to (4/3vf,-1/12)
so that -r/6 with c -1/12 (c- -1/12 would place us at the cusp). With
these choices for and c, it is easy to see that (2.7) becomes

a quadratic equation in b. We set c Ac- 1/12. Use of this in the previous equation
implies that b2 7 [1 9Ac- 54(Ac/3)3/2],so if b is positive, we may write

(5.1)
4 [1- 9Ac- 54(Ac/3)3/2] /2

for a point (b, c) on the arch of the caustic under examination. We will use (5.1)
extensively to develop Ac --, 0+ limits for a variety of quantities needed in the com-
putation of Po, q0, and ro in (3.36). Before proceeding, we shall determine expressions
for P0, q0, and r0 on the caustic.

First, on the -r/6 portion of the caustic, we have to tl < t2 so that
z3 z2 < zl in view of the correspondence t2 - zl,t - z2,to - z3. Furthermore,
from - -r/6, we have - -2(/3)3/2 (cf. eqn. (3.3)), z 2V/-(/3, and z2 z3

-v 13.
From the first equation of (3.33), we get

dt
(.) o(z) Po + qoz + roz2 + (z3 z 2(/3)3/2)ho(z),

which implies

(5.3)
go(Z1) PO zl- 2V//3qo + 4 ro/3,
go(z2) Po X/- /3qo +  ro/3,

in view of the fact that (z3 -z-2(/3)3/2)ho(z) vanishes at z and z2. As (5.3) forms
a pair of linear equations in the three unknowns Po, qo, and ro, (5.3) is insufficient
for determining Po, qo, and ro uniquely. A third (linearly) independent equation can
be found by differentiating (5.2) with respect to z, and then evaluating the result to
obtain

(5.4) qo 2 ro.

Thus, (5.3) and (5.4) determine P0, q0, and r0. Upon forming the difference of the
equations in (5.3), we find go(z) g0(z2) 3V/-(/3q0 + r0, so that subsequent use
of (5.4) yields

o(z )
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Use of this in (5.4) then provides us with

2
(.) q0

a(z) + b0(z) a0(z:)]
3

Finally, (5.5) and (5.6) together in (5.3) gives us

8g0 (z2) 2
(.7) o

go(z) + + V o()9 9 -Thus, once we have determined go(zl),go(z2), and g(z2), equations (5.5)-(5.7) will
provide us with values for our coefficients.

To calculate the go(zi) and g(z2), we return to the mapping (3.1). If we dif-
ferentiate (3.1) twice with respect to z (bearing in mind that go(z) dt/dz), we
obtain f"(t)g(z) + f’(t)g(z) 3z2 . Evaluation at t to z z2 yields no
information (since f’(to) f"(to) 0 at the order two saddle to), while evaluation
at t t2 z zl yields f"(t2)g)(z) 3z2 - 3, since Zl 2X/-/3, or

go(z) =l=V/3/f"(t2). Now, f"(t2) > 0 since t2 is a local minimum of f; hence, the
ratio inside the square root is positive. Because z must increase with t, the positive
square root must be extracted and so we have

3(5.8) go(z)- f"(t2)"

To continue, we differentiate f"(t)g(z) + f’(t)go(Z) 3z2 - again with respect
to z and evaluate the result at z z2 t to to obtain

-6v/a(5.9) g0(z2)
f"’(to)

If we repeat this process again, we find, after some arithmetic, that

(5.10) g(z2)
6- f""(to)g(z2)
6f"’(to)g)(z2)

It is clear that g0(zl), g0(z2), and g(z2)can be expressed in terms of f, its derivatives,
and .

We turn to the calculation of these latter quantities. To begin, we apply the
binomial theorem to (5.1) to find

(5.11) b

For the limiting forms of the saddles to and t2, we note that -r/6 implies, from
(2.7), that e V/Ac/3, e2 e3 -1/2 V/Ac/3; recall that we have set c-- Ac- 1/12.

Use of these observations in (2.4) provides us with

1 V/I_ 6v/Ac/3.o-- -



282 D. KAMINSKI

If we apply the binomial theorem to this expression for to, we find that

to v -1[ 3 9 (Ac)3/2+45(Ac)2x/-(Ac)1/ + 7(Ac)+
7.27 (Ac)5/2 + (Ac)3 + 0(c)7/2+8

as Ac 0, and in similar fashion for small Ac,

2x/(Ac)l/2 + 3
(Ac) + (Ac)3/2 + (Ac)2

7 8 64

21.27.31
+ +128 512 ]

We are now in a position to calculate f(to) f(t2), which we shall see is required
in the calculation of . We accomplish this by first writing f as its Taylor expansion
about t 1/x/. We replace b in the result of this computation by (5.11) and compute
f(1/x/), f’(1/v/), and f"(1/v/); this results in approximations in terms of powers
of (Ac) 1/2. Use of these approximations for f and its derivatives at 1/v/-, together
with the preceding small Ac approximations for to and t2, in the Taylor series for f
gives us small Ac approximations for f(to) and f(t2). Upon taking the outcome of
these two (involved) calculations and forming their difference, we find that

27
(Ac)2(5.12) f(to)- f(t2)= - 1/2 + 5 (Ac) + O(Ac)3/2]

Since al
2 3a2 (f(to) f(t2))2 on this portion of the caustic (see the discussion

following (3.25)), we have (a2 3a2) 1/2 f(to) f(t2).
We observe that (3.25) is equivalent to the expression Af 7), where Af and 7)

are displayed in (3.22). This in turn implies that X, in (3.23), is zero. Hence, (5.12)
together with X 0 and (3.30) yields

3314 [

_
9"101(Ac)+O(Ac)3/2].(5.13) 2-Y(Ac) 1 + (Ac)1/2 + 400

With in hand, we can proceed to the calculation of go(z),go(z2), and g(z2).
We obtain go(z1) first. From the Taylor expansion of f centered at t 1/v/, the
small Ac approximation for t2 and (5.11), we obtain

(5.14) f"(t2) 18 (Ac) + -(Ac)3/2 + -(Ac)2 + (Ac)5/: + O(Ac)3

33 (Ac)and dividing this into 3 gives 3/f"(t2) (314/2314)[1- v/(Ac)1/2 +
+0(Ac)3/2], from which (5.8) yields

(5.15)
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To get g0(z2) requires the limiting behaviour of f’"(to) as Ac -, O. The Taylor
series for f centered at 1/x/, the small Ac approximation of to and (5.11) yield
f’"(to) -4-(Ac)1/2 + 0(Ac)7/2; from this and (5.13), we find

(5.16) go(z2) 2--3/s 1 + (Ac)1/2 -- 800
(Ac)--O(Ac)3/2

To obtain g(z2), we use the Taylor expansion for f(iv) centered at t 1/V
and put t to. With the small Ac approximation for to, we have f(iv)(to)
(24//) [1 x/(Ac)1/2 3(Ac)/2 + 0(Ac)3/2]. This and (5.10) gives us

33/4 [(5.17) g(z2) -25/4 5
1 + :ao()/: + o()].

With go(zl),go(z2), and g0(z2) at our disposal, we are in a position to calculate
the coefficients P0, q0, and r0. Upon assembling the preceding approximations, and
substituting into equations (5.5), (5.6), and (5.7), we find

33/s63
[1+ O(Ac) 1/2](5.18) r0 21/832 25

33/4
(5.19) qo 25/45 [1 -- 0(Ac)1/2],and

31/8
(5.o) o -[ + O(A)/].

To compare the limit, as Ac --. 0, of (3.36) with the classically obtained result
(2.12) requires the calculation of P(0, 0), Px(0, 0), and Py(O, 0), where P is the Pearcey
integral given in equation (1.3). Standard techniques give

P(0, 0) F(1/4) e/8 P(0 0) iF(3/4) e/8 P(O,O)- o,

so that use of these values for the Pearcey function and its derivatives, along with
(5.18)-(5.20), in (3.36) gives us

(5.21)

/-,-1/12) P(0, 0)
i. qo(4/3v/’,-1/12)

A1/4 A1/2 Py(0, 0)

2i ro(4/3V,-1/12) ],3/4 Px(O, O) e

31/8F(1/4) ei/s_i/(45v/-g) 23/833/863F(3/4) e3i/s_i/(45v
27/8AI/4 + 32" 25A3/4

Equation (5.21), together with f(-3/v/-) 7/5V and f!!(-3/v/-() -32/3x/-
(t3 --3/Vf at the cusp), shows that (3.36) agrees with the classically obtained
approximation given in (2.12).
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6. Summary and closing remarks. Collecting the work of 2-5, we have
established the result"

Let S be the swallowtail integral defined in (1.1). Then, for positive y and large
positive x,

eixS/2 f(ta;yx-3/.,zx-.)_ri/4 -2
x5/2f"(t3; yx-3/2 zx-2)

[1 + 0(x-5/4)]
+e5/2 [pop(_x5/4, x15/S)x-5/s iqoPy(-X5/4, x5/s?)x-5/4

-2iroPx(-x5/4,x15/8)x-15/8] [1 + 0(x-5/2)],
where f(t; b, c) t5/5 t3/3 + bt2/2 + ct, t3 is the negative root of t4 t2 + yx-3/2t +
zx-2 O, and the functions , , and 0 are given by equations (3.30), (3.15) and (3.14)
respectively (information about the branches that must be used in these formulae can
be found in the discussion following equations (3.29) and (3.30)). The coefficients
Po, qo, and ro are defined by equations (3.33) and satisfy, at the cusp of the caustic
4x3/2 3x/ y, z -x2/12,

P0 3/s/23/s; q0 -33/4/(25/45); r0 33/s63/(21/s32 25)

The function P is the Pearcey integral given as equation (1.3). This asymptotic ap-
proximation of S(-x,y,z) remains uniformly valid for large positive x, for y and z
in a neighborhood of the cusp of the caustic, containing a disk of the ]orm (yx-3/2
4/av ) + -: + 1/1 ) < > 0.

For negative y, the asymptotic behaviour can be obtained by forming the complex
conjugate of the approximation for S(-x,-y, z).

Uniform asymptotic expansions of the derivatives of S(x, y,z) are also readily
obtained from the expansions developed in this work. Because the integral I (cf.
2.2) is analytic in all of its arguments (indeed, it is entire in the parameters b and c),
the coefficients in the expansion of I are analytic in their parameters (b, c for the pn, qn
and rn). Thus, we need only differentiate our expansion termwise to obtain expansions
of the derivatives of S; see [Urs, p. 52]. However, this requires the introduction of no
new techniques, and so has been excluded from our (already lengthy) discussion.

We close this work by noting that, although the use of Greenhill’s work was not
necessary for the development of the expansion of I, it proved convenient at times.
Further, it appears that elliptic functions provide a means of approaching the problem
of expressing the zeros of higher degree polynomials (unsolvable by radicals for degree
>_ 5) as analytic functions of a polynomial’s coefficients; see [Kie]. This consideration
is of paramount importance for the development of uniform expansions of integrals
such as

ei(t6/6+wt4/a+xta/3Tyt2/2+zt) dr,

the next "canonical diffraction integral" in the suite of generalized Airy functions
(termed the "butterfly" integral).
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ON THE OPTIMAL DESIGN OF COLUMNS AGAINST BUCKLING*

STEVEN J. COXt AND MICHAEL L. OVERTON

Abstract. The authors establish existence, derive necessary conditions, infer regularity, and
construct and test an algorithm for the maximization of a column’s Euler buckling load under a
variety of boundary conditions over a general class of admissible designs. It is proven that symmetric
clamped-clamped columns possess a positive first eigenfunction and a symmetric rearrangement is
introduced that does not decrease the column’s buckling load. The necessary conditions, expressed
in the language of Clarke’s generalized gradient [10], subsume those proposed by Olhoff and Ras-
mussen [25], Masur [22], and Seiranian [34]. The work of [25], [22], and [34] sought to correct the
necessary conditions of Tadjbakhsh and Keller [37], who had not foreseen the presence of a multiple
least eigenvalue. This remedy has been hampered by Tadjbakhsh and Keller’s miscalculation of the
buckling loads of their clamped-clamped and clamped-hinged columns. This issue is resolved in the
appendix.

In the numerical treatment of the associated finite-dimensional optimization problem the authors
build on the work of Overton [26] in devising an efficient means of extracting an ascent direction
from the column’s least eigenvalue. Owing to its possible multiplicity, this is indeed a nonsmooth
problem and again the ideas of Clarke [10] are exploited.

Key words, eigenvalue, generalized gradient

AMS(MOS) subject classifications. 34, 49, 65, 73

1. Introduction. We recall Pearson’s formulation [38, p. 66] of the following
problem of Lagrange,

To find the curve which by its revolution about an axis in its plane determines
the column of greatest efficiency.

For columns of unit length and volume, efficiency here denotes the structure’s resis-
tance to buckling under axial compression. When A is the magnitude of the axial load
and u the resulting transverse displacement, we postulate the potential energy

j01 /1Ellu"l2 dx- A lu’l 2 dx

with the two terms measuring bending and elongation respectively. Here I is the
second moment of area of the column’s cross section and E is its Young’s modulus.
For sufficiently small A, the minimum of this potential energy, over all admissible
displacements, is zero. The (Euler) buckling load of the column is the greatest A, call
it A1, for which this minimum is zero. That is,

(1.1) A1- inf f EI]u"12dx

where V is a closed subspace of He, the space of L2 functions on the interval (0, 1)
with first and second distributional derivatives in L2, distinguished by the choice
of boundary conditions. The choice that has generated the greatest interest is the
clamped-clamped condition u(0) u’(0) u(1) u’(1) 0. With the corresponding
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V denoted by H, it is not difficult to show that the infimum in (1.1) is attained at
some u E H. First order necessary conditions then require that ul satisfy

]01IZ,lU1V dx A uv dx v H).

When I and E are smooth it follows from (1.2) that

(1.3) (o) (o) o.

With this we recognize (1.1) as Rayleigh’s principle for the least eigenvalue of (1.3)
and U as an associated first eigenfunction. For the problem of Lagrange, the Young’s
modulus is assumed constant and, as the column is a solid of revolution, each cross
section’s second moment of area is simply a constant multiple of the square of its area,
A, i.e., I(x) cA2(x). Fixing our attention on columns of unit volume, we require

(1.4) Adx 1.

We have reduced the problem of Lagrange to the search for that A which, subject
to (1.4), maximizes the A1 of (1.1). This problem, with clamped-clamped boundary
conditions, was first attacked in 1962 by Tadjbakhsh and Keller [37] in the contin-
uation of work Keller [20] had begun at the suggestion of Clifford Truesdell. The
work of [37] hinges on the necessary condition that the best A, and its corresponding
eigenfunction u, satisfy

(1.5) Aalu"l2 A3

along the entire column. This was obtained on formally differentiating a second-order
analogue (see eqn. (2.5)) of (1.3) with respect to A, subject to the integral constraint.
Upon reconciling (1.3) and (1.5), Tadjbakhsh and Keller arrived at the representation

(1.6)
4 sin2 0(X)A(x) - -7r/2 < 0 < 37r/2,

O(x) sin 20(x) + r/2 2rx, 0<x<l.

The most striking aspect of this claim is that it requires the cross-sectional area to
vanish at 1/4 and . This result should however come as no surprise, for implicit in (1.5)
is the assumption that the optimal buckling load is simple, i.e., that the corresponding
space of buckled configurations is one-dimensional. This requires the optimal column
to buckle in much the same way as the uniform column (A 1), the first eigenfunction
of which is U(x) 1- cos(2rx). The fact that A vanishes at the inflection points of
U agrees then with the heuristic (suggested by (1.1)) that the optimal column need
be thick only in regions where it bends, i.e., where the magnitude of the linearized
curvature ]u"] is large.

Tadjbakhsh and Keller claimed 16rr2/3 as the buckling load of the resulting col-
umn. It was not until 1977 that Olhoff and Rasmussen [25], observing that (1.3)
does not exclude multiple eigenvalues, noted that as the least eigenvalue does not
vary smoothly with A at points where its multiplicity exceeds one, the formal differ-
entiation in [37] would be hard to justify. As evidence that Tadjbakhsh and Keller
had indeed taken the wrong course, Olhoff and Rasmussen claimed, on the basis of
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numerical work, 30.51 for the buckling load of the column constructed according to
(1.6). Unfortunately, they neglected to describe the means by which this value was
arrived at. Indeed, the fact that A vanishes at 1/4 and introduces computational
difficulties. Although they did go on to suggest how 16r2/3 was incorrectly obtained,
a number of workers have remained unconvinced, e.g., Myers and Spillers [24] and
Barnes [4]. Upon fleshing out the relevant remarks of Olhoff and Rasmussen we shall
see, in work relegated to an appendix, that the buckling load for the column proposed
by Tadjbakhsh and Keller does not exceed r2/3. These same arguments will serve
to demonstrate that Tadjbakhsh and Keller’s best clamped-hinged column also has a
much lower buckling load than thought previously.

Having concluded that differentiating (1.3) would lead to less than optimal col-
umns, Olhoff and Rasmussen presented a "bimodal formulation" of the problem of
Lagrange, i.e., one that would accommodate double eigenvalues. Their subsequent
necessary condition paired the best A with two corresponding linearly independent
eigenfunctions u, v and a scalar t E [0, 1] so that

(1.7) A (tlu"l2 -t- (1 t)lv"l 2) 1

along the entire column. On implementing an algorithm that enforced this opti-
mality condition, Olhoff and Rasmussen arrived at a column whose cross sectional
area was positive throughout and which could withstand loads up to 52.3563. Their
methods were, however, no more rigorous than those of Tadjbakhsh and Keller, and
moreover, solely on the basis of claims, the latter still had the stronger column, for
52.3563 < 16r2/3. Those persuaded by Olhoff and Rasmussen’s criticism of the work
of Tadjbakhsh and Keller then set out to put (1.7) on a solid foundation. Actually,
they joined the discussion of the more general problem" What conditions are neces-
sary for a multiple eigenvalue to attain its extremum? The greatest advances on this
question have come in finite dimensions and lie in the apparently little-known work
of Bratus and Seiranian [7]. These conditions, later discovered independently in a
more general form by Overton [26], will be discussed in detail in 5. For now, we
note that Bratus and Seiranian, upon applying their finite-dimensional arguments to
the problem of Lagrange, arrived at the conclusion that the best A must, with two
corresponding orthogonal eigenfunctions u, v, satisfy

(1.8) d(61]u"]2 --(2]V"]2 --3U"V"): 1 where 12 > 32
4

This condition was also proposed by Masur [22] who, like Seiranian [34], went on to
represent the best A via a system of transcendental equations. Their approximate
solutions to these systems are in good agreement, with respective buckling loads of
52.3564 and 52.3565, with that proposed by Olhoff and Rasmussen [25]. Note that
(1.7) and (1.8), with the introduction of a second buckling mode, possess mechanisms
which, at least in principle, rule out the possibility of columns with vanishing cross
sectional area.

Our main contribution to the problem of Lagrange is essentially twofold. We
employ the generalized gradient of Clarke in (i) a rigorous derivation of the neces-
sary conditions (1.8) and (ii) the construction of an efficient algorithm to solve the
associated finite-dimensional optimization problem. Our initial focus on the clamped-
clamped case will be extended in 5 to each of the boundary conditions considered by
Tadjbakhsh and Keller.

In our discussion of the various optimality criteria something has been conspic-
uously lacking: the literature contains no proof of the existence of a best A for the
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problem of Lagrange. Before filling this gap we establish a number of preliminary
results and look to a more general problem formulation.

2. The optimal design problem. The moment I is more precisely the second
moment of area of the cross section about a line through its centroid normal to the
plane of buckling. That is, denoting the cross section by gt(x) with centroid at the
origin, if y is a unit normal to the plane of buckling then

(2.1) I(x) f IyTyl 2 dy.
()

When fl is a circle, in fact, when fl is a regular polygon, this integral does not
depend on 7, and we find that I varies as the square of the cross-sectional area, A.
On considering so called thin-walled columns we shall now see that I varies as an
affine function of A. On the lateral surface of a cylinder with circular cross section
of constant radius R we add a layer of variable thickness p(x) with p(x)

_
R, <<

1. Neglecting powers of p greater than one we find I(x) rR3p(x)+ rTIa and
A(x) 2rRp(x)+R2. Taking (x) A(x)- rR2/2 for our design variable we find
I(x) (R2/2)fi(x). The effect of this choice on the integral constraint is trivial. Of
greater interest is that ., by construction, must satisfy the pointwise bounds

(2.2) < <
2 2

+2rR2"

It is not difficult to continue this line of reasoning and collect a number of examples
where I varies as some power of A. We proceed then to consider the case where
EI ap for some p > 0. Compelled by our examination of the previous special cases,
we admit those a in

ad= a e L O < o < a(z) < z, a(x) dx l

The weak formulation of the buckled column equation for a ad is

(2.3) aPu"v’’ dx u’v’ dx V v e H).

As a e L and > 0, (2.3) possesses the sequence of eigenvalues

0 <

repeated according to their finite multiplicities and a corresponding sequence of eigen-
functions (u(a)}’= C H), orthonormal in terms of the bilinear form associated with
the right side of (2.3). As H(0, 1) C C([0, 1]) we find uk e C1([0, 1]). Upon inte-
grating by parts on the right side of (2.3) we find that pa uk differs from--,’k(O’)Uk
by an affine function of x. Hence, ,-P," Ck e ([0, 1]), and, in fact,

(2.4) " " + )(0)-

We collect those eigenfunctions corresponding to 1 (a) in

e(o) sp n

a subspace ofH with dimension equal to the multiplicity of )h (a). Implicit in Olhoff
and Rasmussen’s bimodal formulation is the assumption that this multiplicity is at
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most two. Seiranian [34], has confirmed this through Kamke’s analysis of the second-
order problem with nonseparated boundary conditions

(2.5) w" + ,k(7-Pw O, w(1) w(O) + w’ (0), w’(1) w’ (0).

This is the strong version of (2.3) with w (TPu and was first considered in our
context by Tadjbakhsh and Keller. Kamke, in [19, 4], proves that the multiplicity of
each eigenvalue of (2.5) is no greater than two. Equation (2.4), however, suggests an
approach that applies directly to the weak formulation.

If, corresponding to k ((7), there existed three linearly independent eigenfunctions
Ul, u2, u3 then it would be possible to choose scalars a,b,c not all zero such that
v aul + bu2 + cud satisfies, in addition to v(0) v’(0) v(1) v’(1) 0, the two
conditions ((TPv")’(O) 0, and ((TPv")(O) O. From (2.4) we conclude that v satisfies
the homogeneous linear second order equation with zero initial conditions

+ o,

As the only solution to this equation is the identically zero function, we have estab-
lished

LEMMA 2.1. If (7 Ead then the multiplicity of Ak((7) is at most two.
As the least eigenvalue of the uniform column is 47r2, we find, as a consequence

of the monotonicity of the Rayleigh quotient, that

(2.6) 47r2p A1 ((7) 47r2p ’(7 E ad.

Corresponding to the least eigenvalue ,kl ((7), a positive eigenfunction is expected.
Indeed, this is the only type that Tadjbakhsh and Keller expected. To our knowledge,
however, there is no proof that a positive first eigenfunction need exist. We remark
that on this point the oscillation theory of Kamke is insufficient, for it concludes only
that eigenfunctions corresponding to the least nonzero eigenvalue of (2.5) possess ei-
ther three or two zeros. This translates into either one or no zero(s) for eigenfunctions
corresponding to A1 ((7). We now improve on this situation in the case where (7 is even
(about 1/2), i.e., a(x) a(1 x).

THEOREM 2.2. If (7 L is even and admits a positive lower bound, then there
exists a positive even eigenfunction corresponding to A ((7).

Proof 2.2. We exploit the essential idea in inverse iteration, a popular technique
for computing the least eigenvalue and eigenvector of a symmetric matrix. In our
context this idea amounts to approximating the least eigenfunction by the solution of
a related nonhomogeneous boundary value problem. Given v0 H we consider its
expansion in the complete set of eigenfunctions

 o(x) +
k=m+l

where m is the least integer for which Am((7) < A,+ ((7) and is an eigenfunction
corresponding to A ((7). From v0 we construct the sequence {vj } C H02 according to

/01 p II11
(7 vj 0 dx 1 ((7) V_l’ dx vceg0
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On expanding vj in {uk(a)} we find

(1(() () + ()] (x).
k=mnt-1

As Ax (a) < Ak(a) for all k > m, we find that v converges pointwise to j .
It remains then to produce a v0 whose corresponding is even and positive.

Our choice for v0 is the first eigenfunction of the uniform column, i.e., 1-cos(2x),
a positive even function with exactly two inflection points.

LEMMA 2.3. Let f be an even member of L with a positive lower bound and
v be a positive, even member of Hg with precisely two inflection points, g u Hg
stisfies

fun’’ dx V e(.) a H,

then u is positive, even, and possesses precisely two inflection points.
Proof 2.3. Upon integrating by parts on the right of (2.7) we find that fun differs

from v by an affine function. Dividing by f and integrating twice gives

where 9 1/I and a and b are degermined by (1) 0 and ’(1) 0, i.e., by

(2.10) a x2g(x) dx + b xg(x) dx xv(x)g(x) dx.

That these equations uniquely determine a and b follows from HSlder’s inequality

(/01 ) /01 /oxg(x) dx < g(x) dx x2g(x) dx.

Our hypotheses, in fact, allow us to conclude that

f01 (x)ax
This obviously satisfies (2.9). Regarding (2.10), recall that every even function satisfies

f0 (x)dx 2 f3 x(x)dx. Consequently,

3 (x)()a $3 ()()a $3 x()()ax
() ax (x) x(x) ax

stisfies (2.10) well. Labeling s(x) (b- v(x))g(x), equation (2.8), u(1) 0, and
u (1) 0 take the form
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With this and the fact that s is even, we find

u(1 x) (1 x )s() d

(1

(x y)s(y)dy u(x).

Regarding the convexity/concavity of u, we observe that f(x)u"(x) b- v(x). That
b-v(x) h at let two zeros follows from b > 0, v(0) v(1) 0, and 0 < b < v[.
For b-v(x) to possess more than two zeros v must admit a local minimum, a condition
that requires of v no less then four inflection points. These zeros, say x0 and 1 x0,
are the inflection points of u. As u vanishes at zero and is convex on (0, x0), it must
be positive there, and, by symmetry, positive on (1- x0, 1) well. As u is positive at
x0 nd 1 x0 while concave between these points it must be positive on this interval

well.
Proo] 2.2. It now follows that {vy} is a sequence of positive even functions.

Because the convergence of vj to is pointwise, we conclude that is itself a positive
even function.

When a is even and A(a) is simple, we now have, up to a scalar multiple, a
unique positive even first eigenfunction; cll it u. When A (a) is double in addition
to u, there exists a first eigenfunction u2 for which f uu dx O. Consequently, u2
is not even, and u and u2 span (a) we may conclude that when a is even, there
exists, up to a scalar multiple, a unique positive even first eigenfunction.

Though Theorem 2.2 applies only to even functions, we shall see in the next
result that this suffices for our purposes. Note that Lemma 2.3 states that the op-
erator (d2/dx2(f d2/dx2))-l(-d2/dx2) leaves a subcone of the positive H functions
invariant when f is even. This cone is, however, too "thin" to allow one to invoke
Krein-Rutman arguments. Regarding possible improvements of Lemma 2.3, we note
that even the constant coefficient operator (da/dx4)-(-d2/dx2) does not leave the
positive H functions invariant. To see this, we solve for b in (2.9)-(2.10) with g 1,

b 4 v d 6 vd.

Taking for v any smooth positive function supported in (, 1) produces b < 0. As
(0) ’(0) 0 and "(0) b, we conclude that is not positive.

OaU 2.4. Given ad there eists n even , ad for which 1() N
al( .l.

Pro@ There is a very simple argument when 0 < p 1. Given a function
on (0, 1), we denote its even part by () (() + (1 )). Consider the even

function ((P))1/p and its corresponding even first eigenfunction g. With the
normalization 1, w find

dx
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As t - t1/p is convex, we observe that

aP(1 x) lip if(x) if(1 x)(2.12) 5(x) ap(x) + < + as(x).
2 2 ) 2 2

Now ors e ad and (2.11)-(2.12) imply that Al(Cr) _< A1 (as). Our attempts to argue in
a similar fashion for p > 1 with 5 ((a-P)s)-/P and (2.5) have been thwarted by
the fact that A (a) corresponds to the third eigenvalue of (2.5). What is needed is a
rearrangement of a that echoes the curvature of its corresponding first eigenfunction.
To make this precise, we first need the following extension of Lemma 2.3.

Recall that a function is said to be odd about the point (x0, (x0)) on some
interval containing x0 when

(x0) (x0 ) (x0 ) (0)

for each x on the given interval. If, in addition to the original hypotheses of Lemma
2.3, we assume that f and v, when restricted to (0, 1/2) are even about 1/4 and odd
about (1/4, v(1/4)), respectively, we conclude that u, when restricted to (0, 1/2), is odd
about (1/4, u(1/4 )).

To see this we recall that f ut’ dx 0 and u" is even about 1/2, hence f/2 u" dx
0. For the remainder of this paragraph all functions will be restricted to (0, 1/2). Recall
as well that u" (b- v)/f, the quotient of a function odd about (1/4, b- v(1/4)) and
a function even about 1/4. Hence u" is odd about (1/4, b- v(1/4)). The condition that

f/2 u" dx 0 now forces b v(1/4). As u" is now odd about (1/4,0) and u(0) u’ (0)
0, we easily conclude that u is indeed odd about (1/4, u(1/4)).

If or, is now even about 1/2 and even about 1/4 when restricted to (0, 1/2), then be-
ginning the iteration of Theorem 2.2 with a v0 that is even about 1/2 and odd about
(1/4, v0(1/4)), e.g., 1 -cos(2rx) will produce u,, a positive eigenfunction corresponding
to l(r,) that is even about 1/2 and odd about (1/4,u.(1/4)) on (0, 1/2). We immediately
note that or,p and In, are similarly ordered, i.e.,

(2.13) (cr,P(xl)- a.(xe))(lu",(xl)l- I’,’()I) >_ o Vx,x e (0,1).

Given cr E ad we now define its rearrangement or,.

{ e (0, ): (x) > },

otherwise

1-x) if0<x< -0",.

3sup{ceR" Xeec*}, if1/4_<x_< x
a,(1- x), if - _< x _< 1.

In essence, this distributes half of cr’s mass in a symmetrically decreasing fashion
about 1/2 on (1/4, 1/4), completing the rest via symmetry. By construction, these two
functions are equimeasurable, i.e.,

I( e (0,1): or(x) >_ c}[- I{x e (0, 1): a,(x) >_ c}l V c e R,
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and consequently, a, E ad. We are now in position to apply the following result of
Hardy, Littlewood, and Phlya; see Phlya and Szeg5 [31, p. 153].

If f and are equimeasurable, g and gl are equimeasurable, f E Lq, g Lq’,
and fl and g are similarly ordered, then

(2.14) fg dx <_ fg dx.

Given a ad we now rearrange it as above into a, and consider its corresponding
u, e (a,). Upon normalizing Ilu, 1 we find

jo "12 dx , a."l 2 dx <_ aP, lu,1 (0")

__
o’Plu.

The first inequality is a consequence of Rayleigh’s principle, the second, of (2.13)-
(2.14). D

The stage now set, we address, in the next two sections, existence and necessary
conditions for the generalized problem of Lagrange

(2.15) sup A1 (a).
head

3. Existence. We adopt the direct method of the calculus of variations and
neglect to relabel subsequences. Denote by the value of (2.15) and by (an} Cad
an associated maximizing sequence, i.e., A(an) " . Without loss, we may assume
that each an is even about 1/2. We abbreviate A(an) to Al,n and denote by u,n a

corresponding positive eigenfunction for which IlU,nll 1 and f aPnlU,n" 12 dx ,l,n,
where I1" denotes the L2 norm. These normalizations, in light of (2.6), impose a
uniform H2 bound on the sequence (u,n}. As a result, there exists a subsequence
with weak H2 limit H02. The imbedding of H2 in H1 being compact, we find

I1’11 1, and so is not identically zero. The natural question is whether and
are indeed an eigenvalue and eigenfunction for some column with corresponding- ad. If so, then y is necessarily the desired optimal design. This question was first

addressed by Senatorov [35] in the context of a second-order problem. He discovered
that weak convergence of the reciprocals of the coefficients of the highest order term
must be considered. This observation continues to hold for fourth order problems,
the details of which we now sketch.

Consider the weak formulation

(3.1) O’nUl,n" " dx ,l,n Ul, V’ dx V v H.

Our previous remarks reveal that the right-hand side converges to 1 f3 ’vt dx for
each such v. Regarding the left side we define n anUl,n,P" and, as in (2.4), deduce
from (3.1)

oPu 0)-

As the sequences (n} and (U,n} are uniformly bounded in L2, so too must

(anUl,n)(0)}. Consequently, n converges strongly in n2 to some function . The

left side of (3.1) therefore converges to f-v" dz. It remains to characterize this .
Recalling the pointwise bounds on the an we may assume that -P converges in the
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weak* topology of L to some function #. Thus, nrp converges weakly in L2 to
#. But nap u" whose weak L2 limit is " Hence, ,,#-1 Definingl,n- --l/p, we may pass to the limit in (3.1) and obtain

/o /011-P"v" dx 1 dx V, v E H.
As symmetry is preserved under weak convergence, we find y to be even. In addition,
the pointwise convergence of u,n to leaves positive and even. Now (3.2) implies
that Aj(Y) for some j. That j 1 follows from the existence of a positive
even first eigenfunction for and the fact that is itself positive and even. We
need only determine whether Y E ad. We may verify the pointwise bounds without
trouble. With respect to the integral constraint, we consider the convex function

f" R --, R, f(t) t-1/p. The integral functional -, f f((x))dx is then weak*
lower semicontinuous on L, see, e.g., Dacorogna [12, Thm. 1.1]. As 1/aPn converges
weak* to 1/p, this allows us to conclude that

(3.3) - dx f(1/-P) dx <_ lim inf f(1/aP dx lim an dx 1.

If indeed equality does not hold in (3.3), then there exists an even ad such that
&(x) _> Y(x) for almost every x (0, 1). From Rayleigh’s principle we then easily
deduce Al(&) _>/1 (). We have now proven the following.

THEOREM 3.1. There exists an even & ad .for which A(a) <_ () for every
aad.

Our choice of ad was motivated by our interest in the "shape" of the strongest
column. Theorem 3.1, however, may also be applied in the search for the "composi-
tion" of the strongest column. For example, consider the design problem where one
must combine two materials in fixed proportion so as to maximize the buckling load
of the resulting column. The set of admissible designs is then

adE (X(x) +/(1 X(x)) X is the characteristic

function of a subset of (0,1) with measure -y},

where c and f are the Youngs moduli of the respective materials with , the volume
fraction of the first. In this context, Theorem 3.1 states that A attains its maximum
on the weak* closure of adE, i.e., on

ad*E= cO(z) + /(1-O(x)) O <_ O(x) <_ l, O dx =/

4. Necessary conditions. We search now for a characterization of our optimal
design, &. Typical of many such problems, two distinct approaches are possible.
Taking advantage of the variational structure, the so called direct approach attempts
to swap the order of the limits in

sup inf f aPlu"12 dx
lu’l dx

inferring necessary conditions from the resulting saddle point. The indirect approach
strives to determine & through knowledge of the tangents to the graph of a -
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and the normals to ad. Our implementation of these two approaches intersect in their
reliance on (i) recent work of Auchmuty [2] on dual variational principles and (ii) a
lopsided minimax principle.

PROPOSITION 4.1.
I

IU// 2)-1 (O’) sup A(a, u), A(a, u) x/llu’ll 1/2 an dx.
uEH

u - A(a, u) attains its maximum only on those u e (a) for which Ilu’ll x/A[ (a).
Proof. In addition to being bounded above by 2Ai-l(a), the map u -, ,4(a, u) is

coercive and weakly upper semicontinuous on H and therefore attains its maximum
at some E H02. Necessarily, T)2Jt(a, ), the Ggteaux derivative of u - ,4(a, u) at ,
must vanish. That is,

As a result, is an eigenfunction corresponding to the eigenvalue v/ll’ll -. As
maximizes u - ,4(a, u), this must be the least eigenvalue, Al(a).

PROPOSITION 4.2. Consider F X Y --+ R, where X and Y are topological
vector spaces and assume that x - F(x, y) is concave and upper semicontinuous while
y - F(x, y) is convex and lower semicontinuous. If there exists a Yo Y and Co R
such that {x X; F(x, yo) k Co} is compact and Co < infyEy supxex F(x, y), then

sup inf F(x,y)= inf sup F(x,y).
xX YY YY xEx

Proof. This is a weakening of Theorem 3.7, Chapter 2, in Barbu and Precupanu

It is with the indirect approach that we shall meet with the greatest success. For
prior attempts in this context see Haug and Rousselet [18] and Choi and Haug [9].
Our principal tool is the generalized gradient of Clarke [10].

For a real valued Lipschitz function F on a Banach space X we consider the
generalized directional derivative of F at x in the direction v,

F(x; v) lim sup
F(y + tv) F(y).

y -- x t
t$O

Denoting the dual of X by X* and x* (x) by (x*, x) when x* X* and x E X, Clarke’s
generalized gradient of F at x is the nonempty, convex, weak* compact set

OF() =_ ( X*; F(z; ) > (, ) V X}.
We demonstrate that a A-(a) is Lipschitz on E {a L; ]]5- a] <
a/2}. Choose a, a2 E such that A(al) > A(a2) and note that for u
Argm A(al, "), the set on which u A(a, u) attains its mimum,
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Without loss we assume that 1(5) is a double eigenvalue. Then t(&) is two-
dimensional and Argmax,4(&, .) is the intersection of t(5) with the sphere Ilull
x/-1 It will be convenient to choose a basis (fi fi2} for (&) for which f ^ ^ dxUitj
25ij-2. For then,

(4.1) Argmax 4(&, .)---- {a?l -b2; a2 + b2 1}.

Regarding the Gteaux derivative of a -, ,4(a, u) at 5 in the direction /we have

(4.2) .01 {UVt 2(7)A(5, u), rl) -2 rlrp-1 dx.

Denoting convex hull by ’co,’ the sense in which the gradient of a maximum is the
maximum of the gradients is the following.

THEOREM 4.3. aA-l() co(--2&P-l(ai’ -F bt)2; a2 -F b2 1}.
ProoI. From (4.1) and (4.2) this set is precisely

co {T),4(r, u); u e Argmax Jr(#,-)}.

Our claim does not fit neatly into Clarke’s result [10, Thm. 2.8.2] on the generalized
gradient of a pointwise maximum. The contortions involved in fitting our problem to
Clarke’s hypotheses are no less difficult, and far less instructive, than an independent
proof.

Let us denote the set in (4.3) by ... We show that .. c 0A-1 (&). For E .=. and
TEL

n

i--1

n

n

-< E #i lim sup
i= tt0

_< v),

hence 0-(d).
Regarding the reverse inclusion we define

a E E, /E L

and prove

(/-l )o ((T; T])

_
g((:T; ?).

Select an a in L and tn 0 in R such that

-l(Tn -- tn?) /-l(O’n)
tn
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converges to (A-l)(a;/). Select un E Argmax ,4(an + tnr, .) and note that

tn

with the right side equal to (Dflt(an + nrl, u),rl>, for some E (O, tn), by the
Mean Value Theorem. As an + tnr -, a in L and un Argmax 4(an + tr, .),
we recall from our work in Theorem 3.1 that un u Argmax Jr(a, .) in H2 and
(an + tnrl)Pu --* aPu’’ in L2, and hence un’’ u" in L2, i.e., u -- u in H2. Recalling
(4.2) this establishes

with u Argmax A(a, .). As a result,

(A,i-1)(a; y) lim qn <_ (:D1,4(a, u), } _< g(a; r).

If is now an element of oqi-1 ((), then g(&; /) _> (, r} for each/ L. Consequently,

O= min max(-

Noting that E is closed and bounded in L and finite dimensional (it lies in the span
of {l i’l ^" ^"u u2, }), we find it compact in (L) Invoking Proposition 4.2 yields
a E .. for which

It follows that and so 0Ai-l(&) C
This proof, though identical in outline to Clarke [10, Thm. 2.8.2], has exploited

additional properties of A1 and t to make up for the missing hypotheses. Observe
that when A] () is simple the generalized gradient reduces to the singleton

As zero is not a tangent direction to )-1 at (, i.e., 0 0Ai-l(), we are compelled
to investigate the constraint set ad. Separating the equality from the inequality
constraints brings

/oC= {a e L; a <_ a(x) _< /} and V(a) =_ adx.

As & minimizes a - Ai-l(a) subject to a e C and V(a) 1, we deduce from the
Lagrange Multiplier Rule, [10, Thm. 6.1.1], that a nontrivial linear combination of
elements in OA(5) and OV(gr) is normal to C at &. In particular,

(/210. (a)--

where Ul < O, u + u > O, and

Nc(&)= Ce(L)*; (&-a) d>_0, VaeC
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is the cone of normals to C at &. In light of our previous calculations, and the fact
that OY(&) 1 e L1, there exists a e 0A-I(&) for which

11(4.4) (& a)(l + 2) dx >_ 0 V a e C.

Observing that 1 >_ 0, we find that 2 >_ 0 requires, through (4.4), that & ft. This
is an impossibility. Likewise, should 1 0, (4.4) would require _= ( (since 2 < 0).
Taking 2 2/1, we arrive at

1(0_ +g2) dx<_0 Vae C.

The subsequent reduction to pointwise optimality conditions follows a well-known
course, see, e.g., Cea and Malanowski [8]. In particular,

(a.) () -. -() < e,
(a.) . < () < Z -()= ,
(.71 (1 -() > e

for almost every x e (0, 1). To appreciate this result, we must recall that
means

n

-(x)
i--1

l(x)(aill(X) q- bi^’(x))2

where

n

ti_>0, ti=l, and ai +bi =1.
i-1

On expanding this sum of squares, (4.6) becomes

(4.8) - (11^"11 +1 ^"1 + ^"^") 12 037d’lU2

where

Observing that 6162 indeed dominates 6/4, we have recovered (1.8), the necessary
condition of Bratus and Seiranian [7] and Masur [22]. If in fact 6162 6/4, then for
fi 1fil + v/fi2, equation (4.8) yields &P-llfi’12 1, the optimality condition of
Tadjbakhsh and Keller. Since f is an eigenfunction and, therefore, admits at least
two inflection points, the pointwise bounds must become active, i.e., (P--lltlll2 1
cannot hold on the entire interval. Ignoring any bound constraints, Masur [22] and
Seiranian [34] found a a and two orthogonal elements of (a) for which (4.8) holds
with p 2. This appears to be the design obtained by Olhoff and Rasmussen [25]
and, by all indications, the one preferred by our algorithm as well (see 7, Fig. 1).
It appears likely that in this case the bound constraints are inactive due to the fact
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that where is less than one, &2 is much less than one. Since 2 is the quantity
that appears in the Rayleigh quotient, we expect it to be as large as possible. This
suggests that & is bounded away from zero, independent of . This lower bound with
the integral constraint supports the conjecture that & is in fact bounded above as
well. Hence, when a and are, respectively, chosen below and above these ’natural’
bounds, condition (4.8) is free to stand on its own. Clearly these natural bounds
must depend on p. In fact, we shall provide numerical evidence in 7 in favor of the
argument that the natural lower (upper) bound is an increasing (decreasing) function
ofp for p > 1.

Unfortunately, it is not known whether (4.8) is a sufficient condition for optimality.
The proof of sufficiency offered by Tadjbakhsh and Keller [37] is incorrect. They
proceed as if A1 (a) corresponds to the least eigenvalue of (2.5) and, accordingly, admit
all functions that satisfy the boundary conditions as test functions in a Rayleigh
principle argument. In fact, (2.5) possesses a double zero eigenvalue, hence only
those functions that are orthogonal to the first two eigenfunctions can be admitted.
We remark that Ramm’s claim [32], that Tadjbakhsh and Keller mistakenly applied
Hblders inequality in their sufficiency proof, is incorrect, though [37, 6 (25)] is only
valid for n < 0.

Though (4.8) need not hold over the entire length of the column, we now show
that where it does hold it requires that & be smooth.

THEOREM 4.4. /j’ < &(x) < for each x e (a,b) c (0, 1), then & e C(a, b).
Proof. We observed in (2.4) that

(4.9) rP li li,

where li is an affine function of x. Now multiply (4.8) by &P+,
^^,, : (’) +(4.10) il (5P7)2 + 52(a u2) + 53 (&P)

From (4.9) we find, on recalling H02 c C1, that each term on the left of (4.10) is C,
and hence, that E C1. Writing (4.9) in the form

Ui rP
^. C Cawe conclude ui E that is, i Repeating this exact argument leads to C3

and i C5. The result then follows from continued repetitions. [:]

Having succeeded in pursuing the indirect approach, we now look to the possibility
(and the implications) of exchanging the limits in the characterization

-1 ,A((, ) inf sup A(a, u).
a6ad u6H

Recalling Proposition 4.2, this will require convexity and lower semicontinuity of
a H ,4(a, u), and concavity and upper semicontinuity of u - 4(a, u), as well as
compactness of one of its upper level sets.

Remark 4.5. We noted the weak H2 upper semicontinuity of u - ,4(a, u) in
Proposition 4.1. As {u H; jl(a, u) _> c} is bounded it is also weakly compact
(independent of c E R and a ad). Convexity of a -. jr(a, u) follows on restricting
p<_.

The two remaining properties require more work. Note that u Argmax 4(a, .)
implies jr(a, u) jr(a,-u) -l(a) while A(a, 0) 0. Hence, u 4(a, u) is not
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concave on any set that contains Argmax 4(a, .). This suggests that we examine
the half-spaces exterior to {u e H; Ilu’ll <_ x/-l(a)). Unfortunately, this ball,
and hence its support planes, depend on a. Consequently, if we expect these half-
spaces to vary continuously with a, we must be careful in our choosing. This choice
is greatly facilitated by the assumption that a lies in ads, those functions in ad that
are even about 1/2. In this case, we may speak unambiguously of ul, the positive even
eigenfunction corresponding to (a). We normalize I]ull-- /-(a) and consider
the associated half-space

PROPOSITION 4.6. For a E ads, u - jr(a, u) is concave on Ha.
Proof. The quadratic form associated with the second Gteaux derivative of

u - A(a, u) at E II satisfies

/o (/o )Iv’l 2 dx aPlv"l 2 dx x/-ll’l1-3 ’v’ dx

1
_

(%/11’11-1 I((T)) Iv’l 2 dx

<_0 VvEH.
This suggests that we penalize Jt with the indicator function of H,

J" 0 if u E H;U)
x), otherwise.

This not only guarantees concavity but also respects lower semicontinuity.

PROPOSITION 4.7. a - 4(a, u) r(a, u) is lower semicontinuous for the strong
L topology on ads.

Proof. Now (Yn -- (Y in L clearly implies 4((Tn, U) ---+ 4((T, U) for each u H.
Regarding limsup r(an, u) <_ r(a, u), it suffices to show that

r(a, u) 0 Vu II.

From the proof of Theorem 3.1 it is clear that A (an) A1 (a) and u (an) ul (a)
in H. Hence,

i
1

(n) i(n)’ dx A(a) u(a)u’ dx > 2.

om this we conclude that u is eventually in each H, i.e., r(a, u) 0.
We may now modify Proposition 4.2 (see Cox and McLaughlin [11, 7]) and

conclude the following.

THEOREM 4.8. ff p 1, then (, Ul ()) is a saddle point for A over ads H.
That is, denoting u() by ,

A(, u) A(5, fi) A(a, ) V (a, u) e ad H3.
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The latter inequality yields the following maximum principle

ap dx <_ bPlt"l 2 dx V a c=_ ads.

The subsequent pointwise conditions call for an g2 > 0 such that

(4.11) #(x) ( P-l(x)l"(x)12 <_ 2,

(4.12) ( < (x) < = P-l(x){"(x)l2-- 2,
(4.13) 6(x) ==
for almost every x E (0, 1). As a - A-l(a) is convex when p <_ 1, these conditions
are also sufficient. Hence, we see that where the direct method applies it gives more
information. In particular, the necessary conditions (4.11)-(4.13) involve only a single
buckling mode. Comparing these to the more general conditions in (4.5)-(4.7) suggests
that A1 (&) is indeed a simple eigenvalue when p _< 1. We shall see numerical evidence
of this in 7. The critical case, p 1, where the optimal buckling load changes
multiplicity, has received considerable attention. In this case, the right side of (4.11)-
(4.13) is independent of &. In particular, a number of workers have claimed that

(4.14)

We remark, however, that in the absence of a second buckling mode the bound con-
straints must become active near the inflection points of fi, making (4.11) and (4.13)
indeed necessary. Nonetheless, Seiranian [34], who deduced (4.14) from (1.8), pro-
ceeded to solve (4.14) in conjunction with (2.3), yielding

3/2(1-16x2) if 0_<x<_

3(4.15) 6(x)= 3/2(6x-x-3) if 1/4<_x_<z

3/2(32x-16x2-15) if _<x_<l.

On evaluating the Rayleigh quotient with this and a specific C test function,
Seiranian arrived at a buckling load of 48. This design, like that of Tadjbakhsh and
Keller for p 2, vanishes at 1/4 and 1/4. Unlike the design of Tadjbakhsh and Keller,
however, we are not able to show it to be suboptimal. We can only stress that,
lacking an existence proof for a 0, p 1, there is no reason to believe that (4.14)
is a necessary condition for optimality.

5. Other boundary conditions. Intent on a clean exposition, we have to
this point concentrated solely on the clamped-clamped boundary conditions u(0)
u’(0) u(1) u’(1) 0. We now apply the work of the previous sections to the
other standard sets of boundary conditions, in particular, hinged and free. A column
is said to be free at a point when no conditions are prescribed, while it is hinged, or
simply supported, when its displacement is required to vanish there. As a matter of
notation, the weak formulation of the buckled column equation will read

(5.1) aPu"v’’ dx # u’v’ dx Vv E V,j,
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where V,j is a subspace of H2, with i and j chosen from {0, 1, 2} according to whether
the respective end is either free, hinged, or clamped. For example,

V1,2 {u e H2; u(0) 0, u(1) u’(1) 0}

specifies the hinged-clamped column. We denote the least eigenvalue of (5.1) by
tti,j(a), and the corresponding space of eigenfunctions by i,j(a). As before, u E
Ei,j(a) implies that both u and aPu’’ are elements of C1([0, 1]). In addition, such
functions satisfy so called .natural boundary conditions. In particular, if i 1 then,
in addition to u(0) 0, we find

o,

while if i 0 we have, in addition to (5.2),

+ o.

We shall consider only those #i,j(a) for which i + j _> 2, as otherwise #i,j(a) 0. For
comparison purposes, we record these eigenvalues in the case of the uniform column.

#0,2(1) r2/4, #1,1(1) 71"2, #1,2(1) 2.046r2, #2,2(1) 4r2.

Clearly, #i,(1) #j,i(1). Analogous to (2.5), for + j >_ 2, (5.4) gives the uniform
bounds

(5.5) r2ap/4 <_ #,y(a) <_ 4r2p Va ad.

As in 2, we address the multiplicity of #i,i (a) and the presence of positive eigenfunc-
tions.

LEMMA 5.1. For a ad,
(a) If 2 <_ + j < 4, then #,y(a) is simple and there exists a corresponding positive
eigenfunction.
(b) tt0,2(a) < #l,2(a) and 1,1(O’)

Proof. (a) Seiranian noted for these boundary conditions that (5.1) is equivalent,
except for the presence of a simple zero eigenvalue when the product ij equals 2, to
a second-order problem with separated boundary conditions. It now follows from the
oscillation theory of Stiirm, see, e.g., Atkinson [1], that each/ti,j (or) is simple and that
for ij 2, aPu’’ is of one sign for each u i,j(a). In case ij equals zero or 1, this
yields, respectively, a positive convex or concave element of i,j(a). When ij 2 we
find that aPu’’ vanishes exactly once on (0, 1) for each u e i,j(a). Here we find an

eigenfunction that is convex on (0, x0) and concave on (x0, 1) for some x0. As this
function must vanish at zero and 1, we conclude that it must be positive on (0, 1).

(b) As V/+I,j C V/,j we find #,j(a) _< #+,j. Should equality hold, we conclude
i+l,j(ff) C $i,j(ff). As in (2.4), for u i,j(a) we deduce from (5.1) that

+

If #0,2(a) #,2(a), then for each u e $,2(a) C $0,2(a) equation (5.6), in view
of (5.3), reads

(5.7) (aPu’’) (x) -#,yu(x).
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On recalling that u(1) u’(1) 0, we see that u satisfies a linear homogeneous
equation with zero terminal data, and hence, u 0.

If ttl,l(a) #l,2(cr), then for each u e l,2(a) C l,l(a) (5.6), in view of (5.2),
reads

(.s) (,u")() ((,u")’(0) + ,()’(0)) ,()().
So (aPu")(1) (aPu")’(0)W #i,j(a)u’(0). But (rPu")(1) 0 so (5.8) reduces to (5.7)
and again the clamped conditions at 1 imply that u _= 0.

If #1,2(a) #2,2(a), then for each u e t2,2(a) c $1,2(a) equation (5.6), in view
of (5.2), reads

(,u")(x) (’")’(o) ,()u(x).
Hence, (aPu")(1) (aPu")’(O), from which we conclude that u is either identically
zero or not of one sign. This excludes the positive element of 1,2(a) established in
part (a).

Thanks to the presence of positive first eigenfunctions, the existence theory of 3
applies directly to the problem of Lagrange

(5.9) sup #,j(a), 2 <_ i + j <_ 4.
head

We note that only for symmetric boundary conditions, i.e., i j, should we expect
an even optimal design. As #i,j(a) is simple when i +j < 4, we deduce from Theorem
4.3 and conditions (4.5-4.7) that

(5.10) &d (x)

(5.11) a < &id(x) <

(5.12)

a,l(x)l"(x)le _< ge,

a5(x)l"(x)l2 t2,

:: a,j (X)I"(X)I >_ e
for almost every x e (0, 1), where e ,j(#,j). As before, &,j is smooth where (5.11)
holds.

The right side of (5.11) is the sole necessary condition offered by Keller [20] and
Tadjbakhsh and Keller [37]. We now investigate the extent to which their claim is
valid. Recall that their analysis of the clamped-clamped column erred in neglecting
(a) double eigenvalues and (b) bounds on a. As the previous lemma precludes the
former phenomenon, we need only consider the latter. The observation to be made is
that (5.10) and (5.12) are only needed near the zeros of t". As noted above, members
of 1,1(a) and t2,0(a) have second derivatives of one sign. As such, in these cases,
(5.11) stands on its own (with the minor adjustment that a be allowed to vanish at
zero and/or 1). In addition, as the related second-order problems are fully equivalent,
i.e., there are no spurious eigenvalues, Tadjbakhsh and Keller’s sufficiency proof is
correct. In summary, Keller [20] has the correct necessary condition for the hinged-
hinged column, Tadjbakhsh and Keller [37] have the correct necessary condition for
the clamped-free column, and the proof of sufficiency in [37] holds for both. We now
recall their analytical solutions to these problems.

Keller, in [20], with p 2 and j 1 reconciled (5.11) and (5.1) and found

4’I,I(X) g sin20(x),

0(x) 1/2 sin20(x) rx,

0<0<,

O<x<l.



306 STEVEN J. COX AND MICHAEL L. OVERTON

We have observed that this is a shortened cycloid with parametrization

3x(t) - ( (t sin t))
0 <t < 2r.

y(t) (1 cos t)

This column buckles under an axial load of 4r2/3. In [37], Tadjbakhsh and Keller
with p 2 and i 2, j 0 reconciled (5.11) and (5.1) and found

&2,0(x) sin2 -r/2 _< 0 _< 0,

0(x) 1/2 sin 20(x) + r/2 rx/2, 0<_x<_ 1,

our parametrization being,

3x(t) ( (t sin t)) + 1

t)y(t) cos

--r<t<O.

This column buckles under an axial load of r2/3. Having argued in favor of the
existing solutions to the clamped-free and hinged-hinged problems, we now turn to
the clamped-hinged problem.

We saw in Lemma 5.1 that the second derivative of each function in 2,1 (a) must
change sign. The effect of this is that (5.11) forces 2,1 to vanish at an interior point.
In particular, when Wadjbakhsh and Keller reconciled (5.1) and (5.11) they found

4sin20(x) 0(0) <_ 0 <_ r,(5.14) &2, (x)
3 sin2 0(0)’

O(x) 1/2 sin 20(x) + 7 sin 20(0) 0(0) x(r + 1/2 sin 20(0) 0(0)), 0_<x_<l,

-2 sin 20(0) 0(0) - sin3 0(0) cos- 0(0) r.

Taking a 1/2 sin 20(0)-0(0), note that this &2, (x) vanishes at a/(r+a). Tadjbnkhsh
and Keller sert that the column built according to (5.14) will not buckle under
loads less than approximately 27.22 in magnitude. We show in the appendix that this
column cannot withstand loads exceeding n2/3- and so, in fact, is much weaker than
theuniform column. In addition, as #2, (a) corresponds to the second eigenvalue of its
sociated second-order problem, the sufficiency proof of [37] is invalid. Hence, (5.14)
is not an optimal design. In summary, (5.11) cannot stand alone in the clamped-
hinged ce, a(x) a is indeed an active constraint nnd (5.10) absolutely necessary.
We suspect that there exists no solution to (5.9) when ij 2 and a 0.

6. The finite-dimensional problem. We discretize the interval [0, h, 2h,...,
(N-1)h 1] and approximate ,j by the finite-dimensional space j, the subspace
of ,j whose elements, when restricted to [kh, (k + 1)hi, are cubic polynomials (see
Strang and Fix [36]) As each member of Eh. is completely determined by the value

z3

of it nd its derivative at each of the N mesh points, we identify with R2N-i-j.
We next approximate ad with the class of piecewise constant functions

adh RN-1 k , k N- 1
k=l
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We have refrained from labeling elements of adh by ah to avoid confusion with powers
of a. In this context, the infinite-dimensional eigenvalue problem of (5.1) is now
approximated by

(6.1) Bh(a)qh #Khqh, a E adh, qh R2N-i-j.

Bh(a) and Kh, the so-called bending and stiffness matrices, are each real, (2N- i-
j) x (2N i j), symmetric, positive definite, and banded with half bandwidth of

hfour. Our interest is, of course, in #i,j(a), the least eigenvalue of (6.1). For, as h --. 0,
hone finds, e.g., in [36], that i,j(a) --+ #i,j(a). The connection between the finite

and infinite-dimensional problems now understood, we concentrate solely on (6.1). It
should cause no confusion if, in our presentation of the finite-dimensional optimization
problem, we suppress most dependence on h, i, and j. With this, (6.1) becomes

(6.2) B(a)q- AKq, a adh, q Rn,

and we denote its least eigenvalue by Al(a). Our finite-dimensional problem of La-
grange is now

(6.3) max A1 (a).
aEada

The care that was taken in differentiating a -+ Al(a) in 4 must also be exercised
here. The occurrence of multiple eigenvalues is still possible. Clarke [10, Prop. 2.8.8]
specifies the generalized gradient of the largest eigenvalue of a symmetric matrix in
terms of a convex hull; see also [28] and [29]. Though such a characterization may
suffice for an analytical description, as in 4, for computational purposes we have
found it more useful to specify first-order conditions in terms of, less well-known, "dual
matrices." We state the result in general terms. We shall need Sn, the class of n x n
real symmetric matrices, and the Frobenius matrix inner product, (A, B> tr ATB.

THEOREM 6.1. Let B RN-1 --+ Sn be continuously Frdchet differentiable with
Bk(a) OB(a)/Oak and let g be a fixed symmetric positive semidefinite matrix

of the same order n. Assume a adh is such that Al(a) has multiplicity t, with
corresponding eigenvectors given by the columns of a matrix Q Rnxt, normalized
so that QTIKQ I. Then a necessary condition for a to solve (6.3) is that there
exist a symmetric positive semidefinite matrix U of order t, with trace equal to 1, and
Lagrange multipliers and "k, k 1,..., N- 1, such that

(6.4) (U, QT Bk(q)Q1) , + k,

and

for each k.

ak O => "k <_ O,

a < ak < = /k--O,

a= " >_0

Furthermore, this condition is also sufficient for optimality in the case
that a - B(a) is affine.

Proof. In the following we use the notation U _> 0 to mean that a symmetric
matrix U is positive semidefinite. Regarding A Sn -- R, we invoke Rayleigh’s



308 STEVEN J. COX AND MICHAEL L. OVERTON

principle in

A1 min {<q, Bq>; q e R", <q, Kq> 1}

min {<qqT, B); q e R, <q, Kq) 1}.

Let Q E Rnn be any matrix satisfying

(6.8) QTKQ I.

It is easily shown that

co{qqT; q e R’, (q, gq) 1} {QQT; e ,sn, tr/ 1, _> 0},

by using the spectral decomposition of , which by assumption has nonnegative
eigenvalues adding to one, to obtain the requisite convex combination showing that
the second set is contained in the first. It follows that

(6.9) ,’1 min {<QQT, B>; e S’, tr- 1, >_ 0}.

Now take Q to be a matrix whose columns are eigenvectors of (6.2), normalized so
that (6.8) holds. The first t columns of Q are the columns of Q1 and

QTBQ Diag(Ai),

where A1 <_ A2 _< are the eigenvalues of (6.2), repeated according to multiplicity.
Therefore, the matrices achieving the minimization in (6.9) are those defined by

where U St, with tr U 1 and U _> 0. Consequently, the generalized gradient of
B - -AI(B) is the set of such matrices (see Rockafellar [33, pp. 29 and 35 or
Clarke [10, 2.8]), no convex hull operation being required since the set of such U is
convex.

With A1 (a) (A1 o B)(a), the desired necessary conditions now follow from (i)
the chain rule for generalized gradients [10, Thm. 2.3.10], (ii) the standard Lagrange
multiplier rule [10, Thm. 6.1.1 and Thm. 6.4.4], and (iii) properties of the inner
product. In particular,

(6.10) 0(-Al(a)) {v e RN-1; vk <U, QTI Bk(a)Q1 >, U e St, U >_ O, tr U 1}.

These necessary conditions are also sufficient in the case that a B(a) is affine
because the composition of a concave function with an affine function is concave. D

Our attention to 0(-A1) in (6.10) and 0A-1 in Theorem 4.3, rather than simply
0A1, is merely an artifact of Clarke’s concern with functions defined as pointwise
maxima rather than minima. Here, it was convenient to characterize -A1 as the
maximum of a Rayleigh quotient where, in 4, we found it more advantageous to
maximize a functional of Auchmuty, and hence, to consider A-1.

A simpler version of this theorem (for the unconstrained case, with K I and
B(a) an affine funion) was given by Overton [26], following work of Fletcher [14].
The n x n matrix U is known as a "dual matrix" by analogy with "dual variables"
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(Lagrange multipliers) familiar from mathematical programming. The t t matrix
U may be called a "reduced dual matrix," but since it is the one we shall need as a

computational^tool we shall also refer to it as simply the dual matrix. The distinc-
tion between U and U is analogous to the notational question of whether inactive
constraints in a nonlinear program should be assigned zero Lagrange multipliers.

In the case that t 1 and the bound constraints are inactive, the necessary
condition reduces to the requirement that the gradient of A1 (o-), whose elements are
qTBk(o-)ql, has the constant value . (Here ql is the only column in Q, and U is the
scalar one.) In the case that t 2, let

(6.11) U=
i3/2 62

Let the two columns of Q1 be ql and q2 and again assume that all bound constraints
are inactive. The necessary condition then becomes

51qTi Bk(o-)q1 + 52qT Bk(o-)q2 + 53qT Bk(o-)q2 ,,
together with the trace and positive semidefinite constraints on U. Without loss of
generality, 51 and 52 may be taken to have nonnegative sign, and the normalizing trace
condition may be replaced by the assumption that 1. The positive semidefinite
constraint is then simply

This is the same necessary condition given by Bratus and Seiranian [7] and Masur
[22]. We note that the derivation given here not only applies for t > 2, but is much
simpler than that given by [7] and [22] for the case t 2. In a footnote, Masur
conjectured that the positive semidefinite condition on U would also be the correct
necessary condition for t > 2. Bratus [6] gave a discussion of necessary and sufficient
conditions for general multiplicity t, but the given necessary condition concerns the
necessary sign of the directional derivative of 1 for all feasible directions; the positive
semidefinite condition on U was apparently not obtained.

Before discussing the algorithm that springs from Theorem 6.1, we will investi-
gate the extent to which it suggests a new tack on the infinite-dimensional problem.
Regarding the variational principle of (6.9), we consider K+ (X), the space of positive
compact linear operators on a real separable Hilbert space X. Each T E K+(X)
possesses a countable sequence of eigenvalues )I(T)

_
2(T)

_
J. 0 repeated ac-

cording to multiplicity and a (possibly infinite) trace tr T -i=1 Ai" In this context
it is not difficult to show for symmetric T E K+(X) that

AI(T) max {tr TU; U e K+ (X), tr U 1}.

Recall that u , (oPutt) It and u - -u" are positive symmetric isomorphisms of

H onto H-2 and H onto H-1, respectively. We denote these maps by A and B,
remark that B1/2 is a positive isomorphism of H onto L2, and denote by I the
compact imbedding of H in H. With B1/2ju, and denoting adjoint, the
buckled column equation receives the formulation

(1/A)-
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By construction, B1/2IA-l(B1/2I)* is a symmetric member of K+ (L2). Although we
may now proceed to compute 0A-1, as in the previous theorem, this representation
suffers from its dependence on the unknown A- and B1/2 in contrast to Theorem
4.3 which works directly with A and B.

We now turn to the question of how to solve the finite-dimensional optimization
problem. Although there is a substantial literature on the generalization of gradient
methods to nonsmooth problems (see the survey [28] by Polak), little attention has
been given to applying nonsmooth optimization techniques to (6.3). One exception is

[29], which describes an algorithm for maximizing the least eigenvalue of a variety of
important structures, accounting for the presence of multiple eigenvalues. It focuses
however on the clamped vibrating column, (o’Put) U, U E H, a problem which
has long been known to admit only simple eigenvalues (see, e.g., Leighton and Nehari
[21, Lemma 4.1]). Our algorithm differs from that of [29] in our attention to the added
structure of the generalized gradient of A1 as revealed in the theorem above. We use
an algorithm specifically designed to exploit this structure, which is based on Overton
[26], but modified to be far more efficient for moderate to large mesh size N.

Given a e adh with Al(a) and )2(a) the two least eigenvalues of (6.2), we normal-
ize the corresponding eigenvectors q and q2 so that Q [q q2] satisfies QTKQ1 I,
the 2 2 identity matrix. These eigenvalues and eigenvectors are computed by sub-
space iteration with a block size of two, with the necessary linear systems solved
directly using the Cholesky factors of B(a) (see Bathe and Wilson [5] for details).

Define the approximate multiplicity t of A1 by t 2 if

<

and t 1 otherwise. Here T is a positive tolerance which may be adjusted during
the optimization process. A multiplicity higher than two is excluded (for sufficiently
small h) by Lemmas 2.1 and 5.1. Now consider the following linear program (LP)"

(LP0) max dN
dERN

subject to

(LP1) Ed e,

(LP2) Fd <_ f,

(LP3) dk O, k J,

(LP4) at: <_ dk <_ ak, k 1,. N 1,

(LPb) Idkl <_ p, k 1,...,N,

where
(i) The first N- 1 components of d represent proposed changes to a, while the last

component approximates the corresponding change in Al(a). Let us write d [?T03]T,
with RN-l, w R;

(ii) p is a positive scalar, whose purpose is to ensure Ildll is not too rge;
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(iii) J is an index set, which effectively removes the corresponding variables from
the linear program;

(iv) The first row of the matrix E is [1,..., 1, 0], and the first element of the right-
hand side vector e is zero. This ensures that the changes to a respect the integral
constraint;

(v) The second row of E is

[--qTI Bi (a)qi, --qT BN_I (a)ql, 1]

and the corresponding element of e is zero. If t 2, then E contains an additional
two rows,

[--qT2BI(a)q2,’",--qT2BN-(a)q2, 1] and [--qTBI(a)q2,...,--qTBN-I(a)q2, 0],

with corresponding elements of e set to A2(a) .1 ((:r) and zero, respectively;
(vi) If t 1, F contains the single row

T[--qT2Bi (r)q2,""",--q2 BN-i ((7)q2, 1]

and f is the scalar/2(a) -/l(a). If t 2, F and f are empty, i.e., (LP2) may be
removed.

We note that the given rows may be computed very efficiently, since the derivative
matrices Bk(a) are extremely sparse.

The justification for (v) and (vi) is as follows. If t 1, the second row of E
imposes a linearization of the nonlinear equation 1 (a + 7) 1 (a) + w, while the
only row in F imposes a linearization of the inequality A2(a + 7) -> A (a) + w. Since
w is being maximized, the solution to the linear program yields the steepest ascent
direction for Al(a), projected to satisfy the integral and bound constraints, with
steplength required to be short enough that the linearized value for/2(cr -/- r]) does
not drop below that for Al(a + ), and that the various bounds are satisfied. If t 2,
the second through fourth rows of E give a linearization of the appropriate set of
three nonlinear equations, imposing the coalescence of 1 (a / ?) and A2(a + ), see
[16]. The common linearized value, (a) + w, is maximized, subject to the given
constraints.

THEOREM 6.2. Suppose that T 0 SO that the multiplicity estimate t is exact,
and suppose that p > 0 and J is the empty set. Then d 0 is a nonunique) solution
to the linear program given above if and only if (6.4) holds for some U E 8 with
tr U 1, some e R and some -/e Rg-1 satisfying (6.5)-(6.7).

Proof. By the usual Lagrange multiplier rule, the linear program admits the
solution d 0 if and only if there exist multipliers R, 6 R*(t+1)/2 and RN-1
satisfying

with subject to the standard sign condition. Setting U 51 (- 1) if t 1 and
defining U by (6.11) if t 2, we have (6.4)-(6.7) with tr U 1. The same argument
holds in the reverse direction. [:]

Note two points: there is no positive semidefinite condition obtained on U, and
the solution d 0 is generally not at a vertex of the feasible region, so is not unique.

Our algorithm for solving (6.3) generates a sequence in adh. Each successive
approximation is obtained from the previous one by consideration of a linear program
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(LP) of the form given above. We first define a simple version of the algorithm, but
one which is too costly for practical use. In this version, we obtain a + r, a candidate
replacement for a, by solving the LP for d [?Tw]T. If Al(ff --?) > )l(ff), ff is
replaced by a + r and the process repeated. Otherwise, a remains unchanged, the
trust region radius p is decreased by a factor of two, and the revised LP is considered.
This kind of trust region approach can be made very effective by modifying the size of
p according to how well the actual increase in Al(a) agrees with the linear prediction
w, as discussed in Fletcher [14] in the context of general nonlinear programming. As
recommended by Fletcher, we double p if the ratio of actual to predicted increase
exceeds 0.75 and halve p if the ratio is less than 0.25. The process is terminated when
Ildll _< e, a convergence tolerance.

However, the expense of obtaining the optimal solution of each linear program is
not justified. Although the "limit" LP defined by a equal to a solution of (6.2)-(6.4)
has an optimal solution which is not a vertex, generically, any LP solved during the
successive approximation process can be expected to have a unique solution which
must be at a vertex. Since only a few constraints involve all the variables, most of
the constraints defining a vertex are simple bounds, and most of these may be trust
radius bounds of the form (LPh). Since the only purpose of the trust radius bounds
is to avoid taking steps too large for the linearizations to be accurate, there is little
to be gained by finding the exact set of active bounds. We, therefore, partially solve
the LP as follows. We first attempt to obtain a feasible point for the LP by setting d
to the least norm solution of (LP1, LP3), contracting this step if necessary to satisfy
the various inequalities. This contraction effectively scales the right-hand side of the
only possible inhomogeneous equality constraint in the LP, that corresponding to the
third row of E in the case t 2. The rationale here is that if the least norm step
satisfying the equality constraints is not feasible, the underlying approximations are
probably not good enough to justify the solution of the unmodified LP. We then start
the LP solution process as in a projected gradient method, augmenting d by projected
gradient steps with steplengths determined by the inequality constraints and bounds.
The gradient being projected is that of the LP objective, i.e., the vector [0,.-., 0, 1],
while the constraints determining the projection are the equality constraints and any
inequality constraint and bounds encountered during the process. This continues until
either (a) a trust radius bound of the form (LPh) is encountered, or (b) the norm of
the current projected gradient increment drops below the tolerance e (unlikely to
happen first). At this point the process of partially solving the LP is terminated.
Anywhere from zero to many active bounds of the form (LP4) may be encountered
by this process, as well as, possibly, the inequality (LP2) (in the case t 1). By
adding any active bounds encountered to the set J, we avoid having to process these
bounds again during the (partial) solution of subsequent LP’s. However, the signs of
the associated bound multipliers must be checked after the partial LP solution and
bounds with the wrong sign removed from J if necessary. The entire process is very
efficient, requiring QR factorizations of matrices with only two to four columns, with
rows removed corresponding to active bounds. For complete details of the process,
see [27].

In the case t 2, the LP partial solution process generates four multipliers
corresponding to the rows of E, namely , 51,52, and 53. If the corresponding dual
matrix U, defined by (6.11), is not positive semidefinite, this is a clear indication
that the multiplicity estimate t is incorrect, and so T is reduced by a factor of ten.
In principle, it might be necessary to use a more sophisticated technique to recover
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from a multiplicity estimate which is too large. For example, if the algorithm was
started at a point where all the optimality conditions except U >_ 0 were satisfied, it
would be necessary to split the multiple eigenvalue to obtain an ascent direction; this
is explained further in [26] and [27]. However, this technique has not been required
in our computational experiments for the Lagrange problem.

This completes our outline of the algorithm used to generate the numerical results
given in the next section. For more algorithmic details, see [27]. We do not have any
proof that the given algorithm will converge to a solution of (6.3), but given any
approximate solution, we may verify the required signs of - and the eigenvalues of the
dual matrix U and compute the residual of the approximate equation (6.4). We have
found the algorithm to be very effective in practice as the numerical results attest.

7. Computational results. The algorithm outlined in the previous section has
been implemented in Fortran 77 and tested extensively. Subroutines from the Linpack
[13] and Eispack [17] libraries were used to (a) perform the QR factorizations required
during the partial LP solution process (for matrices with at most four columns), (b)
obtain the Cholesky factorizations of B(a) needed for subspace iteration (these
trices have only seven nonzero diagonals), and (c) solve the reduced generalized eigen-
value problems required for subspace iteration (these have order two). Parameters
were set as follows: -, the relative multiplicity tolerance, was initialized to 0.1; p, the
trust radius, was initialized to 5.0; e, the convergence tolerance, was set to 10-3. The
initial a was set to the constant one, corresponding to the uniform column. Runs
were made for various values of N, the number of mesh points; p, the power of a in
the differential equation; c and , the lower and upper bounds on a, and the various
homogeneous boundary conditions: clamped-clamped, clamped-hinged, clamped-free,
and hinged-hinged.

The algorithm was found to be very efficient, typically invoking subspace itera-
tion, in the computation of the two least eigenvalues of (6.2), about 50 times prior to
reaching the convergence tolerance. At the final iterate, the residual of the approxi-
mate equation (6.4) was typically found to have norm about 10-3 Smaller choices of
required significantly more computation but did not produce a qualitatively improved
solution. Other initial choices of p affected only the initial efficiency of the algorithm.
The results were relatively insensitive to the initial choice of the multiplicity tolerance
T, although smaller choices delayed identification of the final multiplicity. There was
usually no difficulty in determining the correct final multiplicity t, with corresponding
positive semidefinite dual matrix U. In the cases where the final multiplicity t was
two, the gap between A1 and A2 was typically reduced to 10-6. The subspace iteration
was itself very efficient, requiring only one or two steps on all but the first few steps
of the optimization, reflecting the good separation of A2 from )3 and the availability
of an excellent initiM two-dimensional subspace, namely the span of the eigenvectors
ql and q2 computed at the previous optimization step. (The first subspace iteration
was initialized using the first two columns of the identity matrix.) The initial a in
each case was that of the uniform column, a _= 1. Symmetry was not imposed on the
algorithm’s subsequent choices of a. A typical run for N 513 required 1.5 hours on
a Sparc station.

We begin our summary of the results with p 2. Under the assumption that
each transverse cross section of the column is circular, we recall that a is proportional
to the square of the cross section’s radius. Plotting both+then gives a lengthwise
cross section of the associated column. With this representation we may then view
the corresponding buckling mode(s) simultaneously. Our figures, generated by Matlab
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FIG. 1. Strongest clamped-clamped column and first two buckling modes, p 2, a O.

FIG. 2. Strongest clamped-clamped column and first two buckling modes, p 2, .25.

[23], portray the column in the piecewise fashion produced by the algorithm of 6,
while using dashed curves(s) to indicate the buckling mode(s). We remark that for
those optimal designs with double buckling loads the corresponding buckling modes
depend on our initial choice of subspace, in subspace iteration, and a.

Figure 1 gives our strongest clamped-clamped column and its first two buckling
modes. Here p 2, 0, and/ 10, with a double buckling load of 52.3533. This
value agrees to four figures with that obtained by Olhoff and Rasmussen [25], Masur
[22], and Seiranian [34].

On increasing a or decreasing , these bound(s) will eventually become active.
Figure 2 gives our strongest clamped-clamped column and its first two buckling modes
when p 2, a 0.25, and 10. The least eigenvalue is still double, though now
reduced to 52.3467.

As the uniform column has a simple first eigenvalue, we would expect that a
sufficient increase in a would produce an optimal design with a simple first eigenvalue.
Figure 3 gives our best strongest clamped-clamped column and its first buckling mode
when p 2, c 0.5, and 10. In this case the first two eigenvalues are 51.07086
and 62.3479.

Clearly there must exist (at least) one value of a between 1/4 and 1/2 at which the
optimal buckling load switches multiplicity. Olhoff and Rasmussen [25] declare 0.28
to be the only such value. Our algorithm also indicates the presence of such a critical
a in the vicinity of 0.28. We note that in addition to being able to approach 0.28
from above---proceeding until the gap between the least two eigenvalues vanishes--we



ON THE OPTIMAL DESIGN OF COLUMNS AGAINST BUCKLING 315

FIG. 3. S$ronges clamped-clamped column and first buckling mode. p 2, c- .5.

FIG. 4. Strongest clamped-hinged column and first buckling mode. p 2, c .25.

have also approached from below, in this case proceeding until the least eigenvalue of
the corresponding 2 by 2 dual matrix vanishes.

Figure 4 gives our strongest clamped-hinged column and its first buckling mode
when p 2, a 0.25, and 10. The buckling load of 27.0762 is, as expected,
simple. Although decreasing a increases the buckling load, our designs converge, as
a --+ 0, to the Tadjbakhsh and Keller solution, (5.13). As shown in the appendix,
this column buckles at 7r2/3, and so cannot possibly be optimal. The convergence
of our algorithm to (5.13) onlystrengthens our belief that the problem, as stated by
Tadjbakhsh and Keller, is without a solution. That is, a -. #2,1(a) with p 2, does
not attain its maximum on ad when a 0.

Our numerical results also agree with Tadjbakhsh and Keller in the cases for
which we have argued that they are correct. In particular, Fig. 5 gives our strongest
clamped-free column and first buckling mode when p 2, a 0, and 10. The
buckling load, again simple, is 3.2897. Fig. 6 gives our strongest hinged-hinged column
and first buckling mode when p 2, a 0, and/3 10. Its simple buckling load is
13.1579.

We return to the clamped-clamped case and consider its dependence on p. Our
analysis of (4.5-4.7) led us to believe that, for p > 1, the minimum (maximum) of the
optimal design increases (decreases) with p. This is reinforced by Fig. 7, whose lower
(upper) curve traces the minimum (maximum) of the optimal design as a function
of p. As the buckling load is double for each of these designs, there must exist a
curve, between the lower one and the curve that is constantly one, across which the
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FIG. 5. Strongest clamped-free column and first buckling mode. p 2, c O.

FIG. 6. Strongest hinged-hinged column and first buckling mode. p 2, c O.

optimal buckling load changes multiplicity. We have seen that (2, 0.28) lies near such
a curve. With respect to the range of p considered in Fig. 7, we have found that
both the optimal buckling load and the least eigenvalue of its corresponding dual
matrix increase with p. Regarding the behavior as p tends to 1 from above, we have
found that the minimum of the optimal design tends to zero, and, though the optimal
buckling load remains double, the least eigenvalue of the corresponding dual matrix
tends to zero. Below p 1 we found optimal designs with simple buckling loads
regardless of our choice of c. Figure 8 gives our strongest clamped-clamped column
when p 1, c 0, and fl 10. The buckling load of 47.9898 and the design itself are
very close to the analytical result of (4.15). Refining the mesh in neighborhoods of 1/4
and 1/4, and perhaps using piecewise linear elements for a, would presumably bring us
even closer to (4.15). We have not pursued this for two reasons. First, we argued in

4 that in the absence of an existence proof we cannot fully trust (4.15), and second,
in both of the physical contexts where p 1 has arisen, there is an a priori strictly
positive lower bound on the admissible a. Regarding the latter, we present in Fig. 9
our strongest clamped-clamped column when p 1, c 0.8, and 1.2. Its simple
buckling load is 43.4921.
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FIG. 7. Maximum and minimum of b2,2 VS. p.

FIG. 8. (2,2 VS. X. p-- 1, C- 0.

Having addressed dependence on p and c at a particular level of discretization,
we now fix p 2, 0, and 10 and with clamped-clamped boundary conditions
demonstrate the convergence of several relevant parameters as N, the number of mesh
points, becomes large. In particular, Table 1 lists 2,2 (the optimal buckling load),
the least eigenvalue of the associated dual matrix U, and II(N --(1025 Ilcx (the greatest
difference between the optimal design on a mesh of N points and the optimal design
on a mesh of 1025 points) for values of N from 65 to 1025.

We close our study with a glance at the numerical range of the buckling load over
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TABLE 1

N /22,2 min ev(U) II N
65 52.14944 0.023859 0.1066

129 52.31027 0.043317 0.0415

257 52.33615 0.047034 0.0424

513 52.35332 0.046435 0.0059

1025 52.35548 0.046607 0.0000

ad. To this point we have concentrated on its maximization, and, though we may
compare this value to that of the associated uniform column, it would be of interest
to weigh it against the minimum buckling load. Clearly, must now be strictly
positive, for a buckling load of zero could be produced by prescribing that a vanish
on some interval. Regarding the existence of a minimizer for a -+ #i,j(a) over ad, we
note that Theorem 3.1 is insufficient. Recall in (3.3) that the limit of the maximizing
sequence integrated to less than one. This was not an obstacle, for adding mass could
only increase the buckling load. As our goal now is to minimize this load, it appears
that we must either relax the cost functional or construct the so called G-closure of
ad to obtain a minimizing design. Instead of embarking on this, we modified the
strongest column algorithm to minimize instead of maximize a - ,j(a).

The modification to the algorithm is very simple, namely changing the sign of
(LP0) and requiring a decrease instead of an increase in the smallest eigenvalue. The
modified algorithm generated plausible weakest designs in ad, and, though we lack a
proof of optimality, we shall content ourselves with a discussion of these numerical
results. In all cases (independent of p and cz) the minimum buckling load was simple;
this is to be expected since the minimization should tend to separate the least eigen-
value from the remainder of the spectrum. In addition, we find that the generated
designs have their mass concentrated near the inflection points of their associated
positive buckling mode. This, too, is to be expected, making the opposite argument
to that made in 2.

Figure 10 gives our weakest clamped-clamped column with p 2, cz 0.25, and
/ 10. This column buckles under a simple axial load of 2.5658. The buckling load
of our strongest column in this class (see Fig. 2) is 52.3467.

Figure 11 gives our weakest clamped-clamped column with p 1, 0.8, and
1.2. This column buckles under the simple axial load of 33.5631. The buckling

load of our strongest column in this class (see Fig. 9) is 43.4921.

8. Concluding remarks. Having thoroughly discussed the work of Tadjbakhsh
and Keller [37], we now take up two related issues, that, though broached by Keller
in [20], have received little rigorous attention since.

The first involves the optimal design of cylindrical columns. Here, given again a
fixed amount of material to be distributed over a column of fixed length, we seek the
shape of the cross-section that, when used to generate a cylinder, produces a column
with the greatest buckling load. We are not allowed to "taper" the column as we have
in past sections. Keller quickly reduced this problem to the search for that planar
domain of fixed area with the greatest least second moment of area. Recall that the
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FIG. 10. Weakest clamped-clamped column and first buckling mode. p 2, c .25.

FI(. 11. Weakest clamped-clamped design, p-- 1, c- 0.8, /-- 1.2.

second moment of area of the domain t with centroid at the origin in the direction
(with I1- 1)is

I Tyl dy.

Denoting the unit circle by S, Keller’s problem takes the form

(8.2) sup inf I(gt ).
II=As

Keller noted the existence of t for which this value is infinite. To exclude such t
he restricted himself to convex domains. Within this smaller class he then argued,
without proof, that the equilateral triangle possesses the greatest least second moment
of area. Citing Phlya, Truesdell later observed that Keller’s conjecture was indeed
true. In particular, Phlya in [30] found that among convex sets the maximum of
4Ili21Ftl -4 occurs for triangles. Here I1 and I2 are the respective principal second
moments of area, i.e., the min and max of (8.1). Keller’s result follows, noting that
only sets for which I1 I2 need be considered, for if I < I2 we can simply redistribute
the mass in such a way that I increases while I2 decreases.

This reduction to convex domains is too severe. It is not the lack of convexity
that allows (8.2) to grow without bound but the possibility that Ft itself may be
unbounded, though of finite area. To exclude this behavior, we may simply bound



320 STEVEN J. COX AND MICHAEL L. OVERTON

FIG. 12. A domain whose second moment of area exceeds that of the equilateral triangle of the
same area.

101, the length of t’s boundary. The fact that this does indeed bound I(t, 7) follows
from the isoperimetric inequality

2v()/ _< (101/2)

of P61ya and Szeg5 [31, 1.5], where Ip() is the polar moment of inertia. As the
second moment of area will be independent of for the best gt, its value will be one
half that of its polar moment of inertia. We must now consider,

suv t(a,,).

For fixed A the value of (8.3) will grow as L is increased, suggesting that for sufficiently
large L one may produce a domain whose second moment of area exceeds that of the
equilateral triangle of the same area. We shall accomplish this with A 1 and
L 16. To produce large values in (8.3), we need only consider domains that are
symmetric about the coordinate axes, as well as the two diagonals that stretch out
towards infinity. The symmetry will render I(t, ?) constant, while the latter
condition will ensure us that I(t, 7) is large. The domain of Fig. 12 has an area of
one, a boundary whose length does not exceed 16, and a second moment of area of
16 + 1 This value is more than three times greater than 1/6x/-, the second moment
of area of the equilateral triangle of the same area. Though we have not solved (8.2),
this example demonstrates that (8.2) produces, through the designer’s choice of L,
columns with arbitrarily large buckling load.

The other issue we wish to resurrect from Keller [20] is that of post-buckling.
Analysis of the buckled column must proceed from the nonlinear model. For example,
in the hinged-hinged case we consider

(8.4) (aPe’)’ +Asin 0, j01 sin Cds 0, ’(0) ’(1) 0,

where measures the angle between the column and a fixed axis in its plane of
buckling. Equation (5.1) arises from linearizing sin to , identifying u , and
differentiating the differential equation in (8.3). The least eigenvalue of (5.1), #1,1, is
indeed a bifurcation point for (8.3). Moreover, Keller showed that the direction of the
solution branch emanating from #1,1 was indeed rightward, i.e., that (8.3) admits only
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the trivial solution for A < i,i. It remains to determine the nature of the nontriviM
solution branch(es) for the other sets of boundary conditions. Here we would also like
to understand the role of imperfections in the model and/or design. In particular,
the splitting of the double eigenvalue in the optimal clamped-clamped column via an
unfolding of the ideal bifurcation problem in a parameter that introduces material
asymmetry would be of interest.

A.1. Appendix. We have argued throughout that the necessary and sufficient
conditions proposed by Tadjbakhsh and Keller are incorrect. This does not in itself,
however, invalidate their designs. Indeed, we argued that their solutions to the hinged-
hinged and clamped-free problems are correct. This appendix serves to demonstrate
that these are their only correct designs.

In particular, we show that Tadjbakhsh and Keller incorrectly calculated the buck-
ling loads of their proposed solutions to the clamped-clamped and clamped-hinged
problems. Recall their solution of the former,

(A.1)
A(x) sin20(x), -r/2 _< 0 <_ 3r/2,

0<x<l.

As Olhoff and Rasmussen [25] observed in their numerical work, the column con-
structed according to (A.1) tends to deform (under axial compression) on (0, 1/4) and
(1/4, 1), with the center of the column experiencing only a rigid motion. To make this
precise we recall from [37] that this A, when restricted to (0, 1/4), is actually the optimal
design of the clamped-free problem there, with a corresponding buckling load of 7r2/3
(as the volume of this piece is also 1/4) and first eigenfunction u2,0. We normalize
u2,0 so that

1/4

12 dx 1

and use it to construct a sequence {(p,) E H on which

(A.2) fo Algl dx
--+ 2

f Ipn] 2 dx 3

First we build the continuous displacement

u2,0(x), if 0 <_ x <_ Z

3(x) u2,0(1/4), if 1/4 _< x _<

u2,0(1- x), if <_ x _< 1.

This function is not a member of H, but we shall see that it suffices to introduce the
cubic perturbation

pn(X) a(x 2nx2 + n2x3), where a u2,0(1/4)
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near its singularities. As pn(O) pn(1/n) pn(1/n) 0, the function

n(1- x)= n(x)=

fi(x), if 0_<x_<z

if

<x<fi(1/4), if 1/4+_ _5

possesses a continuous derivative. It remains to show that E L2. The only possible
obstacle is the behavior of u"2,0 near 1/4. Returning to Tadjbakhsh and Keller [37,3,
(25)] we find

u2’(x) 2 sin O(x)"

And, as (A.1) implies that O(x) O([x 1/411/3) as x --* 1/4, we find u2,0(x)’’
0(Ix- 1/41-1/3). This singularity is clearly square integrable, hence , e H02, and we
can consider the Rayleigh quotient

(A.3) f0 A21I2 dx

By construction,

1/4
A21u,ol2 dx r2/3 and U2,ol dx= 1.

JO

It remains to show that the remaining terms in (A.3) tend to zero with increasing n.
Beginning with the numerator, from A(x) O(Ix- 1/412/3) comes

1/nA2(x 1/4)lp (x)l 2 dx O(xa/3)12an(3nx 2)1 dx 0(1/nl/3),
JO JO

while in the denominator

IP’ (x)12 dx
Jo

la(1 4nx + 3n2x2)l2 dx O(1/n).

As we have constructed a sequence of admissible displacements whose Rayleigh quo-
tients tend to 7r2/3, we conclude that the clamped-clamped column built according
to (A.1) buckles at a load not exceeding 7r2/3.

Now recall Tadjbakhsh and Keller’s solution to the clamped-hinged problem,

4 sin2
(A.4), &2,1 (x)=

3sin2 0(0)’ 0(0) < 0 < ’,

O(x) 1/2 sin 20(x) + 1/2 sin 20(0) 0(0) x(- + sin 20(0) 0(0)), 0<_x< 1,

i sin 20(0) 0(0) _2
2 sin3 0(0)cos- 0(0)
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and the fact that it vanishes at xo y/(Tr+y), where y 1/2 sin 20(0)-0(0). Analogous
to the above, this design is optimal for the clamped-free column on (0, x0). With the
volume of this piece being x0 as well, we find that it buckles at 7r2/3. Denoting by
u2,0 the corresponding clamped-free eigenfunction on (0, x0) whose derivative has L2

norm 1, we define,

{ u-,o(zo) (1 x)1--:co

if 0 <_ X _< X0

if X0 _< X < 1.

Here we introduce the perturbation

Pn(X) bx 2n(b + c)x2 + n2(b + c)x3, where b u2,0(xo), c u2,0(xo),
and the corresponding regularization

+
if 0 < x <_ x0
if xo <_ x <_ xo + l/n
if xo + l/n <_ x < l.

By construction, n E C while, as in the clamped-clamped case, u" behaves like2,0

Ix X0[ -1/3 near Xo, and so n e Ho2. Moreover, 2,1 (x) O([x xo[2/3) implies, as
above, that

fX/n ,,2 (x Xo)lp(x))2 dx O(1/n/3)0"2,1 and
/"

Ipl dx O(1/n).

Consequently,

fo dx r2/3
fo [l2 dx 1 + U,o(Xo)/(1 xo)

i.e., the clamped-hinged column built according to (A.4) is even weaker than the
clamped-clamped column of (A.1).
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Courant Institute. The efforts of Bob Kohn and Cathleen Morawetz in this regard
are greatly appreciated. We thank Andre Cherkaev for introducing us to the work of
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L ESTIMATE FOR SOME NONLINEAR ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS AND APPLICATION TO

AN EXISTENCE RESULT*
L. BOCCARDO?, F. MURAT$, AND J.-P. PUEL

Abstract. Consider the nonlinear elliptic equation (E): 4(u)+ H(x, u, Du)=f(x)-div g(x) where
s4(u) -div (a(x, u, Du))+ ao(x, u, Du) is a Leray-Lions operator defined on W’P(I) with ao(x, s, g)s >=
olsl , o>0, and where H is a first-order term satisfying IH(x, s, so)l-<_ Co/ cl:l . The main goal of this
paper is to prove an L estimate for the bounded solutions of (E) when f belongs to Lq(f) and g belongs
to (Lr(f))N with r=p’q and max (1, N/p)<q<=+. In view of the method and results developed in the
author’s previous work, this implies the existence of a solution for equation (E).

R6sum6. Consid6rons l’6quation elliptique non lin6aire (E): M(u)+ H(x, u, Du)=f(x)-div g(x) off
s4(u)=-div(a(x,u, Du))+ao(x,u, Du) est un op6rateur de Leray-Lions d6fini sur W’P(f) avec
ao(a(x, u, )s>=ao[S[ p, a0>0 et off H est un terme du premier ordre qui vrifie [H(x, s, )[-<_ Co+Cl[[ p.
Le r6sultat principal de ce travail est une estimation L pour les solutions borndes de (E) lorsquef appartient
Lq(f) et g appartient (Lr(l))N avec r=p’q et max(1, N/p)<q<-_+c. A la lumire de la m6thode

et des r6sultats pr6sent6s dans nos pr6cdents travaux, ceci implique l’existence d’une solution pour
l’6quation (E).

Key words. L estimate, nonlinear elliptic pde, natural growth with respect to Du

AMS(MOS) subject classifications. 35E, 35G

1. Introduction. Consider on a bounded open set f c Rn the nonlinear elliptic
equation

(1.1)

where

s(u)+H(x, u, Du)=f(x)-divg(x) in ; u =0 on

s(u) -div (a(x, u, Du))+ ao(x, u, Du)

is a Leray-Lions operator from W’P(f) (1 <p < +oe) into its dual W-I’P’(f), (I/p+
1/p’ 1), such that

(1.2) :::la>O, fora.e.xf, VsR, VRN, a(x,s,)>-ll’,
(1.3) =lao>0, fora.e, xe, VseR, VeR, ao(x,s,)s>-_olSl ,
and where H is a nonlinear first-order term defined through a Carath6odory function
satisfying the "natural" growth condition with respect to , i.e.,

=lCo>0, :1C1>0, fora.e, xel2, VseR, VRu,
(1.4)

IH(x, S, )l Co -It- Cl I l’.
In [BMP1], [BMP2], [BMP3], and [BMP4] we have shown the existence of solutions
for nonlinear elliptic equations analogous to (1.1) (in some cases without assuming
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(1.3) but assuming existence of a sub- and a supersolution). We have also developed
a method which essentially reduces the existence proof to the proof of an a priori L
estimate for the solutions of a family of approximate equations.

The main goal of this paper is to prove an L estimate for the bounded solutions
of (1.1)" we assume thatf Lq(12) and g (Lr(’))N with max (1, N/p)< q<= +/-o and
r=p’q and we prove that any u W’P(12)fq L(12) that solves (1.1) satisfies

(1.5) Ilull-< ,
where y depends only on the data, i.e., 12, N, p, q, , ao, Co,
The main thrust of the result is thus to turn the qualitative information u L(12) into
the quantitative estimate (1.5).

The a priori assumption that u belongs to L(12) is crucial to obtain (1.5) since
there are examples satisfying all the above hypotheses where (1.1) possesses not only
solutions in W’P(12)f3 L(12) but also solutions in W’P(12) which do not belong to
L(f) (see Remark 2.1 below).

The L estimate (1.5) generalizes to the case of nonlinear elliptic equations the
results of De Giorgi [DG], Moser [M], and Stampacchia [S1], [$2] for the linear case.
These are known to be optimal, in the sense that (for p 2) the hypothesesf Lq(12),
q > N/2 and g (U(12)) u, r= 2q are optimal. This indicates that our result for the
nonlinear case is also optimal.

Our proof is an adaptation of the nonlinear context of (1.1) of Stampacchia’s
method, in the spirit of our previous work. Indeed the first step of Stampacchia’s proof
(see [S1], [$2]) consists of using in the linear equation the test function G(u), where
Gk(S) is the function defined by Gk(S)=O iflsl<=k and G(s) 1 if Isl> k (see (2.9)).
We adapt this first step to the nonlinear equation (1.1) by using here the nonlinear
(with respect to Gk(U)) test function O(Gk(U)), where o(s) is the odd function defined
by o(s)= es- 1 if s _-> 0 (see (2.8)). Nonlinear test functions o(u), where o(s) has an
exponential behaviour, are known to be well adapted to the study of (1.1) since they
allow the absorption of the nonlinearity H by the coerciveness of the operator 4 (see,
e.g., [BMP1], [BMP2], [BMP3], [BMP4]).

We mention that L bounds for similar problems have been recently proved in
[MS] and [ALT] by different methods based on rearrangement techniques; see also
the references added in proof.

Once the L estimate is obtained, the proof of existence of a solution for (1.1)
that belongs to W’P(12)L() follows the method presented, for example, in
[BMP4]. This will be done in 3, where we also collect some comments about regularity
of the solutions.

2. L estimate. We consider the nonlinear elliptic equation (1.1), and as we only
look for bounded solutions, we rewrite it in the more precise way

(2.1) 4(u)+H(x,u, Du)=f(x)-div g(x)in@’(12); u W’P(f)f’lL(12).
On the operator

/(u) -div (a(x, u, Du))+ ao(x, u, Du)

we assume that a and ao are Carath6odory functions defined on 12 x R x RN with
values in RN and R, respectively, which satisfy (1.2), (1.3) and

:::lt E LP’(12), :::lfl > 0, for a.e. in x 12, /s R, / RN

(2.2) la(x, s, sc)[ _<-Iq,(x)[ +/3[Isl p-’ / Isc:lP-11,
lao(x, s, f)l / l[Isl "-1 + I1"-’;i;
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for a.e. x f, Vs R, V:,:* R N, : :*,

[a(x, s, ) a(x, s, sc*)][sc- s*] > 0.

These hypotheses ensure that s is a bounded, continuous, coercive, and
pseudomonotone operator of Leray-Lions type from W’P(12) into its dual W-I’P’(f)
(I/p+ 1/p’= 1) (see ILL], ILl).

Furthermore, H is assumed to be a Carath6odory function defined on i) x R x RN

with values in R, satisfying (1.4). Note that no extra requirement such as a Lipschitz
continuity or a one-sided condition is imposed on H.

The operator u - s(u) + H(x, u, Du) is then well defined, continuous, and
bounded from W’P(f) into W-I"P’(I))+ L(fl), but it is neither pseudomonotone nor
coercive.

We can now state the main result of this paper.
THEOREM 1. Let us assume that (1.2)-(1.4), (2.2) hoM true and that

(2.4) fLq() g(Lr())N with max(1,N < q-< +eo, r=p’q.
\ P/

Then any solution u of (2.1) satisfies the estimate

(2.5) uI1 <= %
where ),is a constant which depends only on f, IV, p, q, a, Oo, Co, C1, IIf I1o(, IIg II(c(mTM"

Remark 2.1. As mentioned in the Introduction, Theorem 1 provides an "explicit"
estimate in L(I) for the solutions of (2.1) which are already known to belong to
w’e(a) L(O). This does not mean that every solution of (1.1) that belongs to
W’P(12) also belongs to L(O). In fact, this last assertion is false, as is shown in
Contre-exemple 3.2, 3.7 of [BMP1].

Remark 2.2. Estimate (2.5) continues to hold if the right-hand side of (2.1) has
the more general form

(2.6) F(x, u, Du)- div (G(x, u, Du)),

where F and G are Carath6odory functions from f x R x RN into R and R N, respec-
tively, satisfying

for a.e. x a, Vs R, Vsc R N, IF(x, s, )1 <-- If(x)l, Ia(x, s, so)l_-< Ig(x)l,
where f and g satisfy (2.4). There is essentially no change in the proof of Theorem 1
given below, but the proof of the existence theorem given in 3 does not work in this
context. It would require that G be independent of Du.

Note also that (2.3) is not required to obtain Theorem 1. However, this hypothesis
is needed for the existence result (see Theorem 2 below).

Proof of Theorem 1. Set

p’C
(2.7) h= +p’,

and define for k R/ the real functions q CI(R) and Gk W’(R) by

(2.8)

(2.9)

" 1 if s _-> 0
q(s)= _e_,, + 1 if s-<_0,

s-k ifs>-k

G(s) 0 if-k<-s<-_k,
s+k if s<--k.
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Let A(k) be the set

(2.10) A(k) {x 12, lu(x)[ > k}.

The functions Gk(U) have been used in [S1] and [$2] as test functions to obtain the
L estimate for linear equations. Adapting Stampacchia’s method to the nonlinear
case, we will use the test functions

(2.11) v= q(Gk(U)).

Since u belongs to Wo’P(D)(3 L(D), so does v, and it is easy to show that

(2.12) v ((lul- k)+)Xa(k)sign (u),

(2.13) Dv q’((lu[- k)+)Xa(k)Du,
where XA(k) is the characteristic function of the set A(k). The function v is then an
admissible test function for (2.1). Using v in the weak formulation of (2.1) as well as
(1.2)-(1.4) and Young’s inequality, we obtain

, [ IDul",’((lul- k)+) dx + ao f [uIP-lqp((IU[ k)+) dx
dA(k) dA(k)

l’<-_ (Co+ClDu[V)q((lul-k)+)dx

+ [flq((lul- k)+) dx
A(k)

(2.14)

From the choice (2.7) of A we have for s => 0,

This implies

AP (k)

(2.15)

1 )p,al/(p_l) Igl p’ dx.

p, q’(s) Cl(O (s) > V ( P"

(lul-k) )q Du
P

P dx q- aokp-’ fA ((lul-- k)+) dx
(k)

IA(k) (Co+[fl),p(([u[-k)+) dx

+ ,,/(_, Igl"’((lul- k)+) dx.
(k) P

Let us define the function w by

(2.16) ul- k)+)Wk
P

Then w belongs to W’P(D) and

DWk O ,)(A k sign (u) Du.
P P
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One can easily show that

’S0, e’XS--l >--(eXS/p--1) p,
:! C2 > 0 (depending only on h and p), Vs -> 1,
e’- 1 <-- C2(exs/p 1) p, A e _--< C2A (exs/p- 1) p.

This implies

((lul- k)+) e Iw a.e. on f,

o((lul-k)+)-< C[w.l a.e. on A(k+ 1),

q,’((lul-k)+)--< CAlw,l" a.e. on A(k+ 1).

Combining these remarks with (2.15) yields

aPP fa lDwk lP dx + aokp-l I lWk ’Pp

Ca (Co+ [/I) +p, /(- Igl p’

(k+l) a
(2.17)

Define

Co + Ifl) ((I ul- k)+)

+ptol/(p--1) Igl’’((lul- k)+) dx.

h=(fo/lf])/ p,oll/(p--1) lgl p’’

Since h belongs to Lq(’) and since

’((lul-k)/)=<;t e* on A(k)-A(k+ 1),

we obtain

(2.18)
A IOWk l’ dx + ook’- IWk p dx

IA(k+ 1)
C2h[Wk p dx + e" IA(k)-A(k+l)

Sobolev’s inequality asserts that for p, defined by

(2.19)
Np

ifl<p<N,
N-p

p* is any fixed real number such that pq’<p*< if N _-< p <

there exists C* which depends only on f, N, p, and p, such that

(2.20) Vw wg’"(a), c*llwll*(_-<llDwll(o(.



ESTIMATE FOR A NONLINEAR ELLIPTIC PDE 331

Therefore, there exist strictly positive constants C and C4, depending only on fl, N,
p, q, p*, C1, and a such that

C3 IWk p* dx q- C4ceokp-’ ]Wk p dx

(a.ll
<-- Ia hlwk lP dX + IA h dx.

(k)

Because of (2.4) and (2.19) we have p <pq’<p,. From H/Slder’s inequality and an
interpolation inequality, we get

where 0 ]0, 1[ is defined by

1 0 (1-0)
pq’ p p*

Using Young’s inequality, we obtain for any r/, 0 < r/< +oo,

fnhlwk[P dx<(l_O)rll/(1-o)llWk lip + Or/-1/o 1/o
Lq(li) LP(I-)

Now choose r/ such that

1/(1--0) C3(1- O)r/
2’

and then ko such that

C4aokg-’ Oq-l/llhll/oL, ()

(this is the only place where the hypothesis ao>0 is used). We obtain from (2.21)

Vk >- ko, -- Iw l’* dx <__ h dx<-_ llhllomle(k)l /’,
(k)

where IA(k) denotes the Lebesgue measure of the set A(k). We rewrite this inequality
as

(2.22) Vk>-ko, iwl.dx<_
2

Ilhll.(m ]A(k)IP*/Pq’=Cs]A(k)] v*/pq’.

Take > k _-> ko and observe that

(
Then

(2.23) with l> k>-ko, (l-k)P*lA(l)l<=C6lA(k)l p*/pq’,

where C6 depends only on f, N, a, ao, p, q, p*, Co, C,, Ilfllcq(n), Ilgll((m). Since
p*>0 and p*/pq’> 1, we can use a result of Stampacchia (cf. [S1, Lemma 4.1] or
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[$2, Lemma 4.1]) which implies that there exists y that depends only on C6, ko, p
and p*/pq’ such that

A(k)=O, Vk=> 3’.

This finishes the proof of Theorem 1.

3. Application to an existence result. In this section we will apply the method and
results presented, for example, in [BMP4] and the L estimate of the previous section
to a family of approximate equations for (2.1) in order to prove the existence of at
least one solution of (2.1).

THEOREM 2. Let us assume that (1.2)-(1.4), and (2.2)-(2.4) hold true. Then there
exists at least one solution u of (2.1).

Proof of Theorem 2. Let us define for e > 0 the approximation

(3.1) He(x,s,)
H(x,s,)

l+e[H(x,s,)l"

Note that H satisfies (1.4). We consider the approximate problem

-div (a(x, u e, Du))+ ao(x, u , Du)
(3.2) + He(x, u e, Du e) =f(x)-div g(x) in ’(1)),

lpu eWo’ (a).

For fixed e > 0, H is uniformly bounded by 1/e. Therefore there exists at least
one solution u to (3.2) (see [EL], [L]). Using Stampacchia’s method (see, e.g., [BG])
it can be proved that any solution u of (3.2) belongs to L(I)) (for fixed e > 0). We
can now apply Theorem 1 which yields

where 3’ does not depend on e.

Once the L estimate is obtained, we can apply Theorem 2.1 of [BMP4] (with a
slight modification due to the term div g), or the remark at the end of 3 of [BMP3],
and obtain the relative compactness of the family (u e) in the strong topology of
W’P(I)). Then, by extracting a subsequence (u e’) which strongly converges in W’P(f)
it is easy to pass to the limit when e’ tends to zero and to obtain Theorem 2.

Remark 3.1. (Regularity). We make the same hypotheses as in Theorem 1. Then,
according to the results of [LU, Chap. 4, Thm. 1.1, p. 251], any solution of (2.1)
actually belongs to C’(fl) for. some 6, 0< 6 < 1, whenever 0f is sufficiently smooth
(otherwise one only obtains C;(I))).

Moreover, if in (2.2) we assume that LS(12), with s > p’, a slight modification
of Proposition 3.8 of [BMP2] (due to the term div g) (see also [GM], p. 156] when
p 2) proves that u belongs to Wo’P+(I)) for some iS > 0 if 0l) is sufficiently smooth
(otherwise one has only the local result).
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THE SURFACE EVAPORATION PROBLEM WITH SIGNORINI
BOUNDARY CONDITION*

ZHIDA HUANG AND MARIO PRIMICERIO*

Abstract. The one-dimensional filtration of an incompressible liquid in a homogeneous, isotropic, rigid
porous medium is considered. The bottom of the layer is impermeable, whereas on the top surface a
Signorini-type boundary condition is imposed. Existence and uniqueness of the weak solution are proved
under general conditions. Then some qualitative properties of the solution and its asymptotic behaviour are
analyzed. In particular, the characterization of the set D {t: u(0, t)=0} is discussed.

Key words, filtration, porous media, unilateral boundary conditions, evaporation, free boundary problem
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1. Introduction. In this paper we consider the flow of an incompressible liquid,
say water, through a homogeneous isotropic and rigid porous medium. If 0 represents
water content, i.e., the mass of water per unit volume of the medium, and q the
discharge, the mass balance is expressed by

(1.1) Ot + div pq 0,

where p is the density of water.
Equation (1.1) is completed by prescribing the dependence of 0 upon the capillary

pressure q (state equation) and a relationship between q and the pressure gradient
(law of motion).

It is generally agreed that when q exceeds a saturation value (say q =0), 0 is
constant and equal to 0. ep,where e is the porosity. In such situation Darcy’s law holds

(1.2) q -K grad qt/pg x],

where g is the gravity acceleration, x is a vertical coordinate pointing downwards, and
K is the hydraulic conductivity of the medium.

Law (1.2) is usually assumed to hold also in the unsaturated region (0 < 0. and
q < 0) where the conductivity K is supposed to be experimentally determined as a
function of 0 or of q (see, e.g., [11], [12]).

When situations with low water content are to be dealt with, the situation becomes
much more complicated; the notion of a "residual" water content 0o is introduced
such that it cannot be further reduced by means of applied pressure gradients. It is
reasonable to assume that, as 0 approaches 0o, the hydraulic conductivity falls to zero:
actually, for 0 0o, the liquid phase is no longer connected and it is clearly understood
that no pressure can be transmitted from one "pendular ring" of water to the others
[12], [13].

Accordingly, we will assume shapes of 0-q and K-q curves shown in Fig. 1.1
(see also [1], [14], [15]).

We will consider a one-dimensional case as a first approximation to practical
problems in which a much more complicated situation can appear: essentially three-
dimensional filtration (see [7], [17]), anisotropy, hysteresis phenomena, etc. This
approximation is commonly adopted in most of the papers devoted to problems of

* Received by the editors November 13, 1989; accepted for publication (in revised form) April 29, 1991.
Department of Mathematics, South China Normal University, Guangzhou, China.
Universita degli Studi Istituto Matematico, Firenze, Italy.
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-0o

FIG. 1.1

this class and, from a mathematical point of view, makes it possible to use the Kirchhoff
transformation

.I 4(x, t)

u(x, t)= K(s) ds.
4 qo

Denote

us K(s) ds.

which means that the medium is saturated when u_-> us. Then, when u>O, u(x, t)
satisfies the equation

(1.3) O(u)t=Uxx-k(u)x.

A sketch of O(u) and k(u) is given in Fig. 1.2.
In general, it is assumed in the literature (see [9], [10]) that O’(u)-->+oo as u->0+ and
O’(u)->O as u--> us. Hence, (1.3) is degenerate when u=0 and

We will study (1.3) in a slab 0 < x < 1, with initial condition

u(x, O)= Uo(X), 0 < x < 1,

where Uo has values in (0, 1). We assume that the bottom of the slab is impervious, i.e.,

ux(1, t)-k(u(1, t))=O,

and that evaporation takes place at the top surface x =0. In previous papers (e.g., [5],
[10], [16]) evaporation is modeled by prescribing a constant boundary flux; in par-
ticular, in [10] it is supposed that the medium can become dry not only on the surface

FIG. 1.2
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but also below it and the rate of evaporation is a given function of the thickness of
the dry part.

On the other hand, it seems reasonable and consistent with the model to assume
that the flux becomes zero when the capillary piezometric head reaches the critical
value qo. In [8] a filtration problem is considered in which the boundary condition is
ux(0, t)-k(u(O, t))=f(u(O, t)) where f(0)-0 and f is a smooth function. Here we
want to investigate the delicate case in which a discontinuity appears for u 0. Hence
we will assume that the rate of evaporation is a given constant q if u(0, t) > 0, whereas
the flux is between 0 and q when u(0, t)- 0. From a mathematical point of view, this
is a unilateral or "Signorini type" boundary condition (see also [7]), which has the form

where

ux(O, t)- k(u(O, t)) q if u(0, t) > 0,

O<=u,(O,t)<=q if u(0, t) 0,

u,,(O, t)-k(u(O, t)) qH(u(O, t)),

0, z O,
/-/(z)= [o, ], z=0,

[1, z>0.

Summing up, the evaporation problem we will study is the following"

0(u), ux,-k(u)x, (x, t)6 H- (0, 1)x(0, T],

u(x, o) Uo(X), x [0, 1],
()

(u,,- k(u))],,=o qH(u(O, t)), (0, T],

(ux-k(u))lx=l=O, t(O, r].

The plan of this paper is as follows. In 2, some assumptions on the problem (P)
and the definition of the weak solution of problem (P) will be given. In 3, using the
parabolic regularization process, we prove the existence of a weak solution of (P). In

4, the uniqueness of weak solutions is proved. In 5, we discuss the properties of
the weak solution. We will see that u(x, t)> 0 for any x > 0 and finite t. Moreover we
will consider the set D--{t: u(0, t)-0}, proving that there exists a To such that
[To, +)c D (but possibly D [To, +c)); in other words, the surface will become
eventually dry. Finally we prove that the weak solution tends to zero uniformly as

In 6, we first consider the special case in which the initial condition satisfies

(1.4) 0<= U’o(X)- k(uo(x)) <- q,

and we prove that the set D is connected, i.e., D To, +oo). Then, we pass to estimate
the number of the "switching times," i.e., the number of times at which the Signorini
boundary condition "switches" from a Neumann-type condition (u-k(u)= q) to a
Dirichlet-type condition (u 0). We prove that this number is less than the number
of zeros of the function U’o(X) k(uo(x)) q.

2. Assumptions and weak solution. We assume that the functions 0(u), k(u) and
Uo(X) satisfy the following conditions:
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(A1) O(u) is Lipschitz continuous in any closed subset of R/. 0(0)=0o>0;
O(u) Os for u -> us O’(u) > 0 if u e [0, us); O’(u) e LI(O, Mo), where Mo is the upper
bound of Uo(X). It is permitted that O’(u)-c as u-0/.

(A2) k(u) e C+I(R); k(u) =- 0 if u e (-, 0]; k(u) Ks if u e [us, +); k’(u) > 0
when u e(0, us); there exists a constant roe (0, us) such that k(u) has a continuous
first derivative in the interval (-, ro).

(A3) ::IC > 0 s.t. (k’(u))2/O’(u) <= C in [0, Us].
(A4) Uo(X) e C+1([0, 1]); there exists Xoe (0, 1) such that mo<=Uo(X)< us if xe

[0, Xo) and us <= Uo(X) <- Mo if xe[xo,1], where moe(0, us); u(O)-k(uo(O))=
q; Uo(1)-k(uo(1))=O.

We define

(2.1) C(u) kP(r)O’(r) dr,

where p => 1 is a constant which can always be determined, as in [9], in such a way that
(C1) C(r)eC+l(); C(r)=O if re(-c,O]; C(r)=Cs if re[u,); C’(r)>Oif

re (0, Us); C(r) has a continuous second derivative in (-c, cro).

(C2) (k’(r))2-0
\kp( r if re (0, Mo); kP(r---e LI(O, Mo).

Let

(2.2) A(u)=O(u)-Oo

and note that

C’(S)
(2.2’) A(u)=

kP(s
ds.

Using transformations (2.1) and (2.2), equation (1.3) becomes

(2.3) A(u),=uxx-(k(u))x.

Let G be a simply connected open region of the (x, t) plane. We will say that G
belongs to the class U if ::lto<= T such that G c H,o and if I=OGVl{t= to} and
Io OG fq {x 0}-= {x 0, t _-< =< t2 =< to} are nonempty. Moreover, the remainder of
OG is piecewise smooth.

We will use class U in the definition of a weak solution where we will denote by
Ii=OGf’l{x 1} and by Ic=OG\(IU IoU 11).

DEFINITION 2.1. A real, bounded, nonnegative, and measurable function u(x, t)
defined on Hr is called a weak solution to problem (P), if C(u) is continuous in HT
and smooth in {(x, t) e Hr" 0 < u (x, t) < us}, u > 0 in Hr and if

{(ux-k(u))4,-A(u)4,} dxdt+q H(u(O, t))4(O, t) dt

(2.4)
A(u)4) dx + f, (ux- k(u))4) dt

for any G e U, where l: means that the line integral is counterclockwise, and b e C1(()
is an arbitrary test function which vanishes when (x, t)e I. In addition, the mass
conservation law is satisfied"

(2.5) {A(u(x, t))-A(uo(x))} dx+ qH(u(O, t)) dt=O for any re[0, T].
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3. The existence of a weak solution. As in [9], we construct function sequences
{Cn(s)}, {kn(s)}, {Hn(s)}, and {UOn(X)}, which satisfy the following conditions:

(Cn): Cn(s)C2(); Cn(s)=(1/n)s+C(s) for s(-e,trl),where Crl(0, tr);
Cn(s)-> C(s) uniformly on any bounded subset of E; C’(s)-> C’(s) uni-
formly on any closed interval in [0, us); 1/n <-C’n(s)<-_ Co for n _-> 1 and
s E, where Co is a constant.

(kn): kn(s) C2(); kn(s)- k(s) for s (-c, o-1); kn(s)- k(s) uniformly on any
bounded subset of ;O<-kn(s)<-ko, O<-_k’(s)<-kol for n_->l and seE,
where ko and kol are constants.

(Hn): Hn(s)Cl(); Hn(s)=-O for s(-,0]; Hn(s)--1 for s[1/n,);
H’,(s)>-O.

(Uon): Uon(X) C2([0,1]); Uon(X)Uo(X) uniformly on [0, 1]; mo-(1/n)<=
Uon(X) < Mo+(1/n). lun(x)]_<- Mol.

At x 0 or x 1, Uon(X) satisfies the compatibility condition

u’’. (A’,,(Uon))-lA".(Uon)UnU’n + 2k(uon)U’n

+{ k’,’(Uon) (A’,( Uon))-1A’,’ (Uon)k’,( Uon)}(UtOn)2- (k’,( Uon))2un,
where Uon kn(uon)+qHn(uon) when x=0 and Uon kn(uon)+kn(-) when x= 1, the
function An (s) is defined as

1 C(r)
An(s) -+ dr.

n Jo kP(r)+(1/n)

Then, on the basis of [3], the problem

(3.1) (An(u,)), un,-(kn(un)), (x, t)

(3.2) un(x, O)= Uon(X), O<=x <- 1,
(I.)

(3.3) Un(O, t)-kn(un(O, t))=qHn(un(O, t)), 0<t__-< T,

(3.4) un,(1, t) kn(un(1, t))= kn(), O< <= T,

has a unique solution un(x, t) C2+’1+/2)(/-]r7-), where a (0, 1).
The following lemmas can be proved by essentially standard methods.
LEMMA 3.1. Let un(x, t) be the solution of (In). Then there exists a constant M

such that

(3.5) 0< un(x, t) <- M

for large n.

Proof Let Uo Mo+(1/n) and define a function Un(x) by

x=
kn(s)+kn(2/n)"

Using the maximum principle it is easily proved that

O<un(x,t)<Un(x)<=m.
LEMMA 3.2. There exists a constant M1 > 0 such that

(3.6) lung(x, t)l--< M,, (x, t) .
Proof Let V(x, t)= un(x, t)-Kn(un). Then V(x, t) satisfies

A’,(un) Vt V-[(A’,(u,))-IA",(un)un, + kn(un)]V.

The maximum principle applied to V proves (3.6).
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LEMMA 3.3. There exists a constant N > 0 such that Cn(u,(x, t)) is uniformly
Lipschitz continuous with respect to x and uniformly H61der continuous (exponent 1/2) with
respect to in HT when n > N.

Proof. The proof is obtained using condition (Cn), estimate (3.6) and Proposition
1 of [6].

Using the lemmas above, as in [9] we can select a subsequence from {u,(x, t)},
which converges weakly in L2(HT) to the weak solution u(x, t) of (P). The positivity
of u in HT will be proved in Theorem 5.1. Thus we have the following theorem.

THEOREM 3.1. Problem () has at least one weak solution.

4. Uniqueness. To prove uniqueness we need the following lemmas.
LEMMA 4.1. For any fixed constant M > O, there exists a constant Fo > 0 such that

(4.1) k(Sl) k(s2)]2 <= F0(Sl- s2)[A(Sl) A(s2)]

for any Sl,S2[O,M] if (k’(s))2=O(A’(s)) in (0, M].
Proof. See Lemma 1 of [4].
LEMMA 4.2. Suppose G HT is a simply connected open region with continuous

parabolic boundary 0 pG, and Ul and u2 are weak solutions of (2.3) with the same boundary
value" Ul(X, t)= u2(x, t)=f(x, t) or ulx (x, t)-k(Ul(X, t))= U2x(X, t)-k(u2(x, t))=
h(x, t) on OpG, where the definition of weak solution is usual (e.g., see [6], [9]), then
u(x, t):-- u2(x, t) in G.

Proof The proof is similar to that of Theorem 2 in [6] or Theorem 2 in [4] and
we omit it.

LEMMA 4.3. Suppose that G U (defined in 2), U and u2 are two weak solutions
of (). If C(Ul) -> C(u2) in G and C(u)= C(u2) on I, then u u2 in G.

Proof Let Uz(X, t)= Ul(X, t) when (x, t) HT-\G, then the remainder of the proof
is similar to that of Theorem 2 in [6] or Theorem 2 in [4] and we omit it.

TrEOREM 4.1. Problem () has at most one weak solution.
Proof Suppose that u and u2 are two weak solutions of (). Then there will be

a point (Xo, to) H such that, e.g., C(Ul(Xo, to)) > C(uz(Xo, to)). Thus, let Go be the
largest simply connected open subset of HT- such that (Xo, to) Go and C(u)> C(u2)
when (x, t) Go. Let G be the intersection of the saturated regions of u and u2 (G
may be empty);

t* inf { (x, t) OGo f-I OG}

G G1 fq {(x, t) lt* =< _-< to}

Ie {(x, t)O(GoU Gz)lt=inf{t I(x, t) GoU G2}};

G= {(x, t) HT. linf {tl(x, t) Go G2}<t < to}.

Then, G U (defined in 2). By Lemmas 4.2 and 4.3, C(ul)>- C(u2) when (x, t)6 G.
Using the result of Lemma 4.3, we know that u u2 in G. This contradicts C(u)>
C(u2) in Go, and the proof is complete.

5. Some properties of the weak solution. In this section we first prove u(x, t)> 0
in/-)T\{(x, t)lx=0} under the following assumption:
(A5) O’(r) > Co when r [0, 1/2us], where Co> 0 is a constant.

Then we prove that there exists a constant To> 0 so that u(0, t)=0 when >- To.
Finally we prove u (x, t) 0 uniformly as - .THZOIEM 5.1. Let u(x, t) be the weak solution of (). If assumption (A5) holds,
then u(x, t) > 0 in/-r\{(x, t)lx 0}.
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Proof Suppose u,(x, t) is the solution of problem (In). With no loss of generality,
we assume 0 -< un(x, t)<-1/2us so that A’,(un)>= Co>0 (by assumption (A5)).

For any fixed Xo (0, 1), let B (0, 1) such that {xl(x Xo) --< B} c (0, 1). Then we
construct a function

D e1/[(’-x2-n21-"t, Ix Xol < B,
V(x, t)=

0, IX-Xol B,

where D and a are positive constants to be determined later. Let

w(x,t)=un(x,t)-V(x,t).

Take D sufficiently small such that

We have

Uon(X) >-_ V(x, 0) for large n.

Lw= W,,x-k;(un)w,,-A(un)wt

V,,,, + k’,(un) V,, + A’,(un) V

=D el/(x-,,o2-B2l-, { 6(X-Xo)4+4(1- B2)(X-Xo)9--2B4
((X Xo)2- B2)4

2(x Xo) }k’.(un)
((x Xo)2- B2)2- cA’,(un)

in the region Q {(x, t)] Ix Xo] < B, 0 < < T}. Consider the sum of the first two terms
in the above braces

6(x X0)4 -- 4(1 B2)(x Xo)2 2B4 2k’,(un)(X-Xo)
((X X0)2- B2)4 ((X X0)2- B2)2

6(x Xo)4 ql_ 4(1 B)(x Xo)-2B4 + 2k’.(un)(x Xo)((x Xo)2- B2)2

((X Xo)2- B2)4

Because 0 -<_ k’, (un) -<- kol and

6(x Xo)4 + 4(1 B2)(x Xo)2- 2B4 4B2 as Ix Xo[- B,

((X-Xo)-BZ)2O as Ix-xol- n,
we can choose an appropriate Bo (0, B) such that

S<0 if

Thus we have

(5.1) Lw<O when

Since A’(un)>= Co> 0, we can select an appropriate a such that

(5.2) Lw < 0 if 0 < [x- Xo[--< Bo.
Therefore, w(x, t) cannot take its minimum in Q. Since w(x, t)>=O when =0 or

Ix- Xo[ B, it follows that

(5.3) w(x, t)= un(x, t)- V(x, t)>= 0 in Q.

By (5.3) and the arbitrariness of Xo, we conclude that u(x, t)> 0 in HT.
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It remains to prove u(1, t)> 0. For this purpose we choose constants B and Xo
such that

O<l-xo<B<xo-B<2xo-1 <Xo< 1.

Then, we construct a function

D e1/[(x-x)2-B2]-at
V(x, t)=

0,

where D is sufficiently small such that

V(x,O)<=Uo.(X)

Let

xe(xo-B, 1],
xe[O, xo-B],

for large n.

w(x,t):u,,(x,t)-V(x,t),

Q: {(x, t)lXo- B < x < 1, (0, T]},

Lw wx, k’,(u,)wx

As we did above, we can take a large enough so that

Lw<=O in Q.

Therefore w(x, t) must take its minimum on 0 pQ. Because w -> 0 when 0 or x Xo- B
and w(1, 0) > 0, w(x, t) >= 0 as long as w(1, t) > 0.

If there exists tl=min{t[w(1, t)=0}, we have w(x,t)>-O in (,1=
{[x, t)lXo- B <- x < 1, 0 <= <= q}. Thus,

(5.4)

But

u,,(1, t,)_--< V,(1, tl).

Vx(1, tl)
2(1-Xo)

((l_xo)2_B2)2 V(1, t,)

<0< k,(u,(1, t))+ k,()= u,x(1, t),

which contradicts (5.4). Thus,

w(1, t)>0 for any t[0, T].

This means u(1, t)> 0 for any [0, T] and Theorem 5.1 is proved.
THEOREM 5.2. For the weak solution u(x, t) of (P), there exists a constant To> 0

such that u(O, t)=-0 when >= To (i.e., the surface will eventually become dry).
Proof Suppose (2.3) has a traveling wave solution U(X)= U(x-rnt), where rn is

a positive constant. Then U(X) can be defined by

(5.5) x
to k(s)-(mA(s)+ B)’

where Uo and B are constants.
(i) We first prove that there exists a positive constant mo which is small enough

such that q/2rnol > max {Mo, A(u)}, where Mo>= Uo(X), and
q/2mO1 ds

(5.6) > 1.
aMo k(s)-(mona(s)- (q/2))



342 ZHIDA HUANG AND MARIO PRIMICERIO

In fact, if we take

(5.7) mol 6 0, min
2Mo’ 2A(us)’ 2ks + q + 2Mo

then

Mo k(s)-(molA(s)- (q/2))
> Mo > 1.
--o ks + (q/2) 2mol ks + (q/2)

(ii) In (5.5), take B =-q/2, m tool which satisfies (5.7). Thus, there exists a
constant Uo (Mo, q/2mo) such that

q/Zmo1 ds
(.8) x

Mo k(s)-(molA(S)-(q/2))
1.

The function U(X), determined by
u(x) ds

(5.9) X
ato k(s)-(moA(s)-(q/2))

(where mo and Uo satisfy (5.7) and (5.8)), has the following properties:
(a) There exists a constant a <0 such that U(a)=0 and U(_g) is monotonically

increasing for a =< X =< 1.
(b) U(0)= Uo> Mo, U(1)= q/2Mo.
Because U(x-molt)> u(x, t) when =0, by Theorem 3.1 of [5], the first point

P (x, h) such that u(P) U(PI) and u(x, t) < U(x- mot) for < h, must belong
to the boundaries x 0 or x 1.

If x 1, then ux(P)>= Ux(P1). However,

ux(P1) k(u(P,)) < k( U(P,))- (molA U(P1))- (q/2)) Ux(P1).

This is a contradiction.
If x 0, we have

(5.10) ux(P,) <= Ux(P,).

In this case, if U(PI)> 0, then

Ux(P,) k( U(P1))-(mo,A( U(P,))- (q/2))

=k(U(P,)) + q -(mo,A( U(P,)) + (q/2))

<k(U(P1))+q

=ux(P,).

This contradicts (5.10). Therefore, U(x-mot) cannot take the same value of u(x, t)
before the time at which U(O-mot)=0.

Because U(x-molt) moves rightwards with the constant velocity mo, the zero
point of U(X) must arrive at the boundary x 0. In fact, we have U(x mt) u(x, t)
0 when =-a/mo To and x 0.

It is quite evident that for any a > 0, the function U(x- mot + a) possesses the
same properties of U(x mo t). This means that u(0, t) 0 when -> To, as we had to
prove.

THEOREM 5.3. Suppose u(x, t) is the weak solution of (). Then

(5.11) lim sup u(x, t)=0.
t->x3 x[O, 1]
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Proof. On the basis of Theorem 5.2, there exists a constant to such that u(0, t)= 0
when > to In the region H/

to {(X, t)10 < X < 1, to < < o}, we construct a dominant
function v(x, t) which is the usual weak solution of the problem

A( V)t Vxx k( V)x, (x, t) H ,+o,
V(x, o)= Vo(x), o<-_x<- ,
V(0, t) h(t), to < < c,

V,,( 1, t) k( V( 1, t)) 0, to < <,
where Vo(x) is constructed by the relation

v(x) ds

av(o)

such that Vo(x) > u(x, to), h(t) C([to, )) f’) C+([O, o)), h’(t)_-< 0 and lim,_,
h(t) =0.

There is no difficulty (see [1]) proving

(5.12)

O <-_ u(x, t) <= V(x, t) in +

V(x, t2)--< V(x, tl) if t2> tl,

IVy(x, t)l <- constant.

Then, as in 1 ], we can prove

(5.13) lim sup V(x, t)=0.
t-->cx x[O, 1]

Consequently, (5.11) follows directly from (5.12) and (5.13).

6. The number of switching. In this section we consider the characterization of
the set D-- { t" u(0, t) 0}. This is an interesting question. For instance, we could look
for conditions such that D is a (finite) union of intervals, so that solving the problem
with the Signorini-type condition is equivalent to solving a sequence of problems in
which the condition on x 0 is u,,- k(u)=q and u- 0, alternatively. First, we give
here a sufficient condition that guarantees that D is connected, i.e., that once the
surface becomes dry, it will not become wet again. We assume

(6.1) 0 <= U’o(X)- k(uo(x)) <= q,

and prove the following theorem.
THEOREM 6.1. Suppose u(x, t) is the weak solution of () with assumption (6.1)

and to inf {t]u(0, t) 0}, then u(O, t) 0 when >- to.
Proof. By (6.1), using the same method we used to prove Lemma 3.2, we can get

(6.2) 0<= u,(x, t) k(u(x, t)) <-_ q in Ho.
In the region H,OT {(x, t)10 < x < 1, to < _--< T} we construct a problem

A( V)t gxx k( V), (x, t) I-t,or,

V(x, to) u(x, to), 0 <-_ x <= 1,
(6.3)

V(0, t)=0, to<t <- T,
(P,o)

V,(1, t)-k(V(i, t)) 0, to< t--< T.
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Then, the problem (Pto) has unique and usual weak solution V(x, t). Using comparison
techniques we can prove that

(6.4)

Then, let

0_-< Vx(0, t)- k( V(0, t)) -< q.

(6.5) u(x, t)=
u(x, t), (x, t) Hto,_
V(x, t), (x, t) H,o.

It is easy to verify that the u(x, t) is really a weak solution of (P). Then, Theorem 6.1
follows from the uniqueness of the weak solution.

DEFINrrON 6.1. We will say that is a switching time for the Signorini condition
if u(0, t)= 0 and ::la > 0 such that u(0, t)> 0 in (t- a, t) or in (t, + a).

Our aim is to estimate the number of switching times. We will show that it is
controlled by the function

(6.6) Vo(x) U’o(X) k(uo(x)) q.

According to our assumptions it is

(6.7) Vo(0) =0, Vo(1) -q.

To simplify the analysis below we will assume that Vo has a finite number of zeros
and (just to be specific) that Vo(x)< 0 in a neighborhood of x 0.

Let u be the weak solution of (P) and set

(6.8) V(x, t)= Ux(X, t)-k(u(x, t))-q

and note that V(1, t)=-q. We have the following lemma.
LEMMA 6.1. Let m>--O be the (even) number of zeros of Vo(x) in (0, 1). For any

t’, V(x, ?) has at most m zeros.

Proof The function V(x, t) satisfies the degenerated parabolic equation

A’(u) V Vx_[(A’(u))-lA"(u)u- k(u)]Vx

in Hr. From the maximum principle we have that the level curves V=0 can only
originate on 0. Of course, they can merge or they can end on x 0 or on T (the
words "originate" and "end" have an obvious meaning in connection with the orienta-
tion of the axis). This concludes the proof.

Next we have Lemma 6.2.
LEMMA 6.2. Let e, Xl > 0 and u(x, t) be the weak solution of the problem

A(u),=u,-k(u)x,

u(x,O)=vo(X),

..-(.)1._-o= q,

u-k(u)l=x,-q+e,

O<X <X,

O<=x<=x,

0<t<T,

0<t< T.

O<t<T,

Assume that Vo(X) satisfies assumptions (A4) where, apart from trivial
modifications we substitute the last condition by v;- k(Vo)[=x, q + e and we add the
condition v- k(vo) > q in (0, Xl]. Then u(x, t) > 0 in [0, xl]x[0, T].

Proof Define U(x) by
r() ds

X--
a oO) k(s) + q
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It is clear that U(x) is a classical solution of (1.2). Using a comparison technique, we
obtain

u(x, t) >= U(x) >= mo> 0,

where mo appears in the assumption (A4).
THEOREM 6.2. Let u(x, t) be the weak solution of (). Then the number ofswitching

times cannot exceed m + 1 where m is the number of zeros of Vo(x) in (0, 1).
Proof If the positivity set of V (call it Pos (V)) does not reach x 0 in finite time

for > to, where to is the first switching time, then the argument of Theorem 6.1 still
applies and no more switching times can appear.

After to a new switching time tl can exist only if a level curve V 0 hits x 0 at
and a segment {x 0, (tl, tl -k- a)} belongs to 0 Pos (V). Afterwards, the argu-

ment of Lemma 6.2 applies unless a new line V 0 hits x 0, separating Pos (V) from
the axis. This concludes our proof.
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TRANSIENT STIMULATED RAMAN SCATTERING*

CURTIS R. MENYUKt$ AND THOMAS I. SEIDMANt

Abstract. The system: u -zv, v u, Z.r u- ?z with z 0 at -cx) and initial
data for U (u, v) at 0 are considered. Well posedness results are obtained for this and also for
a version discretized in . Stability is considered as
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1. Introduction. The Raman effect has played a conspicuous role in physics
since its discovery in the 1920s [14], [11]. Specifically, the system of partial differential
equations

(1.1)

(i) Ou/O -zv,

(ii) Ov/O u,

(iii) OZ/OT U Z,

was first derived to model the interaction of two laser beams with gases when the fre-
quency difference between the beams corresponds to a resonance of the gas molecules
[16], [1]. Here, u and v are unknown C-valued functions on JR+ P (i.e., functions of
(, T) with 0 < < oc; -cx < T < X)) which represent the two laser beams, usually
referred to as the pump beam and the Stokes beam, respectively. Then the function
-iz corresponds to the off-diagonal density matrix element which describes the quan-
tum mechanical state of the gas. The real parameter /_> 0 represents a de-excitation
rate due to molecular collisions.

In recent years, these equations have been the focus of intense activity, both
experimental and theoretical; some references to the relevant physical literature are
provided in our bibliography. It has long been known that (1.1) has a Lax pair when
/- 0 and so has soliton solutions [2]. On the other hand, we note that it is physically
reasonable to require that

(1.2) Z(T)

SO that z should be "independent of the infinite past"; yet it was later shown that this
physical boundary condition leads to special difficulties which require modification of
the standard inverse scattering approach [8], [15], [9]. These modifications seriously
complicate the theory, leading to results which are difficult to interpret [10]. We
note that soliton-like pulses have been observed in experiments with laser beams
whose durations are long compared to the collisional de-excitation time [3], [17] but,
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surprisingly, soliton-like pulses are not observed in experiments with laser beams
whose durations are short compared to the molecular de-excitation time [4], [5]
even though setting -y 0 is presumably "more legitimate" for the latter case. Indeed,
numerical experiments indicate that both u and z tend toward zero almost everywhere
as --+ oo for a fairly broad set of initial data [13], [7]; compare 5. Following the
somewhat less formal argument of [12], we show here that z --, 0 as oo. The
more detailed asymptotic behavior of u and v as --+ oo remains an open question
and, as will become evident in the course of this paper, a somewhat delicate one.

Clearly, there is a need for careful mathematical work. Remarkably, despite the
importance of (1.1) in the physics literature, no one until now has even shown that
these equations are well posed! The goal of this paper is to place the study of (1.1)
on a firm mathematical foundation by demonstrating well posedness, obtaining a
number of other simple results relating to the asymptotic behavior of these equations
as --+ oo, and outlining the remaining difficulties and some open problems. The key
insights will be that solutions satisfy the identities

(1.4) }u(, T){ 2 {U0l 2 a.e. T e IR for all _> 0

(where luol 2 luo( )l 2 + Ivo( )12; see (2.1)) and, also pointwise in T,

2. Formulation. We will use a subscript (or simply ’) for (partial) differenti-
ation with respect to and subscript r for differentiation with respect to T, etc. We
will consistently use the notation

0
u0 := (u0, v0),

(2.1) K2(T) := lUo(T)l2 := [lU0(T)I 2 + iV0(’)I2],

cr Or(T):= K2() d? so K2dT =: do’.

We will assume the initial data u(0) Uo is to be in 7/so

2 := IIKII2 .= g2 dT < oo.

We can solve (1.1.iii) as an ordinary differential equation in T, temporarily ignor-
ing the dependence, to obtain

Z(T) e-’v(’-’’ z(T, + e-’v(-)u(-)v(-) d

We note also that the system (1.1) is invariant under the action of the group G {g9 z9 ]R

t} of transformations

(1.3)
for "arbitrary" real 19 vg(), independent of . So far, however, we have not been able to exploit
this insight effectively.
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for arbitrary real T., T. Imposing (1.2), the first term on the right can be omitted "at
-oc" so the differential equation (1.1.iii) can replaced by

Z(T) e-(-)u(’)v() d

as a definition. We note that a principal point of difference between our present treat-
ment and most previous work is precisely this imposition of the boundary condition
(1.2); compare Remark 4.4 below.

For (2.2) to be meaningful, we need u to be integrable and we will therefore seek
solutions in the L2 space2

Along with -/, we introduce the spaces

{u (u, v) e 7-/: lU(T)l K(T) a.e. e JR},
e c((-o, ): 0},

zEZ
0

Note that sup{Iz(.)l } just gives the norm of X(-) e A’ as an operator on 7-/(or on any
7-/K C 7-/), acting by pointwise multiplication. We will also introduce the linear space
/4 of functions u(.) E C(lR+ - 7-/) for which the exponentially weighted norm

(2.3) Ilul[ := sup{e-2=l[u(, ")1[}
(_>o

is finite for some a. Convergence in U is given by convergence in I1" II- for every
large enough a;/ is then metrizable and complete. We finally let/g be the subset
of u E/ taking values almost everywhere in 7-/g--topologized through I1" I1 with

Finally, we introduce the map

(2.4) X’u H X := for u (u, v)
0

with z z(.) defined by (2.2). Then (1.1.i, ii) can be written as an abstract ordinary
differential equation with respect to in the more succinct form

u’= X(u)u, u(o) uo e n.
2 Clearly it would be sufficient to have this integrability only "to the left," i.e., on each semi-infinite

interval (-cx), ’] with T finite, imposing no growth condition as +x). The present formulation
permits us to work with a Hilbert space formulation for u (u, v) and the greater generality can be
recovered--observing that, by setting everything equal to zero for T > T*, we can always restrict the
problem to (-o, *] for each (arbitrary) finite T* to make the present formulation appropriate.

Note that although we use a I2 notation, thinking of 7-/as a complex Hilbert space, it will later
be convenient (cf., Thm. 3.4) to treat it also as a real Hilbert space, effectively identifying (j2 with
4.
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3. Well posedness. Our principal concern here is to show that the problem
(2.5) has a unique solution, but we begin with a lemma about the map u - X(u).

LEMMA 3.1. The map X is well defined by (2.2) and (2.4), and is continuous

from 7-I to ,. For each ’g ::- U{- K <_ K}, the set of functions z defined by
(2.2) with u E g is precompact in Z and the map X is uniformly Lipschitzian on
7-lg with Lipschitz constant := Ilgll.

Proof. Suppose u e 7-/with lU(T)I < K(T) almost everywhere and obtain z from
u as in (2.2). Noting that e-(-) <_ 1 and that 21u <_ K2, we then clearly have

z(,)l 1 K2

which shows the continuity of z and, indeed, equicontinuity on K; essentially the
same computation shows that {Z(Tn)} is (uniformly on 7-/g) always Cauchy as Tn --* OO

SO Z(T) always has a limit as T --. OC. Similarly, there is a uniform bound: IZ(T)I _.<2
By the Arzela-Ascoli Theorem, it follows that the relevant {z} will be in a compact
subset of Z. Now let Zl, z2 be obtained from Ul, u2 and set z "= Zl z2, u := Ul u2
so, pointwise in T, we have

Ull u22 Ul + u2 Ul -+- u2,
]u u221 < min{[lu] 2 + Iv212], [Iv l 2 + lu212]} /21ul.

Note that this minimum is bounded by the average---which is bounded by K(T) for
Ul, u2 7-/g. Thus,

Iz( )l Klul IIKlllluII.

Since we are using sup{[z(.)l } as our X-norm, we then get for X(.) the desired Lipschitz
condition with constant

THEOREM 3.2. Let u0 (no, vo) be given in 7{. Then there is a unique function
u (u, v) :JR+ -- T/ in g satisfying the nonlinear equation (2.5) with the notation

of (2.1) and (2.4).
Before beginning the proof, we remark that an essentially identical argument

works for the problem with reversed (here and also in Theorem 3.3) so, in particular,
we have backward uniqueness for the solution as well. We also remark that our
definition ofg means that finding u g implicitly includes the assertion of (1.4).

Proof. Fix u0 7-/, thus fixing g := lul L_(]R) and the spaces ’lg, g as
above. There is no difficulty in defining a map F fi - u for fi E g by solving the
linear ordinary differential equation

(3.1) u’= X(fi.)u, u(O) uo.

Indeed, we note from Lemma 3.1 that X(fx)u is continuous on JR+ lR so (3.1) can
be interpreted pointwise in T as a (finite-dimensional) ordinary differential equation
in --with an adequately defined initial condition for almost every T. Note that, since
X := X(fi) is skew-adjoint, we have from (3.1) that

(lull)’ 2(u, u’)= 2(u, Xu) --o



350 CURTIS R. MENYUK AND THOMAS I. SEIDMAN

whence lU(.,T)I is constant and we have (1.4) for solutions of (3.1), i.e., we have
u(.) E /gg. (Indeed, we need not even have fi E g to have u =" F(ft) /,/g and
I1(,-)11 =- .)

A fixed point for F is a solution of (2.5) so it will be sufficient to show that F is
a uniformly strict contraction from/g to itself. Given uj :- F(j) for j 1, 2, set
U :-- U U2, 1 111 l2 and let be the/J-norm of ft. Then

Since II()ll2 < exp [4n2]2 and u(0)= 0, integrating gives

t2 [ e2- <

and then

(e-2llull) < 2/4

Thewhich shows that F is uniformly Lipschitzian on/tg with Lipschitz constant 5"
result then follows by the Contraction Mapping Theorem. [3

We complete our treatment of well posedness by considering the continuous de-
pendence of the solution on the initial data u0. It is clear that the estimate (3.2) gives
continuous dependence of solutions on initial data in the sense of uniform convergence
(with respect to the ?-/-norm) on bounded -intervals but the estimate grows expo-
nentially in . Since we know that the solutions themselves are bounded uniformly in, it might seem plausible that this could be improved to have convergence uniform
on lR+. That, however, is false; see Remark 6.4.

THEOREM 3.3. Let ujo (uo, Vo) for j 1, 2 be given in Tl with corresponding
solutions uj :lR+ --+ 7-/satisfying (2.5). Then

(3.2) Ilux (, .) u2(, ")ll -< </-)lluxo u2oll
where + := IIK+II with K+():= max, min{lfio(T)l

Proof. The argument is standard. Set v := ul u2 and X "= X X2 with
Xj X(uj), etc. Pointwise in T, we have Iv[ 2 (v, v> so

0 Ivl/O: 2Re[<v, Xv)+ <v, Xu2>]
2Re[<v, X2v> + <v, Xu>]
el:t<,,,, Xu> R<,,, Xu>

by the skew symmetry of Xl,X2. By Lemma 3.1, we have IX(r)l < IIK+II Ilvll and
(1.4) gives, pointwise in T, min{lul, lu21 K_. Thus,

o Ivl=/o < 21v()IIIK+IIIIvIIK-(),
d Ilvll=/d < 211vii IlK+ IlK-II.

The result now follows on applying the Gronwall inequality.
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Extending Theorem 3.3, we next wish to consider linearization of the system, i.e.,
differentiability of the dependence on initial data.

THEOREM 3.4. The solution map S 7-l bl for (2.5), is "Frdchet differentiable"
(in a sense to be made precise below). At each u) e 7-l and corresponding u* :- S(u)
the derivative is the linear map: 7-/--/ u0 (u0, v0) - u defined by the linearized
system:

U --Z*V V’Z,
(3.3) z :=

V *U q- U*,
e-(r-) [*u + u*] d

with u(0) u0. In particular, for any u) E ?-I yielding u* by (2.5) the equation
(3.3) has a unique solution u for each initial u0 e 7-/ and u(, .) will be bounded in
uniformly on bounded -intervals.

A word of caution is in order here since we have been working with complex spaces:
the solution map is not differentiable when complex differentiation is considered since

(2.5) involves conjugations. Instead, as noted earlier, although we have made no
alteration in the notation, we are here considering 7-/- L2(]R -- 2) as isometrically
equivalent to the real Hilbert space L2(]R -- IRa), etc.

Proof. Now consider Theorem 3.3 with u20 u) and, for s 0, Ul0 u) + su0;
set v V(,T;S) [Ul- U*]/S. Then (3.2) gives the uniform estimate
e(+-)e[[u0[I, where a+ a+(s) -- [[u)[[ 2 as s 0. A standard argument then
shows that v(.; s) satisfies a system whose right-hand side tends to that of (3.3) as
s -- 0 (O(s) difference in the coefficients) so I[v(.; s) u[l 0 for any
Temporarily fixing any such a, we may treat (the relevant subspace of)/ as a Banach
space with the norm [[. [Ix and u, given by (3.3), is the Gteaux differential of S(.)
at u* in the direction of u0. This is clearly linear in u0, so this gives a Gteaux
derivative. It is continuous in u (as long as we stay close enough to the original u
so as not to disturb the choice of a), so this is necessarily a Fr6chet derivative, working
with this [[-I]- [We do note that when considering bounded -intervals, the choice of
t is irrelevant; in any case, (3.2) gives control of errors in the norm with

4. Some remarks. Our first concern here is to verify (1.5).
LEMMA 4.1. Let u be any solution of the system (2.5) with u0 in L2. Then,

(4.1)
(i) o -Iz
(ii) o [e-(’-)v[ 2 Iz[ 2,
(iii) z’(., T) fo e-(-) ([u[ 2 Iv[ 2) z

for all > 0 and all T JR.

Proof. From (1.1) we have [ez]’ e (In[ 2 -Iv[ 2) z and, using (4.5), integrat-
ing this gives (4.1.iii). Similarly, we have

and integrating this gives (4.1.i) and (4.1.ii). That these identities hold pointwise
for all T [0, 1] follows from the known continuity in T of Z and continuity of the
indefinite integral in the third identity. [3
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COROLLARY 4.2. If Z is real (alternatively, if z is pure imaginary or if z vanishes
identically) for T <_ T. at o, then this holds for all >_ O. For the case in
which z =_ 0 on JR+ (--OC, T.), we have u stationary (independent of ) there and
conversely.

Proof. The first assertion follows immediately from (4.1.iii), viewing e-(-) (lul2-
Ivl 2) simply as an integrable real function and integrating this ODE forward or, as in
the remark following the statement of Theorem 3.2, backward in . The case of z 0
is obvious with the converse following by, e.g., (4.1.i). D

Remark 4.3. While the system (1.1) cannot give analyticity in its dependence on
the initial data, we observe that we could consider the analytic system

(4.2)

and have

Utl --ZlVl

V Z2ltl,

lt Z2V2,

V Zllt2,

Zl :--- f--oo e--’/(’--?)UlV2’

Z2 :--- f--oo e--’Y(’--?)U2Vl’

(4.3) [Ul, Vl, Z] [U, V, Z] [U2, V2, Z2] [, V, ]

for all real > 0 if this holds initially, at 0.
Without (a.3), we do not have the estimate (1.4) and so it is not clear when

solutions for (4.2) will exist globally. On any finite -interval, however, we can get ex-
istence for initial data almost satisfying (4.3) and thus, analytic linearization, subject
to (4.3), with (3.3) suitably extended to a complex neighborhood of JR+. In partic-
ular, this shows that we can also obtain higher derivatives of the solution map with
respect to the initial data.

Remark 4.4. For nonstationary solutions, it is interesting to consider the case
in which 0 and z is real on ]R initially, at 0, and so for all >_ 0 by
Corollary 4.2.

For this we will first reduce the problem to a more convenient form, modifying
our notation somewhat, without (at first) taking 0. If we set u =: Kfi pointwise
in T, then we have the identity

(4.4) Ifil 2 := [fil 2 + Ilu 1 pointwise in ,T

in view of Theorem 3.2. It is easily seen that fi also satisfies (2.5), provided we modify
the definition of the operator X(.) by replacing (2.2) with

Z(T) := e-7(-)u(’)v()K2 (’) d.

Of course, the initial data now must satisfy: Ifi01-- 1, pointwise in T.

That much reduction is available for all 7, but when 7 0 we can conveniently
use the variable a of (2.1) to view fi as a function of (, or), rather than of (, T). This
further reduction will actually (crmalmost everywhere by Sard’s Theorem) avoid any
difficulty with the definition of fi when K(7") 0. We note that it is possible to view z
also as a function of (, or) since, while the function or(.) may not be injective, this can
happen only if K vanishes on some subinterval in which case u (whence uF z)
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also vanishes on this subinterval so z is constant there: the value of z(, T) depends
only on (, a). In this case, the domain of a is [0, a2] and, henceforth omitting the
(4.5) becomes simply

(4.6) z(.,a) ud.

Apart from the name of the variable (a - T), we observe that this is identical to the
original problem for - 0 with initial data giving

K() {1 for 0 _< T _< a2; 0 else}.

Note that use of (4.6) means that we have the boundary condition

(4.7) z--0 at a =0,

corresponding to (1.2).
In view of (4.4), u must have the form

(4.8) u ei cos , v e

with , real. Assume is independent of first as an ansatz, but then confirmed
by our subsequent calculations. We then see that (2.5), (4.6) are equivalent to the
requirement that z and

(4.9) uv sin 2.
If we set t a / and x "= a , then (4.9) becomes

(4.10) 299tt 2 sin 2,

i.e., 2 satisfies the sine-Gordon equation. Conversely, if 2 2(t, x) is any real
solution of the sine-Gordon equation, then, for arbitrary real O(a),

:= +
v(, a) := eio() sin (a + , a ),

:=

gives a solution of (1.1) for 7 0 with z real.
For this to be consistent with the boundary conditions (4.7) we are imposing on

z, it is necessary that 2 be a solution of the sine-Gordon equation satisfying

(4.11) t(t,x) =-- (t,x) along the line: t + x 0.

While the sine-Gordon equation has nontrivial traveling wave solutions, we emphasize
that those are all excluded by this constraint (4.11)corresponding to (4.7) and so
to our original boundary condition (1.2) at T --5. Discrete approximation. In this section we consider the "obvious" dis-
cretizations (with respect to T) of the system (2.5). For convenience, we restrict
our attention to the case /= 0 and take the system reduced as in Remark 4.4 so that
luol 2 + Ivol 2 1 for 0 _< a _< 2 and

U --ZV 0(5.1) with z(., a) "= ud.
V U
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While much of our analysis here directly parallels that for the partial differential
equation system, for this finite-dimensional approximation we have the advantage
of local compactness and will be able to obtain a more complete description of the
asymptotic behavior of solutions as -+ (x. This may be viewed both as a theoretical
complement to the results observed in computational simulation and for comparison
with our less complete asymptotic analysis in the next section, as an indication of
goals and conjectures for future work.

For the remainder of this section, we adopt the notation that

/ (()J,
u "=

7-/1 := {u e/" luj{ 2 :--lujl 2 + ]vjl 2 1},
o__00r 0__0 for each j-l, J,S := {u 7 "u v

:=

:= max{Uj/jS"j=l,...,g}.

In general, we have Uj U(.) for some particular solution u(.) of (5.3), below, and
will similarly relate to this; we could write explicitly (u) for u E 7tl or
:= (; u) := (u()), with u(.) satisfying (5.3) with initial data u.
Assuming the nodes are equally spaced with respect to a, we can then define

z .. z(j) by a discretized approximation to the integral

(5.2) zj 5F-,uk-- 5uj- + zy-1, Zo :-- 0,

for j 1,..., J. Thus, we consider here the system of ordinary differential equations

(5.3)
----zjvjuj

u
with uy (0) u,

for each j 1,..., J, using (5.2). For the initial conditions we assume, as earlier,
that

for j 1,..., J.

The factor ti could be removed by rescaling , but we will retain 5 "= a2/J here
to remind us of the correspondence: uj() .. u(,jS), etc. We note that (5.3) is
equivalent to

(5.4) u} -5Ivj 12uj 5jvj,

5lu Iv + 6uvj

with 5 := zj-1.
We begin by asserting the set of "background" results.

LEMMA 5.1. For each u E 7t there is a unique global solution u(.) u(.; u) of
(5.3), depending on u uniformly on bounded -intervals. The functions uj, u-), z-
are all real-analytic functions of . For u 7-/1, we have u() 7-/1 for all >_ O.

Proof. The arguments are straightforward parallels of those given above for The-
orems 3.2, 3.4, and Remark 4.3. Details are left to the reader. E]
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LEMMA 5.2. For j 1,..., J we have

(i) [ujj]’ zj [lujl 2 -Iv12],
(ii) z tiEz [tul
(iii) -U [zj[2 + ti2ElUkk[2.

If, for k 1,... ,j, we have zk(O) O, then this persists .for all , and uk, Vk are then
constant (independent of ).

Proof. The formulas (5.5.i, ii) are direct from (5.3) and the final assertion follows;
compare Corollary 4.2. Also from (5.3), for each k we have

+
(Zk Zk-1)Zk -" k(Zk Zk-1)

since zk- zk-1 6uak. Summing over k- 1,-.. ,j gives (5.5.iii).
LEMMA 5.3. If (for some k) zk is not identically zero, then (for each j >_ k) zd

can vanish at most on a discrete set (with no finite limit points) and Uj is strictly
decreasing on every -interval.

Proof. By the real-analyticity noted in Lemma 5.1, it is only possible for zd to
vanish on a set with a finite limit point if zd -= 0; else Izj 12 > 0 almost everywhere and
(5.5) implies Ud strictly decreasing. To have zj 0 we must either have uj =_ 0 or

vd _= 0; suppose the former, so Ivjl =_ 1. Since (5.4) would then give 0 =- u -zd_lvd,
this is only possible if also zd_l 0. Similarly, vd _= 0 would also require zd_l _= 0.
Induction on the index completes the proof.

LEMMA 5.4. For arbitrary initial data in 7-ll, we have each zj 0 and u --, q

Proof. Since Uj is nonincreasing by (5.5) and is obviously bounded below by zero,
we must have [Izjl 2 +i2Elukkl2] integrable. As we know that uj, vj, zd are bounded,
this has a bounded derivative and so must go pointwise to zero. In particular, this
immediately gives zd 0. Each component of u lives in the (compact) unit sphere
of 2 so, setting (u, v) := u], convergence (u, v) 0 implies that (u, v)
-({0}) {(u,v) e :u 0 or v 0}. Thus, u S {each uj 0 or vj 0}
as serted.

LEMMA 5.5. Let u(.)~be a solution of (5.3) such that Uj(,) < 5 for some , >_ O.
Then u() E 270 for each >_ O, where

270 := {u e 7-/1 each

The set 270 is open in 7-ll.
Proof. For each j, the assumption precludes having Ivjl --, 0 since Uj is nonin-

creasing and lujl 1 implies Uj >_ 5; by Lemma 5.4, this ensures uj -- O. By the
definition, this gives u 270 and, of course, each u( 270. To see that 270 is open,
consider any fi0 e 270 so each fly 0. We may then find , such that .j(,) < 5/2.
By Lemma 5.1 we have uniform continuity on bounded -intervals for the depen-
dence of solutions of (5.3) on the initial data, so there is a neighborhood of fi0 giving
Uj(,) < 5. The first part of this proof then shows this neighborhood is in 270.
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THEOREM 5.6. For arbitrary initial data in 7-ll we have convergence u --, u* (at
an asymptotically exponential rate) as oc .for some steady state solution u* E ,.
Thus, for each j 1,..., J we have either Case 1: uj --, 0 and vj --, v (with Ivl 1)
or Case 2: vj --, 0 and uj u (with lull- 1); in particular, we always have Case 1

for j-- 1.

Proof. We will proceed inductively in j, taking the system in the form (5.4) with
the index j suppressed so

(5.7) ((i)(ii)
and with the inductive assumption that we know

<

for C C and arbitrary 0 < # < 1. By Lemma 5.4 we know that u--, 0 as

--* oc, so we must be in one of the two possible cases--which we then consider
separately to show the exponential decay rate for the appropriate component. With
(4.4) and the inductive hypothesis on , this completes the induction by giving
the corresponding exponential decay for +1. Returning to (5.3) with knowledge of
exponential decay of zj, integrability of the derivative gives existence of a specific
limit for the nonvanishing component as well.

Case 1 [u 0}. Fix # < 1. Set y "= lul 2 so y’= 2 aeu’-- -26[Iv12y+ Re(v,
using (5.7.i) and note that ae(v

_
I(llvlv/-

_
elv[2y + [[2/4e. Now choose 0 <

e < 1 # and use (5.8) with # replaced by/5 :- # + e < 1. By (4.4), if u -- 0, then

Ivl --, 1 so (noting that #/(1 e) < 1) there exists such that (1 e)lv()l 2 _> # for
_> . Thus, we have

y’() <_ -2#y + (C2/2)e-2(+)

for ( >_ . The Gronwall inequality and some simple manipulation then give the
desired estimate for y- lul 2-

for { _> ; this also applies to all { _> 0 with a modification of the (.
Case 2 v -- 0 I" Again, fix # < 1 and now set y Ivl 2 and choose 0 < 2e < 1 #.

Much as above, we get

y’() _> 26(#- e)y- (C2/2)e-2"

for large enough ( _> -0) that (1- e)lu()l2 >_ #- e. Applying the (reversed)
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Gronwall inequality we then obtain, for any > >_ 0,

It follows that we must have Iv()l <_ (C/2)e- for all >_ 0 (hence, for all
_> 0 with a modified coefficient) or the Gronwall estimate would give y() cx),

contradicting the case that v 0.
In view of Lemmas 5.3, 5.4, and 5.5 and the experience with computational ex-

perimentation with a variety of sets of initial data, it is plausible to conjecture that
one always has uj --+ 0 as --+ unless Zk =-- 0 for each k 1,..., j. This is false!

THEOREM 5.7. Let u* be any stationary solution such that uj 0 for some
j < J. Then there is a nonstationary solution u such that u() --+ u* as -+ oc.

Proof. For each j we have either:

Case 1 lu 0 so Iv;I-- 1 Set

uj vj sin aj, vj vj cos aj,

so (v cos a)a uj -zjv cosa or:

Case 2[v; 0 so ]u;I-- 1}. Set

Xj :=-1

uj u cosaj, vj u sinaj, Xj := +I

cosso cos
sin 2aj whence, after scaling for convenienceIn either ce, we have uj

to permit the omission of a factor from our definition of zj, we must have

Zj J(5.9) aj Xjz, k= sin 2a

(provided cos 2a 0) for j 1,..., J. Note that by restricting our attention here
to the real ce, we have isolated stationary solutions: each aj . Our notation
ensures that any nonstationary solution a [a,..., ag] of (5.9) for which a() 0
corresponds to a nonstationary solution u of (5.4) for which u u* . The
linearization of (5.9) around a 0 is just

(5.10) a’= Aa with A

X1 0 0

X2 X2 0

Since A is lower triangular, we see that its eigenvalues (with multiplicity) are the
diagonal elements (X1,’", XJ} and if any of these is -1, we have a corresponding
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eigenvector giving an exponentially decaying solution. Since there are no purely imag-
inary eigenvalues, the linearized problem (5.10) gives the local splitting into stable
and unstable manifolds whence the nonlinear problem (5.9) must also have an ex-
ponentially decaying solution near zero--asymptotically behaving precisely like the
solution of (5.10). [2

Remark 5.8. While we have carried through the analysis for the discretization
corresponding to (5.2), we could equally well have considered a trapezoidal rule ap-
proximation to (4.6):

(5.11) zj {(Uk-lVk-1 + Uk-)/2.

With trivial modification, we would then have obtained for that setting the same
results obtained above. Indeed, (5.11) gives the identical system (5.4) if we were to

j--1scale by 2 and set Cj 2 ’k=l ukVg, instead.

6. Stationary solutions. We now introduce the set S of all stationary solutions.
Note that u E S means u’ 0 so z 0 on R. By (2.2), this corresponds to having
u 0 almost everywhere; note from this that S is entirely independent of 7. It is
ey to see that S, & "= {u e S" u u0 0} nd S& := {u e S" u0 0} are
each uncountable arc-wise connected sets in ven if we were to restrict attention
to the "purely real" ce, taking L2( 2), or to factor out the action of the
group := {g u ei()u}.
om the characterization u 0 we observe that, for each u S, we can

partition3 R, independently of in view of(1.4), a disjoint union A B such that

(6.1)
lul=K’ v=0 on ,4,

u=0, Ivl=K onB.

We now wish to consider the linearization around a stationary solution u* E S so
that z* 0 in (3.3). We fix ,4, B, and g(.) corresponding to u* and note that (3.3)
now gives

{ u-z onA,0 on ,4,
u*z(6.2) u’ -v*z

-v*z on B, 0 on B,

/_ {u* onA}d.ez= e -u onB

Now introduce

*v (so v -e-"u*)(6.3) K2w :-
v*u (so e-w)

on ,4,
on B

with w itself irrelevant, where K 0; e.g., we may set w :- 0 there. Then, noting
that u* is independent of with Iv*l g on ,4 and lu*l g on B, (6.2) gives (where
g0)

3 Any T for which K(7") 0 SO U V 0 may arbitrarily be assigned either to ,4 or to B; the
partition is unique to within da-nullsets.
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(6.4) w (e-)(--v*z) on B

_ev’* on ,4 .-ez -eru on B

If we define X : {1) by

(6.5)

and change variables to think of w a function of (, a), using (2.1) so g2d d,
then (6.4) takes the simple form

(6.6) w’ Xw

or, equivalently,

(6.7) w Xw (= [--])(o,.) o e L.
Note that this formulation omits the irrelevant values of w for the set of T where
K(T) 0, which disappears when we write things in terms of a. Since the operator:
w f xwd5 is certainly bounded, the solution operator S w0 - w(, .) for
(6.6) forms a group on L1. Alternatively, we might note that Theorem 3.4 ensures
integrability of K2w with respect to T and so integrability of w with respect to a.

We now restate the results of this discussion as a lemma without further proof.
LEMMA 6.1. Let u* -= u be given in , determining K(.), a(.) as in (2.1) and

X as in (6.5); let u be a linearized perturbation, obtained from (3.3), corresponding to
a perturbation uo E 7-/ of the initial conditions u). Then,

{no, v {-e-’u* on.A,(6.8) u e-v,w, vo on B,

h,. , ,,d as , 1’uno, oI (, o), ,U,# (6.7) a,d has nat daa o ,U 0
given by

*V5 on A,K2w := e-VUo on B.

Note that wo is necessarily integrable with respect to a.

LEMMA 6.2. When X is constant (X =- +1), the solution of (6.7) is given explicitly
by

(6.9) w(, a) := Wo(a) + wo()’(r) d,

where we set r :- [a ] and have

Jo(2gr) for X -1 (u* e o),(6.10) (r) "=
io(2v/) for X =-- +1,

where Jo is the usual Bessel function of first kind and Io is .the modified Bessel func-
tion: Io(s) :- Jo(is).
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Proof. We begin with the ansatz that e-z can be obtained from w0 by a
convolution with respect to a:-- xo (.):= x 0()()a

with r := [a- (]. Differentiating with respect to a then gives (6.9)--provided we
require (0) 1 so as to have the correct condition at 0. Next, differentiating
first with respect to and then with respect to a gives

with the final equality coming from (6.7). We obtain this last, provided that

[v’()]’ I=o= ,
The differential equation gives ([r’(r)]’-x(r)) constant and evaluating at r 0
shows this constant must be zero. If we now set (r) -: O(s) with s :- 2x/, this
gives

0(0) 1.

For X -1, this is Bessel’s equation with parameter a 0 and the normalization
gives O(s)= J0(s); for X +1, we then get O(s) Jo(is) =: Io(s).

Note that d(P(r)/dr O’(2V)/x/ so, since

j() -j() I(8) iJ(is) -iJl (is) --: 11(8),

we have

(2x/r)/v/ for X -1,(6.11) ’(r) i(2v/-)/v/ for X +1

for use in (6.9). Since Jo(z) is an even analytic function of z, it is also analytic in
so is analytic (afortiori bounded) near zero and so on any bounded interval. Thus,
(6.9) makes sense for all da-integrable w0.

Remark 6.3. What information can we draw from this in the case of u* E S0 (so
X -1)? We observe, first, that the integral term in (6.9) is a convolution so, using
L1 norms,

II,(, .)II _< llwoll [1 + II:’I]]
4 It is at this point already that we need the assumption: X constant.



TRANSIENT STIMULATED RAMAN SCATTERING 361

Here we have, setting s2 --a,

and since J1 (s) decays like 1/x/, we see that we have II  ’ll- so, worst,
we always have

(6.12) I1(, ")IIL O(1/4) s - .On the other hand, if we are considering perturbations for which Wo E BV
(bounded variation) so that it is justifiable to integrate by parts in (6.9), then we
obtain

(6.13) w(, a) w0(0)J0(2X/ + J0(2V/(a 5)) dwo(Yr).

The integral term on the right can be estimated in the same way as for (6.12) to
give O(-l/a) decay. The first term goes to zero pointwise in a as - 0 at a rate
(9(-/a). This is not uniform, but can certainly be integrated in a to give a decay
rate

(6.14) IIw(, ")IIL 0(-1/4) as (:K)

in this case.
Clearly, even as "linearized stability," this is far weaker than the results we have

for the discretized setting, corresponding to Lemma 5.5 and Theorem 5.6. Neverthe-
less, it is as strong a result as we have been able to obtain here. That the result is
weaker is certainly related to the fact that ,So is not isolated from other stationary
solutions, but we might still hope to improve this. Indeed, if (6.12) could be improved
to give boundedness as - cx) for each initial w0 E L (0, t2), then a simple argument
would show decay for all w0. So far we do not know whether this is true and, further,
note that this linearized stability by itself would not show u -- S0 (locally) for the
nonlinear problem.

Remark 6.4. We next consider the case of u* ,S\S0 so 4 is nonempty. We are
seeking here to demonstrate instability, so it is only necessary to construct special
examples. Suppose Jt contains an interval [a_, a+] and we take the perturbation u0
so wo 1 on this interval and vanishes otherwise. This effectively lets us take a_ 0
with no loss of generality. Thus, at least for a in the interval, we are considering (6.7)
with X -= +1 and Lemma 6.2 applies. Integrating by parts as for (6.13), we then have

w(, a) I0(2X/) for 0 < a < a+
and, since I0 grows exponentially, we have instability: growth of w(, .) which is
exponential in /2. We remark that this is consistent with having Ilwll O(ee) for
arbitrarily small > 0, as is suggested by the fact that the Volterra operator on the
right of (6.6) has spectrum {0}.

What does this tell us for the nonlinear problem? Using the fact that, as observed
in Remark 4.3, the solution map has a locally bounded second derivative we can show
that for arbitrarily large M and arbitrarily small > 0 there exist solutions of (2.5)
which initially differ from u* by less than but at a later time differ by more than
M, assuming M is not too big.

Again, as in Remark 6.3, this is not very much. It certainly is enough, however, to
guarantee that the exponential factor in (3.2) cannot be omitted to give the Lipschitz
continuity uniform in .
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7. Asymptotic behavior. In this section we consider the asymptotic behavior
of solutions of the system (2.5) as -- c. We will assume that the reduction of 4 has
been made, if necessary, so in (2.1) we have g() 1 for T e [0, 1] with everything
vanishing for T [0, 1] whence we have (4.5) and (4.4). While we might conjecture
for this context essentially the same results which we obtained for the discretized
system in the previous section, we have so far not been able to carry out this program
completely. Our results here are primarily the consequences of (4.1).

Remark 7.1.
DEFINITION. A function v" l+ -4 X’ will be called recurrent (for some 0) if

there is a sequence n -- c for which IIv(n) v(0)II -* 0.
Clearly, every periodic function is recurrent for arbitrary 0. Following_ Bohr, v is

almost periodic on ]it+ if, for_ any e > _0, there exists/() such that (with arbitrary)
IIv()- v(s)ll _< for some < s < +/() and all E JR+; clearly, this also implies
recurrence for arbitrary 0. This would include sums of (incommensurately) periodic
functions: if v :- -j vj (where each v is continuous with period j and
convergent); then it is easily seen to be almost periodic, using the number-theoretic
result that we can always find positive integers q and {nj}, making Iq- njjl ar-
bitrarily small simultaneously for j 1,..., J [6, Thm. 201] every "positive ray"
q[1/1 1/g] passes arbitrarily close to integer lattice points in ]RJ for infinitely
many integers q].

Finally, we note that, for v satisfying an autononomous ODE, if we were to have
IIV(n)-V(0)ll -- 0 for any sequence {n} bounded away from 0, then we would have
recurrence at 0. To see this when {n} is bounded, extract a subsequence converging
to some 1 0 and observe that continuity gives V(l) v(0) whence, assuming
uniqueness for the ODE, v would necessarily be periodic with period I1

THEOREM 7.2. Under the hypotheses of Lemma 4.1 and taking the system reduced
as in the previous section, if u is recurrent (for some o), then it is stationary: z =_ 0
so u independent of .

Proof. By (4.1.ii), for each T and for , -0 _> 6 > 0 we have

foIz(.,-,-)l : <_ I.o(e,,.)l2- I.(,o,.)12 <_ v/llU(n, .)- u(,o,-)ll---, o,

which gives z 0 on [0, 0 + ] [0, 1]
giving stationarity of u as asserted. D

and so everywhere, as in Corollary 4.2,

THEOREM 7.3. Under the hypotheses of Lemma 4.1 and taking the system re-
duced as in the previous section, we always have z L2(]R+ [0, 1]) and uniform
convergence: z(, .) -- 0 as -. oc.

Proof. It is convenient to set

(7.1) U(., "r) :- lul, V(., ",’) Ivl.
From (4.4) we see that 0 <_ U, V <_ T and, also using (4.1), we see that each is uniformly
Lipschitzian (jointly in , T) with U’ -Izl 2, V’ Izl 2 so U is nonincreasing in and
V nondecreasing. For each (fixed) T, we have

I*(’, *)l: U(, ,) U(, ,) _< U(, ,) _<,

v(, ) v(, ) _< v(, ) _< .
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So, taking 0 and letting --. o, we see that we have IIz(., T)]I <_ X/ (this is the
L2(l+)-norm) whence ]]z[[ < 1/x/. (Here, this is the L2(l:[+ x [0, 1])-norm.) Using
the bounds 0 < In[ 2, [v[ 2 < 1 in (4.1.iii), we have [z’ < v/[[z[I so [[z’[[ < [[z[I/x/; thus

Then (llzl12) is integrable on lR+ whence Ilzll 2 has a limit as c, necessarily
zero almost everywhere in T since z e L2(R+ x [0, 1]). This gives z(,.) 0 in
L2(0, 1)-norm. Since z(, .) stays in a compact subset of C[0, 1], as we have noted in
the previous section, this is actually uniform convergence. D

Remark 7.4. Since the set S of stationary solutions is characterized by having
z -= 0, it would be tempting to conclude, from the uniform convergence above, that it
is a global attractor, i.e., that we must necessarily have u --. S; indeed, computation
suggests the stronger conjecture that we have u So (u --* 0) as --, cx for all u0 E
H1 except, of course, S\So. We do note, however, that this cannot follow simply
from Theorem 7.3 since, e.g., there exist sequences like Uj(T) := (COS jTrT, sin jTrT) for
which we have ]Zj(T)] _< 1/47rj --. O, but [[u SI[ 2v/Tr- 2 7A 0. (Of course, this
example has not been constructed by taking uj :-- u(j) with j --, x for a solution

of
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BUNSEN FLAMES AS STEADY SOLUTIONS OF THE
KURAMOTO-SIVASHINSKY EQUATION*

DANIEL MICHELSONt

Abstract. Rotationally invariant steady solutions of the Kuramoto-Sivashinsky equation in two
space dimensions are studied. Specifically, conical solutions, i.e., solutions which tend to a constant
slope at infinity, are sought after. These solutions in combustion theory have a physical interpretation
as the Bunsen flames. The technique of rigorous estimates by computer is used to prove the existence
of such solutions for all physically reasonable values of the slopes.

Key words. Bunsen flames, Kuramoto-Sivashinsky equation, interval arithmetic, computer
proofs
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1. Introduction. The well-known Kuramoto-Sivashinsky equation is

Iwl: 0, t).(1.1) ut + Vau + V2u +
In the context of the combustion theory, the function u(x, t) represents the pertur-
bation of the plane flame front that propagates in a fuel-oxygen mixture (e.g., see

In [5] we studied the steady solutions of this equation in one space dimension,
i.e., solutions of the form

(1.2) u(x, t) -c2t + v(x), x e R1.

It was proved analytically that this equation has for small c periodic and quasi-periodic
solutions and for large c a unique conical solution. For intermediate values of c it was
shown numerically that besides the conical and periodic solutions there is, probably, a
Cantor set of chaotic solutions. In this paper we consider equation (1.1) in the plane
x E R2 and look for steady solutions of the form (1.2) with rotational symmetry, i.e.,
independent of the angle . The corresponding function v(r) of the radius r satisfies
the equation

(1.3) D+-D v+ D:+ D v=c
1

r - Dv 0<_r<c,

where D is the operator of differentiation with respect to r. With Dv denoted by y,
the equation is reduced to a third-order nonautonomous ordinary differential equation
(O.D.E.)

1 1 c2(1.4) D2 +-D D+ y+ D+- y-
r r 2’

As r -- c this equation approaches the one-dimensional limit

y2
(1.5) y’" + y’ c2

2’ y=y(x), -cx < x <
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Our ultimate goal is to study the set of all bounded solutions of (1.4). In this paper,
however, we restrict ourselves only to so-called Bunsen flame profiles; namely, (1.1)
with the right-hand side replaced by c2 models a flame front generated by a circular
gas burner. The constant c is proportional to the slope of the flame cone and is
determined by the gas influx. A stationary radial solution of such a problem will
obviously satisfy (1.4) with boundary condition

(1.6) y(0) 0, lim y(r)=-cx/.

The condition y(0) 0 follows from the request that u is a weak solution of (1.1).
Our numerical experiments with the partial differential equation (P.D.E.) (1.1) showed
that the above stationary solutions of (1.1) are stable only for large values of c, namely,
c > 3. For large c it is convenient to switch to the variables

Yold told C1/3
(1.7) Ynew (c/) mew 21/6

SO that the new function y(r) satisfies

(1.8) D+ D D+- y+c D+- y+ -1=0,

where

Our problem is now stated as follows: for small a prove the existence of bounded
solutions of (1.8) that satisfy

(1.10) lim y(r) -1.

On Fig. l(a)-(c) one can see the graph of the solution y(r) for c 0 in the planes
yy’, ry, and rv respectively. These graphs were obtained by a nonrigorous numerical
experiment.

Unlike the autonomous equation (see [5]) the theoretical study of (1.8) runs into
considerable difficulties. Because of the singularity at r 0 the flow defined by
(1.8) cannot be studied by topological methods. In addition, (1.8) does not possess a
Lyapunov function even when a 0.

Lately a new approach of computer-assisted proofs in mathematics has come
into being (e.g., see [1]-[4]). The idea is to do computations in interval arithmetic
so that computer produces rigorous bounds of the true result. This idea could be
used in solving O.D.E.’s on a bounded interval (e.g., see [3]). When the interval is
unbounded, an asymptotic expansion should be constructed at infinity and bounds
of the truncation error should be analytically derived. The main analytical difficulty
is. to maximize the domain of validity of the asymptotic expansion in order to reduce
the finite interval on which the O.D.E. is solved numerically in interval arithmetic.
Another problem is to stabilize the algorithm of numerical solution to prevent rapid
exponential growth of the error.

Rewrite (1.8) as an autonomous system in R4:

(1.11) dl/dr f(9) (y2, y3, 1 y cy2 2y3ya + y2y24 yly34,-y),
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where

(1.12) (yl, Y2, Y3, Ya) (Y, Y’, Y’, r-l).

The point 0 (-1, 0, 0, 0) is a critical point of the flow, and the differential df(o)
besides the zero eigenvalue corresponding to the equation y -y42 has a positive
eigenvalue A1 and two eigenvalues A2 A3 with a negative real part. These eigenvalues
are the roots of the characteristic equation

(1.13) A3 + aA 2 0.

Hence there exists a local three-dimensional central stable manifold Me8 of the flow
that passes through the point 0. Since ya r-1 --* 0 as r -- cx, each point on Me8
that is sufficiently close to 0 is attracted by the flow to 0. Thus the surface M
replaces the asymptotic formula for large r. In a neighborhood of r 0 the solution
y(r) of (1.8) could be expanded into converging power series

(1.14) y(r) E ar2-I
i=1

where the slope

(1.15) al y’(0) s

is a free parameter which defines uniquely the rest of the coefficients as. We use this
expansion to compute (r0), r0 1. From that point, (1.8) is solved by the Taylor
method with a small step h .125 until the trajectory (r) reaches the domain of
existence of the manifold M, say at r rl. Our algorithm described in 2 and
4 takes into account the truncation and round-off errors. Thus, as we start with a
point value of s, the final result (rl, s) is a small box in R4. Suppose that for all
s E IA [So As, So + As]:

(1.16)
(i) the boxes (rl, s) lie in the domain of existence of Mc,

(ii) the boxes 9(rl, so As) and 9(rl, so + As) are separated by M8.

It follows then that there exists s in the interval IA such that (rl, 8) belongs to
M, and hence (r, s) -- 0 as r cx. The computation of (rl, s) for s E IA
is done by a single run of the program with s defined as the interval IA. Since
we want to prove the result for a continuum of s, we define s to be an interval
s IA IS0 As, s0 + As]. The properties in (1.16) should then hold uniformly
for s as above. Thus the idea of the proof is quite simple. However, its technical
fulfillment is not trivial at all. The usual crude estimates of the domain of attraction
for Me8 show that rl in the case where s 0 should be about 15. The roots of (1.13)
are of absolute value 21/3 so that the initial errors at r 0 are amplified by the factor
exp(15.2l/a) 1.6- 108. The domain of M is of the order 10-2. Thus, to satisfy
(1.16) (i), As has to be of the order 10-1. But then (rl, so /ks),(rl, so + As)
are so close that they are not separated by M,. Besides, As also should be of the
order 10-1 Each run of the program takes about 10 seconds of computer time on
Cyber 180/855. Thus, to cover an interval s [0, 1], we would need 2.10s hours
of computer time. Instead, by a careful estimate of M, we reduced rl to about 5.
The amplification factor thus was 500. Next, (1.8) was solved in characteristic
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variables. As a result, the solution increased only in the direction normal to MoB.
Hence, smallness of (rn)-o in the direction tangential to Mcs did not contradict the
separability condition (1.16)(ii). Finally, the dependence of (r) on the parameters
s and c was expressed by a Taylor expansion of order 2. Thus, (r) and the first
derivatives with respect to s and were computed at the central point (so, a0) while
only the second derivatives were computed in the domain IA8 IA. As a result, we
run the program successfully with As .0015 and A( .005 from c 0 through

2.39 at the expense of 1 hour of CPU on Cyber 180/855. We could continue the
proof for larger c with a smaller As, but for our purposes the interval ( E [0, 2.39] is
more than enough.

Recall that the empirical stability domain of Bunsen flames extends only to c
3, i.e., .31. Our nonrigorous numerical experiments suggest that for > 1.1
problem (1.8), (1.10) has infinitely many solutions. The total picture is similar to
that obtained in [5] for the antonomous (1.5). The branch followed by our program
corresponds to the minimal slope s y’(0) of all the bounded solutions for given .
The values of so corresponding to c0 and the derivatives dso/dco were obtained by
a nonrigorous preliminary program. In addition to conditions in (1.16) our interval
arithmetic program verified the transversality of the intersection of the curve (rl, s)
for s E IA and the manifoldM and the negativeness of y. We summarize the results
of all computations in the following theorem.

THEOREM 1. Problem (1.8), (1.10) has a negative solution for all [0,2.39],
i.e., 0.383 < c < cx). This solution is formed by a transversal intersection of the
curve (rl, s), s As and the central stable manifold Mcs of the critical point o
(-1, 0, 0, 0). The values of the slopes s y’(O) and the corresponding values of
appear in Table 1.

Remark 1. Because of the lack of space we display in this article only the results
for c n. 0.1, 0 _< n _< 23 and 2.39. The complete Table 1 may be obtained
from the author upon request.

The negativeness of y(r) for all r > 0 means that the Bunsen-flame cone v(r) is
monotonically decreasing. We conjecture that the negativeness of y(r) singles it out
as the only bounded solution of (1.8) with y(0) 0.

2. The power series expansion at r 0. Let us substitute the formal expan-
sion (1.14) into (1.8). We obtain the following recurrent relation:

and

(2.2) a2
1 2cal

16

where a is a free parameter. For appropriate P0 and pl the coefficients ai are bounded
by

(2.3) lail < plp-1.

Indeed, for that purpose, Pl and P0 should satisfy

(2.4)
16
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From (2.1) we obtain

aplPio-1 (i- 1)p2p/o-2
(2.5) [ai+ll -4i(i + 1) 8iu(i + 1)

Thus, to assure the bounds in (2.3) for i > 2, we impose

aP0 (i- 1)pl
(2.6)

4i(i + 1) + 8i2(i + 1)
< p’ > 2.

In particular,

(2.7)
opo - p -<pg

The last inequality clearly implies all inequalities in (2.6). Since Po > 0, by (2.7)

(2.s)
1

(c + (c2 + 24pl) 1/2) FI(pl),po_>

while by (2.4)

(2.9) Po >_ I1 2oall F2(Pl).
16pl

Since F (p) is increasing and F2(p) is a decreasing function there exists a unique p
F,such that F1 (p) 2(Pl) It is easy to see that this p satisfies the cubic equation

(2.10) p + c(1- 2cal) 3
(1 2aal)2p- =0.

Thus, the pair (Po, Pl) with the smallest Po is given by the formula

(2.11) Pl max(p, lal[), P0 FI(Pl).

The radius of convergence of the series is bounded from below by R >_ p-l/U. For
example, for a 0 the corresponding slope al 8 --.6739. Since Fl(Ia[) .0838
is smaller than F2(lal[) .0927 it follows that pl p .7211 and P0 .0867, while
R > 3.39. In computations we employ instead of y a finite sum

N

(2.12) YN E air2i-l"
i--1

The remainder EN(r) is bounded by

(2.13) IE ( )I < <
i--N+1

In particular, for Po, Pl as above, and

(2.14) N 80, r ro 1,

we obtain IEN(r)l < 10-s5. The derivatives y’(r) and y"(r) are approximated by the
sums

N N

(2.15) Yv E(2i 1)air2i-2, y E(2i- 1)(2i- 2)air2i-3.
i=1 i=1
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(2.25) },,+,-I <
P3p-I + pp-i (i- 1)p3pp-2

4i(i + 1) + 4i2(i + 1)

(2.16) (2i- 1)(2i- 2)la, <_ (pip-i Jr -----,
nd hence the remainder E of y" is bounded by

(2.17) IEv(r)l <_ + pl (1 p0r2)

Clearly, for r < 2N the terms in the sum for E are smMler thn the corresponding
terms in E(r), and hence also E(r) is bounded by the right-hand side of (2.17).
In addition to the function y(r) we will have to compute its partial derivatives up
to order 2 with respect to the parameters y’(0) s and . More precisely, when
differentiating with respect to we sume that

(.is) 0 + o" ( 0),

where s0 and so are constants. In our computer program these constants are denoted
by S0 and SAO. The coefficients of the expansion

(.io) o() o-, or p
i=0

satisfy for i 1

with he first coeNcien

(.1) Ogl 1, Ogl So.

he corresponding formul for the second derivatives are

oo+1 (oo +oo, +oo

1)),
j=l

where p,p are s or . Clearly, only 0 1 is nonero. The first coecient for all
p,p is

(2.23) Opl Op2a O.

We are looking for a common estimate

(2.24) ]OO2ai P3P-1 P2 > PO P3 > Pl, 0 jl + j2 2

Then (2.20) implies
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and by (2.21) and (2.24)

(2.26) P3 max(l, ISo I, P)"

From (2.22) we obtain the upper bound (in the case where Pl P2 s)

IOp Opt. ai+l < sp3p-I + 2p3P-1
4i(i + 1)

(i- 1)(p3PiPi2-2 + ppi2-2+ 4i2(i + 1)

< (s + 2)p3p- (i- 1)pp2-2+4i(i + 1) 2i2(i + 1)

Clearly, the last bound is higher than that in (2.25). In order to satisfy (2.24) we
have to request

(e.:s) > (" + (i-
4i(i+1) + 2i2(i+1)"

The strongest inequalities are attained in the cases i 1, i 2"

Hence we can define

(2.30) P2 max (_gl (s +2 + ((s + 2)2 + 96p3) 1/2) s + 28 /

Obviously, P2 is greater than P0 defined in (2.11). For example, for s 0 we obtain
p3 1 and p2 .25. The truncation error OOJaEN, j + j2 <_ 2 is estimated as
in (2.13) with P0, Pl replaced by P2 and P3, respectively. For the second derivative
OiiOJaE, instead of (2.16) we obtain

(2.31) (2i- 1)(2i- 2)lO’Oal <_ (s + 2)p3p-I + 2pp2-2.

Hence, the common upper bound for the derivatives of EN is

(2.32)
IOiO:E) < ( + 2 + 2p3/P2)p3pN2 r2N-(1 p2r2)-1

i + i2 <_ 2, k < 2.

The above bound is denoted in the subroutine SERIES (see the Appendix) by
ERROR(2) -ERROR(l). In the worst case of s 2.39, s -2.989, and
so =-1.55weobtainp=3.78=pl, p0=.254, P3=p, p2=max(.50, .55)=
.55, and hence the bound in (2.32) for r and N as in (2.14) is 2.6.10-19. This number,
relative to the computed values of OlO2y(Nk)(r), seems to be far below the maximal
roundoff error of our computer. Still, to be sure, we add the interval (ERROR(l),
ERROR(2)) to the above derivatives of YN. In subroutine SERIES we compute the
derivatives OJOy()(r), k < 2 for 0 < j +j2 _< 1 at the central point so, s0 and for
j +j2 2 at the intervals IA (So As, So + As) and IA (S0 As, s0 + As). In
order to simplify notation we employ in our computer program the following general
convention. For an interval variable f which depends on the parameters s and s we
store the endpoints of the interval 0 0 f at the vector

(2.33) O’O[.f -- (f(j),f(j+ l)), j (jl + j2)(jl -t-j2 -t- 1) + 2j2 + 1.



372 DANIEL MICHELSON

Thus, the index j varies from 1 through 11. The above derivatives for jl + j2

_
1 are

routinely computed at the central point (so, ao), while the second-order derivatives
are evaluated for the whole intervals IAs and Iaa. In intermediate computations we
sometimes need the values of f and its first derivatives at the above intervals. To
distinguish between the central and interval functions, in the former case we modify
the name f as f0. Note that the second derivatives are never evaluated at the central
point. To allow a uniform treatment of the derivatives of f in majority of loops, we
have abused the notation and denoted the second derivatives at the intervals of a and
s by f0 instead of f. Thus, f0(ll), f0(12) is the derivative 02af at Izxs IA while
f0(5) Oaf at (so, a0). The values of f and the derivatives cOf, Oaf at Izx Ia
are computed by Taylor’s. formulas

f fO + OfO. (s so) + OafO. ( Co)
(2.34)

2 )2 1 2+70s f0. (s so + OsOafO (s so)" (a ao) + 70"afO (a a0)2

(2.35) o fo + fo + o,o fo

and similar expression for Oaf. In actual computations we replace (s- so), (a- a0),
and their products by the intervals

(2.36)
DP(3), DP(4) -As, As; DP(5), DP(6) -As,

DP(7),DP(8) -(As)2, (A8)2; DP(9),DP(IO) -As. As, As.

DP(ll),DP(12) -(Aa)2, (Aa)2.

In our Fortran program formula (2.34) is written as

(2.37)
F(1) F0(1) + FO(3)*DP(3)+ FO(5)*DP(5)

+0.5*FO(7)*DP(7) + FO(9)*DP(9) + 0.5*FO(ll)*DP(ll).

Thus, interval variables are represented by the address of their left endpoints. The
letter I in the first column of the instruction indicates that this is an interval statement.
Our preprocessor COMPINT then translates this instruction into a sequence of CALL
statements. This preprocessor and its output are described in more detail in 5.

Following the above convention we store the derivatives 0 0 a in case (s, a)
IAs X IAa and jl -[-j2 1 at the locations A(j, i), A(j + 1, i), where j is defined
as in (2.31), while in all remaining cases they are stored in AO(j,i), AO(j + 1, i).
Formulas (2.1), (2.2) are used to compute A0(1, i), A0(2,i), formulas (2.20), (2.21)
for A0(3, i), A0(4, i) and A0(5, i), A0(6, i), and formula (2.22) for AO(j, i), A0(j+I, i),
where j 7, 9, 11. In (2.22) the lower-order derivatives ai, Oai, and Oaai are replaced
by the corresponding intervals A(j, i), A(j+I, i). The latter ones in turn are computed
as in the example (2.37). The final series -N=I OJOJair2i- are summed up using
the Homer method.

3. The central stable manifold. As mentioned in the Introduction, there ex-
ists a local three-dimensional central stable manifold M of the flow (1.11) which
passes through the point 30 (-1, 0, 0, 0). The neutral direction corresponds to
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the fourth equation 4 -Y. Hence the rate of convergence of (r) to 0 is not
exponential but of order O(r-1). Note that (1.8) has a formal asymptotic solution

(3.1) Y E bir-’ bo -1,
i=0

where the remaining coefficients are uniquely determined by b0. Although the series
in (3.1) is a diverging one, we will see below that the partial sums

N

(3.2) YN E bir-
i=0

constitute the leading part of all solutions y(r) that tend to the critical point y -1
as r --. c. Let us pass to the variable

(3.3) Ynew Yold YN.

In the new variable y Ynew (1.8) becomes

y’" + cy’ 2y f(y, r)

_2r-y + yr-2 yr-3 y2 2AyN y p(r-),

where

and p(r-) is the result of substitution of YN into (1.8):

2N

(3.6) P(T--1) E pir-i O(T-N-1 )"
i=N+l

Since f(0, r) O(r-N-) and the roots of (1.13) are not imaginary, it follows easily
that all solutions of (3.4) that tend to zero as r - x) are of the order O(r-N-1).
We will need, however, an exact bound of y. For that purpose, let us pass to the
characteristic variables u- (u, u2, u3)"

(D- A2)(D- A3)y (D- A)(D- A3)y
(a.7) ( :)( )’ (: )( )’

,
where A, A2 A3 are the roots of (1.13) and A > 0. Equation (3.4) becomes

y(, r) Au(3.8) U ,lU
(,1 ,2)(,1 3)’

f(u,r)

Assume for a moment that f f(r) is a given bounded function of r. Then solutions
of (3.8) that are bounded on the interval (rl, oc)satisfy the estimate
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where

1

while Ilull supr>r lu(r)l is the usual maximum norm. The function y and its
derivatives in terms of Ul, u2 are

(3.11) y ul + 2Re u2, y’= Alu + 2Re(A2u2), y"= A21u + 2Re(Au2).
Now we recall that f depends on y, and with the aid of (3.9) we estimate

where

(a.la)
c3 2r-l(cl, q- 22lA212) + r-2(c1 + 2lAl)

+(r-a + 21IAYNII + 4lu2(rl)l)(cl + 2c2),

(3.14) c4 (c + 2c)2,

and

(3.15) 2N

/41ue(rl)l / Ip, lrf’
i=N+I

Given t2(rl), system (3.8)is solved by iterations where f-- f f(u(’)) is evaluated
at u() and the corresponding bounded solution of the initial value problem with
(n+l)u2 (rl) u2(rl) is denoted by u(+1) The zero approximation u() is set to be

zero. Now, inequality (3.12) is replaced by

Suppose that

(3.17) ca < 1 and c6=(1--ca)2--4c4c5 >0.

Then (3.16) implies

(3.18) IIA+II < cr (1- ca --)/(2c4),

since II/o11 Ilpll -< c _< cr. Thus, there exists a subsequence u(n’) that converges
to the solution of the original nonlinear equation and has the prescribed value of
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u2(rl). The conditions in (3.17) restrict the size of r-1 and of lu2(rl)l. But once
these conditions are met, the correspondence

defines the local central-stable manifold Mcs. The value of ul (r) is then bounded by

(3.20) lUl (rl)l --< CLC7.

In our computation we set N 2. Then

--C C2

(3.21) YN --l + br- + b2r-2 b b2 --,
2 8

(3.22) AyN b2r-2,

and

(3.23)
p(r) par-3 + p4r-4 + p5r-5

O3 O4 9 2--4---(l+--)r-3+-r 4_c r

Since a varies in the interval [Co Aa, Co + Aa], we freeze the coefficient a in

(3.4) at ao and instead modify f by

(3.24) f --+ f (cz CxO)y’.

This effects the coefficients C3 and c5

(3.25) C3 --4 C3 -4-Inol(ClA1 -4-

The eigenvalues Ai are roots of the equation

(3.26) A3 + OoA 2 O.

Let us now look at Table 1. The numbers in the columns from left to right
are as follows" ao, so, S,o,ri, the upper bound of Iz2(r)[ for s,a E IAs IA,, the
interval value of z (r) for s so As, cz E IA,, and the interval value of zl (rl) for
s so + As, Ih,. The increments Ac and As are fixed Acz .005, As .0015.
Because of the lack of space we display in this article only the results for cz n. 0.1,
0 <_ n <_ 23, and c 2.39. The complete Table 1 is on deposit with the author and
may be obtained by the interested reader upon request. Let us check, for example,
that for (0 0 the values rl, z2(rl) lie in the domain of existence of Mcs and z (rl)
for s so + As and So As are separated by Mcs. The eigenvalues Ai are

(3.27) Al 21/3 ,- 1.26, A2 -A + i(3A + 4a)/2

Hence

(3.28)
+  .26, lax A2I (3A21 + a)/2 ,. 2.18,

IIm A2I (3A + 4a) /2/2 1.09.
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TABLE 1
The output of the program BUNSEN. The increments DALF and DS of ALF and S are always

.005 and .0015, respectively. The order of the Taylor method NORDER is 8 for SO less than 1.71
and 10 otherwise.

ALF0 SO SA0 RMAX Z2 S Z1 S0-DS Z1 S0+DS

.00 -.67385 -.44 5.375 .12E-01 -.12E+00 -.12E+00 .lIE+00 .lIE+00

.i0 -.71981 -.48 5.375 .12E-01 -.lIE+00 -.lIE+00 .10E+00 .10E+00

.20 -.76932 -.51 5.375 .lIE-01 -.10E+00 -.97E-01 .91E-01 .93E-01

.30 -.82256 -.55 5.375 .lIE-01 -.91E-01 -.88E-01 .82E-01 .85E-01

.40 -.87971 -.59 5.500 .lIE-01 -.94E-01 -.91E-01 .85E-01 .89E-01

.50 -.94093 -.63 5.500 .lIE-01 -.86E-01 -.82E-01 .77E-01 .81E-01

.60 -1.00639 -.68 5.625 .lIE-01 -.89E-01 -.85E-01 .80E-01 .84E-01

.70 -1.07622 -.72 5.625 .lIE-01 -.81E-01 -.76E-01 .72E-01 .77E-01

.80 -1.151)56 -.77 5.750 .10E-01 -.84E-01 -.77E-01 .73E-01 .80E-01

.90 -1.2,952 --,81 5.750 .lIE-01 -.76E-01 -.70E-01 .66E-01 .73E-01
1.00 -1.31320 -.86 5.875 .lIE-01 -.79E-01 -.70E-01 .66E-01 .75E-01
i. I0 -1.40168 -.91 6.000 .lIE-01 -.82E-01 -.70E-01 .66E-01 .78E-01
1.20 -1.49504 -.96 6.125 .12E-01 -.85E-01 -.69E-01 .65E-01 .80E-01
1.30 -1.59333 -i.01 6.250 .12E-01 -.89E-01 -.68E-01 .62E-01 .83E-01
1.40 -1.69659 -1.06 6.375 .13E-01 -.93E-01 -.65E-01 .58E-01 .86E-01
1.50 -1.80486 -i.ii 6.500 .14E-01 -.99E-01 -.61E-01 .53E-01 .91E-01
1.60 -1.91814 -1.16 6.750 .15E-01 -.12E+00 -.60E-01 .50E-01 .lIE+00
1.70 -2.03646 -1.21 7.250 .17E-01 -.18E+00 -.61E-01 .45E-01 .16E+00
1.80 -2.15981 -1.26 6.875 .13E-01 -.87E-01 -.74E-01 .62E-01 .76E-01
1.90 -2.28819 -1.31 7.000 .14E-01 -.89E-01 -.71E-01 .59E-01 .76E-01
2.00 -2.42157 -1.36 7.125 .14E-01 -.89E-01 -.69E-01 .56E-01 .76E-01
2.10 -2.55993 -1.41 7.250 .14E-01 -.90E-01 -.65E-01 .52E-01 .77E-01
2.20 -2.70323 -1.46 7.375 .15E-01 -.90E-01 -.60E-01 .48E-01 .78E-01
2.30 -2.85146 -1.51 7.625 .15E-01 -.99E-01 -.57E-01 .47E-01 .89E-01
2.39 -2.98904 -1.55 8.000 .16E-01 -.12E+00 -.57E-01 .47E-01 .lIE+00

The constants

(3.29)

1 1

A (3A2 -4- a) /2. (3A + 4a)/2
1

For r 5.375 and lu2(rl)l < .012 we have

(3.30)

(3.31) IIP(r)ll _< (1+ labia)4 r-3 + l4la r-4 + 9 IA12r-4 .6.10-2

(3.32) 3 ,.58, C4 .70, c5 .022, c6.12, c7,-.058.

Thus rl, u2(rl) lie in the domain of Me8 and lu(rl)] < ClC7 < .01. The values -.12
and .11 of Ul (rl) for s so + As are clearly separated by the strip [-.01, .01]. To
verify the separability condition we wrote a computer program which appears as the
SUBROUTINE ESTIM in the computer code in the Appendix. This subroutine is
written also in interval arithmetic and the input values of all parameters are obtained
from the main program. The trajectory 3(r) is advanced in r with steps h .125
until ESTIM gives a positive result, which constitutes a formal proof of the existence
of solution. The final values of rl and u(rl) are printed only to make the claim more
convincing.

In addition we checked the transversality of the intersection of the curve 3(rl; s)
s 6 IA8 with the manifold Mc. Besides the values of 3(rl; s) and u(rl;s) our program
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computes the interval values of 08u(rl; s) for (s, a) E Ih8 X Ih. Suppose that for
some sl Ihs, u(r; s) lies in Mcs and Osu(rl; Sl) is tangent to Mcs. Then the
ratio Osul(r;s)/Osu2(rl;s) should tend to zero as r -+ x) since at the fixed point
Y-o the tangent plane to Mc is just u 0. The values of Ou(rl;s) computed by the
program were such that [Osu(r; s)l >> IOsu2(r; s)[. We wish to prove that for these
values of Osu(r; sl) there exists a constant c > 0 such that

(3.33) clOsu(r; s)]2 -IOu2(r; sx)l2 > 0 for all r > rx.

This clearly implies the transversality of the intersection.
Osu(r; sl) satisfies the system

The function u(r)

(3.34)
1

A2Us2 -- df.us, Us3 s2,Us2 (. )( )

where df is the differential of f with respect to u. From the explicit formulas of f in

(3.4) and (3.24) and from the relations in (3.11) it follows that

(3.35)

where

(3.36)
a IAlx + 2r-x + 2[bulv2 + vuX + v3 +
a2 2(IAI. 121 / 2r-XlA2] 2 / 2lb2lr-2 / r-2lA21 / r-3 / 2[ly[l),

and

(3.37) Ilyll _< Iluxll + 21[u211 _< (c + 2c2)llfll + 21u2(rx)l.

Multiplying the system in (3.34) by the vector (cu,-fi2) and taking real parts
yields

1
), ]2 12(ClUsl]2 Its212 C)llUsl Re 21u2

c ( (df’u)t2 )+ IA A212 (dr" us)u Re
(2 -- i2 : 3)

(3.38)
We wish to show that the right-hand side of (3.38) is nonnegative. Recall that
-Re 2 $/2 > 0. In view of (3.35) it is enough to show that for some c > 0

(3.39)

where cl and c2 are defined by (3.10). The last inequality of quadratic forms is
equivalent to the inequalities of coefficients

(3.40) acl __< 1,

(3.41) 2dlc > (d2c + d3)2,
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where

dl (1 alc)(1 a2c2), d2 -cla2, and d3 c2al

2

To satisfy (3.41) c should be

(3.43)

d4 d6 d4 q- d6 V5,
d

<_ c <_ d7 d22 d4 d d2d3, d6

d5 d 2 2d2d3 dl (dl 2d2d3).

Finally, if the computed interval vector Osu(r;s), (s, a) E IA8 X IAa satisfies

10 u (r ; s)l(3.44) ]Osltl(rl;8)[2 < dT,

we take c dT. This implies that ClUs[2 -[u82[2 > 0 for all r > rl and proves the
tranvsersality. Our subroutine ESTIM also computed the above coefficients di and ai
and verified the inequalities (3.40) and (3.44). If transversality failed, the trajectory
y(r) was advanced in r until both the conditions of separation and of transversality
were met. Thus the printout in Table 1 testifies both to the existence of the solution
and the transversality of the intersection.

Let Mcs(r1, ) be the restriction of Mcs to the domain Y4 r-1, [u2[ < with
the parameter a E IA, where 6 is the bound on lu2(rl)[ as it appears in the fourth
column of Table 1. If du,du2 is a tangent vector to Mcs(rl,5) then our previous
analysis shows that

(3.45) ]du212 > Idull2d7

In view of (3.44) it follows that the curve fi(r, s), s e IAs for each a IA
has a unique intersection with Mcs(r, ). Note also that M8(r, ) is uniquely
determined by the conditions

(3.46)

(Here the constants c7 and 6 replace the terms Ilfllo and [u2(rl)[ in (3.9).) Indeed,
let u(r), t(r) be two different solutions of (3.8) satisfying (3.46) such that u2(r)
fi2(rl). In our analysis of the system (3.34) we can replace the function u(r) by
Au(r) (r)- u(r). Estimates of all constants hi, di remain valid since the norm

I[Y[[o in (3.37) is replaced by the same bound

(3.47) IlY + [Io <_ (Cl + 2c2)c7 + 25.

Clearly, IAu2(rl)1211Au(rl)l2 0 < dT, and hence for all r > r

(3.48) lau (r)l >

But for large r, u(r) and (r) belong to a small neighborhood of zero where the
central-stable manifold M is unique and close to the tangent plane u O. The last
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is contradicted by (3.48). Thus, the output in Table 1 shows that for each E Ih
there exists a unique s* E IA8 such that the corresponding solution of (1.8) in u
coordinates satisfies conditions (3.46). This, however, does not mean that there are
no other solutions with slopes s arbitrarily close to s* that escape the neighborhood
defined by (3.46) but ultimately converge to the point 0. In effect we demonstrated
numerically in [5] that for c .835 / 86 and c .4845 -.4982 equation (1.4) has
homoclinic solutions, i.e., solutions which have the limits y(+/-x)) -cv. Thus
for corresponding values of a we may expect that (1.8) has infinitely many solutions
with slopes Sn y(O), sn -- so such that limr_ y(r,s,) --. -1 and y(r, so) is the
negative solution established by Theorem 1.

4. Numerical solution of the O.D.E. in interval arithmetic. The power
series expansion of 2 provides the box value of and its partial derivatives with
respect to s and at r r0 1. On the other hand, the invariant manifold Me8 was
estimated by us in 3 for r >_ rl 5 / 7. In order to connect between r r0 and
r rl equation (1.8) should be solved in the interval Jr0, r] numerically. An O.D.E.
could be solved in integral form as suggested by [2] or by an explicit Taylor method
as in [3]. We prefer the second approach. Consider a general initial value problem for
a system of differential equations

u’= I(u), u( 0) u0, u e R

Given y(r) we compute y(r + h) by the Taylor formula

y()(r)h
(4.2) y(r / h) y(r) / y’(r)h /... + n! + E

with the remainder

(n+l) (r_i_Oih)hn+(4.3) E (E,, End), Ei ’ (,+)!

0<0i<l, l<_i<_d.

The coefficients y(k)(r), 1 <_ k <_ n are uniquely defined by y(r) from (4.1). However,
to obtain a rigorous estimate of y(r + h) we must estimate the derivative y(+) in
the interval (r, r + h). Suppose we have a subroutine DERIV whose input consists of
an interval value of r and a d-dimensional box value of y(r), while the output consists
of the box values of the derivatives y(k)(r), 1 _< k <_ n + 1. Our algorithm below
uses two calls to DERIV to compute y(r + h). The algorithm could be split into the
following 5 steps:

(1) Call DERIV with the input r,y(r) and obtain the output y(k)(r),l <_ k <_ n.

(2) Define the box

m

(4.4) Yho y(r) + FACT. -y(k)(r) [O, hlk/k!, m <_ n,
k=l

where FACT is a "safety" factor. We took FACT 1.5, m 5, and n 8 or n 10.
The box Yho is about to include all possible values of the vector (yi d

Jr, r + hi corresponding to the true solution y.
(3) Call DERIV with the input Jr, r + hi instead of r and the box Yho instead of

y(r) The resulting box values of the derivatives are denoted by (k) 1 < k < n + 1hO
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(4) Compute the box

(4.5) (’+)[O,h]n+/(nYh EY(k)(r)[O,h]k/k! + YhO + 1)!
k--0

and check whether Yh lies in YhO. If not, the program fails and the computation is
stopped. If yes, go to Step 5.

(5) Compute y(r + h) by

n

(n+l)hn+l/(n + 1)!.+ +
k=O

The test in (4) proves that the remainder En in (4.3) is contained in the remainder
of

The main problem with interval computations is their exponential instability.
Consider a linear system of O.D.E.’s with constant coefficients

(4.7) y’= Ay.

If y is a d-dimensional symmetric box [-5, 5] d, then Ay abs(A)y, where abs(A)
{laijl}. Hence the solutions of (4.7) when computed in interval arithmetic will grow
exponentially even when the original matrix A has no positive eigenvalues. In the
case of (3.4), if we disregard the term f(y, r) 0(11 O(r- + I1) then the result-
ing constant coefficients O.D.E. has positive eigenvalue and complex eigenvalues
A2, A3. If we turn to the characteristic variables u, the first component u in (3.8)
will grow with the rate elr, also in interval arithmetic, while the second component
u2 will grow as el.lr, where really it is decreasing as eRe A2r e-Air/2. To prevent
this exponential growth we switch to the real variables z (z, z2, z3),

(4.8) z ul z + iz3 e-Jim

Then, instead of (3.8), variables z2, z3 will satisfy O.D.E.’s with the exponent Re A2.
The precise transformation formulas from to z are

2 2 2

(4.9) Ul E Cl’iY()’ Re u2 E c2yy(y)’ Im u2 E c3y(j)’
j=0 j=0 j=0

(4.10)
z2 cos Im 2r" Re u2 + sin Im ,2r" Im u2,

Z3 ----sin Im 2r" Re u2 +cos Im ,2r" Im U2

The variable y in (4.9) is, of course, the Ynew of (3.4). In variable z equation (3.8)
becomes

(4.11)
Z /1Z1 -- c13f,

z Re A2" z2 + (c23 cos Im A2r + c33 sin Im A2r)f,

z Re 2" z3 + (c33 cos Im )2r c23 sin Im A2r)f.
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The constants cij as follow from (3.7) are

cx= j2 3+a’cxx IA1 A212 3A2 -4-a IA1 A2

c13= 321+, c21= Re
(2-i)(2-3) 3A+a’

C22 -Re
+ .)’

(4.12) c23 Re
1 1

C31 Im

+ .)’

C32 -Im

2(3A + a)Im

c33 Im

1 -- ’3 (3A2/2 + a)
(A2 A)(A2 A3) 2(A2 + c) Im 2’

1 3Ai/2
2(A + a)Im A2"

The higher-order derivatives of z are computed by (4.11)"

Zi+1) lZi) -- 13f(i),

(4.13) (i+1) Re )2" z(2i) ()(c23 cos(i-j) Imz2
j=o

+c33 sin(i-J)Im Ar)f(:)

and similarly for Z3. It was more convenient to compute the derivatives of f by
differentiating (3.4) instead of expressing f in terms of z. The differentiation formulas
appear in the listing of the computer program in the subroutine DERIV. For the
convenience of the reader we present them here in mathematical notation:

(4.14)
j=0

j=0

(4.15) __y(j+l)(r--1)(i+j+l
__

y(J)(r-1)(i+j+2)/2) (y2)(i) (0 o/0)y(i+1)

_q3(r-1)(i+2) qn(r-1)(i+3) q5(r-1)(i+4),

where b2 a2/8 as in (3.21) and q are related to p in (3.23) as

(4.16)
q3 p3/2 -(1 + c3/4)/2,
q5 P5/24 3c2/64.

q4 --p4/6 --a4/384,
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Finally, by (3.4)

(4.17) y(i+3) _a0y(+l) + 2y(i) + f().
Recall that the term -((- (0)y(i+1) is absorbed in f(i). Thus we compute first
the derivatives f(i) and y(i+3) for i 1,... ,n and then the derivatives z(i), i
1,..., n / 1. The value of z(r + h) is then computed by formula (4.6) with y replaced
by z. Recall that Re 2 -/2 < 0. If z2 + hz were added in interval arithmetic

(4.18) Z2 + h Re 2Z2 + O(f)

then, for a symmetric interval z2 (-5, 5), the result would be z2(l+h]Re A2)+O(f).
Instead we add it

(4.19) z2 + hz z2(1 + h Re A2) + (c23 cos Im A2r + c33 sin Im A2r)f.

The remaining part of the Taylor formula is added in a straightforward manner by
Horner’s method. As r increes and z becomes small, z2(1 + h Re 2) becomes a
leading term in the Taylor formula. As a result z2 decrees exponentially. The
component z grows, of course, but with the correct rate e. Once z(r + h) h
been computed, y(r + h) is expressed in terms of z(r + h). The explicit inverse
transformation formul are

y u + 2Re u2,

y Au + 2(Re A2" Re u2 Im A2" Im u2),

(4.20) y"= Au + 2(Re . Re u2 Im . Im u2),

u z, Re u2 z2 cos Im 2r- z3 sin Im 2r,

Im u2 z2 sin Im 2r + z3 cos Im 2r.

Despite the above stabilization procedure, the computations with reonable intervals
Aa .005 and As .0015 exploded before reaching rl 6. Therefore, instead of
solving the differential equations (3.4), (4.11) with a IA, s IA we evaluated
the function y(r, s, a) and z(r, s, ) by the Taylor formula of order 2"

(, ,) (, 0, 0) + o(, 0, 0)( 0) + o(, 0, 0)( 0)

o,j ),( o)
(4.21)

+ jxtj2t
y(r, , )( o

jWj2=2

and similarly for z. Hence y(r, so, co) and its first derivatives were computed for the
point values of s so, a 0 and only the second derivatives OOy, jl + j2 2
were computed for the original interval values of s and . With As and A, above,
(s- so)j (-ao)j 10-6, so we could afford second-order derivatives of a magnitude
103 10a. The equations for the derivatives with respect to s and are obtained by
differentiating (4.13)-(4.16). The eigenvalues Ai and the coefficients ciy in (4.13) are
constant since they are computed at 0; however, b2 a2/8 and qi at (4.16)
depend on . When differemiating the nonlinear term y2 in (4.14) we obtain

j=O
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and similarly for the other second derivatives. Here we have to know the values of
y(0 and 0By() for (s, s) E IA8 IA. The former ones are computed by (4.21) and
the latter ones by

+

and similarly for Oay(O. These interval values also appear when b2y(j) and (s-
s0)y(i+1) in (4.15) are differentiated twice with respect to s or in the mixed derivative
0s0. The precise differentiation formulas appear in the listing of our computer code in
the Appendix, in the subroutine DERIV. As already mentioned in 2, the derivatives

0sJl0 f of a generic function f are stored in our program as shown in (2.33). The
derivatives 0102, 0 _< jl + j2

_
1 computed at the central point (so, s0) and the

second-order derivatives in IAs IA carry the name f0, while the derivatives up to
order 1 in IA IAa carry the original name f. More detailed comments that explain
the purpose of each variable appear in the listing of the program in the Appendix.
Now, with the Taylor expansion in (s- So) and (s- s0), our program could advance
the solution up to r 6 / 8 (depending on s) with As and As as above. The
step size h in r was constant h . The order n of the Taylor method was 8 for
0 _< s <_ 1.7 and 10 for 1.7 < s _< 2.4. The slope So corresponding to s0 was computed
by a preliminary nonrigorous program so that

(4.24) z1(1, so, s0) 0,

where is the expected value of r at which the subroutine ESTIM should succeed
in proving the transversality of the intersection. As mentioned in (2.18), we assumed
that when differentiating with respect to s, the slope s is a linear function of s. The
derivative s in (2.18) is set by the preliminary program so that

(4.25) Oaz(, so, So) O.

As a result,

so that

(4.27) zl(rl,80 Jr As, s) Jr OsZl(rl,80, so) n8.

Because of the exponential growth, Osz (rl, So, s0) is quite large, of the order 40/ 70.
The interval values of zl (rl, so As, s) and z(r, so + As, s) appear in the last four
columns of Table 1. Indeed they are almost opposite to each other and well separated
for all s by the plane z 0. The subroutine ESTIM testifies that they are also
separated by the manifold Mcs.

5. The computer program. Below we will explain in general the structure of
our computer code BUNSEN. The listing of the program appears in the Appendix.
The program is written in Fortran and consists of the main part and of nine sub-
routines. The main part reads the input prepared by the preliminary program. This
input consists of the values so, s0, and so denoted correspondingly by SO, ALFO,
and SAO. It also defines the vector DP as explained in (2.36), computes the coef-
ficients b2 B2 and qi Q(i) and their derivatives with respect to s and s, and
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computes the derivatives RD(i) (r-l) (i) and other constants. It also calls various
subroutines in the following order:

(1) Subroutine CONST, which computes the coefficients COEF(i,j) cij as
defined in (4.12), the eigenvalues LAM(1) , LAM(2) Re 2, LAM(3)
Im 2, LAM2(1) 21, LAM2(2) Re(), LAM2(3) Im(), LAM2(4)
(Im A2)2.

(2) Subroutine SERIES, which returns the vector Y0 defined as (YO(j, k), YO(j/
1, k)) OO-y(k)(ro), with 0 _< k <_ 2, j+j2 _< 2, andj asin (2.33). For j+j2 2
the corresponding values are computed in IAs IA, otherwise at the central point

(3) Next, the main program transforms the vector Y0 from the original y variables
to the new variable yw Yold --YN, where YN is defined by (3.21). After that the
subroutine TRANS computes the corresponding vector z0 as defined by (4.9), (4.10).

(4) The five step algorithm presented in 4 calls twice the subroutine DERIV and
computes the derivatives y()(r), z()(r), and the truncation error En of the Taylor
series. The derivatives OsOy()(r) are stored in the vector YDO(j,i) and similarly
for z. In the second call to DERIV the corresponding values for the interval Jr, r + hi
are stored in the vectors YDHO(j, i) and ZDHO(j, i). Since for En we need to know
only the derivatives of order i n + 1, in the second call to DERIV the derivatives
ZDHO(j, n+l) are computed from YDHO(j, i), i <_ n+l by formulas (4.9)-(4.10) and
not by (4.11). The last parameter IFLAG in the calling sequence of DERIV controls
the above-mentioned option of computing ZDHO(j, n + 1). The transformation from
YDHO to ZDHO is carried out by the subroutine TRANSD. After the second call to
DERIV the main program verifies that Yh C Yho (see (4.5)) and computes the vector
Z0 for r r + h. The inverse transformation from z to y as defined by (4.20) is
carried out by the subroutine TRANSIN.

(5) z(r) for a IA and s IAs or s So-i-As is computed. The results
are stored in vectors z and zl correspondingly. Then subroutine ESTIM is called.
It checks whether z lies in the domain of Ms and whether zl is separated by M.
The subroutine ESTIM also verifies the transversality of the intersection. Step (5)
is executed if r becomes greater than RMAX1 5. If the result of ESTIM is
positive, the program reads the new input for a higher value of c and repeats the
whole procedure. If not, the trajectory is advanced in r. If r exceeds a fixed value
RMAX 8 the program stops.

As already mentioned in 2 our program is processed by a compiler which we
called COMPINT. All statements indicated by the letter I in the first column are
considered to be interval statements. All variables declared by the INTERVAL type
statements preceded by the label ID in the first two columns are considered to be
interval variables. Likewise, all variables assigned their values by the I statements are
treated by COMPINT as interval variables. The interval variables are always pairs of
real machine numbers x(1),x(2),x(1) <_ x(2). They are stored in the successive order
and named by the address of the first number x(1). Thus, all interval variables are
defined in our program by the DIMENSION statement as arrays of length 2, and in
case of vector variables we add the first dimension of length 2. The exception are the
partial derivatives OOy and OsOJz, which are stored as explained in (2.33). This
was done in order to reduce the number of dimensions to 3, which is the maximal
dimension allowed in Fortran.

The compiler COMPINT translates all I statements into a sequence of elementary
operations +, -, *, and / and replaces them by a call to corresponding subroutines
SUM, DIF, MUL, and DIV. The names of the subroutines carry two additional digits
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1 or 2. For example, MUL21(A, B, C) computes the product of an interval variable A
with a real scalar variable B. Thus the digit 1 stands for scalar variable and 2 for the
interval one. In all cases the result C is an interval variable. When encountering the
expression C A B the compiler checks the type of the variables A and B and then
sets in the corresponding name of the subroutine. The listing of the most involved
elementary subroutine MUL22(A, B, MUL) appears in the Appendix. The resulting
interval MUL satisfies

(5.1)

where

D(1)(1- ) < MUL(1) < D(1), D(2) < MUL(2) < D(2)(1 + ),

D(1) min(A(i),B(j)), D(2) max(A(i),B(j)), i,j 1,2

and

(5.3) e 2-47 + 2-4s.

When computing D(1) and D(2), because of symmetric rounding we obtain instead
numbers C1 and C2. Then MUL(1) and MUL(2) are defined by

(5.4) MUL(1) C1 2-4s, MUL(2) C2 + 2e-48

where el and e2 are the exponents of C1 and C2 in the binary floating point represen-
tation. The number 48 here stands for 48-digit binary mantissa in our computer. The
rounding in (5.4) may cause a relative error up to 2-47 with an additional maximal
relative error of 2-4s in the symmetric rounding. The constants 2el-4s, i 1, 2
are formed by logical operation at the level of binary words C1 and C2. To ad-
just this and other subroutines to a different word length we must change only two
logical constants. Besides the above four operations our library named INTAR (in-
terval arithmetic) includes two subroutines ISIN22(X, Y), ICOS22(X, Y), which for
an interval X compute the interval Y such that Y D sin X and Y D cos X, corre-
spondingly. In order to give a correct result the length x(2)- x(1) of X should in
the worst case be less than 0.1. In our computation these programs were called with
intervals X Re 2 r of negligible length. The content of the library INTAR as
well as the compiler COMPINT are not listed in this publication and can be obtained
from the author by request. Two more interval arithmetic subroutines ISQRT22 and
CUBEQ appear in the listing of our program BUNSEN. The first finds a square root
of an interval and the second solves a cubic equation with interval coefficients. We
need the latter to solve (1.13) and (2.10).

The parts of the program and the program as a whole were extensively checked.
As a practical and most convincing test we should mention that (1.8) was solved in-
dependently by Taylor’s method in the original variables y. In this case the algorithm
is very simple and short. The results, however, agreed completely with the box values
obtained by the program BUNSEN.

6. Conclusion. The Bunsen flame solutions are a particular though physically
important case of two-dimensional structures described by the Kuramoto-Sivashinsky
equation. In this paper we managed to prove the existence of these solutions for
the physically relevant values of parameters. There are also other types of radial
solutions which tend to periodic, quasi-periodic, or chaotic solutions of the O.D.E
(1.5) as r -- oc. A rigorous computer assisted proof of existence of such solutions
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seems to be a hard task even with modern supercomputers. Laboratory experiments
have shown that Bunsen flames may rotate with a constant speed. The stationary
solution we found is closely related to the leading term in the Fourier series expansion
of the rotating flame with respect to the polar angle . It now seems possible to
justify the existence of such rotating solutions, at least on the physical level of rigor.

7. Appendix. The computer program BUNSEN is not published here due to
its length of 700 lines. It can be obtained from the author by electronic mail.
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LARGE-TIME BEHAVIOR OF A TIME-PERIODIC COOPERATIVE
SYSTEM OF REACTION-DIFFUSION EQUATIONS DEPENDING

ON PARAMETERS*

PETER TAK/(*

Abstract. A kind of structural stability with respect to a parameter 0 E O for a generic strongly
monotone discrete-time dynamical system {T X X; n E Z+} is studied. Here, X and O are
strongly ordered spaces, and the mapping (x, 0) Tax from X into X is assumed to be continuous,
strongly monotone and satisfying a compactness hypothesis. A classification of structurally stable
points in X is introduced; the set of all such points is denoted by S. No hyperbolicity hypothesis
is assumed.- If X is an open subset of a strongly ordered separable Banach space ]2, it is proved
that (1) /(X \ 9) 0 for every Gaussian measure/ on 2; (2) (x, 0) S implies w0(x) {0} C 9,
where wo(x) denotes the w-limit set of x X under the semigroup {T n 6 Z+); and (3) wo(x)
is a "quasi cycle" for To whenever (x, 0) S. These results are applied to a very general strictly
cooperative time-periodic system of weakly coupled reaction-diffusion equations with (space- and/or
time-dependent) parameters in both the reaction functions and Robin’s boundary conditions. Here
To is the period map.

Key words, reaction-diffusion equation, strictly cooperative system, strongly monotone map-
ping, period map, structural stability, quasi cycle, w-limit set
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Introduction. This work deals with the large-time asymptotic behavior of a
very general time-periodic system of reaction-diffusion equations which depend upon
certain parameters. We restrict ourselves to those systems which have the following
monotonicity property:

(M) The solution u(t) (where t _> 0 is the time variable) depends monotonically
upon its initial value u(0) u0 and the parameter(s) 0.

More precisely, we assume that the solution u(t) =_ u(t, uo, 0) belongs to an ordered
phase space (X, _<) and the parameter 0 belongs to an ordered parameter space (, _<).
Typically, X and are suitable open subsets of ordered Banach spaces whose positive
cone has nonempty interior (cf. Schaefer [23]). Then, given any t >_ 0, the mapping
u(t, ., )" X x X is called monotone if

u0_<u0’ inX and 0_<0’inOu(t, u0,0)_<u(t,u0,0’) inX.

We are interested in how the asymptotic behavior as t -- oc of u(t, u0, 0) de-
pends upon u0 and 0. In particular, we focus our study on (some sort of) structural
stability of our monotone dynamical system with respect to the parameter 0. This
problem can also be viewed as an input-output problem where (u0, ) represents the
input, and u(t, uo, 0) is the output, with the output depending monotonically and
continuously upon the input, for each t _> 0. Monotone dynamical systems without
parameters have been studied recently by a number of authors, cf. Alikakos, Hess, and
Matano [1], Chen and Matano [7], Hess [10], nirsch [11]-[15], Matano and Mimura
[17], Polik [21], Smith [25], Smith and Whieme [26], [27], Tak [28]-[30], and others.
Generically, autonomous monotone dynamical systems show convergence to an equi-
librium (or a set of equilibria) for "almost every" relatively compact semiorbit. Under
some additional restrictions the corresponding conclusion also holds for time-periodic
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or discrete-time systems. However, until now the only work with parameters and
monotonicity playing a crucial rble is that of Thron [31], [32] who has studied simple
input-output problems in pharmacokinetics by numerical simulations. In [31] a com-
partmental model deals with patients on a regular (time-independent) drug dosage
schedule where drug dosage represents the input, and drug concentration (in a cell) is
the output. It is conjectured that in such autonomous dynamical systems monotonic-
ity with respect to certain parameters should prevent oscillatory (time-periodic) or
chaotic large-time behavior in drug concentrations. The problem of stability of equi-
libria (steady states in drug concentrations) upon changes in drug dosage is mentioned
as well. Our present article is the very beginning of rigorous analytical treatment of
monotone dynamical systems depending (monotonically) upon parameters, with no
hyperbolicity assumption of any kind.

The main objective of this article is to show that, in a very general time-periodic
monotone dynamical system with parameters, "almost every" input (u0,
has the following two properties:

(1) Uniformly in time t E [0, cx)), the output u(t, uo, O) depends continuously
upon the input varying near (u0, 0) X x O (structural stability).

(2) The output u(t, uo, ) can be approximated by nearby periodic orbits, uni-
formly in time t e [to, oc), where to [0, cx)) is sufficiently large (near periodic
large-time behavior).

The kinds of applications of our results we have in mind include (a) chemical
and biochemical reactions among diffusing substances in a vessel (e.g., a biochemi-
cal control circuit for enzymes metabolizing a drug in a cell) (cf. Othmer [19] and
Thron [31]), (b) cooperative migrating populations with diffusive migration within a
common region as studied in population biology, epidemiology, and ecology (cf. Fife
[8] and Hirsch [12], [14]), and (c) two competing populations with diffusive migra-
tion within a region where they compete for resources, with competition, diffusion,
and resource availability observing time-periodic seasonal oscillations (cf. Matano and
Mimura [17]). Mathematical formulation of such models typically results in a time-
periodic cooperative system of reaction-diffusion equations which may depend on cer-
tain parameters. A special case of such a system is a spatially homogeneous coopera-
tive system of ordinary differential equations, a frequently used approximation. Below
we present two problems, (P) and (P’), on which we can explain applications of our
results.

Problem (P). We consider the following time-periodic, strictly cooperative system
of reaction-diffusion equations with (spatially and/or temporally dependent) param-
eters in both the reaction-diffusion equations and the boundary conditions:

OUk
n

Ot dk(X, t)Auk fk(x, t, Ul,’’’, Un) +
t=l

(P) OUk
0--- - Ok(X, t)uk 0 on Oft X (0,

Uk(X, O) Uk,o(X) in f.

Here, n N is the number of equations indexed by k 1, 2,..., n, which are con-
sidered in an open bounded domain f c ]lg with the boundary Oft of class C3.
The diffusion phenomenon is modelled by the N-dimensional Laplacian A with the
diffusion coefficient dk(x,t)

_
d > O, (x,t) e ft (0, cx). The systems of reac-

tion functions fk and -kt, 1 _< k, <_ n, are assumed to be cooperative and strictly
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cooperative, respectively:

Ou
and kt > 0 whenever

We consider Robin’s boundary conditions with Ok(X, t)
All functions dk, fk, 9/kt, and Ok are assumed to be T-periodic in time t E R_, where
T (0, oc), and of class C2 in their respective domains:

dk x R ---. Ida,
and Ok" OFt x

The functions dk and fk are assumed to be fixed, whereas ()n and 0k,--i
k)k=l are parameters varying in suitable open subsets of the Banach spaces

Ir, C2( X (]I/Tz) nxn) and # C2(Oa x (][I/Tz) ]ln),

respectively. We denote all these parameters by 0 (’),,
where O is a suitable open subset of the strongly ordered Banach space o. Of course,
we consider the natural pointwise and coordinatewise ordering in all our function
spaces. In particular, 0 _< 0’ in o is equivalent to: "k _< " in x N_ and
0k _< 0 in Oft x N}, where 0 (-y, 0) and 0’= (-/, 0’) have coordinates indexed by
k, g 1,..., n. The positive cone (o)+ {0 o 0 >_ 0} in o has nonempty
interior Int((o)+) which is equivalent to saying that o is strongly ordered.

Problem (P). A particularly interesting example, which we owe to C. Dennis
Thron [31], [32], of a (spatially homogeneous) time-periodic, strictly cooperative sys-
tem of ordinary differential equations with (temporally dependent) parameters arises
in pharmacology as a dynamical problem in drug metabolism"

duk
dt

dvk,
(P’) dt

fk(t, Itl,’’’, tn, Vl,’’’, Vn’) -- k(t) in (0,

gk’(t, Ul, Un, Vl, Vn’) in (0,

u(0) u,0,

v, (0) v, ,0.

Here, uk "[0, oc) [0, oc) denotes the (spatially homogeneous) concentration of
the kth drug (1 <_ k <_ n), Vk, [0, c) [0, c) denotes the concentration of the
k’th enzyme (1 <_ k’ <_ n’), and "k [0, c) ---. [0, o) is the infusion rate of the
kth drug. We are dealing with a compartmental model of a metabolic system of
(n + n) interacting drugs and enzymes occupying a single cell. Their interaction
(e.g., induction of enzymes which metabolize drugs, synthesis of enzymes, etc.) is
described by the system of (smooth) reaction functions fk" [0, oc) x ]n X ]tn’ I
and gk, [0, c) X lt X ll’ ---. ll{, which is assumed to be strictly cooperative by the
biological nature of the interaction, i.e., all off-diagonal entries in the corresponding
Jacobian matrix of the mapping ((fk(t,’))=1, (gk,(t,’’’ ’))k’=l) ]In X ]n’
IR x ll’ in (P’) are > 0, for each t [0, c). Particular forms of these reaction
functions are obtained from intercompartmental fluxes and their dependence upon
concentrations of drugs and enzymes; cf. Thron [31] for biological arguments. The
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drugs are injected in equal time-periods T > 0, and also all reaction functions are
assumed to be T-periodic in time t. For instance, we can consider the following simple
enzyme-substrate system (n--n 1)"

du
d- -cu(E v) + cur + 7(t) for t (0, oc),

dv
d-- ClU(E-v) (c2 +ca)v fort

Here u, E, and v denote the (nonnegative) concentrations of substrate, total enzyme,
and enzyme-substrate complex, respectively, and 7(t) is the substrate influx rate
which is considered to be T-periodic. All constants E, cl, c2, and c3 are assumed to
be positive. (Of course, our results apply also to the case when E, cl, c2, and c3 are
known continuous T-periodic functions of time t.) This system is strictly cooperative
at any time t E [0, ) when its solution (u(t),v(t)) satisfies 0

_
u(t) < cx and

0 < v(t) < E.
Problem (P’) poses an input-output problem in pharmacokinetics, where the in-

fusion rates q, _= (/k)r= are parameters representing time-periodic input, and the
concentrations (u, v) ((uk)r=, (Vk)k,=i) are solutions of (P’) representing output.
Of interest is the dependence of the output upon the input. Continuity of this de-
pendence is closely related to structural stability of the dynamical system (P’), with
respect to the parameter 7 varying in a suitable open subset 0 of the Banach space
vo

We now return to our first problem (P); problem (P’) can be treated analogously.
We denote by u (uk)= f ]R ---+ IRn the (unique) np-solution of our problem
(P) with the initial value u0 -= (u,0)=l f ---+ ]Rn, for a fixed p 6 (2N, o), cf.
Amann [2], [3], [5]. The underlying space X for the solution u(., t) e X, t 6 IR,
of (P) is a suitably chosen open subset X c Inty(V+) of the interior of the positive
cone V+ in the strongly ordered Banach space Y Wp (f -- ]R’), cf. Triebel [33].
This choice of X is justified by our applications, namely, uk is the density of the kth
component in chemical and biochemical reactions, population biology, epidemiology,
ecology, etc., cf. Fife [8], Hirsch [12], [14], Matano and Mimura [17], and Othmer
[19], and numerous references therein. If both X and IS are suitably matched with
the given system of reaction functions fk, 1 < k < n, then the solution u(., t) 6 X
exists globally in time, i.e., for all t 6 ]R_, whenever u0 6 X and/9 60 are given.
We set A’ X {9 and want to investigate the asymptotic behavior as t oo of
u(., t) u(t) 6 X depending upon (u0, ) 6 a’. Therefore, we write u u(t, so, 8) to
indicate this dependence.

We define the corresponding period map 7"" 2d -- ,g by T(uo, ) (U(T, So, ), 19)
for all (u0, ) e A’. We will study the large-time asymptotic behavior of the solution
u in terms of the asymptotic behavior of the iterates T, n 6 Z+, of 7" as n ---+ oo
applied to the points (u0,/9) 6 A’. More precisely, we are interested in the w-limit sets
for the sequences T(u0, ), n 6 Z+, which are defined for every (u0, ) 6 a’ by

or(so, O) {(w, O) e X" u(nT, U0, O) --- W in X (k ---+

for some sequence nk -- oo in Z+ }.

To guarantee all the usual interesting properties of these w-limit sets, e.g., w(u0, 0)
is nonempty, compact, and totally invariant under T, we make use of the following
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two properties of the mapping 7- which can be derived from a number of results of
Amann [5, Thm. 7.3] under appropriate hypotheses on fk, X, and :

(a) T" X ---, X is continuous;
(b) If u0 E X and E c O is bounded in o, then the closure in V of the set

U(TZ/, no, ) -- {U(nT, nO, O) (n, O) e Z+ x E} is compact in X.
In Example 4.1 we state the precise hypotheses under which both (a) and (b) are

valid for the case of a single reaction-diffusion equation (n 1). The reader can easily
generalize these hypotheses to a system of n equations using Example 4.6.

To investigate the large-time asymptotic behavior of the solution u(t, no, O) of (P)
we take advantage of the strong monotonicity of u(t,., with respect to (u0,
for any fixed t (0, oc), which is a direct consequence of our choice of X c Intv(V+),
V c C(t ---. RE), and the strong maximum and boundary point principles for
strictly cooperative (weakly coupled) parabolic systems, cf. Protter and Weinberger
[22, Chap. 3, 8].

(c) If u0 < u in X and < ’ in satisfy (u0, ) (u, ’), then

u(t, no; O’) u(t, no, O) e Intv(V+) holds for every t

For v, v E V we write v << v if and only if v v Intv(V+), and call the relation
"<<" the strong ordering in V. We use the same notation for the strong orderings in
Vo and ]; V Vo. Observe that each of the spaces V, Vo, and ) is continuously
imbedded into the space C(K) of all continuous functions K ---. R over a
compact Hausdorff space K, endowed with the pointwise ordering "_<," and hence,
for , C(K) we have if and only if minK(99 9) > 0.

Using properties (a), (b), and (c) of the mapping T: A’ A’, in 2 we define
very essential lower and upper stability notions for an arbitrary point (u0, ) A’
under the discrete-time semigroup {T’ n Z+} acting on A’. In Lemma 2.3 we
show that our stability notion is, in fact, equivalent to the classical notion of Lyapunov
stability. This stability incorporates also continuous dependence of our discrete-time
dynamical system {Tn X X; n Z+} upon the parameter 0 O, which reflects
the structural stability of our system (P) with respect to the parameter 0 O. The
set of all stable points in A’ can be quite complicated even if we consider the
dynamical system generated by a single autonomous ordinary differential equation
with a scalar parameter, cf. Example 4.10. We would like to point out once again
that no hyperbolicity of any kind is assumed in this article.

The most important parts of our main results, Theorems 3.3 and 3.4, can be
stated for the problem (P) as follows.

THEOREM 0.1. Let T A’ -- X be the period T map for the problem (P), and
assume it satisfies (a), (b), and (c). Then bl =_ i \, is a Borel subset of)? U Vo,
a strongly ordered separable Banach space, and #(hi) 0 for every Gaussian measure

If (u0, O) e then also w(uo, O) C S, and w(uo, O) is a "quasi cycle" for T
which can be approximated in 2d from below and from above, respectively, by monotone
sequences of (true) cycles W(Vn, ) and W(Wn, ) for T, as n oc in N:

Vn <_ Vn-f-1 <_ WnA-1 <_ Wn in X;

Tk (Vn, O) (Vn, O) and T (WE, O) (wE, O) for some kn, n e N;
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and

W(Uo,) C1 U W(Vn, t,) I"fl C1 U w(wn,)
m--1 n:m m--1

with "Cl" denoting the (compact) closures in X.
Loosely speaking, this theorem states that the w-limit set w(uo, ) of almost every

point (u0, ) X is a stable quasi cycle for the period map T X -- X, meaning
that w(uo, ) can be pproximated by nearby w-limit sets which are true cycles; see
Definition 3.1. We prove this and other results by developing a suitable new theory for
the large-time asymptotic behavior of very general discrete-time dynamical systems of
the form {Tn X ---+ X; n Z+ }, where X X x , X nd are strongly ordered
spaces, T(x, ) =_ (Tx, ) for (x, ) e X, and the mapping (x, ) H TOx from X into
X is continuous and strongly increasing. This theory generalizes a number of earlier
results of the author [28], [30].

Without parameters, analogous results have been obtained for strongly increasing
continuous-time semiflows by Hirsch [12], [14], Polik [21], Smith and Whieme [26],
[27], and Tak [30], and for time-periodic semilinear heat equations in one space
dimension by Chen and Matano [7]. Structural stability of systems of weakly coupled
reaction-diffusion equations with a single scalar parameter [0, oc) in Robin’s
boundary conditions has been investigated by Hale nd Rocha [9] who assumed large
diffusivities dk and hyperbolicity of ll equilibrium solutions, but no cooperativeness
hypothesis. They studied autonomous systems by showing the upper semicontinuity
of their attractors with respect to dk and , and then applying bifurcation methods.
Although the importance of structural stability with respect to certain parameters
is well known, we would like to emphasize another application of Theorem 0.1 and
several other results in this article, namely, simple numerical simulations of the large-
time asymptotic behavior of strongly increasing dynamical systems. Since roundoff
computer errors may actually change the prescribed parameters, it is necessary to
look for some kind of continuous dependence of the w-limit sets or attractors upon
these parameters to make sure that the computed results remain close to the true
(precise) asymptotic behavior of the given system for all times.

This article is organized as follows. In 1 we generalize a number of bsic prelimi-
nary results from Tak [28], [30]. In 2 we introduce the lower and upper w-limit sets
which, in turn, play the key rble in our definitions of lower and upper w-stable points;
these points form the sets S_ and ,+, respectively. The equivalence of Ljapunov
stability with ours is shown in Lemma 2.3. We describe some elementary properties
of the sets S_, S+ and b/_ X \ S_,//+ X \ $+ in Theorems 2.4 and 2.5, respec-
tively. In 3 we first define quasi cycles (Definition 3.1) and then state and prove our
main results, Theorems 3.3, 3.4, and 3.6. Finally, in 4 we present three examples,
Examples 4.1, 4.6, and 4.10, to which we apply our main results. The reader may
find numerous additional applications of our results, for instance, to systems of delay
equations or other functional differential equations; cf. Smith [25].

1. Families of semigroups: basic results. This section is devoted primarily
to a generalization of the basic results from Tak [28, 1 and 2] and Tak [30, 1
and 2]. In these articles the author investigated a single strongly increasing contin-
uous mapping T X -- X in a strongly ordered space X, whereas in the present
article a strongly increasing continuous family T =_ (To 0 E O} of such mappings
is considered. Here O is a strongly ordered space of parameters. In particular, we
are interested in the asymptotic behavior as n -- cx of the discrete-time semigroups
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{T n E Z+} depending upon E , where Z+ (0, 1, 2,...}. Throughout the
entire paper we assume the following hypotheses (X), (Y), (), (Vo), and (T).

(X): X is a strongly ordered space, i.e., X is a metrizable topological space with
a closed partial order relation "_<" satisfying the following axiom, for every
open subset U of X;

(SO1) If x U then a << x << b for some a, bU.
Here x << y for x, y X means that (x, y) belongs to the interior of the order relation
in X X. We write x < y if x _< y, x y. It is easy to see that for every open subset
U of X, (SO1) implies the following.
(SO2) Ifa, bUanda<<bthena<<x<<bforsomexEU.
(V)" V is a strongly ordered vector space, i.e., V is a metrizable topological vector

space whose order relation is defined by a closed cone V+ {x V" x _> 0}
with nonempty interior denoted by Int(V+). (In some of our results we will
assume that X is a nonempty open subset of V with closure Cl(X).)

(O)" O is another strongly ordered space whose ordering is denoted by _< again.
(Vo)" Vo is another strongly ordered vector space with the positive cone (Vo)+

{ Vo _> 0}. (Again, c Vo nonempty and open will be assumed when
needed.)

Observe that also the product space A’ X is strongly ordered by (x, ) _<
(y, a) x _< y (in X) and _< a (in ). When.(x, ) << (y, a) in A’ if and only if
x << y and << a. A similar statement is valid for ) V Vo. Our last hypothesis
is as follows.

(T)" Tx is a continuous, strongly increasing mapping from A’ into X, i.e., (x, ) <
(y, a) in X implies Tz(x, O) << Tx(y, a). Given any 0 e , we define the
mapping T0" X -- X by Tox Tx(x, ), x X, and set T(x, ) (Tox, ).

Clearly, T" A’ -- A’ is continuous and increasing (x <_ y in A’ == Tx <_ Ty), and
it preserves also the strong ordering "<<" in X (x << y in X == Tx << Ty). We
identify 7" =_ {To E } in a natural way.

For a fixed , the positive semiorbit under To (shortly, O-orbit) of any x X
is defined by O+e(x) {Tx "n e Z+}, and the corresponding w-limit set of x is
defined by wo(x) {y e X" Tkx y (k oc) for some sequence nk x
in Z+}. Obviously, wo(x) provided O+e(x) is relatively compact in X. A subset
Y of X is called positively invariant under To (shortly, O-invariant) if To(Y) c Y,
and totally O-invariant if To(Y) Y. For instance, every O+e(x) is O-invariant, and
if O+e(x) is relatively compact then wo(x) is totally O-invariant. For the mapping
T A’ ---. A’ in place of To we define analogous concepts and drop the subscript
from the notation. Observe that O+(x, 0) O0+ (x) {0} and w(x, O) wo(x) {0}.
Clearly, a set c X’ is invariant (totally invariant) if and only if, for each 0 E O, the
set Y0 {x X’(x, 0) Y} is O-invarint (totally O-invariant).

Given a, b X, the set [a,b] {x X a _< x _< b} is called a closed order
interval, and [[a, b]] {x E X’a x b} is called an open order interval in X.
We write [a, oc]] {x X’x >_ a}, and proceed similarly for [[-cx, b], etc. A subset
Y of X is called order-convex in X if [a, b] C Y whenever a, b Y and a < b; lower
closed if [[-cx, b] c Y whenever b Y; and upper closed if [a, cx]] C Y whenever
a Y. We denote closed order intervals in V by [a, b]v {x V" a <_ x <_ b}, nnd
similarly, all other concepts in V will be marked by the subscript V in case confusion
might arise.

Analogous concepts and notation as in X and V are introduced in 0 and Vo, and
also in X X x 0 and 12 V x Vo.
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Now we are ready to introduce one of our basic concepts.
DEFINITION 1.1. A pair (A, B) of subsets A, B of/t’ is called an order decompo-

sition of A’ if it has the following five properties: (i) A and B q},, (ii) A and
B are closed, (iii) A is lower closed and B is upper closed, (iv) A U B A’, and (v)
Int(A B) 0.

An order decomposition (A, B) of A’ is called invariant if T(A) c A and T(B) C
B. The set H A n B (possibly empty) is called the boundary of the order decom-
position (A, B) of A’. A d-hypersurface is any nonempty subset H of A" such that
H A n B for some order decomposition (A, B) of A’.

Notice that the boundary H of an order decomposition (A,B) of A’ satisfies
H OA OB, where "0" is the boundary symbol in A’, and H is invariant whenever
(A, B) is invariant. It is also easy to see that a d-hypersurface H never contains two
strongly ordered points x, y (with x << y). Consequently, if H is invariant, then it
contains no pair of points (x, 0), (y, a) E A’ satisfying x _< y and 0 << a.

If X is a strongly ordered space, it turns out to be very useful to work with the
order topology on X whose neighborhood base is generated by all open order intervals
[[a, b]] with a << b. If Y C X, we denote by ] the set Y endowed with the induced
order topology. A subset Y of X is called order open (order closed, respectively) if it
is open (closed, respectively) in . Notice that the identity mapping i" X --. ) is
continuous, but in general not homeomorphic. It is proved in Hirsch [13], [14] that
if f X1 -- X2 is a continuous, increasing mapping between two strongly ordered
spaces (i.e., x <_xl Y implies f(x) <_x. f(Y)), then f is continuous also in the order
topologies; that is, the induced mapping ]" )1 2 is continuous. It is easy to
see that the order topology on V is induced by any ordered norm le on V defined
by

for some e e Int(V+), where I_ [0,
Our first result deals with the existence of invariant d-hypersurfaces. We give a

proof of existence which is much simpler than the original one in Tak [28, Prop.
1.1] or [30, Prop. 1.2], even though our present hypotheses are slightly weaker.

PROPOSITION 1.2. Let X be a strongly ordered space, and let T X X be
continuous and preserving the strong ordering in X (x y in X == Tx Ty).
Assume that G c A’ is nonempty and invariant (under T), and contains no pair

of strongly ordered points x, y (with x y). Then there exists an invariant order
decomposition (A, B) of A" such that G c H A n B. In particular, we can define
(A, B) in either of the following two ways.

(i) A=Cl(A) and B X \ A where A {x X Tnx << y for some n Z+
and y G}.

(ii) A X \ B and B CI(B) where B {x e X Tnx >> y for some

neZ+ and y G}.
For instance, if 2d X 0 and T satisfy (X), (0), and (:Y), we may take

G w(x, O) for any relatively compact O+(x, 0); cf. Proposition 1.5.

Proof. We prove only (i), the proof of (ii) being analogous. So let (A, B) be
defined by (i). Clearly, A is open since T is continuous, and A is lower closed
since T is increasing. It is easy to see that also A Cl(A) is lower closed, whereas
B ,I’ \ A is upper closed, cf. Wak [28, Lemma 2.1] or [30, Lemma 1.4]. Since G is
invariant and contains no pair of strongly ordered points x << y, we have A G 0.
On the other hand, the fact that A’ is strongly ordered implies G c C1 (t_JyeG[[-cx, y]])
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and in particular G c CI(A). Consequently, G c OA de_f Cl(Ao) \ int(Ao) A 1B
as desired. It is now obvious that the pair (A,B) satisfies properties (i)-(iv) in
Definition 1.1. Suppose that (v) is false, i.e., there exists b E Int(A Cl B) : q}. Then
also z << b < w for some z, w E Int(A Cl B), since A’ is strongly ordered, and,
consequently, z b < w for some z B and w A. Hence b [[z, w]] C A Cl B
since A is lower closed and B is upper closed. But then A IB ( is a contradiction.
We conclude that (A, B) is an order decomposition of A’.

Finally, making use of the fact that T preserves the strong ordering "," we
arrive at T(A) c A and T(A’ \ A) c A’ \ A which proves that (A, B) is invari-
ant.

In case A’ C V, our second result describes d-hypersurfaces as Lipschitz hypersur-
faces in V, cf. Tak [28, Prop. 1.2] or [30, Prop. 1.3] for a proof. The first version of
Part (i) was proved by nirsch [15, Prop. 2.6] for the case dim(];) < x), the dimension
of V.

We recall that an everywhere defined linear mapping L" V --* V between two
ordered vector spaces is called positive (strongly positive, respectively) if x < y in V1
implies Lx
and

PROPOSITION 1.3. Let 2d be a nonempty open subset of V, and let (A, B) be an
order decomposition of X with the boundary H- A N B. Fix any vector v Int(l)+),
and denote by R lin{v} the linear subspace of 1) spanned by v. Let Q be a positive
continuous projection of V onto R, which always exists, and set P I- Q with
W P(V), the range of P, so that V W @ R is the direct algebraic and topological
sum of W and R. Then we have the following statements.

(i) The restriction P[H of P to H is one-to-one, and both P[H and its inverse

7r (P[H)-I P(H) -- U are Lipschitz continuous in the ordered norm [. Iv with a
common Lipschitz constant 2.

(ii) P[H is a homeomorphism of U onto P(U) in the topologies induced by that
On ).

(iii) Furthermore, set

H @ R {x E I; X Xo + Tv for some xo H and T R1},
where xo and T are uniquely determined by Px Pxo, and define a mapping h
H@R V by

h(x) Pxo + Tv, X XO + TV H R,

and similarly for P(H) @ R. Then also h and its inverse h-1" P(H) @ R -- U @ R
are Lipschitz continuous in the ordered norm Iv with a common Lipschitz constant
7, and h is a homeomorphism of H R onto P(H) ( R in the topologies induced by
that on 1).

(iv) If, in addition, 2d is order open in V (i.e., open in ), then P(H) is order
open in W, and P(H) R is order open in V.

Let A’ X x O and T" A’ A’ satisfy (X), (O), and (T). For a fixed 0 O,
we denote by o {x X" Tex x} the set of all equilibria (i.e., fixed points) of
To. If k N, the elements of ok {x X" Tx x} are called k-periodic points of
To, and their 0-orbits O+ (x) are called k-cycles. The following two elementary results
were proved in Hirsch [13, Lemma 3.1] and Taki [28, Lemma 2.2].

PROPOSITION 1.4. (Convergence criterion for strongly monotone semigroups.)
Assume that (, O) X x O, 0+o (x) is relatively compact, and either Tox > x or
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Tokx < x for some k E N. Then Tk+tx Tp as n ---, cx, O, 1,..., k- 1, for
some p , and either p >> x or p << x, respectively. Moreover, we(x) is a k-cycle.

A set Y c X is called unordered if no pair of points x, y Y satisfies x < y.
PROPOSITION 1.5. (Nonordering of limit sets.) Assume that (x, ) X ( and

O(x) is relatively compact. Then To(x) is nonempty and unordered. If Cl(Oe+(x))
is not unordered, then To(x) is a cycle.

From now on it is convenient to introduce the following ordering "" of unordered
subsets of X" If F, G c X are unordered, we write F G if and only if

FcG_=U{[[-cx,x]" xeG} and GcF+=U{[x, cx]]" xeF}.

We write F - G if and only if F C Int(G_) and G c Int(F+), while F - G
means F

___
G, F : G.

We conclude this section with the following result.
PROPOSITION 1.6. Let x, y X and a, 0 0 be such that y <_ x and a < O.

Assume that both O+a(y) and O+e (x) are relatively compact. Then wa(y) To(x).
If also w we(x) is such that O+a(w) is relatively compact, then wa(w) is a cycle
satisfying

Proof. By (T) we have Tny << Tx for n 1, 2,.... Since O+(y) and Oe+ (x) are
relatively compact, we obtain also w(y) we(x). Now take any u e we(x). Then
u Ten’ for some u’ we(x), v’ _< u’ for some v’ w(y), and v Tv’ w(y)
satisfies v Tv << Ten u. Analogously, given any v w(y), we can find
u e we(x) satisfying v << u. We have proved w(y) we(x).

Now fix any w e we(x) with O(w) relatively compact. Then w(y) we(x)
shows that Ty << w for some m Z+ which, in turn, implies w(y) w(w).
Finally, from Tw << Tow we(x) we obtain Tw << Tx for some m Z+, and,
consequently, w(w) w(Tw) we(Tx) we(x) desired. In particular,
w(w) is a cycle for Ta, by Proposition 1.5., since O(w) is not unordered.

Remark. Observe that the cycle C w(w) in Proposition 1.6 does not depend on
a particular choice of w we(x) with O(w) relatively compact. Namely, if we(x)
with O() relatively compact, then w(w) w(x) entails w(w) w(), and,
similarly, w() w(w). We conclude that w() w(w) as desired.

2. Lower and upper w-limit sets. In this section we introduce important
stability concepts with respect to the varying parameter O. They are motivated
by a number of results from Tak [30, 3]. Throughout this entire section we assume
that X Z x O and T" X X satisfy (Z), (O) and (T). We say that the
mapping T is w-compact in a subset of X if O+ (x) is relatively compact for each
x , and also eyw(x) is relatively compact in X. Now let x X and Z c O be
such that T is w-compact in (x} . We define the lower and upper w-limit sets of
(x, e) e by

w_(x): C1 w(x) and w+(x): C1 w(x),
a<<O ao<<O a>>O

respectively) and 0 0, then w_ (x) 0 (w+ (x) ), by the w-compactness of
T.
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The lower and upper w-limit sets satisfy the following analogue of Proposition
1.5.

PROPOSITION 2.1. (Nonordering of lower and upper limit sets.) Assume that
x X and E c O are such that T is w-compact in{x} xE. Let O E. Then both
w_(x) and w+(x) are compact, unordered, and totally O-invariant.

Proof. We consider only w_ (x). It is compact because 2" is w-compact. Suppose
it is not unordered, i.e., a < b for some a, b E w_ (x). Hence Toa << Tob, and there
exist u, v E X, and A O such that a << u, v << b, A << 0, and Tu << Tv whenever
A _< a _< t?. Next we find c,/3 E with A _</3 << << and a’ w(x) and b’ w(x)
so close to a and b, respectively, that a’ << u and v << b’. Hence, TaR’ << Tb’ for all
a E O, A _< a _< t?. By Proposition 1.6, we have w(x) << w(x). So b’ << a" for some
a" e wa(x). We obtain Ta’ << Tb’ << TAR" for A <_ a _< 0. Taking a a we arrive
at Ta’ << TAR" in w(x), a contradiction to wa(x) is unordered. We have verified
that wos_ (x) is unordered.

To show that w_ (x) is totally 0-invariant, we may assume it is nonempty. If
a e E, a << , then w(x) -4 w_(x)and w(x) Tw(x) -4 Tow_(x), which
entails w_ (x) -4 Tow_ (x). On the other hand, if we fix A e O, A << 0, and choose
any a e E, A _< a << , then Twa(x) -4 Taw(x) w(x) -4 w_(x), and so

Tw_ (x) -4 w_ (x). Using the compactness of w_ (x), we let A 0 in O, thus
obtaining Tow_ (x) -4 w_ (x). Finally, w_ (x) is unordered forces Tow_ (x) w_ (x)
as desired.

COROLLARY 2.2. Let all hypotheses of Proposition 2.1 be satisfied. If
for some sequence n ’, n , then

w_(x)= n C1 U wen(x)
k--1

and we(x -+4 w_ (x) -4 To(X) for each e O, << 0, and (9+ (x) relatively compact.
A corresponding result holds for w+ (x).

Proof. Since {n}n_ contains a strongly increasing subsequence (ordered by
<<), we may assume 0 << 02 << << 0. Set {0,0,2,"-}. If a e E,
a << 0, and m N is so large that a << Om, then w(x) -4 we.(x -4 w_(x).
Hence, w_ (x) -4_ wo

_
(x). On the other hand, if m E N is arbitrary and am E E,

Om << a, << 0, then we. (x) -+ w.. (x)

_
w_ (x). Hence, wo

_
(x) -4 w_ (x). But

both w_ (x) and w_ (x) are unordered, and, therefore,

w_(x) =w_(x) n C1 U wen(x).
k=l n--k

The remaining statements are obvious.
Remark. It is clear from Corollary 2.2 that the set w_ (x) (w+ (x), respectively)

is independent from the choice of E C O such that 0 E E, 0n for some sequence
n E ’, 0n (n }} ), and T is w-compact in {x} E. Therefore, we say that
a point (x, 0) E X O is lower (upper, respectively) approximable if there exists a
sequence n E , On (On 0), satisfying 0n and T is w-compact in

{x} , where {, 61, 2,’" "}. We define the lower (upper) w-limit set of such
(x, 0) by wo_ (x) won_ (x) (o+ (x) w2+ (x)).

From this Remark we introduce the following stability classification of a lower
(upper, respectively) approximable point (x, ) E X x O.

We say that (x, ) X x O is lower (upper, respectively) w-stable if wo_(x)
To(X) (wo+(x) w0(x)); otherwise, (x, 0) is lower (upper) w-unstable. The set of all



398 PETER TAK/iA

lower (upper) w-stable points (x, ) is denoted by S_ (q+), and the set of all lower
(upper) w-unstable points by/g_ (L/+). We denote 80- (x e X: (x, ) e 3_ } and
/go- (x E X: (x, ) E/g_) and, analogously, qe+ and

Observe that our stability notions are equivalent to the continuity properties of
the set-valued mapping ( ) we(x) (c X), for x X fixed.

Remark. Assume that ((x, y) is an ordered metric for , the space X with the
order topology, i.e., u _< a _< b _< v in X implies (a, b) <_ (u, v). Let (, a) be an
ordered metric for (, and define an ordered product metric

/)((x, ), (y, a)) max{(x, y), (, a)}

for , x (. For instance, if V is a strongly ordered vector space and e Int(V+),
then the ordered norm I" le on defines an ordered metric (x, y) Ix- YI for .
The following lemma shows that our stability concept uses the metric 7).

LEMMA 2.3. Let (x, ) X x be lower approximable. Then (x, ) q_ if and
only if the following statement holds.

(.) For every e > 0 there exists 5 > 0 such that, for each (y, a) X x 0 with
(y, a)

_
(x, ) and O+a (y) relatively compact, we have

i)((z, <  (T3z, T:U) < e

Corresponding statements hold for (x, ) upper approximable and q+.
Proof. We first deduce from (T) that for every 6 O, 6 < , there exists 5 > 0

such that, for each (y, a) e X O with (y, a) < (x, ), we have

i)((z, < < << T z.

We conclude that (.) is equivalent to the following.

Take (y, a) (x, 6) in (.).

Now assume (x,O) e S_. Suppose (**) is not valid. Then, since and are
ordered metrics, there exist e0 > 0 and sequences 61 << o2 (( (( in and
nl,n2,.’, in Z+ such that 6k in ( as k -- oc, T is w-compact in (x} fl
where gt {, 61, 62,"" "}, and

d(T2 x, T’ n:x) > e

The continuity of T forces {nk } to be unbounded. Passing to a subsequence, we may
assume n < n2 < ". Observe that Tx <_ Telex <_ Tx whenever k _> m E N.
Hence (Tx,Tx) >_ eo for k _> m, and letting k oc we get w e To(x) and

Um we. (x), satisfying Um <_ w and (w, Um) >_ co. Using the w-compactness of T in

{x} t, we find a subsequence of {urn} convergent in X to some u e wo_(x) To(x).
Consequently u <_ w and (w, u) >_ co, which means u < w in an unordered set To(x),
a contradiction. We have proved that (x, 0) q_ (**).

To prove the converse statement, we assume (**) is valid. We apply Corollary 2.2:
Let 6 << 62 <( ( 0 be any sequence in O such that 6k 0 and T is w-compact
in {x} where gt {0, 61, 62,’" "}. Suppose we_(x) To(x). Then u < v for some
u e To- (x) and v e To(x). Making use of wl (x) - w2 (x) ... - To-(x), we find
a sequence uk we (x) such that Uk << u for all k N. Consequently, there exists
another sequence nl < n2 <-.. in Z+ such that Tx _< u and Tx -- w e To(x).
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From (**) we obtain (Tx, Tenx) 0 as k -- cx), and, therefore, w <_ u. But
then w < v in To(x) contradicts the fact that w(x) is unordered. We have also
verified (**) == (x, 0) e S_.

The structure of the w-limit sets w(x) for a << near 0, where (x, 0) e X x O is
lower w-unstable, is very simple; and, similarly, for upper w-unstable points we have
the following.

THEOREM 2.4. Let (x, ) _. Assume there exists A0 O, A0 << 0, such that
O$(y) is relatively compact for every (y, a) X x O, satisfying Ao a and
u y w for some u wo (x) and w w(x).

Then there exists , Ao < , such that for eve a , a ,
the set w(x) is a k-cycle for T, satisfying w(w) w(x) for each w e we(x).
In paicular, if u e w(x) then also To(u) is a k-cycle for T, satisfying w(x)
 o(u)

A coesponding result holds for (x, O) +.
Proof. Since wo-(x) wo(x) and both wo-(x) and wo(x) are totally 0-invariant,

there exist wo-(x) and wo(x) with << . Then << Tx for some
m Z+. Fix any A 0, A0 A << 0, so close to 0that << Tx holds. Now
let a O, A a << 0. Then v << for some v w(x) w0-(x), and,
consequently, Tx << for some m > m in Z+. Applying Proposition 1.4 to

Tx << << Tx Tx, we conclude that w(x) is a cycle. If w wo(x) then
Tw << Tow w0(x), and so Tw << Tx for some k Z+. We find O,
a p << 0, such that Tw << Tffx, and, consequently, w(w) we(x wo_(x).
Hence, Tw << << Tx for some n > m in Z+. It follows that w(w) w(x).
On the other hand, w(x) we(x) and w e we(x) force w(x) w(w). Thus
w(w) w(x) as desired. If u e w(x) then w(x) we(u) we_(x) by Proposition
1.6, and if k denotes the cardinality of the cycle w(x), then u T u << T u entails
that we(u) is a k-cycle by Proposition 1.4.

In order to verify we_(x) we(x), we first recall that we_(x) To(x) and
<< for some wo_(x) and To(x). Since both we_(x) and we(x) are totally

O-invariant, it suffices to show we_(x) we(x) . Then To strongly increing
entails we_(x) Towe_(x) ToTe(x) To(x) desired. Now suppose there exists
w* e we_(x) we(x); hence, we(w*) C we_(x) we(x). We have shown above that
w(x) w(w*) To(w*) for all a e , a << . om Corollary 2.2 we
deduce we-(x) we(w*). But then we(w*) C we_ (x) and we_ (x) unordered force
we(w*) we_(x). Similarly, we use we_(x) we(x), we_(x) C we(x), and we(x)
unordered to obtain wo_(x) we(x), a contradiction to (x, ) e U.

The last result in this section describes the structure of the w-limit sets w(x) for
a << near , where (x, ) X is lower w-stable, and for upper w-stable points

well.
THEOREM 2.5. Let (x,O) 8_. Assume there exists Ao , Ao < O, such that

05 (y) is relatively compact for every (y, a) X , satisfying o a and
u y w for some u wo(x) and w we(x).

Then for all a e , o a O, and w e we(x), the set wa(w) is a k-cycle
for T independent from w and satisfies w(x) w(w) we(x for some ,
a < << . In particular, if u e w(w) then also we(u) is a k-cycle for To satisfying

Finally, given arbitrary v we(x) and a X, a v, there exists z X, a <
z << v, z << e [[Tjz,
e Z+, T2(O ) c i=j we(x) for each j e Z+. Also O(v) is

dense in we(x).
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A corresponding result holds for (x,
Proof. Let a E O, A0

_
a << 0, and w

satisfying w(x)

_
wa(w) -+ we(x), by Proposition 1.6, which is independent from w,

by the Remark after Proposition 1.6. Now observe Tamw w for some m N, and
hence Tmw Tx for some N. Using the continuity of T, we obtain Tmw Tx
for some O, a < </9, whence wa(w) - we(x because a < . If u wa(w)
then wa(w) - we(u) -< we(x) by Proposition 1.6, and u Tk"u << Tu shows that
we(u) is a k-cycle by Proposition 1.4.

Fix arbitrary v e we(x) and a e X, a << v. Then w(x)

_
w(v) - we(x)

whenever/0 < cr << . Recalling (x, ) S_ and Corollary 2.2, we can find a O so
close to/9 that a << z << v for some z

and i we(x)f3 [[Tz, cx)]], i e Z+. Clearly, Tz << T+iz entails T(i) C i. From
we(z) -< we(x) we deduce uJ+k-li we(x) for each j e Z+i--j

To show that (90+ (v) is dense in we(x) we first observe that the topologies from
X and coincide on we(x), by compactness. Consequently, choose any v’ we(x)
anda X, a <<v. Now takea E O above so close to0that alsoa << z <<v
for some z’ wa(v) =wa(v). Hence, z’ Tez for some/? Z+, 0 < t? < ka-1.
We obtaina << z Tez << Tv. Lettinga --. v inX we arrive at v’ < v* for
some v* e Cl(O0+ (v)) c we(x). Finally, we(x) unordered forces v’ v*. The proof is
complete.

3. Main results. We have seen in Theorems 2.4 and 2.5 that the set we-(x)
can be approximated from below by a sequence of cycles for To, namely,

where uk wk (w) for any fixed w we(x) and A0 < al << a2 <<... << 0 in O with
crk 0 aS k oc. In particular, wo_(x) is approximated also by the sequence of
cycles

Similar approximation holds for we+ (x).
In our next theorem we will show that we_(x) must be a quasi cycle for To:
DEFINITION 3.1. Given 0 O, we say that a set C c X is a quasi cycle for To

if C is nonempty, compact, and totally O-invariant, and every open cover of C (by
its relatively open subsets) possesses a refineme.nt forming another finite open cover

of C by the sets Uo, UI, ..., Uk- such that Tg (Ui) c Ui+j for all i, j Z+, where

Ut+ -= U, e Z+.
We recall that if C and C are two open covers of a topological space K, then C

is a refinement of C if for every V C there exists U C such that V c U.
We start with the following technical lemma.
LEMMA 3.2. Let G be a compact and unordered subset of X. Then the sets

Ua G [[a, cx]], for all a X, form a base for a Hausdorff topology on G which is
coarser than the topology from X restricted to G (and hence, both these topologies are

identical).
The same result is fo the sets U G f [[-oc, b]], b e X.
Proof. Clearly every Ua, a X, is relatively open in G c X. If x G and

X e Ua f- Ub for some a, b e X, then there exists c e [[a, c]] fq [[b, c]] with c << x;
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hence, x E Uc c Ua fq Ub. It follows that (Ua a X} is a base for a topology on
(7 which is coarser than the X-topology. Suppose the former one is not Hausdorff,
i.e., there exist x, y G, x y, such that for all a, b X we have: x Ua, y Ub

Ua A Ub . So let Zab Ua Vb. Letting (a, b) (x, y) in X X, a << x,
b<<y, we obtainx < z andy < z for any limit point zOfZab inG C X. But G
unordered forces x z y, a contradiction. Thus, Ua a X} is a base for a
Hausdorff topology on G.

Now we are ready to prove the following theorem.
THEOREM 3.3. Let (x, 0) X ( be lower approximable. Assume there exists

o (, )o << 0, such that O+a(y) is relatively compact for every (y,
satisfying o <_ a <_ 0 and u <_ y <_ w for some u o(x) and w we(x).

Then o-(x) c So-, and o-(x) is a quasi cycle for To. In particular wo-(x)
c (o0 e

A corresponding result holds if (x, O) X (9 is upper appvximable.
Proof. Set C--To-(x). It follows from Theorems 2.4 and 2.5 that (w,

for every w C, i.e., C c So-. To show that C is a quasi cycle for To, we consider
an arbitrary open cover (: of C. Combining Lemma 3.2 with the compactness of C,
we can find a finite set M c X such that the sets Ua C liar, cx]] : 0, a E M, form
a refinement of the cover (: of C. Furthermore, observe that N t2aeM[[a, cx)]] is an
order-open set in X with C c/r. Fix any w C. Thus, combining w(x)- C with Corollary 2.2 (and its proof) we can choose a O, A0 _< a 0, so close to
0 that w(w) c N. Consequently, M can be replaced by w(w) which is a k-cycle for
Ta, and so z < Toz for z wa(w). Fix any z wa(w) and define (]i C fq [[Tz, c]],
0 _< i < k-l, and rt+k _= , /? e Z+. Then i C Ua for some a-- a(i) e M
depending uponi Z, 0 < i < k-1. We conclude that (i 0_< < k-l} is a
refinement of C having all properties required in Definition 3.1. So C is a quasi cycle.
Finally, letting cr 0, we obtain C Cl(O0+(w)) for w

This theorem implies that the dynamics of To on we- (x) is not "very complicated";
it is very much cycle-like and stable in the sense of Definition 3.1. On the other hand,
an example due to Smale [24] suggests that for (x, ) b/_ the dynamics of To on

we(x) can be rather "arbitrary." However, if A’ X
separable, this case is very improbable because the set L/_ has zero Gaussian measure
as we state it more precisely in Theorem 3.4. This theorem is closely related to results
in Hirsch [14, 7] and Tak [30, Prop. 5.5 and Cor. 5.6]. A similar statement holds
for L/+. But first we need some additional notation.

Given (x, 0) E X O, we set

A’(x,o)_ ((y, a) e X " cr < and Tnay << Tnx for some m, n

and X(x,o)_ 0X(,o)_ {(y,a) X O a << }, where "0" stands for the
boundary symbol in A’. The sets A’(,e)+ and A’(,e)+ are defined analogously with
the reversed ordering. Observe that if A’ --S_ U b/_ then

X(,o)_ {(y,a) e X" cr << 0 and w(y) -e< wo_(x)}.

We say that a subset ,7 of A’ is simply ordered (simply strongly ordered, respectively) if
x, y E ,7 and x = y imply either x < y or x > y (either x << y or x >> y). The reader
is referred to H-H. Kuo [16] for general facts about Gaussian measures in Banach
spaces, and to Aronszajn [6] and Phelps [20] for descriptions of their null sets. Some
additional details about null sets can be found in Hirsch [14, Lemma 7.7].
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THEOREM 3.4. Let X and 0 be nonempty open subsets of separable strongly
ordered Banach spaces V and Vo, respectively. Assume that every point in 2d X x 0
is lower approximable, i.e., X q_ U IX_. Then we have the following statements.

(a) If, is a simply strongly ordered subset of 2d, thenbl_N, is at most countable.
(b) /f # is a Gaussian measure on ld V x Vo, then (1X_) O. In particular,

ld_ is a Borel set in
(c) If (x,O) e X, then the sets A Cl(a’(z,0)_) and B X \ X(x,o)- form an

invariant order decomposition of X. Its boundary H A N B 0A’(x,0)_ is an

invariant Lipschitz hypersurface in 2 as described in Proposition 1.3, (x, O) e H and

Z(,o)_ C IX_ N H.
Corresponding statements hold for ,9+ and ld+.
Proof. (a) Let e a’ be simply strongly ordered. Given (x, 60 E/d_, we define

Uo_(x) U{[[v, w]]: v e c@_(x) and w e co0(x)}

which is a nonempty open subset of X. If (x, t?) << (y, a) in/d_ N J, it is obvious that
coo(x) -6< wa-(y) whence Uo_(x)N Ua-(y) }. Since X is separable, we conclude
that/d_ N , must be at most countable.

(b) First we show that b/_ is a Borel set. We employ Lemma 2.3. If e e Int(V+)
and / e Int((Ve)+) are fixed, then (x,y) Ix- YI and (,a) ]- air define
ordered metrics in and e, respectively. Given e > 0, > 0, n e Z+, and (y, a) E A’,
we denote by/X_’’ (y, a) the set of all (x, ) e A’ such that

(y, a) << (x, 0),

Obviously ta_",,,n ty," a) is open in ]d. From Lemma 2.3 we obtain

/g’’’
n (y,,)

where we take and 5 rational and positive, n e Z+, and (y, a) from a dense countable
subset of A’. Consequently,/d_ is a Borel set in

Now let # be a Gaussian measure on P. Fix any v Int(V+). Define the line
x + Rlv {x + rv e V: r e R1} for every x e ld. By Part (a) the set/X_ N (x + lRlv)
is at most countable, and hence, it has Lebesgue measure zero. Since Int02+) , it
is a straightforward matter to verify that/X_ is an exceptional set in ]d in the sense of
Aronszajn [6, Def. 1.1.2]. Applying a result of Phelps [20, Prop. 5], we conclude that
,(u_) 0.

(c) Let (x, 0) X’. Taking G O+ (x, 0) in Proposition 1.2(i) we observe that
the sets A CI(X’(,0)_) and B X’ \ X’(x,0)_ form an invariant order decomposition
(A, B) of X’ whose boundary H A N B O,’Y(z,o)- is described in Proposition 1.3.
Obviously, (x, 0) ff G c H.

It remains to show X[ 0) c/X_. We take any (z, ) H with << 0. Since A is
lower closed in a strongly od-red space X, we can find a sequence z << z2 << << z
in X with za z, and another sequence
From our definition of X’(,0)_ and A we obtain (zk, k) X’(x,0)-, whence

(1) wek (zk) -4< Wo_(x) for all k e N.

We claim also

(2) n C1 U
n=l k=n
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Namely, it is easy to deduce from (T) that for every m E N there exists k > m
such that Tez << Tezk and hence, we,(Zm we,(z -+ wek(zk wek(z by
Proposition 1.6. Applying Corollary 2.2 to these inequalities, we arrive at (2). Next,
we combine (1) and (2) with << to obtain

(3)
On the other hand, (x, 0) e H and (z, ) e H imply w(x, O) (we(x), O) C H and
w(z, ) (we(z), ) c H.

Finally, suppose (z, ) e 8_. Then we(z we_(z
as well, and, consequently, H must contain a pair of points (a, ) and (b, ) satisfying
a << b. But (a, ) << (b,) is impossible by Definition 1.1. We have proved also
(z, ) L/_. This completes our proof.

In contrast with the results in Tak [30, Props. 5.5 and 5.6] for T"
strongly increasing we are unable to obtain a similar complete characterization of the
sets/_ and b/+. We can prove only the following consequence of Theorem 3.4(c).
Here we write (X, a)--- X {a} c X whenever a e O.

COROLLARY 3.5. Let all hypotheses of Theorem 3.4 be satisfied, including
S_ 3 hi_. In addition, assume X is connected. Let (x,

0 < << (X,
Finally, set A, {y e X’(y, a) e X(x,e)-}, A Cl(A’), B X \ A’

and X {y e X: (y, a) e Xx,e)_} for a e O, a << O, and denote by h the set of all
such a for which the interior OfXa in X is nonempty. Then the following statements
are valid.

(i) If B then (A,B) is a a-invariant order decomposition of X, and
AUX c A’ A \X whenever << a << in O. If << 0 then A, t{A,
<<a<<O}.

(ii) If a A then X Aa N B, and, in particular, if also <_ a << then X
is a nonempty a-invariant Lipschitz d-hypersurface in V.

(iii) Every simply strongly ordered subset of A is at most countable, and if it is a
Gaussian measure on Vo then it(A) O. In particular, A is a Borel set in Vo.

Analogous results hold for A’(,o)+ and Xx,o)+.
Proof. Suppose there exists a O,

Set A A’(,o)_ (which is open and lower closed in A’), A CI(A), B A’ \ A’(,o)_,
and B Int(B) (which is open and upper closed in A’). By Theorem 3.4(c), (A, B)
is an invariant order decomposition of A’ with the boundary H A B. Since X is
connected and (X, a)A H q), we have either (X, a) c A or else (X, a) c B. The
former case forces (X, 0) c A by 0 _< a, thus contradicting (z, 0) H. The latter
one forces (X, ) c B by a << , thus contradicting (x, ) H. Hence, we have
proved (X, a) A’(x,o)_ as desired.

Proof of (i). Set/,0 {y e X" (y, a) e B } for a e O, a << , and observe that
X A, t X /,0 is a disjoint union of a-invariant sets, where A, is open and
lower closed and/,0 is open and upper closed in X. Consequently, B X U/,0,
and it is easy to see that (A, B) is a a-invariant order decomposition of X provided
B q}. Now let A << a << in O. Obviously, A, c A’ A\X. To
show also Xa c A’, we fix any y X. Then (y,a) H and A << imply
T(y,)) << T(y, a) H, whence (y, ) A, and we have shown X c A’. We
conclude that A t2 X A, t X c A’.

Finally, let A << in O. We have already proved {A’a [[A, ]]} c A’. On
the other hand, if y e A, then the fact that (y, ) A and A is open in a strongly
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ordered space A’ X O shows that (y, a) E A for any a
whence y e A’ for some a e [[A, ]]. It follows that A, t_J{A,’a e [[A, 0]]} as
desired.

Proof of (ii). It follows immediately from the proof of (i) that B CI(/’)
andX A3B for everya CA. If also <_ a <<0thenXa is nonempty by
(x, x’ x(x,0)- 0, and is a Lipschitz d-hypersurface in 17 by Proposition 1.3.
The invariance of Xa under Ta has been proved in (i).

Proof of (iii). From (i) we obtain Xx VI X 0 whenever A a 0. Since X is
separable, every simply strongly ordered subset of A can be only finite or countable.
To show that A is a Borel set in Vo we fix any r/ Int((Vo)+). Given u v in X and
E (0, cx)), we define Uu,v, to be the union of all order intervals [[a,/]] in O such

that (v, a) A, (u, ) B and 0 << - a << r/. Clearly a 3>oUu’v’ if and
only if [[u, vii c X for a O, a << 0. Hence A t.J<<v N>0 U’v’ which remains
valid even if we take u and v from a countable dense subset of X, > 0 rational, and
a and from a countable dense subset of O. We conclude that A is a Borel set in

Vo. If # is a Gaussian measure on Vo, then #(A) 0 by the same arguments as in
the proof of Theorem 3.4(b). The proof is now complete.

Remark. Loosely speaking, Corollary 3.5 contains the following results for a given
(x, }) e X O" The set Xx,0)_ forms the boundary of the set X’(x,0)_ in X [[-cx, ]]
of all (y, a) e X’ such that a << and w(y) -#< To-(x). This boundary is an invariant
Lipschitz hypersurface in ) which can be expressed as the union of the sets (X
for a << . Except for a set A of Gaussian measure zero in O, every X, a A,
is a a-invariant Lipschitz hypersurface in which is strictly decreasing in a, i.e.,
Aa t_J X c A \ X provided << a << 0. If X is an open order interval in V, and, a A are such that << a << 0 and X = q}, then X -#< X.

Combining Theorems 3.3 and 3.4(b), we obtain the following analogue of well-
known results due to Hirsch [14, Thm. 7.8 and 8.10(d)] for strongly increasing continu-
ous-time semiflows.

THEOREM 3.6. Let all hypotheses of Theorem 3.4 be satisfied, together with
8_ k3 hi_ q+ kJ hi+. Let (x, ) X X O, and let Ix be any Gaussian measure on

12 Y x Vo. If (x, ) 8 =_ 8_ (3 8+ then To(x) is a quasi cycle for To contained in

S 8o- f3 8o+; otherwise, (x, O) bl Lt_ t_J hi+ where #(hi) O.

4. Examples. In this section we present three examples to which our results
from 3 can be applied. Our first, Example 4.1, is a single reaction-diffusion equa-
tion depending upon parameters in both the reaction function and Robin’s boundary
conditions. Our second, Example 4.6, is a strictly cooperative system of ordinary
differential equations depending upon parameters in the reaction functions. It is easy
to see that these two examples can be combined into a strictly cooperative system of
weakly coupled reaction-diffusion equations or into a system of two reaction-diffusion
equations for two competing species, cf. Matano and Mimura [17]. Our last example,
Example 4.10, illustrates and clarifies our results for the sets L/_ and b/+ obtained in

3.
Example 4.1. We consider the initial-boundary value problem (IBVP) for the

following reaction-diffusion equation:

Ou
(1) 0---[ + A(x, t)u f(x, t, u) + -(x, t)u in f (0, cx);

Ou
O + zg(x, t)u 0 on O (0, );
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(1i) u(x, O) no(x) in

Here, f is a bounded open domain in 1RN with the boundary Of of class Ca and,
with the outer unit normal n n(x) to OFt at x E Ogt, A(x, t) is a uniformly strongly
elliptic operator of the form

N 02 N

A(x, t) a,(x, t) + a,(x t)
0

i,j=l
OXiOXj

i=1

whose coefficients satisfy aii, ai Cu( x R), the reaction function f satisfies

f C2( x R x R1), and C2( x R). In Robin’s boundary conditions we
sume 0 C2(OD x #). Finally, u" flx 1 is the unknown function
of (x, t) with a prescribed initial distribution u0 fl 1. All functions aj, a, f,
7, and d entering (IBVP) are sumed to be T-peodic in time t with a period
T (0, ). We will express the T-periodicity in time of a function " 1 by
writing " I/TZ 1.

In order to guarantee global existence in time of an Lp-solution u (cf. Amann
[2], [3], [5]) to (IBVP) for every sufficiently smooth initial distribution u0 such that
0 no(x) M for all x , we make the following two hypotheses.

(f)" f(x, t, 0) 0 for M1 (x, t) e x .
(T)" There exists a constant M (0,) such that T(x, t) -f(x, t,M)/M for

(x, t) e
In particular, then (x, t) 0 is a subsolution and (x, t) M is a supersolution

of (IBVP). Consequently, if u is a classical solution to (IBVP) in fl x [0, t0), for some
t0 e (0, ], i.e., u e C(x [0, t0))Cl’(x (0, t0))C2’l(fl x (0, t0)) satisfies (IBVP)
in fl x [0, t0), then we may apply the mimum and boundary point principles for
parabolic equations (cf. Protter and Weinberger [22]) to conclude that

(2) 0 u(x, t) M for all (x, t) fl [0, t0).

Now we are ready to employ existence, uniqueness, and regularity results due to
Amann [2], [3], [5] to construct our mapping T-X X.

We denote by W W(fl)the Sobolev-Slobodeckii interpolation spaces for 1 <
p < and 0 s < , and, by C" C’(fl), the Hhlder spaces for 0 p , cf.
iebel [33, Chap. 4]. If p < s- (N/p) then W C" is a compact imbedding, and
both W and Cv are strongly ordered Banach spaces with the pointwise ordering. If
u, v 1 are Lebesgue meurable functions, we write u v if and only if
u(x) v(x) for almost everywhere x e ft.

Next, we fix real numbers p and p such that

1 N
(H) 2p< and 0<p<--.

2 p

FinMly, we combine results of Amann [3, Thm. 2.1(i, ii) nd Cor. 2.2] with our a

priori estimate (2) to conclude that, given any u0 [0, M]w, where

[0, e 0 M},

there exists a unique global Lp-solution u " W of our (IBVP), cf. Amann [2,
15] or [3, 2] or [5, 7] for its definition. Moreover, u is also a clsical solution of
(IBVP) satisfying

e c,) c,) c((0,
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We set V Wp, I C2( x (JR1/Z)), c (x/z)) and

V x Vo. From now on we assume that all aij, hi, and f in (1) are fixed, and we also
fix an arbitrary constant M E (0, cx3). We denote X [0, M]v;

is the set of all 7 e Q such that the hypothesis (7) is satisfied for this M, i.e.,

7 < -f(’," ,M)/_M; and o (I#)+, the positive cone in 1. Then is a closed
subset of V, and {9 x # is a closed subset of whose elements are denoted
by 0 (7, 0). All these spaces are endowed with the pointwise ordering.

Next we apply the strong maximum and boundary point principles (cf. Protter
and Weinberger [22]) in a way very similar to Hirsch [14, Proof of Thm. 4.1] to derive
the following stro_ngly monotone dependence of the solution u(t, no, O) to (IBVP) upon
u0 X and 0 0 for each fixed t (0, cx3).

PROPOSITION 4.2. (a) If uo < U’o in -, 0 ( and t (0, cx3), then we have

’0) in-u(t, u0, O) << u(t, u0,

(b) Let 0 << Uo < U’o in X, 0 < O’ in O, and t e (0, cx3), and assume (no, O) # (u, 0’).
Then we have

0’) in-.0 << u(t, no, O) << u(t, u0,

Observe that << ’ in X means min(’ ) > 0 for , ’ X.
Amann [5, Tam. 7.3(i)] has shown that, when regarded as a mapping of (t, u0, 0) e- (9 C , Wp C2(Oft (lI/TZ)) into c Wp, the solution u(., .,. of

our (IBVP) is continuous and also Lipschitz continuous with respect to both u0 and
0 locally uniformly in ]R , i.e., the following result is valid.

PROPOSITION 4.3. We have

From Amann [5, Thm. 7.3(v)] and (3) we easily obtain the following compactness
properties of the mapping U(T, ., )" - (9 C Wp (Jo - C Wp

PROPOSITION 4.4. Let E be any subset of 0 which is bounded in Vo. Then
U(T,-, E), the image of- E under the mapping U(T, .,. ), is a subset of- 3 C+2
which is bounded in C+2, and, in particular, it is relatively compact in Wp.

Definition of T" 2d X. We set X [[0, M]]v in Y Wp, i.e., X Inty().
We choose V7 to be any closed linear subspace of 7 such that V7 3 Int((I7)+) # in

I7, and V9 to be any closed linear subspace of o such that V9 3Int((9)+) # in IYg.
Hence, Vo V7 V9 is a strongly ordered Banach space. The following three examples
present the basic choices for VT, and similarly for Vo" (i) V7 7 C2( (R/TZ)),
(ii) V7 C2()C 7 (temporally independent functions), or (iii) V7- R c 7
(constant functions).

We may also choose one of the spaces V7 or V9 to be trivial, thus eliminating one
of the parameters 7 or 0. Next we choose O to be the set of all 0 (, 0) Vo such
that 7 << -f(’," ,M)/M in V and 0 >> 0 in V, i.e., 0 Intyo(O 3 Vo) in Vo.
Finally, we set X X x 0 and 1 V x Vo, and define T by

T(uo, O) (U(T, Uo, 0), O) for all (uo, O) e X.
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It follows from Propositions 4.2(b) and 4.3 that T" A" A’ satisfies hypothesis
(T) in 1. By Proposition 4.4, given any 0 E O, the 0-orbit O+e(Uo) of every u0 E X
is relatively compact in X c V, whence wo(uo) c X, and, more precisely, we have
either wo(uo) {0} or wo(uo) C X or wo(uo)= {M} by Propositions 4.2(a) and 1.5.
The case wo(uo) {M} cannot occur because u(t, M, O) << M for t > 0, by the strong
maximum and boundary point principles. The case wo(uo) {0} is easily excluded
by strengthening hypothesis (f) to

(f’)’f(.,.,0)_>0 inx_andf(x’,t’,0)>0 for some(x’,t’)ex.
From (f’) we derive u(t, 0, 0) >> 0 for t > 0. We conclude from Proposition 4.4

that every point in A’ is both lower and upper approximable, and, therefore, we can
apply Theorems 2.5 and 3.6 to obtain the following theorem for our (IBVP).

THEOREM 4.5. Assume that aij, hi, and f satisfy the C2-smoothness hypotheses
stated above, together with the uniform strong ellipticity of A(x, t) and with (f’). Then
b[ b[_ Ubl+, the set of all w-unstable points for T, has zero Gaussian measure in

If (no, O) X \ Ll then wo(uo) is a quasi cycle in , with the following three
properties.

(i) Let Wo wo(uo), and let 01, 02 0 be such that 01 < 0 02. Then wo (wo)
is a ki-cycle .for Te independent from the choice of wo wo(uo) for i 1,2. In
particular, given any wi wo,(wo) with wl

_
w2, the function u(., wi, Oi) R

Wp is a kiT-periodic solution of (IBVP) with the parameter Oi (Ti, 0) and the
initial distribution wi.

(ii) Let wo, 0, ki, and wi be as in Part (i). Then there exists r R such that

u(s, wl,O) u(r - s, uo, O) u(s, w2,02) in Wp for all s e +.
(iii) If e e (0, oc), one can choose Oi e 0 in Part (i) so close to 0 that for any

choice of wo wo(uo) and w wo, (wo) with Wl <_ w2 we have

0 U(’, W2, 2) U(’, Wl, 1) in C(- x 1T).
Moreover, we can even choose Oi so close to 0 that there also exists r R+ such
that

Ilu(r + s, no, ) u(s, wi, Oi)l]w -< e for all s e + and 1, 2.

Example 4.6. We consider the initial value problem (IVP) for the following system
of n ordinary differential equations indexed by k 1, 2,..., n:

duk
n

(4)
dt

fk(t, Ul, Us) +

(4) u(0) u,0.

Here, u _= (u,..., us) R+ -- Rn denotes the unknown vector-valued function of
time t with a prescribed initial vector uo =- (Uk,o) Rn. We assume that the reaction
functions f satisfy f, Of/Ou C(R+ Rn), and k C(R). Let
denote the matrix with the entries /kt, 1 <_ k, g <_ n, and let /k (k)k denote its
kth row. We assume that, for each t e R_, the Jacobian matrix ((Ofk/Out) + /k) of
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the vector field f(t, + (t) (fk(t, .) + "yk(t)) R’ --- R is strictly cooperative
in Rn.

(SC)" If k l and (t, u) e R_ R, then

Ofk (t, u)

In order to guarantee global existence in time of a classical solution u C (R
Rn) to (IVP) for every initial vector u0 n such that 0 Uk,o Mk for 1 k n,
we make the following two hypotheses.

(f): fk(t, 0,..., 0) 0 for all t e R and k 1,..-, n.

(): There exist constants Mk (0, ), 1 k n, such that

n

7kt(t)Mt --fk(t, M1,’" ,Mk) for 115 e .
=1

In particular, then 0 uk(t) Mk for all t provided 0 uk,o Mk. All
functions fk and 7kt entering (IVP) are sumed to be T-periodic in time t
with a period T {0}. The Euclidean space is strongly ordered by the
coordinatewise ordering: If u (uk) n and v (vk) e n, we write u v if and
only if Uk Vk for k- 1, 2,..., n.

We set V and Vo C(I/TZ xn). om now on we sume that all
fk in (4) are fixed, and we also fix an arbitrary vector M (Mk) n with Mk > 0
for k 1,2,...,n. We denote- [0, M]v; and isthe set of all7 e o such
that the hypotheses (SC) and (7) are satisfied. The space o is endowed with the
pointwise and coordinatewise ordering.

Next we apply the Mfiller-Kamke theorem (cf. Mfiller [18]) to derive the following
stronfily monotone dependence of the solution u(t, uo, 7) to (IVP) upon u0 X and
7 O, for each t (0, )"

PROPOSITION 4.7. All statements in Proposition 4.2 are valid also for (IVP) if
we write 7.

It is easy to prove also the following continuity properties of the solution u of our
(IVP) with respect to t, u0, and 7.

PROPOSITION 4.8. We have

Definition of T" AY ---, X. We set X -[[0, Mv in V , i.e., X =_Inty(X).
We choose Vo to be any closed linear subspace of Vo such that Vo N Int((Vo)+)_ -in Vo. The following two examples present the basic choices for Vo" (i) Vo Vo
C(]I/TZ ]lnxn), or (ii) Vo ]1nXn /rO (matrices with constant entries).

Next, we choose 0 to be the set of all - Vo such that

9/k(t) > inf Ofk (t, u)
uE

for allk#g and t

"Ykk(t) < -M A(t, Mx,
n 1Mn)if- E "ykt(t)Mt for all k and t E I1/TZ.
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Equivalently, O Intvo (Of3Vo) in Vo. Finally, we set , XO and V VVo
and define T by

e x.

It follows from Propositions 4.7 and 4.8 that T" A’ -- A" satisfies hypothesis (7")
in 1. Since X [0, M]R is compact, every point in A’ is both lower and upper
approximable provided To(no) c X for all (u0, 0) E A’. Similarly, as in Example 4.1,
we can achieve To(no) c X by strengthening hypothesis (f) to

(f’)" fk(t, 0,..., 0) _> 0 for all t E ]R_ and k 1,..., n, and fk,(t’, 0,..., 0) > 0 for
some t’ ]I( and+

Finally, we can apply Theorems 2.5 and 3.6 to obtain the following analogue of
Theorem 4.5 for our (IVP).

THEOREM 4.9. Assume that fk satisfy fk, Ofk/OUt C((]]/TZ) ]n), and (f’).
Then bl -1/l_ UIA+ has zero Gaussian measure in
oc then also dim(l;) n + no < oc, and the (n + no)-dimensional Lebesgue measure

of bl is zero.

If (no, ) q X \ bl then To(no) is a quasi cycle in So having all properties (i),
(ii), and (iii) from Theorem 4.5 with ]Rn in place of W.

Remark. Problem (P’) from the Introduction can be treated in the same way as
Example 4.6. More generally, in both problems (P) and (P’), in place of -.tn__] "yk(X, t)ut
and "yk(t), respectively, we could consider any polynomial pk(ul,’", Un) in the vari-
ables u],..., un [0, oc) whose coefficients would play the rble of (possibly space-
and/or time-dependent) parameters. Naturally, condition (3’) from Examples 4.1 and
4.6 might then become more complicated.

Example 4.10. We consider the following single autonomous ordinary differential
equation:

(5)
du
dt (O (u))u fort

(5) u(0) u0.

Here, C1- (]1_), i.e., ’_ ]1 is locally Lipschitz continuous, and 0

_
is

a parameter. We assume that (0) 0 and (u) ----, oc as u oc. The unknown
function u C (]R_) exists globally in time for every initial value u0 e R_. Moreover,
the limit u(c) limt__. u(t) exists in R_ and satisfies

e {0}

where -1() {v e R_ "(v) } is closed in R_. Clearly, u(oc) > 0 provided
u0 > 0 and > 0. Again, we write u(t, no, O) to indicate the dependence of the
solution u of (5) upon t, u0, and . We have

and if t e (0, oc), u0 _< u, and 0 _< O’ in (0, oc), and (u0, O) # (u, 0’), then also

0’).0 < u(t, no, O) < u(t, no,

We set V Vo R] and X O (0, oo) and fix any period T e (0, Oc). We
define T" A’ ---. X by T(u0, 0)= (U(T, no, 0), O) for (u0, 0) e X (0, oc)2. Then T



410 PETER TAK/

satisfies hypothesis (T), and every point in A’ is both lower and upper approximable.
It is evident from Lemma 2.3 that the sets S_ and +, and thus/d_ A’ \ S_ and
b/+ A’ \ ,.q+ as well, are independent from our choice of T e (0, oo). They can be
determined from the graph of o as follows.

LEMMA 4.11. Let E (0, oo) be fixed. Then (0, oo) \ go-i(0) CJnEg(an, b,)
is the union of at most countably many pairwise disjoint, nonempty open intervals
(a,, b,), for n E g E N. Furthermore, given any n E g and c, E (a,, b), we have
the following two alternatives.

(i) o(cn) < 0 in which case o(x) < 0 and u(oo, x,O) b, E ,.qo- for all x E
(an, b,), and a, E blo+; in particular, we have (an, b,] E So-. Furthermore, either
(an, bn] C So+ or else (an, bn] C blo+.

(ii) O(Cn) > 0 in which case o(x) > 0 and u(oo, x,O) an e ,-qo+ for all x e
(aN, bn), and b, E ldo_; in particular, we have [a,,b,) c So+. Furthermore, either
[an, b,) C So- or else [an, bn) C blo-.

LEMMA 4.12. Let 0 e (0, oc) and x e o-1(0) be fixed. Then (x, 0) e 8_ if and
only if there exists a sequence Xl < x2 < < x in (0, oc) such that Xn x and
qo(x,) < 0 for all n N.

An analogous statement holds for S+.
It follows from these two lemmas (whose proofs are simple exercises) that in order

to determine the sets q_ and S+ we must first compute their intersections with the
graph of 9 by Lemma 4.12 and then S_ and q+ by Lemma 4.11. Roughly speaking,
they can be as complicated as the graph of o.
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M.D. (Dartmouth Medical School), for helpful discussions concerning applications of
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VECTOR-VALUED TAUBERIAN THEOREMS
AND ASYMPTOTIC BEHAVIOR

OF LINEAR VOLTERRA EQUATIONS*
WOLFGANG ARENDTt AND JAN PROSS$

Abstract. The asymptotic behavior of the solutions of linear Volterra equations in a Banach
space X of the form

(.) u(t) f(t) + a(t T)Au(r)d(T), >_ 0

is studied, in particular that of the resolvent S(t) for (.); here a E Loc(+) and A is a closed linear
operator in X with dense domain. A complete characterization of the existence of limt-0 S(t)x Px
for all x E X in the sense of Abel is obtained, and the nature of the ergodic limit P is studied. By
means of vector-valued Tauberian theorems for the Laplace transform, a general result on convergence
of S(t) in the strong sense is derived. Several examples are given which illustrate this result, and
also an application to the theory of linear viscoelasticity is presented.

Key words. Volterra equations, resolvents, asymptotic behavior, Laplace transform, ergodic
limit, Abel-limit, Cesaro-limit, Tauberian theorems, C0-semigroups, cosine families, viscoelasticity

AMS(MOS) subject classifications, primary 45N05, 45K05, 44A10; secondary 47D05,
47G05, 76A10

1. Introduction. Let X be a Banach space, a E Loc(]R+), A a closed linear
operator in X with dense domain D(A), and consider the abstract linear Volterra
equation in X

(1.1) u(t) f(t) + a(t- T)Au(T)dT, t O,

where f: R+ - Z is continuous, R+ [0, c). XA denotes the Banach space D(A)
equipped with the graph norm ].IA of A. A function u E C(R+; XA) satisfying (1.1)
on + is called a strong solution of (1.1), while u C(li(+; X) is a mild solution of
(1.1) if a u e C(R+; XA) holds and

(1.2) u(t) f(t) + A a(t- T)U(T)dr, t >_ 0,

is satisfied on +. A family {S(t)}t>o c B(X) of bounded linear operators in X is
called a resolvent for (1.1) if S(t) commutes with A and satisfies the resolvent equation

(1.a) S(t) + a(t- r)AS(r)xdr, t >_ O, z e D(A).

Once a resolvent S(t) for (1.1) is known to exist, it is unique, and the solution of (1.1)
is represented by the variation of parameters formula

(1.4) u(t) - S(t )f(T)dT, t >__ 0,
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whenever u is a mild solution of (1.1), then S f E CI(R+;X) and u is represented
by (1.4).

By now the question of existence of a resolvent for (1.1) has been settled for many
different classes of pairs (a, A); for a general exposition of the theory, we refer to Priiss
[33]. Here we always assume the existence of a resolvent S(t) for (1.1) which is in
addition of subexponential growth, i.e., which satisfies

(1.5)
1

lim log IS(t)l < o.
t t

It is the purpose of this paper to study the asymptotic behavior of the solutions of
(1.1), in particular that of the resolvent S(t) itself. More precisely, the existence of the
limits limt__. u(t) u(cx) and limt S(t) P in various senses are investigated,
and the nature of the limits u(oc) and P are discussed.

Our approach is based on the theory of vector-valued Laplace transforms. A
well-known Abelian theorem shows that if limt_ S(t)x Px for all x E X, then

(1.6) H(A)- (A) S(t)e-tdt, Re A > 0,

satisfies

(1.7) A- lim S(t)x:= lim AH(A)x=Px for allxeX.
t--*cx X---O+

Therefore it is natural to study first the existence of the Abelian limit P of S(t) as well
as its properties. This will be done in 4, where we also apply some elementary vector-
valued Tauberian theorems to deduce the convergence of S(t) in the ordinary sense
from existence of the ergodic limit P B(X); for that, several strong assumptions on

S(t) are needed. Once the Abelian limit P B(X) of S(t) is known to exist, it follows
easily that A-limt_. u(t) u(cx) also exists whenever f(t) admits an Abelian limit
f(cx3) and then u(cx)= Pf(oc) holds.

The main result of this paper, the General Convergence Theorem stated and
proved in 5, gives sufficient conditions for the strong convergence of S(t) to its ergodic
limit P as t - c. For the special case a(t) 1 and A the generator of a bounded C0-
semigroup T(t) in X, we have S(t) T(t) and the result reduces to a stability theorem
for C0-semigroups obtained recently by Arendt and Batty [2] and independently by
Lyubich and Phong [28]; cf. also 7. The proof of the General Convergence Theorem
relies on the complex Tauberian theory for the vector-valued Laplace transform. In
fact, it is very much inspired by the proof of Arendt and Batty [2] for the semigroup
case. However, due to the more complicated structure of the Laplace transform H(A)
of the resolvent S(t) for (1.1), i.e.,

1
(I- 5(A)A) -1 Re A > 0,(1.S) H(A) X

the Tauberian arguments involved are more delicate and differ from those employed
in the proof of Arendt and Batty [2].

Since Abelian and Tauberian theorems for the vector-valued Laplace transform
are at the heart of our approach, and since there is no coherent presentation of this
material available in the literature, we have included two sections on this matter.
Section 2 contains the basic Abelian theorem, as well as the vector-valued extension
of the classical real Tauberian theorems due to Hardy-Littlewood, Wiener, Pitt, and
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Karamata; cf. Doetsch [15] and Widder [42] for their classical statements. Complex
Tauberian theorems are presented in 3. Here a condition on the Laplace transform
] of f is given which implies convergence of f(t) (t -. ). A first result of this
type had been given in 1938 by Ingham [20], but recently a simple new technique of
proof due to Newman [30] has led to considerable extensions; see Korevaar [25], Allan,
O’Farrell, and aansford [1], Arendt and Batty [2], Ransford [34], and Batty [3].

Section 6 is devoted to an elaboration of several examples and special cases of the
theory developed in 3-5. In particular, several classes of kernels are presented, for
which the assumptions of the General Convergence Theorem reduce to boundedness
of S(t) (which is necessary for the existence of the strong limit of S(t) anyway) and
to a spectral condition that cannot be relaxed (and to some extent is also necessary).
In 7, we apply our results to the theory of linear viscoelasticity. Here we show that
if A generates a uniformly bounded cosine family and a(t) is of the form

(1.9) a(t) ao + at + a(T)dT, t >_ 0

with ao, ao >_ O, a(t) >_ 0 nonincreasing, log a(t) convex, and limt_ a(t) O,
then S(t) converges strongly as t -- c if in addition N(A) +/- N(A’) {0} and
a(t) at hold. This result shows that any viscoelastic fluid in a smooth domain
t c IRa with compact boundary is asymptotically stable in the strong sense, whether
Ft is bounded or not. It has been shown in Priiss [32] that viscoelastic fluids are
uniformly asymptotically stable if and only if A PA is invertible. This is always
true for bounded domains Ft, but it is in general not the case for unbounded domains;
cf. 7 for these concepts and further discussion.

2. Abelian and real Tauberian theorems. Throughout this section, (X,
is a Banach space and f e no([0, c), X) is such that

f(,X) e-XtI(t)dt := lim e-atf(t)dt

exists for Re > 0 (this is equivalent to supt_>0 e-)’t f2 f(s)dsl < o for all > 0).
DEFINITION 2.1. Let f X. The function f converges to f in the sense of

Cesaro (t ---, o) if 6’- limt__., f(t)"= limt__,(1/t) fo f(s)ds f, and f converges
to f in the sense of Abel (t o) if A limt.__, f(t) := lim)0+ )f(,X) f.

The following Abelian theorem is easy to prove (see [19, Thm. 18.2.1]). It will be
convenient to introduce F(t) f J’(s)ds as an auxiliary function.

TOaEM 2.2. Let f, F X.
(a) /f limt__, f(t) f, then 6" limt__, f(t) f.
(b) If 6" limt__, I(t) f, then A limt__, J’(t)
(c) If limt F(t) F, then lim)__,0+
Note that (c) is a special case of (b) since f()) (F’)/(,) )_() (, > 0).
A result if called a Tberin theorem if a condition on f is given under which

the converse implications of (a), (b), or (c) are valid. Such theorems are presented in
sections A, B, C, D, and E respectively. Most of these results are well known at least
in the numerical case. We include proofs here for the sake of completeness.

Our main objective is to find conditions under which Abelian convergence implies
convergence (see D).
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A. Conditions under which C-limt_, f(t) f implies limt_ f(t) f.
A vector-valued function f is called feebly oscillating (when t -- oc) if

lim If(t) f(s)l- 0
t/s--*l

(cf. [19, Def. 18.3.1], [43, Def. 8.4]).
Example 2.3. Assume that tlY(t)l < M for t >_ ’, where T > 0. Then F is feebly

oscillating. In fact, IF(t) F(s)l <_ ft lf()[(d/) <_ M og(t/s) for t _> _> ’.

THEOREM 2.4. Assume that f is feebly oscillating and let f X. If C-
limt__, y(t)= y, then limt__, f(t)= f.

Proof. We can suppose that f 0. Let e > 0. There exist > 0, to > 0
such that If(s) f(t)l < e whenever s, t > to, s e It 5t, t + 5t]. Hence If(t)
(1/25t)/.t(1+5) ft(l+5)t(-) f(s)dsl I(1/25t) t(-) (f(t) f(s))ds[ <_ if t _> to. Since

1 ft(+)
t--.lim ]t(-) f(s)ds O,

we conclude limt__. f(t) O. I-!

B. Conditions under which A-limt_ f(t) f implies C-limt_. f(t)
f. The following result is a particular case of [19, Thins. 18.3.3, 18.3.2].

THEOrtEM 2.5. Let f X. Assume that f L([T, cx); X) for some T >_ O. If
A lim_. f(t) f then C- limt_. f(t) f.

Proof. 1. We first assume that T 0. For/ > 0 let ez(t) =/e-(t > 0). Then
span {e"/ > 0} is dense in L[0,) (in fact, if g
fl(fl) for all > 0, then g 0 almost everywhere by uniqueness theorem for Laplace
transforms). By hypothesis lima_. f e-Sf(cs)ds lim),_0+ f e-sf(s/A)ds
lira),_.0+ Af e-Sf(s)ds f. Hence

fo fo Cs)ds f (ef, :)lirn(e, f(a.)) lirn e-SS(as)ds lirn
for all/ > 0. It follows that lim,_.(h, f(a.)) ff h(t)dt for all h E/[0,x).
Letting h X[0,] we obtain lima_ 1/af S(s)ds
(h, f(,.)) f.

2. If T > 0 the result follows by applying 1. to g(t) f(t
Another result of this type involves an order condition. We assume in the following

theorem that X is an ordered Banach space with normal cone X+ (i.e., X+ is a closed
convex cone such that X+ q (-X+) {0} and X_ X_ X’ where X_ denotes the
dual cone; see [5] for details). For example, X may be a Banach lattice.

THEOREM 2.6. Assume that f(t) >_ 0 (i.e., f(t) X+) for t >_ O. If A-
limt_ f(t) f, then C limt_. f(t) f.

Zaramata’sproof of this result (see [43, Thm. 8.5.3]) goes through in the vector-
valued case described above. A very short and elegant proof in the scalar case is given
by ZSnig [24].

(:3. Conditions under which lim_.0+ ](A) F implies limt_. F(t) F.
The following theorem is due to Hardy and Littlewood in the numerical case; see [43,
Thm. 8.4.3].

THEOREM 2.7. Let F E X. Assume that for some T > 0

(2.1) M sup tlf(t)l < c.
t>"
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If lim__,0+ ]() F, then limt__, F(t) F.
Proof. 1. We first assume that T 0. For t > 0 we have

IF(t) ]( )1 /(s)[1 e-8/t]ds f(s)e-/tdsl

_< ( [1 -/]/-e + -l-/el

_< [ p t[ -/]/ + --e]

_< [ p (--/+ --el
0<xl

Since limt_ ](1/t) F, it follows that F is bounded. But A- limt_, F(t)
lim_+0+ ](A) F. So it follows from Theorem 2.5 that C- limt__, F(t) F.
The function F is slowly oscillating (see Example 2.3). Hence limt_, F(t) F by
Theorem 2.4.

2. If T > 0 the result follows from 1. by considering f(t + T) instead of f(t). ]

D. Conditions under which A- limt__, f(t) f implies limt__, f(t)
f. Since /P(A) ](A), any Tauberian theorem of type D yields one of type C.
Conversely, if f E CI([T, cx),X) we can apply a result of type C to the function
f’(t + T) and obtain a Tauberian theorem of type D.

Following an idea of Batty [3] we apply instead Tauberian theorems of type C to
the function f defined by

(2.2) f(t) (f(t + ) f(t))/5 (t > O)

for some 5 > 0. The following implications hold.
LEMMA 2.8. Let f X, 5 > O.

ft+6Proof. Since [(1/5) , f(s)ds-fl--1(1/5) , (f(s)-f)dsl < sup>_t If(s)-
fl, (i) implies (ii), and (ii) is equivalent to (iii) since f 5(s)ds (1/) , f()d-
(1/5) f y()d.
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By Theorem 2.2(c), (iii) implies (iv). Since

1 (e), 1)A](A)- e f0 e-8(2.3) ](A) f(s)ds,

(iv) is equivalent to (v). Cl

Let f E X. We say, f is B-convergent to f, or simply write B-limt_ f(t)
f, if (ii) of Lemma 2.8 holds for all 5 > 0. A vector-valued function f is called
slowly oscillating (when t - c) if

lim If(t) f(8)l 0.
t--s--*O

PROPOSITION 2.9. Let foo X.
(a) If B limt__.o f(t) foo, then A limt-,o f(t)
(b) If limt-,oo f(t) foo, then B limt--.oo f(t)
(c) If f is slowly oscillating then B- limt-.oo f(t) foo implies limt-,o f(t)

Proof. (a) and (b) follow from Lemma 2.8. Assume that B- limt_,o f(t) foo.
Then

1
lim If(t)- f[ < lim If(t)- - Jtt-, -t-

f(s)dsI

lim I0 Jt tt<s<t+5t
(f(t)- f(s))ds < lim sup If(t)- f(s)l.

Hence if f is slowly oscillating, we obtain limt_.olf(t)- fol 0 by letting 5 t 0.

Every feebly oscillating function is slowly oscillating (this is obvious from the
definitions); moreover, f is slowly oscillating whenever there exists T _> 0 such that

f g + h, where g UC([r, oc); X) (the space of all uniformly continuous functions
on [r, oc) with values in X), and h e L([T, oo); X) converges to zero as t --, oc.

Remark. In order that B- limt-.o f(t) foo it suffices that (ii) holds for all
5 (0, 50) for some 50 > 0. In fact, if (ii) holds for di > 0 and > 0 it does so for
5+.

Now we are able to deduce from Theorem 2.7 the following Tauberian theorem of
type D.

THEOREM 2.10. Let f X. Assume that for some > 0

(2.4) lim sup tly(t)- f(s)l <
t--+x t<s<t+5

If A limt_, f(t) f then limt_ f(t) f.
Proof. Assumption (2.4) implies that f satisfies (2.1) for 5 > 0 small enough and

also that f is slowly oscillating. Since A limt_ f(t) f, it follows that (iv) of
Lemma 2.8 is satisfied. We conclude (iii) from Theorem 2.7 so that B-limt_, f(t)
foo. Hence limt-,o f(t) =fo by Proposition 2.9.

Note that (2.4) is satisfied whenever f e CI([T, oc), X) and Itf’(t)l < M for t >_ T;
in fact, If(t) f(s)l f f’(r)drl <- Mlog(s/t) < M(s t)/t for t < s.

Applying Theorem 2.10 to F we obtain an improvement of Theorem 2.7.
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COROLLARY 2.11. Let F E X. Assume that for some 5 > cx

t+5

(2.5) lim rlf(r)ldr < oc.
t---oO d

If lim;_0+ ](i) F, then lim F(t) F.
Proof. We have

lim sup tlF(t F(s)l < limt If(s)lds

Jim slf()lds < .
tj

Hence F satisfies (2.4) and the conclusion follows from Theorem 2.10.
E. Power series. Let p(z) zn=0 an be a power series, where a X, which

converges for Izl < x, Defining y Lo([0, ); X) by

(2.6) y(t) a if t E In, n + 1)

the preceding results yield Tauberian theorems for p. In fact,

(2.7) ](A) (1- e-)/ E ane-;n (Re) > 0).
n--0

From Theorem 2.7 Hardy’s theorem can be obtained.
THEOREM 2.12. Assume that sup{alan n No} < cx, and let b X. If

limzT1 p(z) b, then ’n=oan =bo.
The special case when limn_ nan 0 had been proven by Tauber [38] (in the

scalar case) and was the starting point of Tauberian theory.
In the case of power series, theorems of type C and D are equivalent. In fact,

let bn nk=Oak, or equivalently, a0 b0, an bn- b-I (n 1,2...). Then
q(z) n=o bnzn has the same radius of convergence as p(z). The formula for the
Cauchy product yields

that is,

z_lEaz=Ez’Eazk:Ebz
k=0 k=0 k=0 k=0

(Izt < 1);

E akzk (1 z) E bkzk (Izl < 1).
k=0 k=0

Thus A- limn_ b := limzrl(1- z)k=obkZk limzT -k=oakZk whenever one
of the limits exists. So we obtain the following.

CortOLLArtY 2.13. Let b, X be such that sup{nlbn bn-ll n N} < x. If
A- limn_. bn b, then limn_. bn b.

3. Complex Tauberian theorems. We assume throughout this section that
f e Loc([0, o); X) is such that

f()) lira e-tf(t)dt=: e-tf(t)dt
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exists for Re A > 0. In this section we consider conditions on ] (rather than on f) in
order to establish Tauberian theorems. The following theorem (of type C, see 2) is
a variant of [2, Thm. 4.1].

THEOREM 3.1. Let f E X. Assume that f next(IT, (:x:));X) .for some T >_ 0
and that (]()- F)/A has a continuous extension to .+\iE, where E C 1 is a
closed null set and ,0 E. If for all R > 0

(3.1) M(R) := sup,e sup f0tt>0 exp(-is)f(s)dsl < c,

then limt__, F(t) F.
Here and in the sequel we let F(t) f f(s)ds, C+ {A e C" Re A > 0}, and

+ the closure of (2+. Note that the hypothesis implies that ](A) has a continuous
extension to (2+\iE and that ](0) F. In particular, A- limt_ F(t) F.

The proof of [2, Thm. 4.1] works for Theorem 3.1 as well if the basic estimate
Lemma 5.2 which will be proved in 5 is used instead of [2, Lemma 3.1].

For E Theorem 3.1 is a version of a theorem due to Ingham [20]. A very
short and elegant proof based on an ingenious contour argument due to Newman [30]
is given by Korevaar [25]. In [2] the technique of Newman and Korevaar has been
extended in order to treat singularities in i R. Whereas in [2] it is assumed that ] has
a holomorphic extension to C+\iE, our slightly more general version is more natural
in view of the applications to Volterra equations we have in mind (see 5).

We give several comments on Theorem 3.1, starting with the case when E .
Remark 3.2. Quantitative estimates. Korevaar’s argument actually yields the

following more precise result. Assume that f e L([T, cx); X) for some T > 0 and
that F e X such that (](A)- F)/A has a continuous extension to C+ t_J i[-R, R]
where R > 0. Then

lira IF(t) F < 2
lim If(t)l.

t---+cx

Proof. In fact, Korevaar shows (a special case of Lemma 5.2 below)

2
(3.3) lim IF(t)- F < sup

t---,x3 t>0

Applying this to g(t) f(t + s) with s _> -, we have t)(A) e8 [](/) f e-rf(r)dr]
(Re A > 0) so that (t)(A) -G)/A has a continuous extension to C+ t_J i[-R, R] with
Go F f f(r)dr. Hence, by (3.3)

lim IF(t) FI-- lim
t----o t---c d 0

f(r)dr- F lim IG(t)- G[ < sup
2

t- t> lf(t)l.
Letting s --, cx yields (3.2). [:]

Quantitative estimates in the case E 0 are given in Batty [3].
Remark 3.3. Convergence of the Laplace integral at regular points. Assume that

limt_ If(t)l 0. If f has a holomorphic extension to C+ t_J U, where U is a neigh-
borhood of it/ iR, then

(3.4) ](i) e-inSf(s)ds lim e-iVf(s)ds.
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To see this, it suffices to replace f(t) in (3.2) by e-itf(t).
Remark 3.4. Riesz’s theorem on power series [40, Thm. 7.3]. Let an E X be such

that limn_ lanl 0 and let p(z) -n=O anZn (Izl < 1). If p has a holomorphic
extension to D U U (D {z e C: Izl < 1}) where U is an open neighborhood of

N
z0 e F := {z e C’lzl 1}, then p(zo) limg- -]n=o anz. This is obtained by
applying (3.4) to the function f defined by (2.6).

Next we establish a complex Tauberian theorem of type D. The following is a
variant of [3, Cor. 2.6].

THEOREM 3.5. Assume that f is slowly oscillating, let f X, and suppose that
]())- (f/) has a continuous extension to +\iE, where E C is a closed null
set such that 0 E. If.for all R > O,

(3.5) M(R) "= sup sup
rl’

eE[-,] >0
exp(-irls)f(s)ds <

then limt--,oo f(t)
Remark. The assumption implies that A limt--,oo f(t)
Proof. The function f5 defined by (2.2) is eventually bounded for 5 > 0 sufficiently

small. Let c := fo (1/5) f: f(s)ds. Then by (2.3),

ex f0 eXf
c1)](/)- -- (s)ds- X

[ 1 (e)+

f(s)ds f(s)ds.

Since the functions (1/di/)(ex 1), [(1/5/)(e)’ 1)- 1]//, and (e-)’s 1)// are

entire, it follows that (](A) -c)/A has a continuous extension to +\iE. Moreover,

exp(-ils)f s ds --1 exp(--i?8)(/(8 + ) --/(s)ds

+t

fOO
< 3-IM(R) for all r/ E fq [-R, R].

It follows from Theorem 3.1 that limt_ f fh(s)ds c. Hence B-limt_/(t) f
by Lemma 2.8. It follows from Proposition 2.9(c) that limt_ f(t) f. D

Remark 3.6. (a) If in Theorem 3.5, instead of f slowly oscillating, we merely
assume that f e Lcx([T, cx:)); X) for all di > 0, then we obtain B limt_ f(t) f

(b) However, if f is not slowly oscillating, then f does not converge in general,
even if f is bounded. An example is the function f(t) T(t)y from [2, proof of Ex.
2.5]. The function f is bounded and ] has a holomorphic extension to +. However,
f(t) does not converge for t -- oc.

Next we consider the case where 0 E. For simplicity we assume f 0. We
let Lip([T, oc), X) {f: IT, CX)) - X: f is Lipschitz continuous }.
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THEOREM 3.7. Assume that f E LiP(IT, oc);X), for some T > O. Suppose that
]() has a continuous extension to +\iE, where E is a closed null set, 0 e E, and
that for each R >_ 0

(3.6) M(R) :-- sup sup
neEn[-R,R] t>0

exp(-irls)f(s)ds

Then limt-o f(t) O.
Remark. Since 0 E, condition (3.6) implies that C- limt_o f(t) O.
Proof. We first show that f n([T, Oc);X). There exists L _> 0 such that

If(t)-f(s)l <_ nlt-s for alls, t >_T. Let q e X’, I1 <- 1. Then, by the Taylor
expansion for F(t) f f(r)dr in s > T, we have

<F(s + 1), > <F(s), q> + <f(s), ) + fs
s+l d

(s + 1 r)-r (f(r), q)dr.

Hence

I(f(a), )1 - I(F(s + 1), (P)I + I(F(a), )1 +
d

( + 1 r)l(f(r), )ldr
L_< 2M(0) + L (s + 1 -r)dr <_ 2M(0) + -.

,/8

Fix # e R\E and define g(t) eider(t). Then g e Lip([T, Oc);X) and (A)
](/k- i/z)(ae ,k > 0). Hence (,k) has a continuous extension to +\iE’ where E’=
E + #. Moreover, for l’= r + # e E’fq [-R,R] we have f exp(-il’s)g(s)dsl

f exp(-ils)f(s)dsl < M(R + I#1) for all t _> 0. Since 0 E’, the assertion follows
from Theorem 3.5.

Applying Theorem 3.5 to power series we obtain a variant of a result due to Allan,
O’Farrell, and Ransford [1]. We let D- {z e C’lzl < 1}, and F {z e C’lzl- 1}.

THEOREM 3.8. Let bn e X be such that sup{Ibn n e No} < oc and set
p(z) -]n__o bnz for Izl < 1. Assume that p has a continuous extension to D\F,
where F C F is a closed null set.

If SUpze. suPNeN
Nn=0 bnzn < oc then limn_.o bn O.

Remark. The hypothesis of the theorem directly implies A- lim,_ bn 0 if
1 F and C limn--.o bn limn-o 1In -]k=0 bk 0 if 1 F.

Proof. Replacing b by bw-n for some w F\F if necessary, we may assume
that 1 F. Let f(t) bn for t e In, Tt -- 1). Then ](A) [(1 e-X)/A] n__o bne-)n
has a continuous extension to C+\iE where E {/ R" e-in E F}. Moreover, for
t e In, n+ 1)we have f exp(-ils)f(s)ds -:o bm exp(-ilm)(1-exp(-i))/i+
bn exp(-ion)(1- exp(-ir/(t- n)))/il, so that (3.5) is satisfied (since 0 E). It
follows from Theorem 3.5 and Remark 3.6 that limn-o bn limn--. f+ f(s)ds
B limt-o f(t) 0.

It is implied by Riesz’s theorem (Remark 3.4) that in the situation of Theorem
3.8 we have p(z) -n=o bnz for all regular z e F (and this is precisely what is
shown in [1], assuming that p has a holomorphic extension to D\F).

An immediate consequence of Theorem 3.8 is the Katznelson-Tzafriri theorem
(which actually was the motivation of the work by Allan, O’Farrell, and Ransford
[1]).
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THEOREM 3.9. (Katznelson-Tzafrifi [22].) Let T e .(X) such that supn>0
oc and a(T) N F c {1}. Then limn-o I(T- I)TnI O.

Proof. Let p(z) -n__o(T- I)Tnzn (T- I)(I- zT)-1, Izl < 1. Since

SUPn>
Nn=o(I T)TI SUpg>0 II TN+I < C, the hypotheses of Theorem 3.8

are satisfied for bn (I- T)Tn and F {1}.
We are going to prove a continuous version of the Katznelson-Tzafriri theorem.

Formally, it is expected that (T)n>O has to be replaced by (T(t))t>o and T- I
(T(1)- I)/1 by A, the generator of (T(t))t>o. We make this more precise. A C0-
semigroup (T(t))t>o on X is called eventually differentiable if there exists T > 0 such
that T(T)X C D(A). Note that then T(t)Z C D(A) and AT(t) e (Z) for all t _> T.

THEOREM 3.10. Let (T(t))t>o be a bounded, eventually differentiable semigroup
with generator A. The following are equivalent.

(i) limt-o IAT(t)I O;
(ii) a(A) i C {0}.
Proof. Let M =sup,>o IT(t)[. Assume that (ii) holds and that T > 0 such that

T(T)X C D(A). Then T(t-)X C D(A2) for all t _> 2T. Let f’[0, oc) --. :(X) be given
by F(t) AT(t + 2T). Then

If(t) f(s)l -rf(r)dr A2T(r + 2T)dr

r(r)A2r(2T)dr <_ MIA2T(2T)lls- tl, s,t >_ O,

so that f is Lipschitz continuous. Moreover, ](A) R(A, A)AT(2T) has a continuous

extension to (+\{0}. Since f f(s)ds[ IT(t + 2-)- T(t)l <_ 2M (t >_ 0), it follows
from Theorem 3.7 that limt-o IAT(t)I limto If(t)l O.

Conversely, assume that (i) holds. (a) We show that Ae
whenever A e a(A)N iI. In fact, let A e a(A) iR; then A e ap(A)U at(A) since
A is a boundary point of p(A). Hence, there exist x e D(A), IXnl 1 such that
limt__, I(A A)xn 0. Consequently,

(Aet AT(t))x A(et T(t))x + T(t)(A- A)x

+ r(tl( - --, o,

--, Whu e t _>
(b) Let r ell{ be such that ir e a(A). Then by (a), irleint e a(AT(t)) for t >_ T.

Consequently, 1/1 [ileivt <_ [AT(t)I - 0 as t - cx, i.e.,
As another application of Theorem 3.7 we obtain the following result which in

some sense is complementary to Theorem 3.10.
THEOREM 3.11. Let U(t) be Co-group with generator A and suppose that

suPt>0 IU(t)x < c for all x D n>on(An). If a(A)N i] c {0}, then
U(t) I for all t e I.

Proof. Let x e Do and f(t) AU(t)x U(t)Ax. Then f is Lipschitz continuous

since If(t)-f(s)l ft (d/dr)U(r)Axdr If: U(r)A2xdrl <- It-HI supr>0 [V(r)A2xl,
and f f(s)dr IU(t)x-xl is bounded for t >_ 0. For Re A > 0 we have ](A) e D(A)
and (A- A)f(A) Ax. Hence ](A) (A- A)-Ax whenever A e (A), Re A > 0.
This shows that ](A) has a continuous extension to (+\{0}. It follows from Theorem
3.7 that limt_,o U(t)Ax limt_o f(t) O.
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So far we have shown that limt_ U(t)Ax 0 for all x E D. We will deduce
from this that Ax 0 for all x E D and hence A 0 sinceD is a core. In fact, D
is a Frchet space for the topology defined by the norms pn(X)
n N U {0}. We show that there exists k N such that

(a.7) Iu(,)l <_ kp()

for all x D, t R. If this is false, there exist x, D, tm such that
pm(Xm) 1 and IU(tm)Xml _> m, m N. Let Yk {x n lU(t)xl <_ kpk(x) for
all t R}. Then Yk is closed in D and [gk>oYk D. So by Baire’s theorem there
exists k E N such that Yk has a nonempty interior; i.e., we find a D, e > 0, g _> k
such that pt(a- x)

_
implies IU(t)xl

_
kpk(x) for all t ]R. Consequently,

m. elp(x,) IU(t,)al <_ elp(x,)lU(t,)x,l IU(t,)al <_ IU(t,)(a- elp(x,)x,l

<_ k(a (/())) <_ k(() + ()/(x))
<_ k(p() + ) since _> k,

hence,

. < (x)[k((a) + ) + IU(t)al] < (x)[k((a) + ) +
[k(() + ) + IV(t)al] or . > .

But (U(t,)a)m>O is bounded in X, a contradiction. So (3.7) is proved.
Let x D. Then by (3.7)

IAxl IU(-t)U(t)Ax <_ kpk(U(t)Ax)

k{IU(t)Ax + IU(t)A2x[ +... + [U(t)Ak+lxl} -- 0

Hence Ax 0 for all x Do. [:]

4. Real ergodic theorems for Volterra equations. Throughout the remain-
der of the paper, we make the assumptions of the Introduction. In particular, (S(t))t>o
denotes the resolvent governing (1.1). Recall that we assume

t>0

for all > 0. By () f e-S(t)dt, Re A > 0, we denote the Laplace transform
of S(t). In addition, we assume that the (complex-valued) kernel a e Loc(R+) is
Laplace transformable, i.e., there exists a >_ 0 such that f e-tla(t)ldt < oc. We
let 5() f e-ta(t)dt (Re A >_ a). If (1.3) holds, then the closedness of A implies

(4.1) a(t- s)S(s)x ds e D(A) and S(t)x x + A a(t- s)S(s)x ds

for all x X. Moreover, due to the assumptions above we have the following propo-
sition.

PROPOSITION 4.1. (a) 5(A) has a meromorphic extension to C+.
(b) 5) 0 on C+ if A is unbounded.
(c) S’() (I- 5()A)-1 for all C+ such that is not a pole of 5.
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We refer to [33] for the proof of (4.1) and Proposition 4.1.
COROLLARY 4.2. If has a pole in C+, then R(A) is closed and X N(A) (9

It(A).
Remark. Here R(A) :-- (Ax x e D(A)} denotes the range and N(A) :- (x e

D(A) Ax 0} the kernel of A.
Proof. Assume that A0 e C+ is a pole of of order n; then 1/&(A) maps a

neighborhood of A0 onto a neighborhood of zero. It follows from Proposition 4.1(c)
that there exists > 0 such that V := {z E C 0 < Izl < e} c (A). Moreover,
1((1/5()) A)-ll 15()()1

_
const 15()1 near 0. Hence I(z- A)-ll

const/Iz (z E V). Thus zero is at most a pole of order 1 of (z- A) -1. Now the claim
follows from [41, Chap. VIII.8]. [3

In order to study the asymptotic behavior of the resolvent, we use the following
terminology.

DEFINITION 4.3. The resolvent S is called (a) uniformly (strongly, weakly) Abel-
ergodic if lim-*0+ A(A) P exists in the uniform (respectively, strong, weak) oper-
ator topology;

(b) uniformly (strongly, weakly) Cesaro-ergodic if limt-* lit f S(s)ds P exists
uniformly (respectively, strongly, weakly);

(c) uniformly (strongly, weakly) ergodic if limt-* S(t) P exists uniformly (re-
spectively, strongly, weakly).

Notation. We shall use the abbreviation (i,J)-ergodic where i runs through the
symbols u, s, w with obvious meaning, and J runs through A, C, E. Then the
following implication scheme holds.

(u,A) (u,C)= (u,E)

(s,A) = (s,C)= (s,E)

(w,A) (w,C)= (w,E)

Our goal is to characterize (i, J) ergodicity of S(t) in terms of the operator A and the
kernel a; or, at Ieast, to find sufficient conditions. We need the following.

PROPOSITION 4.4. Let B be a densely defined linear operator on X, #n C such
that limn-* Itnl-- OO, 1/n )(B) and SUps>0 I(I- #nB)-ll < oo. Then

(a) N(B) R(B) {0}.
(b) The following are equivalent.

(i) limn_.(I- ttnB) -1 P exists strongly;
(ii) lima_. (I #nB)-I p exists weakly;
(iii) N(B) @ R(B) X;
(iv) N(B) +/- 3 N(B’) {0}.

If this is the case, then P is the projection onto N(B) along R(B).
(c) If X is reflexive, the equivalent conditions of (b) are automatically satisfied.
(d) Assume that the equivalent conditions of (b) hold. Then the following are

equivalent.
(i) R(B) is closed;
(ii) limn-*(I- #nB)-1 P in/:(X);
(iii) limn-*(I- ttnB) -2 P in (X).

This result is well known; we refer to [41, Chap. VIII.4] and [19, Chap. XVIII]. We
add the analogous properties of (I- #nB)-1 at zero.
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PROPOSITION 4.5. Let B be an operator on X, 0 #, E C such that 1/Iz,
a(B), limn--,oo #n 0 and SUPn>0 I(I #,B)-ll < oo.

(a) The following are equivalent.
(i) D(B) is dense in X;
(ii) limn--,o(I- #nB)-1= I strongly;
(iii) limn--,o (I #nB)-I I weakly.

(b) The following are equivalent.
(i) D(B) X;
(ii) limn-,o(I- #nB)-1 I in

(iii) lim,__,o(I- lznB) -2 I in (X).
For the proof we refer to [19, Chap. XVIII].
Strong and weak Abel ergodicity of the resolvent S(T) of (1.1) are characterized

as follows.
THEOREM 4.6. The following are equivalent.
(i) S(t) is strongly Abel ergodic.
(ii) S(t) is weakly Abel ergodic.
(iii) (a)I/k(A)l is bounded on (0, 1];

(b) lima_o+ &(A) =: a(0) exists in C to {oo};
(c) N(A) +/- N(A’) {0} if a(O) oo.

Moreover, if these equivalent conditions are satisfied, then lima_,o A(A)
(I- a(0)A) -1 in Z:(X) if 0 a(0) e e, lima_o+ A(A) I stron91y if a(O) O,
and lima_o A(;k) P stron9ly if &(O) oo, where P denotes the projection onto
N(A) alon9 R(A). If X is reflexive, then (e) in (iii)^can be omitted.

Proof. (iX) = (iii). Assume that w- lim__,o+ AS(A)x
w lima_,o+(I- a()A)-lz Pz for al z X. Then

(4.2) sup [(I- a()A)-[ < oo.

Choose a sequence /n 0 such that #n 5(An) # C tO (oo}. We distinguish
three cases.

Case 1. 0 < I#ol < oo.
Then, by (4.2), #2 e (A) and P (I- #A)-1 lim,__,(I- #,A)- in (Z).

Case 2. #oo O.
Then limn-oo(I- #HA)-1 I strongly by Proposition 4.5.

Case 3. # oo.
It follows from Proposition 4.4 and 4.5, that (I- #HA)-1 - P strongly, where P

is the projection onto N(A) along R(A).
Now suppose that there exists another sequence 0 such that (/k) -- #/z,/z (2 (3 {oo}. Since A - 0, the limit operators P and P’ are different. But this

is impossible since P lim__,0+ () P’. This shows that &(0) := lima__,0+ ()
exists in (2 tO {oo}. We have proved (iii). It follows from Propositions 4.,4 and 4.5 that
(iii) implies (i). vl

From the preceding proof, we also obtain the following characterization of uniform
Abel ergodicity.

THEOREM 4.7. S(t) is uniformly Abel ergodic if and only if the following four
conditions hold.

(a) ](/)1 is bounded on (0, 1];
(b) lim;_0+ &(A.) =: &(0) exists in C tO {oo};
(c) if &(O) oo then R(A) is closed and Z N(A) @ R(A);
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(d) &(0) 0 if A is unbounded.
COROLLARY 4.8. Suppose that (o- A)-1 is compact for some o E (A). We

assume that (0) 0 if A is unbounded. If S(t) is (w, A)-ergodic, then S(t) is (u, A)-
ergodic.

Proof. This follows from Theorem 4.7 and Theorem 4.6 since R(A) is closed
because of the compactness of (A0 A)-1.

It is instructive to classify Abel ergodicity by the limits of 5(A) as A - 0+.
Assume that (0) -lim_0+ &() e C U (} exists.

Case 1. (0)- O. Then
(a) S(t) is (u, A)-ergodic iff A is bounded; and
(b) S(t) is (s, A)-ergodic iff (I- 5(A)A) -1 is bounded for A -, 0+.

The ergodic limit then is P I.
Case 2. a(0) 0, oc. Then S(t) is (u,A)-ergodic iff it is (s,A)-ergodic iff

(I- (A)A)-1 is bounded for A--, 0+ iff a(0) -1 e p(A).
The ergodic limit then is P (I- (0)A)-.

Case 3. (0)= cx. Then
(a) S(t)is (u, A)-ergodic iff lim-,0+l(I-(A)A)-ll < oo, N(A)-L N(A’) {0}

and R(A) is closed;
(b) S(t)is (s, A)-ergodic iff lim,x_0+l(I-(A)A)-ll

{o}.
The ergodic limit P is then the projection onto N(A) along R(A).

In particular, we obtain the following necessary conditions.
COROLLARY 4.9. If A limt-_,o S(t) 0 strongly, then lim__,0+ () oc and

0 ap(A)U ap(A’).
Proof. For the second assertion observe that Ax 0 implies S(t)x x (t >_ O)

and so x 0. This shows N(A) 0. Hence N(A’) N(A) +/- V N(A’) {0}. Thus
0 ap(A) U ap(A’).

Next, we consider Cesaro ergodicity.
THEOREM 4.10. (a) If S(t) is bounded and (w,A)-ergodic, then S(t) is (s,C)-

ergodic.
(b) Suppose that X is an ordered Banach space with normal and generating cone.

If S(t) >_ 0 (t >_ O) and S(t) is (w, A)-ergodic, then S(t) is (s, C)-ergodic.
Proof. This follows from Theorem 2.5 and 2.6.
Finally, we consider ergodicity of S(t). We say that S(t) is a bounded analytic

resolvent if there exists a bounded, analytic extension of S to a sector E(O) {z
[arg z[ < 0} for some 0 e (0, r/2).

Remark 4.11. Equation (1.1) is governed by a bounded analytic resolvent if and
only if the following conditions are satisfied for some 0 (0, r/2).

(a) & admits a meromorphic extension to E(0 + r/2).
(b) (A) 0 if A is unbounded and I/(A) o(A) for all A E E(0 + r/2) with
# 0.
(c) I(I a()A)-ll is bounded on E(0 + r/2).
We refer to [33] for a proof.
In the semigroup case (a(t) =_ 1) the notion of bounded analytic resolvent coincides

with that of a bounded analytic semigroup.
PROPOSITION 4.12. Assume that S is a bounded analytic resolvent. Then there

exists M > 0 such that

tlS’(t)l <_M for allt >O



TAUBERIAN THEOREMS AND ASYMPTOTIC BEHAVIOR 427

(see [33, Cor. 2.1] for a proof).
THEOREM 4.13. Assume that S(t) is a bounded analytic resolvent. If S(t) is

weakly Abel ergodic, then S(t) is strongly ergodic. Moreover, S(t) is even uniformly
ergodic, if in addition (o A)-1 is compact .for some o E o(A).

Proof. It follows from Theorem 4.6 that S(t) is (s,A)-ergodic, and by Corol-
lary 4.8 that S is (u,A)-ergodic if (A0 A)-1 is compact for some A0 E 0(A). Let
f(t) S(t) (t >_ 0). Then f" (0, oc) (X)is analytic and bounded, hence
f e L([0, cx));(X)). Moreover, limt_otlf’(t)l < oc (by Proposition 4.12). So the
claim follows from Theorem 2.10. D

Example 4.14. Consider the kernel a(t) t-/F(a) where c e (0, 2] and assume
that (1.1) is well posed. For a 1 this means that A generates a C0-semigroup, for
a 2, that A generates a cosine function. We assume again that supt>0 le-tS(t)l <
oc for all A > 0. Since 5(A) A-a, it follows that E(a) C (A). Moreover,
lim_0+ 5(A) oc and () (I-A-A)- Aa(A-A)-. Thus Abel ergodicity
is the same for all a (0, 2]"

(a) S(t) is (s, A)-ergodic iff sup,e(0,] I#(#-A)-ll < oc and N(A’)VN(A) +/- {0}.
(b) S(t) is (u, A)-ergodic iff (a) holds and R(A) is closed.
In order to characterize strong ergodicity we assume a < 2 and E(O) c y(A),

Iu(/z- A)-I _< M on E(O) for some 0 e (a,r/2, r). Then (1.1) is governed by a
bounded analytic resolvent (Remark 4.11). If N(A’)N N(A) +/- {0}, it follows from
Theorem 4.13 that limt_ S(t) P strongly, where P is the projection onto N(A)
along R(A).

Finally, we consider Volterra equations on L L (f, E, #), where (f, , #)
denotes a positive measure space; this Banach space plays an exceptional role.

THEOREM 4.15. If X L, then the well-posedness of (1.1) implies that A is
bounded.

Remark. Conversely, if A is bounded, then (1.1) is well posed for every kernel.
Theorem 4.15 is due to Lotz [26] in the case a(t) 1, where A is the generator of

a C0-semigroup (see also [29, A-II.3]); for the special case of contraction semigroups
it was obtained independently by Coulhon [11]; and for positive semigroups it is due
to Kishimoto and Robinson [23].

The reasons for the phenomenon expressed in Theorem 4.15 are two properties of
X L, namely,

(DP) xn --* 0 in (X,a(X,X’)) and xn --. 0 in (X’,a(X’,X"))
imply (xn, Xn) - 0

and

(G) x -- 0 in (X’,a(X’,X)) implies xn --- 0 in (X’,a(X’,X"))

(see [36, Chaps. II.9.7 and II.10.4]). The first property is called the Dunford-Pettis
property; a space satisfying the second is called a Grothendieck space. For further
details on the background in geometry of Banach spaces, we refer to [26] (see also

The key of the proof of Theorem 4.5 is the following result due to Lotz [26, Thm.
2].

LEMMA 4.16. Let X satisfy (G) and (DP). Suppose Tn (X) is such that
limn--, Tn 0 strongly and limn--,o Tn 0 strongly. Then limn--,o ITn21 0.
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Using this lemma we obtain the following general result which contains Theorem
4.15 as a special case.

THEOtEM 4.17. Assume that X satisfies (G) and (DP). Let B be an operator on
X and (ttn) be a sequence in C\{0} such that 1/#n (B), SUPn>0 I(I-ttnB)-l
and lim I#1 0. If D(B) X, then B is bounded.

Proof. Let J (1 #nB)-. Then limn- Jn I strongly by Proposition 4.5.
Hence, a(X’,X) limn-. and so by (G), a(X’,X")- limn_.x Jx x
for all x E Xp. It follows from Proposition 4.5 that limn- J I strongly. Now we
deduce from Proposition 4.16 that limn_ I(Jn I)21 0 which implies D(S) X
by Proposition 4.5.

Next we consider ergodicity of (1.1) in L.
THEOREM 4.18. If X L and S(t) is weakly Abel ergodic, then S(t) is uni-

formly Abel ergodic.
Remark. Since by our general assumption (1.1) is well posed, A is bounded in the

situation of Theorem 4.18 (by Theorem 4.15).
We first show the following.
THEOREM 4.19. Assume that X satisfies (G) and (DP). Let B be an operator

on Z such that 1/# e Q(B) for a sequence (#n) C C such that lim_ [#1- c. If
limn_,o(I #nB)-I p weakly, then limn-_, (I nB)-I p in (X).

Proof. By Proposition 4.4 we have Z N(B)@ R(B). We can assume N(B) 0
and P 0. Moreover, since J :- (I- tnB)-1 0 strongly, it follows that Jhx --,0

for a(X’, X) and so by (G) for a(X’, X") for all x’ e X’. It follows from Proposition
4.4 that lim_, J I strongly. Thus limn_ [Jn21 0 by Lemma 4.16. This implies
R(B)- Z by Proposition 4.4(d).

Proof of Theorem 4.18. Assume that S(t) is (w, A)-ergodic on L. If &(0) e C,
then S(t) is (u,A)-ergodic by Theorem 4.7 (note that A is bounded). If &(0)
then S is (u, A)-ergodic by Theorem 4.19.

Remark. Lotz [26] investigates ergodic properties of discrete semigroups (Tn)n>0
where T is a bounded linear operator on L.

5. A general convergence theorem for Volterra equations. This section
contains the main theorem which is based on the complex methods introduced in 3.

We assume throughout that a is a kernel as described in 4, A is a linear closed
densely defined operator and that the Volterra equation (1.1) is well posed and gov-
erned by the resolvent S(t), which is bounded.

Then we know in particular that & has a meromorphic extension to C+. For later
purposes (6 and 7) we set

(5.1)
Q(a) (i#" # e R, 5 has a continuous extension to C+ U i[# e,

with values in C U (oc} for some

and still denote by 5 the continuous extension of & to C+ J 0(a).
In this section, though, we assume throughout that

e(a) is.

Moreover, we assume that S(t) is strongly Abel ergodic, and set

(5.3) lim () Q
A--O+
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Remark. Since by assumption S(t) is bounded, this is automatically satisfied if
X is reflexive (see Thm. 4.4).

From Theorem 4.6, we know the following. If 5(0) E C, then Q (I- 5(0)A)-1;
if 5(0) c, then X N(A)@ R(A) and Q P, the projection onto N(A) along
R(A). The following "resolvent set (a, A) of (a, A)" plays an important role.

o(a,A) {iT iR" there exists e > 0 such that 1/2[(1 -5(A)A)- -Q]

has a strongly continuous extension to C+ U i[r/- e, r/+ e] }.
Now we are able to formulate the General Convergence Theorem. It is valid for
arbitrary kernels (satisfying (5.2)). In the forthcoming sections it will be shown that,
for many interesting classes of kernels, hypotheses (H2) and (H3) are automatically
satisfied so that (H1) remains to be verified in order to conclude that S(t) is strongly
ergodic. Note that in the reflexive case (H1) reduces to a condition on the spectral
behavior of (a, A) on iR: the singular set iS has to be countable and 1/5(i)

_
rp(A)

whenever E such that 5(i) : 0, cx (by ap(A’) we denote the point spectrum of
the adjoint A of A).

THEOREM 5.1. Assume (5.2), (5.3), and suppose the following three hypotheses
are satisfied.

(H1)

(H2)

The singular set iE "= iR\o(a, A) is countable and #
implies R(I- 5(i#)A) X; # E\{0}, 5(itt)
R(A).

For all # e E there exists C(#) >_ 1 such that fe-i8(a * S(s)-
(i#)S(s))Axds <_ C(#)IXlA for all x D(A) if &(i#) C, and

f e-i’sS(s)Ax dsl <- C(#)IXlA for all x

(H3) There exist T >_ 0, M > 0 such that Is’(t)xl <_ MlXlA (x D(A), t _> T),
and IS(t)l <_ M (t >_ 0)

Then limt__, S(t)x Qx for all x e X, where Q (I- 5(0)A)- if (0) e C,
and Q is the projection onto N(A) along R(A) if (0)

We start with the following estimate which is a variant of [2, Lemma 3.1].
LEMMA 5.2. Let f: [0, cx) --, X be measurable, ]f(t)l <_ Mo (t >_ 0). Let R > O.

Assume that ]()/) (which is defined for Re/k > 0) has a continuous extension to
n(2+ U i([-R,R]\ [.Jj= (j -j,j + j)) where j e l, j > 0 such that the intervals

n(j ej, j + ej) (j 1... n) are pairwise disjoint and 0 Jj=
(-R, R). Furthermore, suppose that for j 1,..., n there exist
such that

Mj sup exp(-ijs)f(s)dsl < oc (j 1...n).
t>O

Then,

2Mo
n n n

(5.5) lim f(s)dsl < Haj + 12E Mjbj H bjk
j--=l j--1 t:=l
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where

aj=(l/ej )J(-9)
(5.6) bk (1 -t- e(l kl- ej)-2)( (5)-1 (k - j);

j (hj(ljl- (5j)-1(32" (532") -1"

Proof. We modify the proof of [2, Lemma 3.1] in the following way, keeping the
notation used there (cf. also [25, 2.2]). The paths -j are replaced by straight lines on
the imaginary axis (j 0,..., n). Applying (a slight extension of) Cauchy’s theorem
to g() ](,), we have 0 -(1/27ri) f. h(z)(g(z)/z)etZdz. Moreover, gt being entire
implies

and

fo f(s)ds gt(O)
=R

h(z)gt (z)e
dz
z

h(z)g(z)ez dz.
z

Summing up, we obtain

f(s)ds
1 dz

2ri
h(z)(g(z) g(z))et-

z
Rez>0

+E27ri’1 / h(z)(gt(z) g(z))etdz
j=l Iz-i,j

Rez >0

i h(z)g(z)e dz 1 )e dz
+

.= z z
=Rez 0

f+
2i

h(z)gt(z)et dz
z

j=l e<o

Now the third term converges to zero (t ) by the Riemann-Lebesgue lemma; the
other estimates are given in [2, Lemma 3.1].

We put Lemma 5.2 in a different form (corresponding to Tauberian theorems of
type D) keeping the definition (5.6) throughout this section.

LEMMA 5.3. Let e Lo([0, ),X) CI([T, ),X) where T 0. Assume that
() has a continuous extension to K := C+ U i([-R,R]Uj=I(j
where R, ey > 0 such that the intervals ( -ey, + e) are pairwise disjoint
(j ...) ad O C U=[- e, +ei] c (-R, R) Suppose that

N0 "= sup l’(t)l + (T){

and

N := sup e-i’*o’(s)dsl + Ig(T)[ < forj 1,...,n.
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Then,

lim I(t)l < 2No " "
t---, --R-- H aJ + 12E Njej 1-I bj"

Proof. (a) We assume that T 0. Let f(t) q’(t)+ qa(0)exp(-t). Then
]()/ qb(A)- q(0)/(1 + A) has a continuous extension to g. Moreover, If(t)l <
Iqa’(t)l + Iq(0)l < No (t > 0) and f exp(-irlys)f(s)dsl f exp(-iys)q’(s)ds
qa(O) f exp(-iys)exp(-s)ds < Ny (t > 0), j 1...n. Since f f(s)ds q(t)-
q(0) exp(-t) one has limt_lq(t)l limt--.ol f f(s)dsl. So the claim follows from
Lemma 5.2.

(b) If T > 0 is arbitrary we apply (a) to b(t) q(t + T).
Proof of Theorem 5.1. Since S(t)x x on N(A) we can assume that P Q 0 in

the case when (0) cx. Choose 0 6 0(A) and let L (0-A)-1. Let 0 < #0 6 ]\E
be fixed. Let R > #0 such that +/-R E. We set E0 E fq [#0 R, #0 + R]. For every
ordinal a, we define inductively subsets Ea of E in the following way. Suppose that

E has been defined for all/ < a. We let E be the set of all cluster points of
if c has a predecessor a 1, and E <E if not.

For/z E, p - 0 we define

1- &(ilz)Ai# if I (i )1 < 1

(1 )a(i#)
A i#/C(#) if la(i)l > 1,

where C(#) is the constant from hypothesis (H2), and

B(0)-
A

1 &(0)A

if (0) oo

if (0) e C.

We shall prove the following.
Inductive statement. If #y E, ey > 0 (j 1,..., n) such that

are pairwise disjoint,

n

j=l

n

and #0 U [#Y J’#J + eJ] C (#0 R,#0 + R),
j=l

then

lim ](S(t) Q)LUxl < 2NolUxl " "
R IX ay + 12E CIUyxIY H byk

j=l j=l tc=x

for all x e D(An), where

n

j=l

By B(#y);
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the constants aj, 5j, bk are given by (5.6), and Co, No are constants which will be
defined below and do not depend on #,

It is part of the inductive statement that

(5.8) t-lim I(S(t) Q)Lxl _< _._ lx12No
for all x E X if E q} (which is (5.7) with the convention that the empty product is
1 and the empty sum zero).

Once the inductive statement h been established, the theorem is proved
follows. Since E is compact and countable, E is either empty or contains isolated
points, so that Ea or E+ E. Thus it follows that for some a (at most w),
E . Hence, (5.8) holds. We can choose 0 < R E-E arbitrarily large. Thus
limt ](S(t)- Q)Lx 0 for all x e X. Since R(L) D(A) is dense in X and S(t)
is bounded the claim follows.

It remains to prove the inductive statement.
(1) a 0. Let E0, ei > 0 such that

n n

Eo C ( e, + ) and o [ ej, + ] C (o R, o + R),
j=l j=l

according to the statement. Let y e X and set (t) e-i’t(S(t)- Q)ny (t 0).
We verify that satisfies the hypotheses of Lemma 5.3 (after specification of y).

For Re A > 0 we have

1 1
((1 a(a + i,0)g) -1 Q)Lu.(A) ( + i,o)ny

i,o + A
Qny

A +
Set yj j 0 (j 1,... ,n). Then 0 Uj[yj Q,y + e] c (-R,R) and

nh a continuous extension to C+ U i([-R, R] j=l( Q, + ej ).
Setting CL ln] + IALI we have ILylA CLlyl. We have

v’(t) -i,o exp(-i,ot)(s(t) Q)Lu +  xp(-i,ot)S’(t)nu.

Using (H3), we obtain

l ’(t)l + Iv( )l g0lul (t k

with N0 ,0(M + IQI)]L + MCL + (M +
Now let y Ux BjUjx where x e D(An), and observe that ljl l,j-0] R,

hence pjl E R + 0. Moreover, since C() k 1, it follows from the definition of B()
that

(5.10) IB()LI

_
IICL (0 # e E);

in particular,

(5.11) IBiLI <_ (R + po)CL if#j-0.

Due to (1.1), hypothesis (H2) implies

e-i"SS(s)(1 &(i#)A)x ds <_ (x e D(A))
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if # E\{0} and &(i#) C. Consequently, it follows from (H2) that

(5.12) e-i"SS(s)B(tt)yds <_ IttllylA (y e D(A), tte E\(0}).

We estimate f: e-i’ s’(s)ds.
Case 1. #j 0, i.e., j #j #o -#o.

-i#o exp(-ittjs)(S(s) Q)Lyds + exp(-ittjs)S’(s)Lyds

-i#o exp(-i#s)(S(s) Q)Ly ds + exp(-i#t)S(t)Ly

exp(--i#T)S(T)Ly + i#j exp(-ijs)S(s)Ly ds

i(#j #o) exp(-i#js)S(s)Ly ds + #O(exp(--i#jT) --exp(-i#jt))QLy

+ exp(-i#ot)S(t)Ly exp(--i#jT)S(T)ny

Hence,

T

-i(tti #o) exp(-i#is)S(s)Ly ds.

+RTM(R +
by (5.12), (5.10), and (5.11). Setting

C1 := R(R + tto)CL + 2#olQICL + 2M(R + ]to)CL + RTM(R + #o)CL,
we obtain

(5.13) exp(-is)’(s)ds CIUxI.
Case 2. pj 0; that is, j =-o. Then,

e-i’’(s)ds -io (S(s) Q)Lyds + S’(s)Lyds

-ipo (S(s) Q)y ds + S(t)Ly S(T)Ly + ipo (S(s) Q)Ly ds.
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We must distinguish two cases. (a) If 5(0) (x), then Q 0 and Bj A, y AUjx.
Then,

exp(-ir5s)’(s)ds _< #o S(s)ALUix ds / 2MIALUjxl + #o’MIALUjxl

<_ #oC(O)ILUjxlA + 2MCL]Ujxl + #oTMCL]Ujxl

by (H2). Hence, If: exp(-i?is)’(s)dsl
2MCL + #oTMCL) if 0 e E and 5(0)

(b) Ifh(0) e (2, then Q (I-5(0)A)-1, Bi Q-l, y Q-1Ujx and so

(S(s)- Q)Ly (S(s)Q-- I)LVjx (S(s)(I- &(0)A)- I)LVjx S(s)nVjx-
LUx h(O)S(s)ALUjx A(a S)(s)LUjx h(O)S(s)ALUjx by (4.1). Thus,

exp(-ir/js)’(s)ds _< #o t((a S)(s) 5(O)S(s))ALUjx ds + 2MIQ-LUjxl

+#oT(M + IQI)IQ-1LUjxl

<_ #oC(O)ILUjxlA + 2MI(I 5(O)A)LIIUjx + #oT(M + IQI)I(I a(O)A)LIIUyxl

by (H2). Hence, If: exp(-ijs):’(s)ds <_ C2[Ujx[ (t >_ T) if we set

Ce ttoC(O)CL + 2MI(I 5(O)A)LI + #oT(M + IQI) + #o(M + IQI)I(I 5(O)A)LI

in the case 0 E E, 5(0) E C. So far, we have proved that

ifwe put C2 0 in the case where 0 g and C3 m{C, C2} (see (5.13)). Finally,
we let

MCL
C4 (M + IQI)(-

o
C5 (M + IQI)(R + tto)CL

C6 max{C4, C5}.

if 0 e E, &(0) oc

if 0 E,a(0) e C

if0E

Then [(T)[ _< C61Ux] (j 1... n). In fact, if # 0, then

if/zi 0 and (0) oc, then Q 0, B A, y AUjx, and so 199(T)[ _< M[LAUjxl <_
MCLIUyxl C4[Ujxl; if #j 0 and (0) e C, then Q (I- (0)A)-1, y Q-1Uix
and so

}:(T)I <_ (M + IQI)I(I- 5(O)A)LIIUjx C41UxI.
Letting Co :-- max{C3, C6}, we finally have

f* v’()xp(-v)d + Iv()l < ColVl
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(j 1,..., n). In view of (5.9), now the claim (5.7) follows from Lemma 5.3. This
proves the inductive statement for c 0.

(2) Let c be an ordinal greater than zero and assume that the inductive statement
holds for all ordinals fl < c. We show the statement to hold for a. Let (uj Q, #j +ej)
(j 1,..., n) be disjoint intervals such that 0 1[-e, +Q] c (0- R,0+
R) and E c := U1(j e, + ).

Case 1. - 1 does not exist. Then E <aE. Since is open and E0
compact, it follows that E C for some < . So (5.7) follows trivially from the
inductive hypothesis.

Case 2. - 1 exists. Since E is the set of all accumulation points of E_,
E_E is finite, say Ea_IE (+,..., nTp)" Let e; > 0, j n + 1,..., n +p
be small enough so that 0

np.U;=[y-e;,j +e;] C (p0-R,0+R). Since
nTpE_ C j= (p; -e;, p; + e;), we conclude from the inductive hypothesis for - 1

that

lim IS(t) Q)LVyl <_
n+p n+p n+p

2N[VYl H aj + 12E CIVylhJ H bjkR
j--1 j--1 k=l

for all y E D(An+P), where

n-i-p n+p

v II II
j--1 =1

(j= 1...n+p).

Letting ej 0 for j n + 1,-.-, n + p, we obtain

n n n

(5.14) lim I(S(t) Q)LVy <_ 2(No/R)IVy H aj + 12E C]VYIJ H bk.
j=l j=l k=l

n+p
Letting W 1-I

j=n+l

n n

B, U H B, Uj 1-I Bk, we can rewrite (5.14) as
j=l

n

lim I(S(t) Q)LUWy <_ 2(No/R)IUWy[ H ay

(5.15)
j=l

n n

+1: ColU W le II
j=l =

(y e D(An+p)).

Now the operators Bi(j n + 1,..., n + p) commute and have dense range by (H1).
This implies that WD(An+p

+ IAxl for x e D(An). Thus, given x e D(A) we find Ym e D(An+p) such
that limm_ IWym XlA O, hence lim,__, UWym Vx in (D(A), IA). Setting
Y Ym in (5.15), we obtain (5.7) by letting m --, x). This completes the proof of
Theorem 5.1.

6. Some examples and illustrations. In this section we want to discuss sev-
eral examples of kernels a(t) and operators A to which the General Convergence The-
orem applies and also to present conditions on the kernel a(t) such that assumptions
(H2) and (H3)of Theorem 6.1 are satisfied.
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We begin with the semigroup case a(t) =_ 1, t >_ O. Then the resolvent S(t)
satisfying

(6.1) S(t) I + A a(T)S(t T)dT, t >_ O,

is the semigroup generated by A, i.e., S(t) eAt. Therefore the relation S’(t)x
S(t)Ax shows that (H3) is trivially satisfied whenever the semigroup is bounded. To
verify (H2), observe that 8(A) I/A; hence, 8(0) cx and 8(i#) C otherwise. For
# 0 we obtain

S(T)Ax dT S’(T)X dT S(t)x x, t > O,

and so (H2) is valid for # 0. If # 0 we get, via an integration by parts,

e-i’ ((a S)(T) a(i#)S(T))Ax dT= e-’ S(s)ds S(T) Ax dT

1=-"(x- S(t));

hence, (H2) is valid for all # e . Since E a(A) i, (H1) becomes (ap(A)U
ap(A’)) i c {0} and N(A)Z N(A’) {0}. Thus, the General Convergence
Theorem reduces for the ce a(t) 1 to the following version of the stability theorem
of Arendt and Batty [2], and Lyubich and Phong [28].

COROLLARY 6.1. Suppose A generates a bounded Co-semigroup in X, let a(A)
i be countable, ap(A’) i c {0}, and assume N(A) N(A’) {0}. Then
limt S(t)x Px for each x e X, where P denotes the projection onto N(A) along
R(A).

Next we show that condition (H2) for 0 is satisfied for a large cls of kernels,
provided the resolvent S(t) is known to be bounded. We denote by BV(+) the space
of all functions a" of bounded variation, which are left-continuous and such
that a(t) 0 for t G 0.

PROPOSITION 6.2. Suppose that the resolvent S(t) of (1.1) is bounded, let a(t) be
of the form

t > o,
k--0

where

ao, tao E LI(IR+) and for k 1,...,n,

(k-l) 0(6.3) ak e Wlko;’t(R+), ak e BY(R+), tlda(kk-)(t)l

Then o(a) iR\{0}, a(i#) e C for all # e IR\{0}, and for each # e IR\{0} there is
constant c(tt) such that
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If n 0 the assertions also hold for # O.
Proof. Adding suitable constants to the functions of bounded variation bk(t)

a(k-1)
k (t), we may assume a )(0) 0 for all0 <_ i <_ k-2 <_ n-2. Let b0(t)
f aO(T)dT. The familiar formula

dbk(A)-- (da(kk-1))^(A)-- Akhk(A), Re A > 0, k- 1,...,n,

by (6.2) yields the representation

n

(6.5) 5(A) E bk(A)A-k’ Re A > 0.
k=O

Since bk e BV(IR+), k 0,..., n, (6.5) shows that &(A) admits a continuous extension
at least to C+\{0}; hence, we obtain 0(a) D i]R\{0} and 5(A) e C for all A e C+\{0}.
Integrating by parts k times leads to

hence, summation over k gives

e-i"r[(a S)(T) (z(i#)S(T)]Ax dT

k=O
(6.6) n k-1

-e-"tE E(a(k) S)(t)(i#)-d-lAx
k=l j=0

n

E(i#)-k(T(t) e-tR(t))Ax,
k=O

where

(6.7)

and

Tk(t) e-i"’[(dbk S)(T) d"bk(i#)S(T)]dT

n

(6.8) Rk(t) E(ak-l)
* S)(t), Ro(t) O.

To estimate Tk(t), we write

Tk(t) e-i"" dbk(T- s)S(s)dT- e-"’bk(i#)S(T)dT

S(s)e-i" dbk(T s)e-i"(’-) bk(i#) ds,

S(s)e-i" dbk(r)e-i" ds.
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Hence,

ITk(t)l <_ M Idbk(T)lds M dsldbk(T)l + dsldbk(T)l

M t Idbk(T)l / TIdb(T)I <_ M Tldbk(r)l Mk <

where M SUPr>0 ]S(T)I. To derive a bound on the Rk(t), we expand (ak * S)(t) into
a Taylor series up to order k,

k-1 hJ ft
t+h

( s)(t + h) -( s)(t) (g> s)(t). + ( s)()
j=0

(t + h- r)k-1
(k- 1)!

d7.

Summing over k, we obtain with (6.1)

n k hi_
S(t + h)x S(t)x EE(a(kj-1) * SAx)(t)

(j 1)
k=l j=l - ft+h (t + h- T)k--1+E (dbk * SAx)(T) (k 11’k=O d

dT.

Since S(t) is bounded and bk E BV(I+) the polynomials

)hi-1 a(kJ-1),SAx Rj_I(t)Ax
hi-1

Pt(h)x
(j- 1)! (j- 1)’"= k=j j=l

are bounded, uniformly for 0 <_ h <_ 1, t >_ 0; but this implies the existence of a
constant C > 0 such that

(6.9) IRk(t)Ax] <_ CIXIA, x e D(A), k- 1,...,n.

The proof is now complete. S
A special case of Proposition 6.2 will be used in 7, namely, the following.
COROLLARY 6.3. Suppose that the resolvent S(t) for (1.1) is bounded; let a(t) be

of the form

(6.10) a(t) bo + bt + bl (s)ds, t > 0,

where bo, b >_ 0 are constants and bl Loc(R+) is nonnegative, nonincreasing, and
convex. Then o(a) D i1\{0}, 5(i#) C for all # R\{0} and (6.4) holds for each
e \(o}.

Proof. We may assume limt__, bl (t) --0, changing b otherwise. Let to > 0 and

bl(t) bl (to) for t _< to,
cl (t)

0 for t _> to,
0 for t <_ to,

c3(t)
bl(to)-bl(t) fort>to,



TAUBERIAN THEOREMS AND ASYMPTOTIC BEHAVIOR 439

and define co(t) O,

a (t) bo + c(T)d, t > O,

a2(t) (bo + b(to))t, t > O,

a3(t) c3(7)dT, t > O.

Obviously, a(t) al (t) -- a2(t) + a3(t), a BV(I+) and da bob + c (t)dt has all
1,1moments since its support is compact; a2 Wo (+), a2 b + b(to) BV(+)

12,1and da (b + b(to))5 also h all moments, a3 belongs to "’loc (+) since b
is nonincreing and convex, and a3(t) -d3(t) for t > t0, a3(t) 0, for t < t0;
moreover, by convexity, -d3(t) is nonincreing for t > t0 and nonnegative, hence
53 e BV(+)L(+) and in particular da admits a finite first momem, since
is nondecreing, integration by parts shows.

The argument at the end of the proof of Proposition 6.2 also yields (H3), i.e.,
boundness of S’(t)x, whenever S(t) is bounded nd a(t) is of the form (6.2), (6.3)
with a0 0. More precisely, we have the following.

PROPOSITION 6.4. Suppose the resolvent S(t) for (1.1) is bounded; let a(t) be of
the form

n

t > O,

where

Tzk ,1 a(kke e

Then there is a constant C > O, such that

(6.13) [S’(t)x[ <_ Clxln for all x e D(A),

k-l,...,n.

t>O.

Proof. Equation (6.1) yields for x e D(A)
n

S’(t)x E(hk SAx)(t) + (dal SAx)(t) R2(t)Ax + (de1 SAx)(t), t > O,
k--2

where R2(t) is given by (6.8). Since a e BV(I+), estimate (6.9) yields the assertion.
Observe that for the proof of (6.9) no moment condition was used.

For the applications in 7 we shall need the following special case of Proposition
6.4.

COROLLARY 6.5. Suppose the resolvent S(t) for (6.1) is bounded; let a(t) be of
the form

(6.14) a(t) bo + bt + b(v)dT, t > O,

where bo, b >_ 0 and b Lo(l+) is nonnegative and nonincreasing. Then there is
a constant C > 0 such that

(6.15) IS’(t)xl <_ ClXlA for all x e D(A), t > O.
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Proof. We may assume limt_ bl(t) O. Define

al (t) bo -- el (T)dT, a2(t) (box) q- bl (t0))t C3(T)dT,

where Cl(t) and c3(t) are defined as in the proof of Corollary 6.3. Then al E BV(N+)
and 2 b + bl(t0)- c3(t) e BV(N+); hence Proposition 6.4 applies and yields
(6.15). [:]

Observe that in Proposition 6.4 we have to assume that the non-BV part of
co(t) of a(t) in decomposition (6.2) is absent. This clearly restricts its applicability;
however, in case a0 0, Estimate (6.13) cannot be expected. In general, S(t)x need
not be differentiable at all. In this case, we must use the structure of co(t) and A
directly to obtain a bound on S(t).

The verification of (H2) for # 0 is more difficult. If n 0 in Proposition 6.2
then o(a) iN, (i#) C for all # and (6.4) remains valid for # 0 as the proof
given there shows (in fact, no integration by parts is needed). On the other hand,
if n >_ 1 then generically (0) as (6.5) shows (only one of the dbk(O) bk(oc),
k- 1,..., n must be nonzero for (0) -x)); then we have to prove that

(6.16) U(t)Ax S(T)Ax dT, t > O,

is bounded by the graph norm [XlA of x. Since by (6.1) we obtain the relations

1 1O(A)Ax- ,5(,------((S- I)x)^(A) A25(A()^(A)x
for the Laplace transform of U(t)Ax, we see that U(t)Ax will be bounded if there
is k BV(N+), such that d"k(A) (5(,))-1, or if there is g BV(N+) such that
d"(A) (A25(A))-I and S’(t)x is bounded. It should be clear that more information
on the kernel a(t) must be available in order to achieve this, rather than just an
expansion of the form (6.2) and (6.3). In 7 it will be shown how this can be done.
Let us summarize.

PROPOSITION 6.6. Suppose that the resolvent S(t) for (1.1) is bounded, and
assume either of the following. (a) There is k 6 BV(g{+) such that (Ag(A)) -1 d"k(A),
) > O, i.e.,

(k a)(t) t, t > O.

(b) There is f e BV(R+) such that (,2a())-I ’(), > 0, i.e.,

( a)(t) t2/2, t > O,

and, in addition, suppose that (6.13) holds.
Then 0 o(a), (0) cx, and there is a constant C > 0 such that

(6.17) S(T)Ax dT! for all x D(A), t>_0.

Consider now the cosine case, i.e., a(t) =_ t and A generating a bounded strongly
continuous cosine family C(t). Then we have S(t) C(t), t >_ O, a(t) is of the
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form (6.2), (6.3) and also of the form (6.11), (6.12). Since A2h(A) 1 ’g(A)
with l(A) 1 for t > 0, Propositions 6.2, 6.4, and 6.6 imply that (H2) and (H3) of
the General Convergence Theorem are satisfied. Since a(A) C (-, 0] (H1) becomes
a(A) countable and ap(A’) c {0}, N(A) +/- N(A’) {0}. Thus we have the following.

COROLLARY 6.7. Suppose A generates a bounded, strongly continuous cosine
family C(t) in X, assume a(A) is at most countable, ap(A’) c {0} and N(A)-L f3

N(A’) {0}. Then limt-o C(t)x Px for all x e X, where P denotes the projection
onto N(A) along R(A).

We conclude this section with an example which is such that none of the results
of this section can be applied, although (nl), (H2), and (S3) hold, and so the General
Convergence Theorem can still be used.

Example 6.8. Let X be a Hilbert space, A a dissipative operator in X such that
(A) D i, and let a(t) cos(t), t > 0. We claim that the resolvent S(t) of (1.1)
satisfies

(6.18) lim S(t)x x for all x X.

To prove this we will apply the General Convergence Theorem of 5. Observe first
that 5(A) A(A2 + 1)-1; hence a(t) is not of the form (6.2), (6.3) in view of the poles
A i of (A). For the Laplace transform of S(t), we obtain

(6.19) A;(A)=(A+I/A)(A+I/A-A)-1, ReA>_0, A-0,

which exists on C+\{0}, since A is dissipative and o(A) D i]R, and the function
99(A) A + 1/A maps C+\{0} onto C+. Furthermore, (6.19) yields

(6.20) AS()x-- lim r(r-A)-lx-x for allxeX.lim
A--*0+ r--c

The set of singularities E of (a, A) consists only of the point zero and so we only
have to prove that S(t), S’(t)A-1, and V(t) 1 (a, S)(t) are bounded (existence
of S(t) follows, e.g., from the paper of Grimmer and Prfiss [18] since a(0+) > 0 and
a(t) is smooth). Let x e D(A) and put u(t) V(t)x; then it is easy to see that u(t)
satisfies

(6.21) u" An’- u + x, u(O) u’(O) O.

Take the inner product of (6.21) with u’(t) and integrate to the result

[u’(t)l 2 + In(t) xl 2 <_ Ix[ 2 + 2 (Au’(s), u’(s))ds <_ ]xl 2,

since A is dissipative and u(0) u’(0) 0. But this means

(6.22) I(a * S)(t)xl + IV(t)x xl < Ix[, t>O,

i.e., V(t) and (a,S)(t) are both bounded. Similarly, u(t) S(t)x, x e D(A2) satisfies
(6.21) with initial values u(0) x and u’(0) Ax; therefore, the same argument yields

(6.23) IS’(t)xl + IS(t)x- xl2 < [Ax[ 2, t > 0,

i.e., S’(t)A-1 is bounded by 1 and so S(t) S’(t)A-1 + V(t) is bounded as well.
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7. Applications to viscoelasticity. Let t C ]n be a domain with compact
and smooth boundary0 that is occupied by a linear incompressible viscoelastic fluid.
Assuming the fluid at rest for t >_ 0, its velocity field u(t, x) is governed for t > 0 by
the following problem

V (t, x) + g(t, z)

(7.1)
(V o u) (t, x) 0 forxE, t>0,

u(t,x)=O forxE0, t>0,

u(O,x) so(x) for x e .
Here p(t, x) denotes the (also unknown) hydrostatic pressure; g(t, x) a (given) external
force field, so(x) the (given) initial velocity field (induced by a i-perturbation at time
t 0); A, V, Vo designate the Laplacian, gradient, divergence with respect to the
x-variables, respectively. The stress relaxation modulus da(t) of a linear viscoelastic
material is of the general form

(7.2) a(t) ao + at + al (s)ds, t >_ 0,

where a0,a _> 0 are constants, and al (t) >_ 0 is nonincreasing and of positive type,
limt_. al (t) 0; for a viscoelastic fluid we even have a 0 and al LI(]+).

For the derivation of (7.1), the properties of the kernel da(t), and more on the
physical background of viscoelasticity, we refer to the monographs of Christensen [9],
Renardy, Hrusa, and iohel [35], and Pipkin [31].

Equation (7.1) can be rewritten as an abstract Volterra equation in a Banach
space X of the form (1.1), i.e.,

(7.3) u(t) a(t- T)Au(T)dT + f(t), t >_ O,

where A denotes a closed linear operator in X with dense domain D(A) and f
C(+, X). In fact, we may choose X L(t; n), the space of all divergence-free L2-

vector fields, A PA, the Stokes operator with D(A) W2,2(; n)NW’2 (; n)N
X (P denotes the Selmholtz projection in L2(gt; R)) and f: 1+ - X is defined by
f(t) Uo + f g(s)ds. It is well known that the Stokes operator is self-adjoint and
negative semidefinite, and hence gives rise to a bounded cosine family in X.

For the Helmholtz projection and the properties of the Stokes operator mentioned
above, as well as others, we refer to the paper by Giga and Sohr [17], and to the
monograph of Temam [39].

Existence of the resolvent in the general case relevant for the theory of viscoelas-
ticity was first obtained in a Hilbert space setting by Carr and Hannsgen [7].

PROPOSITION 7.1. Let X be a Hilbert space, A self-adjoint and negative semidef-
inite and let a(t) be of the form (7.2) with ao,a >_ O, a (t) >_ 0 nonincreasing and of
positive type with a e noc(R+) and lim__. a (t) O. Then (7.3) admits a resolvent
S(t) such that IS(t) <- 1 on R+.

Actually, Cart and Hannsgen assumed in addition that a (t) is convex; however,
for existence this is not needed. The proof of Proposition 7.1 relies on the spectral de-
composition of self-adjoint operators in Hilbert spaces and estimates on the solutions
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s(t; #) of the scalar equations

(7.4) s(t) + It a(t T)S(T)dT 1, t >_ O, It >_ O.

A different approach was introduced in Priiss [32].
PROPOSITION 7.2. Let X be a Banach space, A the generator of a bounded cosine

family C(t) in X, a(t) of the form (7.2) with ao, ao >_ O, ale Loc(+), a(t) >_ 0
nonincreasing and log a (t) convex, lim,__.o a (t) 0. Then (7.3) is governed by a
bounded resolvent S(t).

The proof of this result is based on the complete monotonicity of the functions
h(A, T) exp(-T/&(A)I/2)/(A&(A) 1/2) with respect to A > 0, for each fixed T >_ 0, on
the representation formula

(7.5) (A) C(-)h(A, T)dT, A > O,

and on the generation theorem for resolvents due to Da Prato and Iannelli [13] and
Grimmer and Priiss [18].

Here we are interested in the asymptotic behavior of the resolvent S(t). Before
we quote some known results, let us introduce the following definition.

DEFINITION 7.3. Suppose (7.3) admits a resolvent S(t).
(i) Equation (7.3) is called uniformly asymptotically stable if there is

C0(K+) such that IS(t)[ <_ (t) on I+.
(ii) Equation (7.3) is called asymptotically stable if S(t)x - 0 as t o for each

xEX.
Carr and Hannsgen [7] obtained the following result.
THEOREM 7.4. Let the assumptions of Proposition 7.1 be satisfied, and assume

in addition that a C(O, o) and that-/l(t) is nonincreasing and convex. If A is
invertible and a(t) aot, then (7.3) is uniformly asymptotically stable.

Observe that A must necessarily be invertible if (7.3) is uniformly asymptotically
stable. In fact, if 0 e a(A), then lIt(It- A)-[ >_ 1 for each It e (A); on the other
hand, S(.)x e L(I+,X) for each x e X implies that (A) (l/A)(/- &(A)A)-1
is uniformly bounded for Re A _> 0, i.e., M _> [(A)[ _> 1/[A[ which is impossible.
Also a(t) aot is necessary for uniform asymptotic stability, since otherwise S(t)
C(v/-d-t where C(t) denotes the cosine family generated by A; but cosine families
are never integrable.

There is a similar result for the situation of Proposition 7.2; see Priiss [32].
THEOREM 7.5. Let the assumptions of Proposition 7.2 be satisfied. Then (7.3) is

uniformly asymptotically stable if and only if a(t) aot and A is invertible.
In the case A PA, the Stokes operator in L(;n), A is invertible if the

domain f C In is bounded; thus Theorems 7.4 and 7.5 show that viscoelastic fluids
with (sufficiently) convex stress relaxation moduli are always uniformly asymptotically
stable, unless they are purely elastic, i.e., da(t) adt.

However, for unbounded domains gt, the operator A pA will in general not be
invertible and so (7.3) is not uniformly asymptotically stable. As a consequence of
our General Convergence Theorem and the results in 7, in this situation (7.3) will
still be asymptotically stable, as the next theorems show.

THEOREM 7.6. Let the assumption of Proposition 7.2 be satisfied, and assume in
addition a(t) aot and N(A) +/- N(A’) {0}. Then limt--.o S(t)x Px for each
x e X, where P denotes the projection onto N(A) along R(A).
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Proof. (a) By Proposition 7.2 there is a resolvent S(t) for (7.3) which is bounded
on +. Since log-convex functions are convex, we see that Corollaries 6.3 and 6.5
apply; hence, )(a) il\{0} and (H2) holds for # = 0, and also (H3) is satisfied.

(b) We next compute the set E of singularities of (A). Since A generates a
bounded cosine family, we have a(A) c (-cx), 0]. Convex functions are of positive
type; hence, (A) (-x), 0] for Re A > 0. Therefore, E C {0} will follow if we show
that Im 5(i#) 0 for # e ]1(, # 0. Since tal (t) <_ f al(T)dT -- 0 as t --. O, via an
integration by parts, we obtain with it > 0,

(7.6) itIm 5(iit) a0 + Re 51(iit) ao + it- (-4(t))sin(itt)dt >_ 0,

since al(t) is nondecreasing and convex (hence also absolutely continuous on (0,
Equality in (7.6) can only hold in case a0 0, and -5 (t) is constant on each of the
intervals (2krit-; 2(k + 1)tit-1); but this cannot happen since a (t) is log-convex by
assumption and is nontrivial, for otherwise, a(t) =_ at. Thus, E C {0} holds.

(c) We next show 0 E (a) and (H2) for it 0. This will be done with the help
of the following result.

LEMMA 7.7. Let a(t) satisfy the assumptions of Proposition, 7.2 and define g(A)
5(/k) -/2 for Re/k >_ 0. Then there are k, BV(+) such that

g(A) d(A) d(A)g(A)/A, Re A >_ 0.(7.7) dk(A)
1 + g(A)’

The proof of Lemma 7.7 is based on Bernstein’s theorem and the Wiener-Levy
theorem; see Priiss [32, pp. 341-342].

Observe that Lemma 7.7 yields 0 e g(a) and 5(0) x, since k(A) is continuous

on +, 5() (1/dk() 1)2 and lim_0+ 5() 5(0) cx).

Now let U(t) f S(T)dT; then for x e D(A), we have

(UAx)^(A) A-g(A)Ax A-2(I- 5(A)A)-IAx A-2g(A)2(g(A)2 A)-IAx

and

(S I)^(A)x 5(A)A,k-I(I 5(A)A) -1 A-1A(g(A)2 A)-lx,

as well as

(S’)^(A)x Ag(A)x x 5(A)A(I- 5(A)A)-x A(g(A)2 A)-x.

These relations and the identity

A-2g(A)2 A-//’/(A)(1 + ’k(A)) + ’t!(A)2, Re

yield

(A)Ax d(A)2(g’)^(A)x + ’(A) (1 + k(A))(S I)A(A)x;

hence,

U(t)Ax (dg d S’)(t)x + (dg + d dk) (S I)(t)x.
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Since the measures d and dk are bounded, we obtain from the boundedness of
S(t) and S’(t) on D(A) the desired bound on U(t)Ax, i.e., (H2) holds.

(d) Finally, the assumption N(A)+/- N N(A’) {0} implies A(A) --* P strongly
as A --* 0+ by Theorem 4.6; hence, the General Convergence Theorem applies and
the proof is complete.

The proof of Theorem 7.6 shows that boundedness of U(t)Ax is the difficult thing
to prove. This turns out to be even more difficult in the situation of Proposition 7.1,
where the assumptions on al(t) are weaker so that, in general, Bernstein’s theorem
can no longer be employed. We want to discuss this case now in some detail. So
suppose that X is a Hilbert space, A negative semidefinite, and let a(t) be of the form
(7.2) with a0, ao >_ 0, ale Loc(N+) nonnegative, nonincreasing of positive type, and
limt-o al (t) 0; let us exclude the cosine case a(t) aot which has already been
discussed in 6.

Proposition 7.1 shows the existence and boundedness of the resolvent S(t), Corol-
lary 6.5 yields the boundedness of S’(t) on D(A): That is, (H3) holds, and since

lim_0+ &() &(0) c, we obtain lim_0+ S()x Px for all x E X where
P denotes the orthogonal projection onto N(A). By means of the decomposition
al(t) a2(t) + a3(t), where

a2(t) (al(t) al (to))+, and a3(t) min(al (t), al (to))

for t > 0, a2(t) a3(t) 0 for t <_ 0 as before, we obtain

(7.9) a(A) + a la + + Re >_ 0,

and therefore, o(a) D iN\{0}, a(i#) e C for all # e , # 0.
Since al (t) is nonincreasing, it follows that for # 0

#2Re a(i) -a +/tim al(iit) 0

and even strictly if al(t) is also continuous on (0, cx) or in case a > 0. On the other
hand, we have for it 0

-itIm a(iit) a0 + Re &l (iit) >_ 0,

since al(t) is of positive type and even strictly if a0 > 0. Therefore, we have

E0 E\{0) {it e 1\{0} Re al(iit) --a0, a(iit) -1 e a(A) or a(iit) 0)

Thus, the spectral assumption (H1) reduces to

(7.10) E0 is at most countable, and it e E0 implies a(iit) -1 ap(A).

Observe that E0 0 if a0 > 0 or if Re gl (iit) 0 for all it 0.
By Proposition 6.2 and Corollary 6.3, it is also not difficult to verify (H2) for

it E E0; in fact, either f tdal (t) < oe or al convex will be sufficient; note, however,
that the former is equivalent to al LI(I[+) since al(t) _> 0 is nonincreasing.

We turn now to the question whether 0 e 0(a) and whether U(t)Ax f) S(T)Ax dT
is bounded on D(A). The first two cases will be a consequence of Proposition 6.6.

Case 1. a > 0 (a "solid"). This one is easy. In fact, if a > 0, then
gl(A) (;2a(A)) -1 is bounded and completely monotonic for A > 0, since al(t)
is nonincreasing. Therefore, by Bernstein’s theorem there is a function BV(II+)
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such that gl () J() for t > 0. Proposition 6.6 then implies 0 e (a), 5(0)
and boundedness of U(t)Ax on D(A).

Case 2. a -O, ao > O, al E LI(R+) "viscous fluid"). Here we use

g2(A)
)&(A) a0 + 51 (A) a0 1

a0 -- (1 (/)
Re > 0.

Since al ( L(I+) is of positive type, Re a (,) >_ 0 for Re A _> 0, and so a0 + al (,)
does not vanish on +. By the Paley-Wiener theorem there is a function r L1 (R+)
such that

Re )>_0,

and so assumption (a) of Proposition 6.6 is satisfied; therefore, 0
and U(t)Ax is bounded on D(A).

Case 3. a ao O, a L(]I(+) (a "rigid fluid"). We assume in addition
that a is absolutely continuous on (0, oo) in this case. As before, decompose a (t)
a2(t)+a3(t), where a2, a3 are as in (7.8) and to > 0 is small enough for a3(04-)
al (to) > 0. Since

S(t)x- x (a UAx)(t)

and

S’(t)x (a2 * SAx)(t) (da3 UAx)(t) aU(t)Ax + (&3 * UAx)(t),

we obtain

(A)Ax ( + 5() + (53)A(A))-(S(t)x x + S’(t)x (a2 * SAx)(t))A(A).

By boundedness of S(t)x, S’(t)x, and S(t)Ax on D(A), and since a2 e L(R+), it is
sufficient to show that

g3()--- (" + 1()+ (3)h())-1 ( + ())--1 --1 (1 (A)
(A) )

is the Laplace transform of a bounded measure.
By sumption, Re a(A) 0 for Re A > 0 and a(0) f ai ()d > 0; on the

other hand, since a3(t) 0 on (0, ), and equality only
holds for A 0. Therefore, (A) a(A) + (a3)(A) - for Re A 0, and so by
the Paley-Wiener theorem there is a function r L (+), such that

g3(A) ,-(1 (A))) k(), Re A 0,

where k(t) -(1- f r(T)dT) belongs to BV(R+). Thus, U(t)Ax is bounded on

D(A), 0 e (a), and a(0) follow in this ce eily from (7.9).
Case 4. a O, a LI(R+). If a is not imegrable then we cannot apply the

Paley-Wiener theorem directly to show that the functions gd(A) in Case 2 and Case
3 above are Laplace transforms of bounded meures. However, it is enough to know
that for every > 0 there is r L(R+) such that

a(A) Re A 0,+
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holds. Obviously, this is enough in case a0 > 0; put a a0 to see this. If a0 0,
rewrite g3(A) as

93(A)--(-I(l-(A)+(a3)^(A)ka(A))i-(a3)^(A)dk (A)
=

where dka(A) (a + al()))-1 o-1(1- ?a()), and apply Paley-Wiener to this
representation.

Shea and Wainger [37] have shown that if in addition el(t) is convex such r e
LI(+) exist; see also Jordan, Staffans, and Wheeler [21]. It is clear that then we
also have 0 E o(a).

We summarize this in the following theorem.
THEOREM 7.8. Let the assumptions of Proposition 7.1 be satisfied. In addition

we assume that one of the following conditions is satisfied: (a) ao > 0;
(b) al E LI(+), and either a is absolutely continuous on (0, oc) or ao > O;

(t) o. (o,
Moreover, suppose that the spectral condition (7.10) is satisfied. Then limt_o S(t)x
Px for each x X, where P denotes the orthogonal projection onto N(A).

Finally, we want to mention that for al convex, Re (i/z) 0 if-/ (t) is constant
on each of the intervals (2kr#-,2(k + 1)zr#-l); in particular, E0 } if-/l(t) is
nonincreasing and continuous on (0, c).
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de Math6matiques de Besanqon for its kind hospitality during his visits.
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RICCATI DIFFERENTIAL EQUATIONS WITH UNBOUNDED
COEFFICIENTS AND NONSMOOTH TERMINAL CONDITION--THE

CASE OF ANALYTIC SEMIGROUPS*
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Abstract. This paper provides, constructively, an explicit solution to the (operator) Differential Riccati
Equation in Hilbert space with unbounded coefficients on a fixed time interval [0, T), T < oo, which arises
in the optimal control problem with nonsmoothing terminal condition at T for an abstract dynamics
modeled by an analytic semigroup. The results are sharp as illustrated by counterexamples. Regularity
properties of all the quantities involved are also given. Uniqueness of the solution is asserted under some
additional assumptions on the terminal condition. Applications include parabolic equations with Dirichlet,
or Neumann (Robin) boundary control, or else with point control, as well as plate-like equations with a

high degree of damping, etc.
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1. Introduction: statement of main results; literature. Consider the following
abstract differential equation,
(1.1) .f,=Ay+Bu on, say, [(A*)]’, y(0)=yo Y,
subject to the following assumptions to be maintained throughout the article.

(i) A is the infinitesimal generator of a strongly continuous analytic semigroup,
denoted by eat on the Hilbert space Y. Without loss of generality for the problem
considered here, where the dynamics (1.1) is studied over a finite interval [0, T], T <
we may assume that A is boundedly invertible, i.e., A-I (Y). Then the fractional
powers (-A), 0< 0< 1 are well defined.

(ii) B is a linear (generally unbounded from U to Y) but continuous operator:
U= @(B)-> [(A*)]’, where U is another Hilbert space, such that

A-’B (U; Y) or IIA-BII(. IIn*a*-ll(;u <= c
(1.2) for some fixed % 0 -< 3’ < 1.

Generally, dependence on , will not necessarily be explicitly noted in the sequel. In
(1.1), A* is the Y-adjoint of A, and [(A*)]’ denotes the dual space of @(A*) with
respect to the Y-inner product, so that lylt<.)3,= IA-lyl..

Remark 1.1. It was pointed out in ILl, [T], on the basis of preliminary work in
[B1], [B2], [W], that in the case of a second-order parabolic equation defined on a
bounded domain f R" the relevant values of the constant /are as follows:
’qe > 0,for Dirichlet boundary control with U L(F), Y L(f); or else, for Neumann
boundary control with U L(F), Y HI(f); while 3’ 1/4+ e, for the Neumann bound-
ary control with U= Le(F) and Y= L=(f). For a more detailed discussion of these
and other examples of partial differential equations with boundary-point control which
fit into the present abstract theory, we refer to [L-T4].

With the dynamics (1.1), we associate the following quadratic functional cost over
a preassigned fixed time interval [0, T], 0< T<

(1.3) J(u, y)= [Iey(t)12w+lu(t)lu] dt+lGy(T)12z,

* Received by the editors May 9, 1990; accepted for publication (in revised form) January 30, 1991.
This research was partially supported by National Science Foundation grant NSF-DMS-8902811 and by
Air Force Office of Scientific Research grant AFOSR-87-0321.

5" Department of Applied Mathematics, University of Virginia, Charlottesville, Virginia 22903.
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where in (1.3), y(t) y(t; Yo), R ( Y; W), G( Y; Z), and W, Z are other Hilbert
spaces.

The corresponding optimal control problem is:

minimize J(u, y) over all u L2(0, T; U),
(1.4)

where y is the solution of (1.1) due to u.

The solution to (1.1) is

(1.5) y(t) eAtyo+(Lu)(t

(1.6a) (Lu)(t)= eA’-Bu(’) d"

(1.6b) "continuous L2(0, T; U)-> L2(0, T; ((-A)’-).

The adjoint L* of L: (Lu, f)L2o,r;y=(u, L*f)L2o. T;U is given by

(1.7a) (L’f)(t) B* e*(’-’f(-) dr

(1.7b) "continuous L2(0, T;[@((-A)-)]’)- L(0, T; U).

Complementing (1.6a), we shall let Lr be the (unbounded) operator

(1.8) LTti eA(T--t)Bu(t) dt

with densely defined domain (LT) {u L(O, T; U)" Lru Y}, which describes the
map (1.5) from the input u to the solution y(T) of (1.1) at time T, with Yo 0. Its
adjoint L’r, (LTU, y)y=(U, L*y)IO,T;y) is the closed operator

(1.9) {L*ry}(t)-- B* ea*T-t)y, O <- T, y Y.

1.1. Nonsmoothing case. Our main result is the following theorem.
THEORE 1.1. Let the (densely defined) operator GLT be closed (or closeable), as

an operator L2(0 T; U)(GLT)-Z Then there exists a unique optimal pair
{u(t, 0; Yo), y(t, 0; Yo)} ofproblem (1.1), (1.3), with T<c, explicitly given by

(1.10) -u(t, 0; x)= {AT[L*TG* eATx+ L*R*R(eAx)]}(t),

(1.11) yO(t, 0; x) eatx + (Lu)(t),

(1.12) AoT I + L*R*RL+ L*G*GLT,
with L, L*, defined in (1.6), (1.7), and LT, L* defined by (1.8) and (1.9). Moreover,
there exists a nonnegative, self-adjoint operator P( t) P*( t) >- 0 (see (3.31) ofProposition
3.8), defined explicitly in terms of the data in (vii)= (1.19) below, such that

(1.13) (i) P(. )(Y; C([0, T]; Y))

(see (2.27) of Proposition 2.2 and comments in the proof thereof);

(ii) In fact, even more, for 0 _-< 0 < 1,

CTyO
(1.14) ](-A*)P( t)l (y)=< (T-t)’
(see (3.26) of Corollary 3.7);
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(iii)

(1.15)

(see (4.31) of Proposition 4.6);

(1.16) (iv) iB,P(t)l(;t)< CT
=(T- t)r’

(see (3.27) of Corollary 3.7);
(v) For any 0 < s <= T,

For all 0 < e <= T,

(-A*)P(t)L(Y; C([0, T-el; Y)), 0-<_0<1,

O<_t<T

(1.17) B’P(. )(Y; C([0, T-e]; Y))

(see (4.32) of Proposition 4.6).
(vi) For each Yo Y, the optimal control u( t, 0; yo) is given in pointwise feedback

form by

(1.18) u(t, 0; Yo)=-B*P(t)y(t, 0; Yo), 0=< < r
(see (2.28) of Proposition 2.2).

(vii) The operator P( t) is given (constructively) by

(1.19) P(t)x= e*(’-’R*Ry(", t; x)d’+e*(r-G*Gy(T, t; x).

(viii) The optimal cost of the optimal control problem on t, T] initiating at time
at point x Y is

(1.20) J(u( t; x), yO( t; x))= (P(t)x, x)r

(see (3.32) of Proposition 3.8);
(ix) For 0 < < T, P( t) satisfies thefollowing Differential Riccati Equation (DRE),

for all x, y ((-A)), for all e > 0 (see Theorem 4.5),

(P(t)x, y)r -(R*Rx, y).-(P(t)x, Ay).-(P(t)Ax, y).
(1.21)

+(B*P(t)x, B*P(t)y).

(x) The following regularity properties hold true for the optimal pair

(1.22) Ilu( s; X)IIL2,.T;U)/ ]]yO(., S; x)ll,.;.-< cllxll
(see (2.19), (2.20) of Proposition 2.1

1.23 Gyo T, s; x)ll z <= c7. x Y;

(see (2.21) of Proposition 2.1)

(1.24) Ilu( s; x)llc(r,a. < cllxll
(see (3.23) of Theorem 3.6)

(1.25a) [ly( .,s;x)llc(rs,T3;,)<-CTllxll if 0-< y<1/2;

(.25b) [ly(’,S;X)IIc,_,/(t,T;<--CTIIXlI if_-<r<l.
(see (3.24) of Theorem 3.6).

In (1.24) and (1.25), ifX is a Hilbert space and r any real number, Cr([s, T]; X)
denotes the Banach space defined by

Cr([s, T]; X)= {f(t)e C([s, T); X)-
k.

(1.26)
IlfllcAt.T];X) sup (T- t)rllf(t)llx < oo.

s<=t<T
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Moreover (see Theorem 4.1), for x Yandfor each s fixed, 0 <= s < T, the optimal control
u( t, s; x) and the optimal solution yO(t, s; x) are, respectively, U-valued and Y-valued
functions that are differentiable in (s, T) with (Ou/cgt)( t, s; x) U, (cgy/Ot)( t, s; x)
Y. In fact, these U-valued and Y-valuedfunctions uo( t, s; x) and y( t, s; x) are analytic
in (s, T) if the operator A has compact resolvent in Y, or (-A)PB is compact, for
some 0 <p < 1.

(xi) If we define the evolution operator

(1.27) ( t, ’)x yO( t, ’; x),

thefollowing weak convergence results hold true (see (5.3) and (5.4) ofProposition 5.2):

(1.28) lim (Gd( T, t)x, Z)z (Gx, z) lx X, Vz Z;
t’ T

(1.29) lim (P(t)x, y)y=(G*Gx, y) /x, y Y.
tT

Remark 1.2. With reference to the assumption of Theorem 1.1, we have

(1.30)

(1.31)

closed operator (GLT-)*, written
as L’rG*, be densely defined as an
operator Z = @((GLT)*) -L2(0, T; U)

(-A*)t/2b be densely defined as an
operator Z ((-A*)t/2G*) Y
for some/3 > 23’- 1

densely defined operator GLT-
<=> be closeable as an operator

t2(O T; U) = (GLT)- Z

The equivalence is a standard result [K1, p. 168]. To see the sufficient condition, we
compute from (1.9),

{L*rG*z}(t)= B* eA*T-’)G*z

(1.32) B*(-A*)-V(-A*) -t3/2 ea*7"-’)(-A*)t/2G*z,
use (1.2), and notice that (-A*)v-/2 ea*T-t)(Y; L(O, T; Y)) for 27-fl <1.

We emphasize that condition (1.31) on (-A*)/2G*, which does not involve B,
is only sufficient for the ultimate requirement that GLT be closeable, which instead
involves B. This will be seen in one example in 7.2 below.

Remark 1.3. An example in 7.1 will show that the assumption that GLT be
closed (closeable) cannot be dispensed with, for otherwise the optimal control may
not exist.

1.2. The smoothing case. Next we shall assume that G is a smoothing operator in
the sense that

(1.33) (-A*)t3G*G(Y) for some/3>27-1

(which is automatically satisfied with/3 0 if 0 -< 3’ < 1/2). Then, equation (1.33) implies
that GLr is, in fact, bounded" GLr &(L(O, T; U), Z) (so that afortiori the assump-
tion of Theorem 1.1 is satisfied). To justify this claim, a useful result from IF1, Lemma
3.1] is invoked (which will be recalled in its entirety at the beginning of 6), which
says, in particular, that the operator (-A*)t/G*G(-A)t/2- admits a bounded
extension in (Y), e > 0. Thus, (-A*)/2-G*G(-A)t/2- is self-adjoint and in w(y).
Then, (-A*)t/2-G* (Z, Y). Returning to (1.32) and the line below it, we see that
L*rG* is bounded" L*rG* (Z, L(O, T; U)), as desired, since (-A*) v-t/2+ ea*(T-t)
(Y; L(O, T; Y)).
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Thus, if condition (1.33) is assumed, then, accordingly, stronger results follow;
in particular, yO becomes continuous. Moreover, the solution of the DRE (1.21) given
explicitly by (1.19), is unique and the limits (1.28) and (1.29) as ]’ T of Theorem
1.1(xi) are strong. Thus, we recover results of [D-I], which were obtained via the
"direct" method.

THEOREM 1.2 Assume (1.33). Then; we have.the following.
(i) (Regularity of optimal pair). For x Y and any e > O,

(1.34) ]u( s; x)lc_,_(t.r.t)+ly( s;

(1.35) y(T,. x)= (T, .)x C([s, T]; Y),

(see (6.30) and (6.31) of Corollary 6.3)from which, in particular, (see (6.32))

(1.36) lim dp( T, t)x x, x Y;
tT

(ii) For any 0_-<0<1, e > O, x e Y, we have (-A*)P( )x Co+1_2+([0, T]; Y)
(see (6.33) of Corollary 6.3)

(1.37) i(_A.)op(t)le(y) < Cry 1

1 0 (T- t)

(iii) B’P(. ( Y; C1__([0, T]; U));

that is,

(1.38) Cr 1
IB*n(t)xlt, <

1 3/ (T- t) 1--e IXIY
(see (6.34) of Corollary 6.3);

(1.39) (iv) lim P(t)x G*Gx, x Y
t$T

(see (6.35) of Corollary 6.3);
(v) (uniqueness, see Theorem 6.4) the solution P(t), given constructively by (1.19),

of the DRE (1.21) and of the terminal condition (1.39) is unique within the class of
self-adjoint operators P(t) such that

(1.40) B*(t)x Cv([0, T]; U) if 0-<_3/<1/2, where/3=0,
(1.41) [ Cl_y_e([0 T]; U) if 1/2<= 3/< 1,

If we assume further smoothing properties on G, we obtain, accordingly, more
regular results. In particular, now u becomes continuous as well. We recover results
of IF.l], which were obtained via the "direct" approach.

THEOREM 1.3. Under the assumption (which a fortiori implies that GLr
(L2(O, T; U), Z))

(1.42) (-A*)VG*G(Y),
which is stronger than assumption (1.33) since 23/- 1 < 3/, additional regularity results
hold true, namely (see (6.54))

(1.43) (i) lu( s; x)lc(ts,r;c) <- crlx]r, x Y;

(ii) For any 0_-<0<1, A’P(. )(r; Co_r([0, T]; r)) (see (6.55)),

CT 1
(1.44) I(-A*)P(t)I(- =<

1-0 (T-t)-’
(1.45) (iii) B’P(. (Y; C[0, T]; U) (see (6.56)).
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1.3. Literature. We shall concentrate here only on the case where eAt is analytic
and where B is genuinely unbounded, particularly in the mathematically more demand-
ing and physically more interesting range 1/2 < y < 1. (In the case 0 < y < 1/2, or even 3’ 1/2
if the generator A is, say, self-adjoint or normal, the analysis drastically simplifies and
it technically reduces to the case 3’ 0 where B is then bounded, B w( U, Y): this is
so, since then the operator L in (1.6) is continuous L2(0, T; U)- C([0, T]; Y)[DS],
[L1, Appendix A]. This mildly unbounded case 3’<1/2 where, moreover, G is very
smoothing, essentially (A*)-1, is treated in [P-S]. A preliminary study via semigroup
theory for a parabolic problem with G =0 was carried out in [B2]. The presence of
the penalization operator G in (1.3) introduces additional genuine difficulties. Qualita-
tively, the analyticity of eAt tends "to compensate" the effects of the unboundedness
of B on any interval of the type [0, T-e], ’q’e > 0 small. Instead, the presence of a
non-smoothing operator G produces a singularity at t= T for {L*G*GeATx}(t)
B* eA*(T-t)G*GeATx, which occurs in the explicit formula (1.10) for the optimal
u( t, 0; x). In [L-T1 ], the optimal control problem (1.4) was studied in several directions
(from the regularity of the optimal pair to the synthesis thereof via a Riccati operator)
in the case of a general second-order parabolic equation defined on a bounded domain
fl of R with Dirichlet boundary control, where the constant 3’ in (1.2) is 3’--+ e,
e > 0[T], [L]. Moreover, in [L-T1], the operator G was taken to be the identity G- I
(with Z Y), certainly a nonsmoothing case. The variational approach (from the
optimal control problem to the Riccati equation) introduced in [L-T1] is explicit and
constructive in the sense that" first, the optimal pair uo, yO is characterized solely in
terms ofthe data ofthe problem (see (1.10), 1.11)); next, an operator P(t) is constructed
(see (1.19)) in terms of original and optimal evolution, hence, ultimately in terms of
the original data of the problem; finally, the operator P(t) is shown to satisfy the DRE
and its limiting condition as ’ T.

Another approach, in a sense the converse of the first, so-called "direct" (as it
proceeds in reverse from a direct study of the well-posedness of the Riccati Equation
to the optimal control problem via dynamic programming) is proposed in IF1], [D-I],
following [D]. Here, the operator G is taken to be "smoothing" for both the purposes
of asserting a unique solution of the Riccati Equation (by local contraction argument
and global a priori bound), as well as for the limiting condition as ’ T. In these
references, smoothing assumptions on G are (1.33) for [D-I] and (1.42) for IF1], in
which cases existence and uniqueness of the solution to the DRE is asserted. In a
more recent work [F2], the direct study of the Riccati Equation for existence (not for
uniqueness) is carried out in the nonsmoothing case G Identity under the crucial
assumption that A be dissipative, which then yields strong convergence of P(t) to
G*G as ’ T. An even more recent and almost contemporaneous work on the direct
study of the Riccati Equation for existence (not for uniqueness) in the nonsmoothing
case for G is [F4]. Instead of assuming that GLT is closed (closeable)--a natural
hypothesis on G in the variational approach of the present paper--[F4] makes the
following assumption on G, say in the case G f( Y, Z):

There exists a sequence Gn ( Y, Z) of operators such that (a) there exists

fl > 23’- 1 such that each Gn satisfies the assumption Gn(-A)t/2 ( Y, Z);
(b) {G*,G,} is a nondecreasing family of self-adjoint operators which converges

monotonically to G*G in the sense that as n

(1.46) (G*.G,,x, G.xll 2 Gxll , Vx Y.

Under this assumption (1.46), [F4, Thm. 3.2] shows existence of a solution P(t) of the
DRE (1.21) (with d/dt(P(t)x,y)e on the left side), which satisfies the regularity
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properties (1.13) and (1.14), among others, as in Theorem 1.1 above. In addition, [F4]
obtains also the strong convergence of P(t)+ G*G as ’ T (versus weak convergence
in (1.29)), because of the postulated monotonic approximation property (b). We shall
see in 7.3 that assumption (1.46) in [F4]--which does not invoke B, only A and Gm
is stronger than the assumption GLr closeable of our Theorem 1.1, which involves B.

The question was also raised as to whether the approach of [L-T1] could be
extended to include a general nonsmoothing G, not just the identity. This paper is in
response to this query.

The present contribution offers the most general treatment to date of the optimal
control problem (1.4) for the dynamics (1.1) in the analytic case. This, in particular,
includes the following.

(i) The relaxation of regularity assumptions on the (say, bounded) operator G
of terminal state penalization (see also Remark 7.3 pointing out the applicability of
our treatmentmas well as that of [F4]--also to the case where G is unbounded, say
G e (((-A)), Z), p > 0);

(ii) Sharpness of estimates on the behavior of the various relevant quantities
uo, yO, B*P(t), (-A*)P(t), etc., in the neighborhood of T.
Moreover, the results of our Theorem 1.1mwhich are based only on the assumption
that GLr be closeable--are sharp: this is confirmed by the classes of counterexamples
of 7.3, where in fact, GLr is not closeable and the optimal control does not exist.

In the process of restudying the optimal control problem (1.4) for the abstract
equation (1.1) with a general G, we also dispense altogether with the assumption that
the resolvent of A be compact (which was automatically satisfied and used in [L-T1],
and likewise also in IF2]), thus incorporating in the treatment, in particular, Kelvin-
Voigt models of plates, where the resolvent is not compact. Moreover, we recover
through our variational approach the smoothing cases (1.33) and (1.42) of [D-I] and
[F1], which were originally obtained by the direct approach.

We generally follow the variational approach of [L-T1] and incorporate an idea
of [D-I] to quantitatively describe the singularity of the various quantities at T via
the Banach spaces defined in (1.26).

2. Preliminaries.
2.1. Explicit representation formulas for the optimal pair {u, yO}. Following [L-

TI] we shall collect here some preliminary results, culminating with the representation
formulas of the optimal pair {u, yO}. The solution to (I.I) with initial datum Ys Y
at initial time s, 0-< s-< t_-< T, is given by (see (1.5), (1.6) for s =0, where L--Lo)

(2.1) y(t, s; Ys): eA(t-S)ys +(Lsu)(t),

(2.2) (L,u)(t)= ea{’-}Bu(r) dr

(2.3a) continuous L2(s, T; U)--> L2(s T; ((-A)-r)) with operator
norm uniform with respect to s, 0=< s _-< T;

that is

(2.3b) ]LsUIL2(s,T;((-A)1-) <= KTIUIL,,;,
where KTr does not depend on s, 0=< s =< T. The continuity expressed by (2.3a, b) is a
consequence of the basic assumption (1.2) on B, as well as of the standard result:

f- A e(’-’f(r) dr" L(O, T; Y) L(O, T; Y)
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[DS], [L; Appendix A]. The adjoint operator L*’(Lsu, f)L2(s,r;v)=(u, L*f)L2(s,r;t: is
given by (see (1.7) for s =0, where L*= Lo*)

(.4 (,*f( *e*(’-’f(,l , r

(2.5a) continuous L(s, T; [N((-A)-)]’) L(s, T; U) with operator
norm uniform in s" 0 N s N T

(2.5b) continuous L(s, T;[((-A))]’)C([s, r]; U) for 7+0<1,
with operator norm uniform with respect to s, 0 N s N T;

that is,

(2.5c) Igflc(t,. r]; U) Krvlf[L(s,r;[((-A))]’)
Other regularity results for L and L will be given in Theorem 3.3 below. We

shall also need the (unbounded) operator Lr (see (1.8) for s =0, where LT LOT)

(2.6) L,ru=(L,u)(T)= eA(T--t)Bu(t) dt

with domain (L) {u L(s, T; U) Lu Y}, and its adjoint L" (Lu, y)
(u, Ly),; given by (see (1.9) for s=O" L= L)
(2.7) {LTy}( t) B* eA*(Z-t)y, S T,

which is unbounded from Y= N(Lr) into L(s, T; U). We note that H(s, T;
(Lr), so that (Lr) is dense in L(s, T; U) and that Lr is a closed operator. Next,
by using the assumption that GLr is closed (closeable), we shall conve (GLr)
into a Hilbe space V(s, T; U) equipped with the following inner product

(2.8) (u, V)v(,.r;)=(u, V)L(,,T;)+(GL,TU, GL,rv)z
for u, v (GLT). Let V(s, T; U)]’ denote the dual space of V(s, T; U) with respect
to L:(s, T; U) as pivot space:

(2.9a) V(s, T; U) L:(s, T; U) V(s, T; g)]’

with continuous injections (from (2.8)),

We now introduce the (unbounded) operator

(2.10a) A,r I+ LR*RL+ * *LTG GLr
(2.10b) continuous L(s, T; U) (AT) Le(s, T; Y).

Using (2.3a) and (2.10), we readily verify via (2.8) that

2

with constant Mrr independent on s, 0 N s N T, by (2.3a, b). Then, by (2.11) and (2.12),
the Lax-Milgram theorem applies, and we can extend A,r as

(2.13) A,r" isomorphism V(s, T; U) onto [V(s, T; U)]’

so that in paicular,
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with constant CT independent of s, 0-< s _-< T. From (2.8), we obtain

(2.15) IGLrIe(V(s,T;U;z IL*G*le(z;tv(,T.3’ <- 1.

We now return to the optimal control problem (1.3), except that we shall consider it
over the time interval Is, T], with initial time t--s, rather than 0; 0 <-s < T, and
initial datum x. We shall call {u( s; x) and yO(., s; x)} the corresponding unique
optimal pair. By standard minimization approaches (e.g., Lagrange multipliers, or
direct computation, etc.), the following explicit characterization of the optimal pair
can be derived [L-T1]"

(2.16) -u( s; x)= L* R*Ry( s; x)+ L*TG*Gy(T, s; x),

(2.17) -u( S X) -1 , eA(T-s) R* V(s,=AT[LsTG*G x+L* ReA(’-)x]e T; U),

,,where we note that the element in the square bracket in (2.17) belongs, say, to
[V(s, T; U)]’ so that (2.17) is well defined by (2.13). In going from (2.16) to (2.17)
we have used the optimal dynamics

(2.18) y(t,s;x)=eA(’-)x+{Lu(.,s;x)}(t)

for both yO(., s; x) and y(T, s; x) in (2.16). Note that u in (2.17), and hence yO in
(2.18), are given explicitly in terms of the data of the problem.

2.2. L2-estimates for {u, yO} and Z-estimate for Gy(T; x).
PROPOSITION 2.1. With reference to the optimal pair {u( s; x), yO(., s; x)}, we

have

(2.19) (i) [u( s; X)IL(,T;t) <----luO( S; X)IV(,T;t)<---- Crlxlv
(2.20) (ii) ly( s; X)lL(,r;y) -<- Clxlv
(2.21) (iii) IGy(T, s; x)lz <- Clxl
with C7- a generic constant independent of s, 0 <-s <- T.

Proof (i) From (2.17) we compute via (2.9b), (2.14), (2.15), and (2.5a),

I( ; x)l(,;--< [u( ;

<-- CT[L*7-G* (3 eA(T-)X + LR*R eA( "-S)XI[v(,T;t:)’
<= Cr{lGeA(r-Xlz + IL* R*R eA(’--XIL2(,T;U,}

(2.22) <- CTIXly (by (2.5a)).

(ii) Inequality (2.20) follows then from the optimal dynamics (2.18) via (2.3) and
inequality (2.19) established in (i).

(iii) From (2.18) we have for t= T via (2.6),

(2.23) Gy( T. s; x) G ea(T-s)x + GLTU( s; x).

Then, inequality (2.21) follows from (2.23) via (2.15) (left) and (2.19) (right), with u
in V(s, T; U).

2.3. Definition of operator P(t) and first properties. Following [L-T1], we next
define the operator P(t) (Y), 0 =< < T, by

(2.24) P(t)x= e*(’-e*Ry(", ; x) dr+ e*(r-G*Gy(T, ; x).

(by (2.14))

(by (2.15), (2.9b))
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P(t) in (2.24) is defined explicitly in terms of the data of the problem, since yO is also,
as remarked below (2.18).

It is convenient to introduce the (evolution) operator O(t, s),

(2.25a) O(t, s)x yO(t, s; x), x Y, 0_-< s -< <_- T,

which plainly satisfies

(2.25b) O(t,t)=Identity: dP(t, r)O(r,s)=O(t,s), O<-s<-r<-t<- T.

Further properties of (.,. will be collected in Lemma 4.3. We rewrite (2.24) via
(2.25a) as

(2.26) P(t)x= eA*(’-tR*RdP(7", t)xd’+eA*(r-tG*Gdp(T, t)x.

POPOSTXON 2.2. With reference to (2.24), we have

(2.27) (i) P(t) ( Y; Lo(0, T; Y))

(2.28) (ii) -u( t, O; x) B*P( t)y( t, O; x), 0_-<t<T; xY.

Proof (i) Property (2.27) follows from (2.24) via the regularity properties (2.20)
and (2.21) of Proposition 2.1. It may be boosted to P(t)(Y; C([0, T]; Y), using
the properties of Lemma 4.3(iii) (as done in the proof of Proposition 4.6).

(ii) As usual [L-T1], we rewrite (2.16) explicitly by virtue of (2.4), (2.7), and
(2.25a),

-u(t, s; x)= B* e*(’-’R*R(", s)xd-
(2.29)

+ B* eA*7"-)G*G(T, s)x.

Choosing initial time s equal to with corresponding initial datum yO(t, 0; x) (t, 0)x,
we obtain (2.28) from (2.29) via (2.26) and (2.25b).

We note that, by virtue of (2.28), the optimal dynamics (2.18) can be explicitly
rewritten as

(2.30a) y(t, S’, X)--eA(t-S)X-- ea(’-BB*y(r, s; x) dr;

(2.30b) dP(t,s)x=eA(t-S)x-- eA(’-)BB*(7 s)xd’.

3. Pointwise estimates for u(t, s; x), y(t, s; x), and P(t). Let X be a Hilbert space
and let r be a real number. Following [D-I], we introduce the Banach space
Cr([S, T]; X) defined by

C([s, r]; X) I f(t) C([s, r); X)"
(3.1)

]flct, ;x)= sup (T- t)rlf(t)[x < 00.
s<=t<T

In the interesting case r> 0, r measures the singularity of f(t) at T. Note that
Cr([S, T]; X) Lq(s, T; X) for rq < 1.
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PROPOSITION 3.1. With reference to the operators Ls and L* of (2.2) and (2.4), we
have

(i) For r+3’<l, Ls" continuous Cr([S, T]; U)-C([s, T]; Y)"

CT.v(3.2) ILsuIc(ts’T]; Y)
1 --(y + r)

SO that the bound in (3.2) may be made independent of s, 0<-_ s T;
(ii) For r + y 1 and e > 0 arbitrary,

L" continuous Cr([S, T]; U) Cr+v_a+([s, T]; Y);

(3.3)

so that the bound in (3.3) may be made independent of s, 0 <= s <= T;
(iii) For 0 <-_ r < 1,

(3.4)

L*: continuous Cr([s, T]; Y) Cr+,,/_l([S T]; U),

{ 1 1 },flG(ts, T].y,[L*sflCr+,_l([s,T];U) <---- Crv2‘+-1 max 1 r’ 1 3’

so that the uniform norm is independent of s, 0 <-s <- T.
Proof We first note that (Lsu)(t) C([s, T); Y) and (L*f)(t)e C([s, T); U).
(i), (ii). By (2.2), assumption (1.2) on B, and the analyticity of eAt,

I(Lsu)(t)l,.- (-A) eA(’-(-A)-rBu(7.) dr
Y

lu(r)lo<r-)<= CT, t-__-i-( T_ r); dr

(3.5) (by (3.1)).

For any r->_ 0, we use (T-r)r>-_ (t-r) in the last integral in (3.5) so that

(3.6) I(Lsu)(t)Iy Cr./lUlcr<s,r;g> (t s) 1-(-y+r)

1- (3’+ r)

for r+ 3’ < 1 as assumed, and (3.6) yields (3.2) as desired.
For r + 3’ >- 1, we write using (T- 7.) 1-,- >_ (t 7-) 1-,/- and (T- 7.) +./-l+ >_

(T-t) r+-l+..

7.);i F- r) (t 7-)r( T- 7-)1--T--e( T- r)r+r-,+

_<
1 ft dT.

-(T-t) r+v-l+ .Is (t-7.)-
(3.7)

(t-s)
e(T-t)r+v-l+e"

Then (3.7) used in (3.5) yields (3.3) as desired, via (3.1).
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(by (3.1))

(iii) By (2.4), assumption (1.2) on B, and analyticity,

I(L*, f)()l B*(-A*)-’(-A*) e*(’-’f(r) dr

I, If(r)l}(r-r)r dr

, (r-t)V(T-r)

r dr }+
t+{r-t)/2 (r- t)7/i-T ’g’)

(using T- >= T- t)/2 in the first integral, and (r- t) >- T- t)/2 in the second integral
with O-<_r< 1),

(3.8)

"r-t{(2 )( T-2 t) --1+ (2T_t)"/(T- t)
l-r 1}

1 1 } 1
I(g*sf)(t)lu<=CTv2 r+v-’ max 1-y’ 1-r (T-t) r+y-1

and (3.8) yields (3.4) via (3.1), as desired.
Proposition 3.1 says that Ls and Ls* are smoothing operators" Ls (respectively,

L**) reduces the order of the singularity from r to zero if r+ y < 1, and from r to
r+(y-l+e) if r+3/>-I (respectively, to r+(3/-1)).

COROLLARY 3.2. Given 0 < 3/< 1, there exists a positive integer no no(y) such that

for all positive integers n >= no(3 we have

(3.9) (L* R*RLs)n" continuous Cv([s, T]; U)-+ C([s, T]; U)

(3.10) (L** R*RL)nv[ct.rl;t) <=
with uniform norm bound which may be taken independent of s, 0 <= s <= T.

Proof The results of Proposition 3.1 are applied, recursively, with R* and R
bounded. After no-iterations, a space Cr([s,T]; U) is obtained with r=<0. Details are
omitted.

TrtEOREM 3.3. With reference to the operators L and L* in (2.2), (2.4) we have"

(3.11) (i) L" continuous L2(s, T; U)-. Lr(s, T; Y),

where r is an arbitrary positive number satisfying r < 2/(23/- 1 ), where 2/(23/- 1 > 2 for
1/2<3/<1; for O <= 3/ <= we may take r oo;

(3.12) (ii) L*: continuous Lr(s, T; Y)- Lr,(s, T; U),

where r is as in (i), and r’ is any positive number satisfying r’<2/(43/-3), where
2/(43/-3)> r for < 3/<1; for 0< 3/=<, we may take r’= oo;

(iii) For p > 1/(1-3/),

(3.13) L" continuous Lp(s, T; U)--> C([s, T]; Y).

(iv) Thus, afortiori, there exists a positive integer nl n( 3/) such that

(3.14) (L* R*RL) n’’ continuous L2(s, T; U)-> C([s, T]; U).

We may take n, 1 if y <= and n, 2 if < 3/< etc.
In all cases the operator norm has a bound which may be taken not to depend on s,

O<=s<=T.
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Proof The proof uses Young’s inequality. For a similar (but not identical) situ-
ation, see, e.g., [L-T2, Lemma 4.2] (or [L-T3, Thm. 2.5]). Details are omitted. C]

THEOREM 3.4. The operator [Is + L*R*RLs] is boundedly invertible on the space
Cv([s, T; U) defined by (3.1):

+ T]; U))

with uniform norm bound which depends on T and y, but may be taken not to depend on
s, O<=s<= T.

Proof Let h Cr([s, T]; U). We seek a unique g Cv([s T]; U) such that

(3.16) g+L*R*RLsg=h.

To simplify the notation, we may take R I in the argument below.
Step 1. Given such h, if no no(y) is the positive integer of Corollary 3.2, equation

(3.9), then there exists a unique v e L2(s, T; U) such that

(3.17) v+ L* Lsv *Ls Ls)"h C([s, T]; U)= L2(s, T; U),

since Is + L*Ls is boundedly invertible on L2(s, T; U).
Step 2. We shall show that, in fact,

v C([s, T]; U).

In fact, if nl 1 (i.e., 0=<y_-<) in (3.14) of Theorem 3.3, then L*Lsv C([s, T]; U)
and (3.17) yields (3.18). In general, we write from (3.17), with r=0, 1,..., hi-l"
(3.19) (L*Ls)rv+(L*Ls)r+lv=(L*Ls)"+rh C([s, T]; U),

where the regularity on the right of (3.19) is a consequence of (3.13) via (3.17) (right).
Starting from r= nl-1 in (3.19), we first obtain (L*Ls)r+lv=(L*Ls)"’v C([s, T]; U)
by (3.14); hence (L*Ls)",-Iv C([s, T]; U) by (3.19). Next, using this latter informa-
tion in (3.19), this time with r nl 2, leads to (L*Ls)n’-v C([s, T]; U). By repeating
this procedure a finite number of times, we arrive at (3.18), as desired.

Step 3. Starting from the given h and the v obtained in (3.17), we shall finally
define a finite sequence of vectors called g,o-1, g,o-2, gno-3,""" ,gl, g, whose last
element g will be precisely the sought-after unique solution of (3.16). We define
recursively

(3.20o_) gno_l=(LLs)"-lh-t) Ce([s, T]; U)

(3.20o_) go_e=(L*Ls)o-eh-go_l Cr([s, T]; U)

g,=(L*Ls)h-g Cr([s, T]; U)

(3.200) g h g, Cr([s, T]; U).
The regularity noted on the right of (3.20no-1) is a consequence of Proposition 3.1

applied to h and of (3.18). Then, recursively, the other regularity statements follow.
In particular, g Cv([s, T]; U). It is now an easy matter to show that such g is the
unique sought-after solution of (3.16). Moreover, the bound on the uniform norm in
(3.15) may be taken not to depend on s, 0-< s-<_ T, since this is the case for Ls and L
in Proposition 3.1 and Theorem 3.3. Theorem 3.4 is proved.

The above results are now used to obtain pointwise estimates.
LEMMA 3.5. With reference to the last term in (2.16), we have

(3.21) ILs*rG*Gy(T, s., CT IXI ,
where the constant Cr does not depend on s, 0 <-_ s <- T.
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Proof From the definition (2.7) of L*T and the assumption (1.2) on B, we readily
obtain

(3.22)

IL*G*Gy( T, s; x)l- [B*(-A*)-’(-A*)’ eA*(T-t)G*Gy( T, s; x)l u

< < [xl ,
T- t)’IGy( T, s; x)lz T- t)

where in the last step we have used (2.21). Then (3.22) yields (3.21) via the definition
(3.1).

The major result of this section is the following.
THEOREM 3.6. For the.optimal pair {u, yO}, we have with constant Cry independent

of s, O<--s<= T:
(i)

(3.23) lu<., s; <- c  lxl ;
(ii) If 0<= y<1/2,

(3.24a) ly(., ; X)IC,Ta < CT,/IX[;
(iii) If 1/2 <--_ y < 1,

Proof (i) We return to (2.16) where we now substitute for the optimal yO(., s; x)
from (2.18), thus obtaining

(3.25) -u( s; x)= [Is + L* R*RL]-l{L* R*R ea(-S)x + L*rG*Gy( T, s; x)}.

In fact, the expression in the bracket { } in (3.25) is a well-defined element of
Cv([s, T]; U) for x Y: this is so by (3.21) for its second term and is plainly true (a
fortiori) from (2.5) for its first term. Moreover, the inverse in (3.25) is well defined in
Cv([s, T]; U) by Theorem 3.4. Indeed, these results collectively yield the bound (3.23),
independent of s.

(ii) Estimates (3.24a, b) now follow from estimate (3.23), via the optimal dynamics
(2.18), where we use property (3.2) with r= 3’ and r+ y < 1 for (3.24a), and property
(3.3) with r=y and r+ 3’->-1 for (3.24b).

COROLLARY 3.7. With reference to the operator P( t) introduced in (2.24), we have
the following pointwise estimates for s <-_ < T;

(i) For 0<_- 0 < l,

Crv_______0(3.26) I(-A*) P(t)xl <--
T- t)

(ii)

(3.27) IB*P(t)xl<--(T_t)
where the constant CT does not depend on s, 0 <-s <-T.

Proof (i) Recalling (2.24) we compute by analyticity

I(-A*)P(t)xl (-A*) eA*(-’R*Ry(r, t; x) dr

(3.28)

+(-A*) eA*(T-t)G*Gy(T, t; x)
Y

T 1 CT<---- CT (r-- t)
ly(’ t; x)l.d+

(T_ t)-]Gy(T’ t; x)lz
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1c [yO(, t; x)ld+
(r-- t)

where in the last step we have used estimate (2.21) for the second term. We now
distinguish two cases according to (3.24a, b). If y <1/2, then (3.24a) applies in (3.28),
and (3.28) yields (3.26). If, instead, 1/2=< y < 1, then (3.24b) applies in (3.28), and we
obtain for the right-hand side (R.H.S.) of (3.28),

(3.29) R.H.S. of(3.28)=<C7 (r-t)(T-r)2r-++(T-t)----g Ix[v"

But the integral in (3.29) is the same as the one that occurs when estimating L* in the
proof of Proposition 3.1(iii), which culminates with the bound in (3.8), with y, r there
replaced by 0, 23"- 1 + e now. Thus, we obtain by (3.28), (3.29), via (3.8),

[(-A*)P(t)x[
(3.29) ( (1 1 } 1

CT3/O max
1-0’ 1-23’-e (T-t)2(’-1)++e+ (T-t)- ]XlY,

from which (3.26) follows, since 3’-1 < 0.
(ii) Estimate (3.27) now follows from estimate (3.26) with 0 =3’ > 0+ 3’-1, via

hypothesis (1.2) on B. []

Further properties of P(t) are obtained next, as a consequence of (3.27).
PROPOSITION 3.8.
(i) For 0 <= < T, the following identity, symmetric in x, y Y, holds,

(3.30)
(P(t)x, y)y= f

’T

(RdP(r, t)x, RdP(r, t)y)wdr+(GdP(T, t)x, Gdp(T, t)y)z

(B*P(r)dp(r, t)x, B*P(r)dp(r, t)y)g dr.

(ii) As a consequence,

(3.31) P(t)=P*(t)>=O.

(iii) The optimal cost of the optimal control problem on t, T] initiating at the point
x Y at the initial time is

j0= j(uO(., t; x), y(’, t; x))

[RCP(r, t)Xl2w+lB*P(r)(r, t)xl2 dr+IG(T t)Xl2z

(3.32) =(P(t)x,x)y.

Proof (i) As in [L-T1, Prop. 3.3(iii)] we substitute for ea(-’)y and
occurring in

(P(t)x,y)y (R(r,t)x, Re(’-’y)wdr+(Gdp(T,t)x, Ge(r-’".Y. Z,

the expression obtained from (2.30). Interchanging the order of integration and using
that B*P(t) is well defined for < T, by (3.27), yields (3.30). Details are omitted, see,
e.g., [L-T1, Prop. 3.3]. Then (ii) and (iii) follow at once.
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4. Derivation of the Riccati equation (1.13). In this section, our main goal is to
show that the operator P(t) ( Y; L(0, T; Y)) explicitly defined by (2.24) in terms
of the data of the problem, is a Riccati operator; i.e., it satisfies the Riccati equation
(1.13). To accomplish this, we need part (i) of the next theorem; part (ii) will not be
invoked in the sequel and is listed here for completeness.

THEOREM 4.1 [L-T1]. (i) For x Y and for each s fixed, 0 <= s < T, the optimal
control u(t, s; x) and the optimal solution y(t, s; x) are respectively U-valued and
Y-valued functions which are differentiable in t(s, T) with (Ou/Ot)(t,s;x) U,
(Oy/Ot)(t, s; x) Y; see [L-TS] for sharp regularity results.

(ii) In fact, these U-valued and Y-valued functions u(t, s; x) and y(t, s; x) are
analytic in s, T) if the operator A has compact resolvent in Y.

Remark 4.1. Although paper [L-T1] deals specifically with the case of a parabolic
equation with Dirichlet boundary control and with G I, its proof of the result in
Theorem 4.1 is general. To assert analyticity as in part (ii), the proof uses the analyticity
of eAt, the representation formula (3.25) for u, and the compactness of the resolvent
operator of A. The idea (similar to the idea behind the proof of Theorem 3.4) is to
assert the invertibility of the operator [I+L*R*RL] on the space of U-valued
functions ((, L2(F)) in the notation of [L-T1 ]), which are (i) analytic (holomorphic)
on a suitable set ff of the complex variable z which contains the interval (0, T), and
(ii) continuous on . The proof in [L-T1] works essentially verbatim for the general
case.
We next introduce the operator

(4.1) Ap(t)=A-BB*P(t): Y (Ap(t))-> Y,

where P(t) is defined by (2.24) and show that
LEMMA 4.2. With reference to (4.1), we have, for s <-t < T,

(4.2) (Ap( t)) @((-A) -).

Proof. Let x(Ap(t)), i.e., z(t)=Ap(t)x=[A-BB*P(t)]x Y,

(4.3) -(-A)r[(-A)-+(-A)-BB*P(t)]x= z(t) Y.

But (-A)-*BB*P(t)x Y for < T by assumption (1.2) on B and by property (3.27)
of Corollary 3.7. From here and (4.3), we then obtain that

(4.4) (-A)-vx=-(-A)-Vz(t)-(-A)-VBB*P(t)xe Y,

which means that x ((-A)-), as desired, ff]

We next recall the operator (t, s) (Y), 0 _-< s =< < T,

(4.5) alp(t, s)x yO( t, s; x), x Y,

which is defined via (2.18), (2.17), solely in terms of the data of the problem. All the
preceding results on y(t, s; x) can be expressed in terms of (t, s) via (4.5). In
particular, we recall that the optimal dynamics is rewritten (see (2.30)) as

(4.6a)

(4.6b)

(t,s)x=ea(t-)X+ eA(’-)Bu(-,s; x) d,r

eA(t-S)x -t- eA(t-)BB*P(7")dP(7 s)x dr.
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In the next two lemmas, we collect some properties of , which in the case of the heat
equation were proved in [L-T1].

LEMMA 4.3 [L-T1, Prop. 3.2].
(i) (t,t)=identity, and (t, 7.)(7.,s)=rb(t,s) for O<-s<-7.<-t<T (transi-

tivity).
(ii) For s fixed, the map ( t, s)x is continuous in Y, s <- < T, x Y.
(iii) For < Tfixed, the map s (t, s)x is continuous in Y, 0 <= s <- < T, x Y.
(iv) The map s - Gdp( T, s)x is continuous in Z, 0 <= s < T, x Y.
(v) For 0 <- s < < 7" < T, the following identity holds for x Y:

(4.7)
(7", t)

(t,s)x=-(7", t)--(t,s)x Y.
Ot

(vi) For 0 <- s < < T, the following identity holds for x Y

(4.8) OG(otT, t)
dp( t, s)x -G( T, t) -- t, s)x Y.

(We note that (4.7), and (4.8) reduce the derivative of @ and G in the second
argument, computed along the optimal trajectory, rb(t, s)x, in terms of the derivative
of in the first argument.)

(vii) For O<-s<t<T and x Y we have dP(t,s)x((-A)) with 0<l-y;
moreover, for x ((-A)) we have

(4.10) lim (-A)( t, s)x (-A)x.
s$t

Proof. (ii) This is a restatement of the result contained in (3.24) of Theorem 3.6
and a fortiori in Theorem 4.1(i).

(iii) For right continuity, we choose h > 0 such that s < s + h <_- < T;

I(t, s+ h)x-(t, s)x I(t, s+ h)[x-(s+ h, s)x]l
(4.11)

-< C-----r-- l(s/ h, s)x-x]-O,
--(T-t)

where in the last step we have used (3.24) via (4.5) with r=23,-l+e. Then the
right-hand side of (4.11) goes to zero as h $0 by (ii). As to the left continuity, we
compute for h > 0, again by (3.24) via (4.5)"

I( t, s- h)x-( t, s)x I@( t, s)[(s, s- h)x-

(4.12)
< Cr
(T-t-7 ](s, s h )x x[ --> O,

where the right-hand side of (4.12) goes to zero as h $ 0 by

(4.13) I*(S,s--h)x--xI<=IeAhx--xI+ leA(’-)(-A)VA-’Bu(7",s-h; x)l dT",
-h

which follows from (4.6) where (3.23) of Theorem 3.6 is used in (4.13).
(iv) The case t= T is reduced to case (iii); for Ihl sufficiently small and

s+h<t<T:

IG(@(T, s+h)x-G@(T, s)xl:lG(T, t)[@(t,s+h)x-dP(t, s)x]l
(4.14)

<= Crib(t, s+ h)x-(t, s)xl-O
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where we have used (2.21) of Proposition 2.1, and the right-hand side of (4.14) goes
to zero as h 0 by part (iii).

(v) For Ihl sufficiently small so that 0 -<_ s < + h < - < T and s < < -, we compute
for x Y,

(4.15)

1
[@(-, t+h)@(t,s)x-(% t)dp(t,s)x]

1
(-, t+h)-[dp(t,s)x-(t+h,s)x].

But since 0(t, s)x/Ot exists in Y by Theorem 4.1(i), we have for the right-hand side
of (4.15),

1 0
dp(-, + h)-[(t + h, s)x-dP(t, s)x]-dp(’, t) --- (t, s)x

(4.16) =(r, t+h) [(+h,s)x-(t,s)x]---.(t,s)x

+ [@(’, t+h)-P(’, t)]--(t,s)xO as h-0.

But (’, + h) is strongly continuous in h (property (iii)) and hence uniformly bounded
in h in the ( Y)-norm by the Principle of Uniform Boundedness: then the right-hand
side of (4.16) goes to zero as h-0, and (4.7) is proved via (4.15).

(vi) The proof of (4.8) is similar to the one in (4.15) and (4.16) and uses the fact
that G(T, t+h) is strongly continuous in h for < T (property (iv)) and hence
uniformly bounded in h in the (Z)-norm.

(vii) From (4.6) we have for s < < T,
(-A)(t, s)x (-A) ea(t-S)x

(4.17) + (-A) eA(’-)(-A)V(-A)-VBu(", s; x) d%

and the integral in (4.17) is bounded in norm by the expression

CT f’ dr

(T-t)v (t-r) +v

(by virtue of property (1.2) on B and of property (3.23) of Theorem 3.6), which is
well defined and converges to zero as st if 0+y< 1. Equation (4.17) is well defined
in Y, ifxY,s<t;orifx((-A)),s=t.

LEMMA 4.4.
(i) For any x Yand any t, s < < T, we have with reference to the operator Ap(t)

in (4.1),

(4.18)
OdP( t, s)x

Ot
Ae( t)dP( t, s)x e Y.

(ii) For O <= s < < " < T and x Y,

(4.19)
Ot
(t,s)x- --@(7", t)Ap(t)dP(t, s)x Y.

(iii) For 0 <= s < < T and x Y,

(4.20)
OGdP( T, t)

Ot
alp(t, s)x =-Gdp( T, t)Ap( t)CP( t, s)x Y.
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Proof (i) As in [L-T1, Prop. 3.4], we start from (4.6b), differentiate in (as
guaranteed by Theorem 4.1(i)) after taking the Y-inner product with y6 @(A*) and
obtain for s < < T,

t
x, y)

Y
(eA(t-s)x, A’y)- (A-1BB*P(t)ap(t, s)x, A’y)

eA(t-)BB*P(r)dP(", s)x dr, A*y
Y

(4.21) (by (4.6)) =([I-A-1BB*P(t)](t,s)x,A*y), y@(A*),

where all the terms are well defined by property (1.2) on B and property (3.27) on
B*P(t), < T. By Theorem 4.1(i), the left-hand side of (4.21) is a well-defined Y-inner
product ’x, y Y, therefore, so is the right-hand side extended as a duality pairing.
Thus, A* can be moved to the left and (4.18) follows.

Properties (ii) and (iii) are a direct consequence of (4.7) and (4.8) of Lemma 4.3
via (4.18). 7q

The main result of this section is the following.
THEOREM 4.5. The operator P(t) defined by (2.24) satisfies the following Riccati

equation for 0 <- < T and x, y A indeedfor x, y ((-A) ), for all e with 0 < e <

(P(t)x, y)v =-(R*gx, y)w-(P(t)x, Ay)r-(P(t)Ax, y)y
(4.22)

+(B*P(t)x, B*P(t)y)t,,

where P(t) is a closed operator and (-A*)-P(t)(-A) can be extended to a bounded
operator in L( Y).

Proof With, say, x Y, y @(A), and 0_-< s < < T, we differentiate in (2.24),
rewritten now via (4,5) as

(4.23) (P(t)x,y)y=(f T

eA*(r-t’R*RdP(", t)xdT",y) +(eA*(r-t)a*adP(r, t)x,y)y
Y

to obtain after replacing x with (t, s)x (all inner products are in Y),

(P(t)(t, s)x, y)= -(R*Rd(t, s)x, y)y- ea*-t)R*RdP(’r, t)cb( t, s)x d’r, Ay)
+ eA*-t)R*R dp(t, s)x dr, y

Ot

-(eA*’-t)G*G(T, t)dP(t, s)x, Ay)

(4.24) +(eA.(7._t)G, OGdp(T,ot t)
(t, s)x, y)

(using (4.23) with x replaced by dp(t, s)x for the second and fourth terms in (4.24))

-(R*R(t, s)x, y)r-(P(t)dP(t, s)x, Ay)

+ eA*(-t)R*R (t, s)x dT", y
Ot

+( eA*r-t)G* OGdp(T’Ot t)(t, s)xd-, y)
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(using identities (4.19) and (4.20))

-(R*R@(t, s)x, y)-(P(t)(t, s)x, Ay)

e*(-R*R(r, t)A,(t)(t,s)xdr, y

-(e*(r-’G*G( T, t)A,( t)( t, s)x, y)

(using again (4.23) with x replaced by (t, s)x)

-(*,(t, sx, y-(((, sx, ),-((((, sx, y.
From here, recalling the definition of Ae(t) in (4.1), we obtain

([:’(t)dP(t, s)x, y)= -(R*R(t, s)x, y)-(P(t)dP(t, s)x, Ay)
(4.25)

-(P( t)[A- BB*P(t)]( t, s)x, y).

We now verify the following claim: The right-hand side of (4.25) is well defined
with s < < T for all x Y and all y @((-A)), for all e > 0.

In fact, we first note that from (3.27) of Corollary 3.7, we have for < T,

(4.26) B*P(t) ( Y, U), and hence P(t)BB*P(t) (Y),

since P(t) is self-adjoint (see (3.31) in Proposition 3.8(ii)). Moreover, for t< T,
(-A*)-P(t) (Y), for all e >0, by (3.26) of Corollary 3.7, and likewise, since P(t)
is self-adjoint, P(t)(-A)- can be extended to an operator in (Y). Thus, we
decompose the operator in the last term of (4.25) as

(4.27) P(t)[A-BB*P(t)]=-P(t)(-A)-(-A)-P(t)BB*P(t),
so that (4.27) is well defined on ((-A)), for all e > 0, by (4.26). But, recalling Lemma
4.3(vii), we then see that b(t,s)x@((-A)) for all 0<e<l-y, x Y, s<t< T, so
that the corresponding term P(t)[A-BB*P(t)](t,s)x is well defined in Y. Thus,
our claim has been verified.

We now restrict to x @((-A)) and obtain from (4.10) with any e < 1-3/ and
from Lemma 4.3(iii), < T, recalling (4.26),

limst P( t)[A- BB*P( t)]( t, s)x -P(t)(-A) 1- 1}t (_A)p( t, s)x

-P(t)BB*P(t) lit c(t, s)x

(4.28) P(t)[A- BB*P(t)]x, x @((-A)).

Thus, taking the limit of the right-hand side of (4.25) as s’ t, T, and using (4.28)
and Lemma 4.3(iii), we obtain the right-hand side of (4.22), well defined for all
x, y @((-A)), for all e > 0, as desired.

As to the left-hand side of (4.25), we may consider the operator P(t) to be
well-defined at least on the set , defined by

(4.29) t =- , @((-a)), where , (t, s)Y ((-A))
O<=s<t

for 0 fixed, 0 < 1 3’ (by Lemma 4.3 (vii) with s < < T. By using the transitivity property
of *(.,.), one then sees that Sl< s implies t,, ,, and that , is actually a
subspace of Y, which is dense in Y by Lemma 4.3(ii), (iii). We next show that P(t)
with domain , is closeable. In fact, let t, x, (t, s,)y, - 0, s, < < T, y, Y, and
let P(t)x, v in Y. Then, v 0. In fact, identity (4.25) with (t, s)x replaced now by
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(t, s,)y, implies as n--> o that (v, y)=0 for all y ((-A)), hence for all y Y, and
then v=0. We denote the closure of P(t) (smallest closed extension) still by P(t).
Moreover, P(t) is also self-adjoint and thus, recalling Lemma 4.3(ii), we have < T,

limsy, (P(t)(t, s)x, Y)v lis (dp(t, s)x, [:’(t)y)v
(4.30)

(x, P(t)y)v (P(t)x, y)v,

at least ’q’x Y and ’y ,. Thus, at this point, we have that the DRE (4.22) holds
true for all x@((-A)), for all e with 0<e<l-y, and for all y,. But, as seen
above, the right-hand side of (4.22) is well defined also for all y ((-A)). Moreover,, is dense in @((-A)) in the ((-A))-topology, as it follows a fortiori from (4.10)
of Lemma 4.3. Then, the left-hand side of (4.22) can be extended likewise to all
y@((-A)). This implies that (-A*)-P(t)(-A) can be extended to a bounded
operator in 5(Y). Thus, the DRE (4.22) holds true for all x, y ((-A)), as desired.
The proof of Theorem 4.5 is complete.

A final property of P(t) which complements property (2.27) and property (3.26)
is the following.

PROPOSITION 4.6. For any e > 0 small we have

(4.31) (-A*)P(t)(Y; C([0, T-el; Y), 0<-0<1;

(4.32) B*P(t)(Y; C([0, T-el; Y).

Proof (i) From (2.26) with x Y, we have

(4.33) (-A*)P(t)x (-A*) eA*(-tR*R(z, t)xdz

+(-A*) eA*(7"-)G*G(T, t)x,

and conclusion (4.31) follows from (4.33) using the properties of Lemma 4.3(ii) and
(iv) with <= T- e.

(ii) Then (4.32) follows from (4.31) via assumption (1.2) on B.

5. The issue of the limit of P(t) as t’ T. We rewrite (2.26) for convenience as

(5.1) P(t)x e*(’-’R*Rd(", t)xd’+e*(r-G*G(T, )x,

and see that its first term satisfies the following result.
LEMMA 5.1.

(5.2) lim eA*(-’R*RdP(z, t)xdz=O, x Y.
tT

Proof Conclusion (5.2) follows just by invoking the L:-estimate (2.20) for
yO(, t; x) q(z, t)x and using the Schwarz inequality, or else by invoking the sharper
estimate in (3.24).

Lemma 5.1 reduces the strong (weak) convergence of P(t) in (5.1) to the strong
(weak) convergence of G*G(T, t). We begin with weak convergence results.

PROPOSITION 5.2. Assume the standing hypothesis that GLT-= GLoT-be closeable.
Then

(5.3) (i) lim(Gdp(T,t)x,z)z=(Gx, z)z /x Y /zZ;
tT

(5.4) (ii) lim(P(t)x, y)v=(G*Gx, y)v /x, y Y.
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Proof (i) From the optimal dynamics (4.6a), we have

(5.5) Gd( T, t)x G eA(T-t)x q- G eA(T--)BuO(’r, t; X) dr,

and thus (5.3) follows, as soon as we show that

(5.6) lim GeA(r-’Bu(z, t; x) dr, z =0
tT Z

Vxe Y VxZ.

But the following uniform bound in 0 <_- <- T holds true,
’T

G eA(T-r)Bu(% t; X) dr[z lG( T, t)x-- G eA(T-t)XIz

(5.7) <- Crlxly V O<-_ t<-_ r
from (5.5), recalling (2.21) of Proposition 2.1 and (4.5). Thus, in view of (5.7), we see
that the desired limit in (5.6) holds true, as soon as we prove that for all x Y, for all
z in a dense set of Z

(5.8) (I[ir G eA(T-)BuO(% t; X) dr, z
z
=0.

To prove (5.8) we choose z e @((GLr)*), which is dense in Z by assumption via the
equivalence of (1.30). We write (GLr)* as usual as L*G* (to denote, in effect, the
extension) and note from (2.7) that @(Lt*rG*)-= @(L0*rG*), constant in t. Then, (5.8)
follows from

G ea(r-’)Bu(% t; x) dr, z
z

(u(z, t; x), B* eA*(r-G*z)tdz

(5.9) _--<lu( t;

CorOllArY 5.3. Assume, in addition to GLo closeable, that G is compact. Then,
the following strong convergence results hold"

(5.10) (i) lim G*Gdp( T, t)x G* Gx, x Y;
tT

(5.11) (ii) lim P(t)x G*Gx, x Y.
t’ T

Proof (i) Since G* is compact, the weak convergence of G(T, t) as in (5.3)
becomes strong convergence as in (5.10).

(ii) Returning to (5.1) and recalling (5.2), we obtain (5.11) by (5.10). ]

6. The smoothing case (-A*)aG*G.(Y), /1> 27-1. In this section, we point
out a more regular theory, which becomes available under the stronger assumption that

(6.1) (-A*)G*G(Y), /3>23/-1,

i.e., when G*G maps all of Y into @((-A*)), so that (6.1) holds by the closed graph
theorem. We first recall from IF1, Lemma 3.1] that as a consequence of (6.1), since
G*Ge(Y) is self-adjoint, then the operator (-A*)-G*G(-A) -p admits a
bounded extension in L(Y), a condition which we write simply as

(6.2) (-A*)-G*G(-A)-P(Y) ’ 0<p < 0 </3.
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Next, we return to (2.17), rewritten here for convenience for x Y as

--1 * G* r- A(.-(6.3a) -u( s; x) Ar[Lr G eA( x + L* R*R e x],
(6.3b) Asr =/ + L*R*RL + L*rG*GLr,
which provides u( s, x) in terms of the data of the problem.

LEMMA 6.1. Assume hypothesis (6.1). en, for any x Y, the term in the square
bracket of (6.3a) satisfies (recall (3.1)),

(6.4) LrG*G eA(T-S)x + LR*R eA(’-S)x Cv_([S T]; U).

Proo Since LR*R eA(’-X e C([s, r]; U) from (2.5a), and since

LrG*G eA(r-x e C([s, r]; U) from (2.7), it remains to show that

(6.5) [(LrG*G eA(T-s)x)(t)[U
(T_ t),-

But (6.5) follows readily via (2.7), (6.1), (1.2), and analyticity from

[(LTG*G e(T-’3x)(t)[ e*(-’3(-A*)
(6.6) (_A,)G,G eA(T_,3Xlu.
The crucial result of this section is the following theorem concerning Ar in (6.3b).

THEOREM 6.2. Assume hypothesis (6.1). en the operator Ar satisfies
(6.7) A;J=[L+LR*RL+ * * (Cr_o([sLsrG GLr]-’ T]; U))
with uniform bound which may be taken independent of s, s

Proof The proof will resemble the arguments of 3 leading to Theorem 3.4.
Step 1. Claim. Let Vo L(s, T; U); then

(6.8) I(-A)-Lwvo[v cr,o(T- S)IVolL(,T;U;
(6.9) VO> , SO that go + eo.
In fact, we compute from (2.6) via (1.2) and analyticity,

Y

w

Cr (T_r)r_o

(6.10 z c (r- ,(,-o
and for 2(y-o)< 1, we obtain (6.8), as desired.

Step 2. Claim. Setting

(6.11) v (t) (G*GsVo)(t),

we have, with fl > 2o 2T- 1 + 2eo,

< C (T-s)o(6.1 I(l=l(La*GLo(tl=(T_/_olol(s,;,
so that a foiori LrG*GLr is a smoothing operator:

(6.13a) LrG*GLr" continuous L(s, T; U) Lr,(S, T; U),

1 2 4eo(6.13b) 2 < r<=; rl- 2<.
T-o 1-2eo 1-2eo
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In fact, we compute from (2.7) and (2.6), via (1.2) and (6.2),

[(LrG* *GLrvo)(t)lt, IB*(-A*)-" ea*(T--t)(--a*)-(-A*)G*G(-A)%(-A)-%Ls-Volt
1

(6.14) <= c T- t)-o
(-a)-Lsvol,

where in the last step we have used (6.2) for (-A*)oG*G(-A)o (Y), which is
legal since > 2o> 2y-1 from (6.1) and (6.9). Then, (6.12) readily follows from
(6.14) via (6.8), with y-o=-eo from (6.9). In turn, (6.12) implies that v
L(s, T; U) for all r such that (-eo)r= (y-o)r < 1, i.e., in paicular, for r as in
(6.13b).

Step 3. We reiterate the procedure of Steps 1-2 above. Since v is more regular
than the original Vo, we have the following claim.

Claim. We have

(6.15)

(6.16) l o- eo y-< o.

In fact, from (2.6) we compute via (1.2) and (6.12),

Y

(6.17)

and (6.15) follows since y-l+ y-o 1- eo< 1 from (6.16) and (6.9).
Step 4. Claim. Setting

(6.18) v(t) * *LTG GLTV,)( t),

we have that

(r-s)o
(6.19)

so that a foiori,

(6.20a) * *LwG GL continuous L,(s, T; U) L(s, T; U);

1 2 8eo(6.20a) 2 < r < re < =; r- r < rz-2<.
Y-o-eo 1-4eo 1-4eo

In fact, since o-eo < o, we rewrite the counterpa of (6.14) as

[(tsT** GLsTOl)( t)[u B*(-A*)- eA*(T--t)(--A*) e-(o+o)

(6.21)

(-A*)+G*G(-A)-(-A)-’’LsT-v,[ u
1

C
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where in the last step we have used (6.2), for (-A*)o+oG*G(-A)o- (Y), which
is legal since /3> (O’o+eo)+(ro-eo)=2ro>2y-1 by (6.1) and (6.16). Then, (6.19)
readily follows from (6.21) via (6.15) with y-(ro+ eo)=-2eo from (6.9). In turn,
(6.19) implies that v2 Lr(s, T; U) for all r such that (1/2-2eo)r=[y-(ro+eo)]r<l;
i.e., in particular, for r2 as in (6.20b).

Step 5. The above procedure can be iterated a finite number of times yielding the
following result: Let

(6.22)

Then

v,( t) (Ls*rG* GLsrv,-1)( t).

(T-s)o
(6.23)

so that a fortiori

(6.24a) LrG*GLsr" continuous L._(s, T; U)- L.(s, T; U);

1 2
(6.24b) 2 < rl < r2 <" < r, =;

y-O-o-(n-1)eo 1-2neo
for 1 2neo > 0.

Step 6. Claim. If n>[1/2-(y-Cl)]/eo, then vn(t) in (6.22) satisfies

(6.25) v,(t) * * Cv_t3([s T]; U),LTG GLTVn-1)( t)

as it readily follows from Step 5.
Step 7. Having obtained the results in (6.4) and (6.25), we return to identity (6.39)

and apply a bootstrap argument (similar to the one carried out in Theorem 3.4). There
is, to begin with, u= u( s; x) L2(s, T; U) such that by (6.4) we have

(6.26) u+ L*, R*RLu+ L*TG*GL,ru= w C,_/3([s, T]; U),

with w= L*rG*GeA(T-Sx+ L*R*R eA(’-)X. Starting from (6.26) and proceeding as
in Step 2 in the proof of Theorem 3.4, we then apply to (6.26) the operator L*rG* GLsr
n- 1 times, consecutively, thus obtaining n- 1 additional identities, the last of which
is

(6.27) (L*rG*GLr)"-’u+(L.*rG*GL,r)"u=f, Cr_t([s T]; U),

where f, (L*rG*GLsr)"-[w L*R*RLu]. Now, if n is chosen sufficiently large as
in the claim of Step 6, then we obtain

(6.28) (L*rG*GLsr)"u Cr_t([s, T]; U)

by (6.25). Then (6.28) and (6.27) imply that

(L*rG*GLr)"-u Cr_t([s, T]; U).

Proceeding backward along the remaining n- 2 identities, we eventually obtain

(6.29) u( s; x) Cv_t([s r]; U),

and Theorem 6.2 is proved.
COROLLARY 6.3. Assume hypothesis (6.1) (which is empty if 0<-_ < 1/2), where we

set 2- 1 + e. Then, for x Y,
()

(6.30a) u(., s; x) Cl_r_([s, T]; U),
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and

(6.30b) ]u( s; X)lc,__(ts.rl;cr)<= CrylX[Y,
with bound which may be taken independent of s;

(ii)

(6.31a)

and

(6.31b) ly( s; x)lc(ts,rl;v) <- Crylxlv,
with bound which may be taken independent of s;

(iii)

(6.32a)

in particular

(6.32b) lim ( T, t)x x.
tTT

(iv) For any O<-_O<l, and O-=O+l-2y-e,

(-A*)P(t)x Co_([0, T]; Y),(6.33a)

and

yO(., s; x) cb(., s)x C([s, r]; Y),

(6.34a)

and

(6.33b) i(_A,)op( t)xl <_ CTy
1 0 (T- t)o- Ixl .

(v) With y- fl l y- e,

B*P(t)x Cy_t([0 T]; U),

(6.34b) IB*P( t)Xlu 1

1 3’ (T- t)Y-z Ixl ;

(vi)

(6.35) lim P( t)x lim eA*(r-t) G* GdO( T, t)x G* Gx.
tr t’T

Proof (i) Conclusion (6.30) is a rewriting of (6.29); i.e., of Theorem 6.1.
(ii) Conclusion (6.31) follows from (6.30) via the optimal dynamics (2.18) and

property (3.2) for the operator Ls with r 1 y e so that r + y 1 e < 1, as required.
(iii) Conclusion (6.32) follows from (2.18) with T, i.e., from (see (2.23)),

(6.36) yO( T, t; x) ( T, t)x eA(T-t)X + LtTU( t; x),

where, by virtue of (2.6), (6.30), and (1.2), we obtain as desired,

IL,TU(., t; X)lv (-A) y eA(T-)(--A)-YBu(r, t; X) dr

T d"
(6.37) --< Cry

(T-r)Y(T-r) ’-y- x[v

=CTy(T--t)[XIv.

y-/3 1-y-e,

yO( T, x) ( T, )x C([s, T]; Y),
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(6.38)

(iv) Recalling (2.24), we compute via (6.31), (6.32), and (6.1),

;

+ (-A*)- e*(r-(-A*)G*Gy(T, ; x)

(r-t) (T-t)- Y’

and (6.33b) follows,
(v) By (6.33) with 0 =3’ and (1.2),

(6.39)
Cry 1IB*P(t)Xlu IB*(-A*)-(-A*)rP(t)Xlu
1 -3" (T- t)’- IxlY’

where 3’ -/3 1 3" e, as desired.
(vi) Conclusion (6.35) follows from (6.32b) via (5.1) and (5.2).
THEOREM 6.4. Uniqueness ofRiccati operator.) The operator P( t) defined construc-

tively in (2.24) in terms of the data of the problem is the unique solution to the DRE
(1.13) (4.22) and its terminal condition (6.35) within the class of self-adjoint operators
P( t) ( Y) such that,

(6.40) (i) B*P(t)x C,([0, T]; Y), x Y,

if 0-<_ 3’ < 1/2 (and no other assumption except the standing hypotheses specified below
(1.1));

(6.41) (ii) B*P(t)x Cr_([0, T]; Y), x Y, 3"-= 1-3"-e,

if 1/2_-< 3’ < 1, provided that assumption (6.1) holds with/3 23’ 1 + e.

Proof It suffices to show uniqueness within the specified class for the correspond-
ing Riccati Integral Equation,

(P(t)x, y)y (G eA(T-t)X, G eA(T-t)y)z + (R eA(r-t)x, R eA(-t)y)wdr
(6.42) r T

I (B*P(’) e(-x, B*P(’) e(’-y)udr

x, y Y. Let Pl(t) and Pz(t) be two solutions within the specified class, and let
Q(t) Pl(t) Pz(t). Then Q(t) satisfies for x Y,

Cr([0 T]" U) in case (i)(6.43)
B*Q(t)xe

(6.44) Cl_7_e([0 T]; U) in case (ii),

as well as, for 0 < < T and x, y Y,

(6.45)

(Q(t)x, y)y= f T

(B’P2(7") eA(r-t)x, B*Q(’) eA(-t)y)ud"

T

(B*Q(’) eA(-t)X, B*P(7") eA(-t)y)udT."

Set

(6.46) y=Bv, ve U, and B*Q(t)=V(t),

so that V(t) solves for 0 <_- < T,
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(6.47)

T

V(t)x= B*(-A*)-7(-A*)7 eA*(-t)V*(7")B*P2(7") eA(-t)xd7.

,(_a,-,(_a,, e’*(--,(,e(,,v( e(’-’xd,.

We seek to establish uniqueness of the solution V(t) of (6.47) within the classes
specified, respectively, in (6.43) and (6.44) for the two cases. We do this first locally,
near T, and extend globally to all of [0, T].

Case (i). 3’ < 1/2. Multiplying (6.47) across for T- t) 7 we obtain after using (1.2),
and IB*P,( ’)yIt, <= Cr/ T- ’)’)lyl:

T

(T_t)vlV(t)xit:=<(T_t)vCT. (T-7.)7[V*(7.)I d7.

7’ t) 7 T 7")27 IXI Y

(6.48) <-(T-t)TCT
(7"-t)7(T-7")27’ t<=<__-sup (T-7")riV(7)[ xlv.

Since r 23’ < 1 in our case, the computations (of case (iii) in the proof of Proposition
3.1) leading to (3.8) can be applied to the integral in (6.48). We thus obtain

(T-t)7[V(t)x[t<=(T-t)TC7-(T_t)7+27_l ,<=<=7"sup (T-

(6.49) <= Cr(T-t) 1--’{- ,_-<,-<rsup
where 1-23’>0 in our case. Letting to =< t=< T, we obtain from (6.49),

totT t,. t-r T

and selecting T- to sufficiently small, we obtain C(T- to) 1-7 < 1 and uniqueness on
[to, T] is established within the class C7([to, T]; U).

Case (ii). 1/2 =< 3’ < 1. We now multiply (6.47) by T- t) 1-7- and obtain after using
IB*Pi(7.)ylu (CT/( T-7")I-v-)[yly

(6.51)

"{,__<.__<Tsup
as a counterpart of (6.48). Since r 2(1- 3’-e)< 1 in our case the integral in (6.51)
can be estimated again as in (3.8), and we obtain since 3’+[2(1 3’- e)]- 1 1 3’- 2e,

(T-t)l-7-lV(t)xlt<=(T-t)l-7-Cr(T-t) 1-7-2 t<-_<-rsup Ixl 

(6.52) <-(T- t)CT"{ t<-_<=7"sup

The desired conclusion of uniqueness of V(t) over to, T] with T- to sufficiently small
is obtained as in case (i), within the class Cl_7_,([to, T]; U).
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Finally, after a finite number of steps we obtain uniqueness of V(t) on all of
[0, T], in each case, within its specified class.

Remark 6.1. Under the assumption (as in IF1]),

(6.53) (-A*)rG*G ( Y),

which is stronger than assumption (6.1) since 23,-1 < y, additional regularity results
hold true, namely,

(i)

(6.54a) u(., s; x) C([s, T]; U),

(6.54b) max lu(t, s., x)l <- clxl,
s_<_t T

with CT independent of s;
(ii) For any 0 =< 0 < 1,

(6.55a)

(6.55b)

(iii)

(6.56a)

(6.56b)

(-A*)P(t)x Co_v([O, T]; Y),

[(_A,)op(t)xlv <= CT 1
1--0 T- t)- [xlY

B*P(t)x C([O, T]; U),

max ]B*n(t)x[ <= CT]XIy

A sketch ofthe proof ofthe crucial property (6.54) is as follows. Under assumptions
(6.53), we can show using (2.7), (2.6), [F1, Lemma 3.1] (as above in 6) that

(6.57) L*TG*GLsT" continuous L_(s, T; U) Lr(s, T; Y);

2
2<r< /e > O,

y+2e

with norm bounds which may be taken independent of s. Hence, by iteration, there
exists a positive integer nl such that

(6.58) : nLsTG GLUT) L(s, T; U)-> C([s, T]; Y)

with norm bound which may be taken independent of s. Thus (6.58) lets us use a
bootstrap argument (as in, say, Step 7 in the proof of Theorem 6.2) and obtain (6.54).

7. Counterexamples. It was independently noted in [F3] and in the first version
of this paper that suitable one-dimensional range (finite range) operators G furnish
examples which illustrate the sharpness or limitations of the theory presented.

7.1. Counterexample to the existence of the optimal control u when GLT is not
closeable. The following example is proposed in IF3], but it is analyzed here from a
different viewpoint (the example from IF3] is summarized in Remark 7.1). More
precisely, in this example we shall see that the operator GLT is not closeable and that
the optimal control does not exist. This shows that our Theorem 1.1, more generally
the treatment of this article, is sharp. Recall from 2.1 that the assumption that GLT
be closeable is used to obtain a complete inner product space (Hilbert) V(s, T; U)
defined by (the extension of) @(GLT-) with respect to the inner product in (2.8), and
that, moreover, the optimal control is characterized by (2.17), with A- an isomorphism
from V(s, T; U)]’ onto V(s, T; U).



478 I. LASIECKA AND R. TRIGGIANI

The example. Consider, say the heat equation defined on a (smooth) bounded
domain l)c R with L2(0, T; L2(F))-control in the Dirichlet boundary conditions.

(7.1a) y, Ay in Q (0, T] fl

(7.1b) y(0,.) =yo in 1

(7.1c) yl. u in E (0, T] x F.

Here Y= L2(f), U= L2(F). There exists & Y, Ihl 1 such that

(7.2) IB* eA*(T--t) CI2U dt o;

for, otherwise, by transposition, the map u--) y(T) (where Yo 0) would be continuous
L2(0, T; L2(F)) L2(l))= Y, which is false even in the one-dimensional case, e.g.,
[Liol, p. 217]. Following IF3], we consider the associated optimal control problem
1.3) with

(7.3) R=0; Gy (y, & v4 ch Y; G* G G*G.

Note that we have by (1.8) and (7.3),

(7.4) GLru= e(T-’Bu(t) dr, rb 4=(u, B* e
Y

A*( T- ( L2(O T; U)

so that GLT is finite rank and unbounded by (7.2), hence uncloseable [K1, p. 166].
Claim. There is no optimal control in this case. In fact, following 2.1, if an

optimal control u( 0; x)=u L2(0, T; U) exists, it satisfies the present version of
(2.17) (or (1.10)), i.e., since R=0,

(7.5) -[u+ L*TG*GLTu] L*rG*G eATx (eaTx, )yB* ea*(T-t),
where we have used (7.3) on G*G and (1.9) for L*. Moreover, by (7.3) and (7.4),

(7.6) L*rG*GLTu L*r{(LTu, 4)&} e(T-’Bu(t) dr, d B* e*(T-’4.
Y

Using (7.6) in (7.5) yields

(7.7) -u= {(U, B* eA*(T--’)dp)L2(O,T;U)+(eATx, )y}B*
Since B* eA*T-t)Ch: L2(0, T; U) by (7.2), then (7.7) yields that u L2(0, T; U), a
contradiction.

Remark 7.1. It is argued in IF3] that, in the present case, it is not possible for the
corresponding optimal problem (1.3), (7.3) to satisfy the following three desirable
properties.

(i) That there exists a unique optimal control u;
(ii) That there exists P(t), 0<-_ <-T, nonnegative self-adjoint, such that identity

(1.20) holds;
(iii) That for every 0<= < T and x (A), (P(t)x, x) is ditterentiable, P(t)x

((-A*)r) and the DRE (1.21) is satisfied.
The analysis above shows, more fundamentally, that the optimal control does not

exist in this case, with no need to involve the DRE.
Remark 7.2. We note that the choice (7.2) for 4’ implies that 4’ ((-A*)//2)

for all/3 > 23,-1, and hence [F4, 3.1], G in (7.3) does not satisfy assumption (1.46)
of IF4]. In fact, if we had 4’ ((-A*)/3/2) we would obtain that

(7.8) B* eA*(T-t)dp B*(-A*)-’(-A*) v-t3 eA*(T-t)(--A*)t3/2dp
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would belong to L2(0, T; U) by (1.3) and analyticity with 2y-fl < 1, thus contradicting
(7.2). We note that in this case we have @((-A*)/2G*)= {0} for all/3 > 2y-1.

7.2. Assumption (1.31) is only sufficient for GLT to be closed. We shall provide a
class of examples where condition (1.31) is violated, yet GLT is closed. This is not
surprising as condition (1.31)munlike GLTmdoes not involve B. Let the generator A
be negative, self-adjoint, say with compact resolvent. (We shall, however, maintain
the notation A*.) Let {e,, n= 1,2,...} be the corresponding orthonormal basis of
eigenvectors of A on Y with eigenvalues {-/x.},/z, > 0. Let ’-(i, 1, 2, be two infinite,
disjoint sequences of positive integers that exhaust all of the positive integers Z" 5el
02 7/; ow f’) 5e2 . For example, 51 {n 2, 4, 6, .}, ow2 {n 1, 3, 5, .}. Con-
sider the orthogonal decomposition of Y

(7.9) Y= Y1 + Y, Y span {e,, n 5ei}, 1, 2.

Let Hi be the orthogonal projection of Y onto Y/, so that Hi commutes with A, hence
with the semigroup eat and Y/are invariant under eat. Define a vector b Y by setting

in n 5e such that Y /xl(b, e,)yI2= c
(7.10) (b, en)y ,,e

0, nAe
for all/3 > 2),- 1, so that

(7.11) b((-a*)’/) Vfl>2y-1.

Next, with U= Y= W, define the bounded operators G*, G and the unbounded
operators B*, B by

(7.12) G*y=(y,a)yb+y; Gy=(y,b)ya+y; y,=H,y6Y; aY.

Byl 0; B*yl 0; Yl lily Y1
(7.13)

By2=(-A)ry2; B*y2=(-A*)ry2; y2 H2y 6 Y2 @((-A)V).

We readily obtain by (7.12), (7.11) that

((-A*)/2G* ((-A*)/2) Y2;
(7.14)

(-A*)t/2G*y (-A*)/y, y @((-A*)/G*).
Thus, ((-A*)t/G*) is not dense in Yz, and condition (1.31) is violated.

On the other hand, since BHu(t)--O and Y2 is invariant under A and eAt, we
obtain by (1.8) and (7.12),

GLT-u G eA(T-t)Btl( t) dt

(7.15)

G eA T- )..rlll U d + G e
o

A(T-t)Bli2tl(t) dt

--G eA(T-t)(--A)/I-[2tl(t) dt=(-A) eA(T-t)l-I2tl(t) dt,
o

where in the last step we have used (7.12) on G, with the integral term in Y. Thus,
GL, is a closed operator (being the product of a closed, boundedly invertible operator
(-A)v and of a bounded operator [K1, p. 164]). Our claim is proved. Note that, by
(1.9), one likewise has {L*G*y}(t)=(-A*) eA*(T-t)y2, y2-- l-I2y Y2.
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7.3. Variational versus direct approach: assumption (1.46) of the direct approach
fails, yet GLr is closed. We have already noted that assumption (1.46) for the direct
approach of IF4; Thm. 3.2] in the case where G is nonsmoothing, involves only the
operators A and G, not B. Instead, the assumption of the variational approach of the
present paper in Theorem 1.1 that GL be closeable involves all the data of the
problem: G, A, and B. Thus, not surprisingly, we provide new classes of examples
where assumption (1.46) fails, yet GL is closed. Thus, [F4; Thm. 3.2] is not applicable,
while our present Theorem 1.1 is; and more generally our present 2-5 are applicable.
We return to the example of 7.2 and set

(7.16) Gy (y, v), v, G* G G* G, v Y, Iv[ =1,

where we recall that the subspaces Y/ are invariant under A and eA’. It follows from
an observation in IF4; 3.1] that

G1 in (7.16) satisfies assumption (1.46)
(7.17)

z> t G ((-A*)/3/2) Y for some/3 > 23’- 1.

Next, choose v b, with b Y the (normalized) vector defined in (7.10), satisfying
(7.11). Thus, the operator G,

(7.18) Gy= (y, b)r,b does not satisfy (1.46) on Y.

Since Y are invariant under A, it follows that the operator G,

G= G + I does not satisfy (1.46) on Y; G as in (7.18);
(7.19)

I identity on Y2.

Yet, as seen in 7.2, GLr is closed.
Remark 7.3. The variational approach of this article (as well as the direct approach

of IF4]) can be readily extended to allow G to be unbounded, say G 3f(@(-A), Z),
p > 0, or G(-A)- (Y; Z). Recalling the explicit formula (1.10) for the optimal
u(t, 0; x), we write accordingly,

{L*TG*G earx}(t)= B*(-A*)-r(-A*) ea*(r-’(-a*)G*G(-a)-(-a) earx
with (-A) eArx Y for x Y, whereby the original 3’ deteriorates to 3’+ p in terms
of singularity. This will not be pursued further here.

Remark 7.4. (a) We have seen in 7.4 that the operator G in (7.3) with b as in
(7.2) neither satisfies assumption (1.46) of the direct approach of [F4] (see Remark
7.2) nor does it make GLr closeable (see below (7.4)).

(b) Suppose that G(-A)/2 is closeable for some /3> 23’-1 equivalently that
(-A*)/2G* is densely defined, see (1.31). Then the assumptions of both approaches
are satisfied; i.e., (bl) GLr is closeable and (b:) assumption (1.46) holds true.

Statement (b2) is proved in [F4; 3.4.1]. Statement (bl) was already noted in
(1.31): since then GLr G(-A)/Vr is the product of a closeable operator and of a
bounded operator

IoVTU (-A)p eA(T-t)(--A)-3’Bu( t) dt, p 3" /2 < 1/2,

so that Vr e W(L(0, T; U), Y).
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THE RECOVERY OF POTENTIALS FROM FINITE SPECTRAL
DATA*

BRUCE D. LOWEr, MICHAEL PILANTt$, AND WILLIAM RUNDELLt$

Abstract. The reconstruction of a Sturm-Liouville potential from finite spectral data is con-
sidered. A numerical technique based on a shooting method determines a potential with the given
spectral data. Convergence of reconstructed potentials is shown and numerical examples are consid-
ered.

Key words, inverse spectral theory, Sturm-Liouville problem
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1. Introduction. The inverse Sturm-Liouville problem is one of the most cel-
ebrated of the class of inverse problems consisting of the determination of unknown
coefficients in differential equations. The problem consists of recovering the potential
function q(x) in

+
(1.2) y’(O) hy(O) o,
(1,.3) y’(1) + Hy(1) 0

from a knowledge of spectral data. There are various versions of the problem depend-
ing on the exact nature of this data. However, in each of these, it is assumed that a
complete spectrum, {Aj}= for (1.1)-(1.3) is given. It is well known that this is, in
itself, insufficient information for the recovery of q, and thus some additional informa-
tion must be provided. There are exceptions to this, when, for example, the potential
is known to be symmetric about the mid point and identical boundary conditions
(h H) are imposed at both ends. This is the so-called symmetric case. Some of the
better known versions are described in the survey article [13] and the paper [18]. We
shall briefly describe these in 5.

Questions of existence and uniqueness for the inverse spectral problem have been
extensively studied over the past forty years and most of the fundamental questions
answered. More recently the attention has shifted to the question of obtaining effi-
cient reconstructive methods, and this paper continues the trend. In particular, we
are interested in the question of obtaining approximations to q(x) from limited data.
For example, consider the symmetric case where the overposed data consists of the
eigenvalues {An. In many physical problems of interest we are able to perform ac-
curate measurements of only a relatively small number of the lowest eigenvalues, and
the accuracy obtained degrades quite rapidly with higher modes. What if, instead of
a complete set of eigenvalues, we are given only the first N eigenvalues N{An}n= ? The
answer to this question is known; uniqueness fails of course, but the difference between
any two functions q(x) and q2(x) that have { n}n= as their first Y eigenvalues is
a sum containing only the eigenfunctions of (1.1)-(1.3), y(x; q, An), and y(x; q2, An)
for n > N, [7], [9]. Since these eigenfunctions are quite "close to" the functions
sin nrx (for Dirichlet conditions), the difference of q and q2 consists of functions

Received by the editors December 6, 1990; accepted for publication June 3, 1991.
Department of Mathematics, Texas A&M University, College Station, Texas 77843.
This research was supported in part by the Office of Naval Research under grant ONR N00014-

89-J-1008.

482



THE RECOVERY OF POTENTIALS FROM FINITE SPECTRAL DATA 483

whose frequency is at least N. This means that from finite spectral data we should be
able to recover all the low frequency modes of the potential q(x), but none higher than
the number of eigenvalues given. It also suggests that the goal of a recovery method
might be to assume that q(x) has a finite trigonometric expansion and attempt to
recover the Fourier coefficients from the spectral data. Indeed, this has been a popular
approach and is further exploited in this paper. Thus our goal is to obtain information
about the function q(x) from limited spectral data--typically less than the first ten
eigenvalues, and we shall demonstrate that this is quite feasible for a wide class of
potentials.

For certain problems it is often the case that we are able to say that, despite the
large number of techniques used in the solution, all of them start from the same basic
formula or use variations within a given family of methods. This is certainly not the
situation for numerical solutions to the inverse spectral problem (1.1), where there
has been a wide diversity of approaches. There are methods that, because they rely
on a particular representation, are only applicable to a particular type of data; there
are other methods that are applicable to most versions of the inverse Sturm-Liouville
family. Some methods recover the value of q at discrete points {X}lM and require M
items of spectral data; other methods place no restriction on the number of output
points for the potential. We can look at this in another light; some approaches place
restrictions on the types of basis expansions allowed in the approximation of q(x).
Some algorithms are more naturally solved by a direct method, while others require
an iterative solution.

Some of the early work on the reconstruction of the potential relied on replac-
ing the original boundary problem for an ordinary differential equation with a dis-
crete version of the problem. This leads to the question of recovering a matrix with
unknown diagonal elements from knowledge of its eigenvalues. For a discussion of
this approach, including the historical perspective, see [5]. For the symmetric case
with Dirichlet boundary conditions, Hald [8] developed an algorithm based on the
Rayleigh-Ritz formula. This reduces to finding a matrix of a certain form, an approx-
imation to the Sturm-Liouville operator, whose eigenvalues are prescribed. There is
some overlap in the methodology between this work and the present paper: in the
present paper we generate a potential whose first N eigenvalues agree with the pre-
scribed eigenvalues {Aj}=1. We also show that our scheme is applicable to other
inverse spectral problems.

In the original paper by Gel’fand and Levitan [6], a formula is developed that has
been used to provide a numerical scheme. This requires solving the integral equation

(1.4) K(x, t) + K(x, s)f(s, t)ds f(x, t) 0 <_ t <_ x

for the function K(x,t) at each fixed x [0, 1]. Here the function f(x,t) is ob-
tained from data of the spectral function type. The potential is then recovered from
q(x) 2(d/dx)K(x,x). The main difficulty with the method, and one that limits
its effectiveness, is the sensitivity of the solution of the integral equation on the data
function f(x, t). This is given as the difference of two series in which, although the
combination converges, each component is rapidly divergent. This leads to difficul-
ties in accurate computation of f. In addition, the method has a relatively high
operational count and, at least in the usual formulation, is restricted to spectral
data consisting of eigenvalues and norming constants. Despite these drawbacks, the
approach has provided a starting place for other techniques. McLaughlin and Ham
delman [12] have given method of solution based on the Gel’fand-Levitan integral
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equation. Sacks [19] has given an iterative method (actually a quasi-Newton method)
that is based on the mapping from K(x,x) to K(x, 0). This significantly reduces
the operational count from the original Gel’fand-Levitan formulation and provides
an efficient reconstruction of q(x) from eigenvalue plus norming constant data. Re-
cently, Rundell and Sacks [18] gave an approach based on a representation theorem of
Gel’fand and Levitan. This method translated the spectral data into Cauchy data for
a certain hyperbolic equation which in turn converted the original Sturm-Liouville
problem into an overposed problem for this wave equation, and this could be solved by
an iterative procedure. This approach leads to a scheme with considerable flexibility
in the type of overposed data it can handle and in the type of basis expansions for
q(x). The algorithm is extremely robust and has a very low operational count. Hald
[7] showed that an algorithm, based on the work of nochstadt [9], will always provide
a solution of the inverse problem in the symmetric case. More recently, Andersson [1]
has extended these techniques to the so called "impedance case," the recovery of the
function p(x) in -(py’)’-- py. There are extremely elegant characterizations of the
isospectral sets corresponding to Dirichlet data, that is, the set of potentials q(x) that
have a given (Dirichlet) spectrum, [17]. These ideas can be used to provide construc-
tive algorithms. Finally, Paine [16] has shown that a Newton type method can be used
in the symmetric case. This relies on finding a solution of the potential to eigenvalue
map, and there is some overlap with the ideas in the present paper. In all overposed
problems, there is a certain latitude in deciding which items of data are "basic" to
the problem and which are "additional." Put another way, the question is: what is
considered to be the underlying direct problem; that is, the problem of recovering
y(x) in (1.1)-(1.3). It is more natural perhaps to consider the boundary conditions as
"basic" and the eigenvalues to be the extra information used in the recovery of q. This
was the approach taken by Paine. However, for a given q(x) and eigenvalue sequence
we can determine the eigenfunctions completely using only left endpoint data. This
leaves the boundary condition imposed at the right endpoint to be used as the addi-
tional information for the recovery of q, and is the method of the present paper. At
the start of this paragraph we mentioned the diversity of approaches to the problem.
There is one thing that seems to be common to all of the above approaches--their
restriction of applicability to one space variable. In most cases this is inherent in the
method. For example, those methods based on the Gel’fand-Levitan representation
are limited due to the fact that this only holds in one space dimension. The method
of the present paper can, at least formally, be applied in higher dimensions, and this
is one of the motivations for our study.

The plan of the paper is as follows. In the next section we will present our method
for the symmetric case with Dirichlet boundary conditions. We shall show that our
algorithm is always well defined and the associated iteration scheme converges to a
function in a well-defined approximating set. In 3 we consider the two spectrum
case for a general nonsymmetric potential. In 4 we consider the problem of the
convergence of the approximations. Finally, in 5, we present some numerical results
and discuss some of the other inverse Sturm-Liouville problems, indicating the minor
modifications required to the algorithm.

2. Single spectrum case for a symmetric potential. The operator

d2
(2.1) L

dx2 - q(x)
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with unknown symmetric potential q(x) on [0, 1] can be uniquely determined from
the Dirichlet spectrum [a], or equivalently, the zeros of the entire function u(1; q, A),
where u(x; q, .X) satisfies

-u"(x; q, ) + q(x)u(x; q, A) .ks(x; q, )),
(2.2) u(0; q, A) O,

u’ (0; q, A) 1.

Knowledge of the first N Dirichlet eigenvalues 1,’", AN will not uniquely determine
the operator L. Indeed, expanding q(x) into a Fourier cosine series

q(x) qo + Z qk cos(27rkx),
k-1

we can at best hope to determine the first N coecients {q0,’", qN- }. However, for
N not too large, this should be adequate to approximate a suciently smooth q(x).
It is natural to seek an approximation

N-1

qN(x) qN + qkk(X)
k=l

that lies in the space

SN span {1,k(x)= cos(2rkx),k 1,...,N- 1},

and for which A,..., AN are zeros of u(1; qg(x), A).
Let AN (A1,’", AN) and define F" N N by

(2.a) j(AN;ql,’’’,qN) j(1;ql,’’’,qN,j)-- 1;qN+ qiCOS(2iZ),j
i=1

We seek a vector -- (q,.-., q) for which F(A; q) 0. When no ambiguity
can occur, we drop the explicit vector notation. Theorem 1 shows that this is possible
for q(z) suciently close to ero.

The proof of Theorem 1 relies on the following result.
LNMMA 1. et A,0 (,4, N) denote the first N Dirichlet eigenwl-

es correspondin9 to q() 0. The Jcobin F(A; q)lA=A.o,=o is pper triangular
with elements

0 (A; q)lA=A,o,=o j 1 g- 1
Oqj 42j2’

OFy (h; q)[h=A o,q=o j- 1 N
OqN 22j2

and with all the other elements zero.
As a direct consequence, the eigenvalues of Fq(hN,o; 0) are given by (-1)J/(42j2)

for j 1,...,N- 1 and (--1)N+/(2r2N2). The spectral condition number of
Fq(Ag,o; 0) is therefore

[Amax] N2

" [min[- 2
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Proof. Using (2.2), it is easily verified that u(x; 0, Aj) sin x/x/X/" Further-
more, w =_ (Ouj/Oqk)(x; O,) satisfies the ordinary differential equation

0,

0

which has the solution

(2.5) w(x) u(x t; 0, )j)Ok(t)u(t; 0, )j)dt.

Consequently, the jkth element of the Jacobian matrix is given by

(2.6) Ou (1;0,)
1 sin((1 t))sin(t)k(t)dt,Oqk

where Aj j27r2. The result follows easily from a direct integration. [:]

The special structure of the Jacobian arises from the particular choice of the
Fourier basis.

THEOREM 1. For fixed N and q(x) e 8N sufficiently small, F(AN, q) has a
unique zero, denoted by qN (x).

Proof. The Dirichlet eigenvalues of L depend continuously on L perturbations
of the potential [17]. Consequently, for q(x) near zero, AN is a perturbation of AN,0.
Since F(hN,0, 0) 0, Fq(AN,o, 0) is nonsingular, and the function F(AN, q) depends
smoothly on AN and q, the result follows from the Implicit Function Theorem.

Several comments are in order. First, the implicit function theorem is not con-
structive. Second, the theorem does not provide us with a uniform estimate on qN (x).
We require such an estimate in order to obtain a convergence proof, and we derive
this estimate in Lemma 4.

In order to actually determine the basis coefficients of qN(x), (qN, q2N,..., qNN),
we iterate using Newton’s method, which yields the scheme

Fq(AN; q(m))Sq(m) =--F(AN; q(m)),
q(m+l) q(m) + 5q(m).

If q(x) is sufficiently close to zero, then Fq(AN; qN, q2N,’’’, qr) is nonsingular and
the scheme converges quadratically to (qlN, q2N, qNN) for all initial guesses which
are sufficiently close. If instead of evaluating the Jacobian at q(m), we evaluate it at
q 0, we obtain a quasi-Newton scheme. This is more computationally efficient in
practice.

Let us now consider the case where the mean of the potential is known. This
can in fact be recovered from the spectral data, see [18]. When a =_ f q(x)dx, the
problem reduces to finding qN(x) E span {cos(2rix), i= 1,..’, N} for which

u(1;qN(x),A:i --a) --O forj--1,...,N.

If we define/" ’.N TN by

/j(Ag, ql,’’’,qN) U 1; qr cos(2rrx), Aj
r--1

j-- 1,...,N
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with

AN (A1 ,’",AN ),

then the following lemma holds.
LEMMA 2.

Oqk Oqk
--(1; 0, Aj)

1V/ integer,
sin X/

if
7r

1 V integer ( k),o

1
42k2 if

Using the estimate Aj r2j2 -+-cj where cj E/2(n) [17], the following theorem
gives a sufficient condition for Fq(AN, 0) to be nonsingular. This is particularly useful
when employing the quasi-Newton method.

THEOREM 2. IfAN (j j=N j2r2}j=l, Aj +cj and Icjl

_
min{C(j/v) 7r2/4},

then for C independent of N and sufficiently small

det Fq(Ag, O) O.

Proof. The proof of Theorem 2 follows from some simple inequalities which imply
diagonal dominance.

Setting aj V/- jr v/r2j2 + cj- 7rj, a first-order MacLaurin expansion
gives

Summing the off-diagonal entries of the Jacobian matrix yields

JAj rUk2J

With the estimates

and

1 1 1

7r2k2-Ajl . 7r21j2-k2- 1/4] -
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we obtain

OF (AN 0)1 <INiq 3x/_r3k2
1 +

r2

By a simple argument, we can show that the diagonal element satisfies

I-q/ 47r2i2 97- 12x/
and the matrix will be diagonal dominant if

-54r3 + 72x/-Tr3 9r4
C < 1.26918.

158 + 73Vf5 + 977r2 12/gTr2

We remark that the constant C 1 corresponds to extremely large potentials.

3. Two spectrum case for a general potential. In the general case of a
potential q(x) E L2[0, 1], we choose the 2N basis functions

(3.1) (k(X)}lk=2N (sin 2rx, cos 27rx, sin 2Nrx, cos 2NTrx)k--1

As in the previous section, we have assumed (by suitable renormalization) that the
potential has zero mean.

In order to determine q(x) uniquely, we must give two sets of spectra which, for
purposes of this section, we suppose are Dirichlet-Dirichlet and Dirichlet-Neumann
spectra:

where

and

-u" + q(x)u ,ju, u(0)=0=u(1), u’(0)=l

-v"+q(x)v=#jv, v(0)=0=v’(1), v’(0)=l.

As before, we define uj and vj, respectively, as solutions of the initial value problems
(for a given q(x))

I!- + q(xlu )v., u (O) o, u (O)

and

We have

II
-vj + q(x)vj #jvj, vj(O) O, vj(O) l.

Ou
(1; O, Aj) u(1 t; O, Aj)k(t)u(t; O, Aj)dt,Oqk

ov foOqk (1; O, ,) v(1 t; O, ,j)(t)v(t; O, ,j)dt,
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which can be explicitly computed. An argument similar to that of Theorem 2 yields
the following.

THEOREM 3. If the Dirichlet-Dirichlet and Dirichlet-Neumann spectra for a
potential of mean zero are sujficiently close to q 0 spectra, in the sense that

and

with C sujficiently small, and if Ck is the Fourier basis .for L2[0, 1], then there is a
IAk

k=2N with the prescribed spectra.unique qN E span t" =1
The coefficients of q(x), with respect to the basis , can be recovered by either

the Newton or quasi-Newton procedure given in 2.
4. A convergence theorem. The following heuristic argument justifies, in part,

the excellent approximation properties of our algorithm. For a symmetric potential,
the actual solution of (1.1)-(1.3) satisfies

(4.1) O=uj(1;q, AN),

while the approximation qN SN satisfies

(4.2) 0 uj(1; qN, AN),

Expanding (4.1), we have

(4.3)

j 1,2,..-,N,

j 1,2,...,N.

F(AN, q) 4(-1)YAu(1; q, A), j 1,--.,N,

where AN (Al,"-,AN), VN {q e span(,k 1,...,N), II ’ll , <- 1}, and
u(x; q, Aj) solves (2.2). Here Ck(t) cos2rkt. For sufficiently small, we show that
qN (X) VN for all N. This readily follows once a Lipschitz bound independent of N
is established for the Jacobian of F. This is given in Lemma 3, the proof of which can
be found in the appendix. In what follows, C denotes a constant that is independent
of k,/, and N.

If det(OF/Oq)(AN, qN) 0 and 0 F(AN, qN), then we have to first order q- qN
SN. If we chose an orthonormal basis for SN, we therefore have (to leading order)
q_ qN I SN; that is, qN is very close to the best L2 approximation to q in that space.
This is in fact shown by the numerical computations given in 5. This also motivates
the choice of the Fourier basis.

For the remainder to this section we shall assume that q(x) is a symmetric L2

potential with mean zero and spectrum {Ay}?=l, satisfying the following.
Assumption A. For some constants a, > 0 the eigenvalues of q satisfy I/ki

uJel <_ /(jl+a).
We show that for sufficiently small, qN (x) generated by the shooting method

of 2 converges in L2 to q(x). Assumption A implies that q(x) L, [17, p. 39].
Consider the map F VN -- RN given by

OF
(AN qN) (q qg qN 20 F(AN, q) F(AN, qN)+ -q )+ O(Iq- ).
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LEMMA 3. For q(i) E VN and all sujficiently small

N OF (AN q())- OF (AN, q() - C]lq()

LEMMA 4. I] the eigenvalues An satisfy (A), then for all su]ficiently small,

Proof. By Lemma 3, ]lF’(hN, q(2)) F’(AN, q(1))IIL <_ CIIq(1)(.) -q(2)(.)IIL. <_
CII’() (2)11L1 for q() e VN, where C is independent of N. It is easy to show

for sufficiently small. Consequently,that F’(AN, O) I- HN, where ]HNL < 5
]F’(AN, O)-]L < 2 for all N and ]F’(AN,O)-F(AN,O)IL 2]F(A,0)IL1
8j= ]sin] C(=j--}, which can be made arbitrarily small by
choosing appropriately. Using Newton’s iteration, [4, p. 157], ]]gN]L 1, giving
]]qN]]L 1 and consequently ]]qN]]L 1 for all Y.

The convergence of qN (x) to q(x) follows from the ymptotics of the eigenvalues
of qg (x) and the continuity of the eigenvalue to potential map.

THEOREM 4. If the eigenvalues An satisfy (A), then for suciently small qN
converges strongly to q in L2.

Proof. The eigenvalues k(qN) satisfy the estimate

Ak(qN) r2k2 (cos 2rkx)qN (x)dx <
k

where C is independent of N [17, p. 35]. For N sufficiently large, k(qN) k for k
1,... ,N, by the counting lemma of [17, p. 28] and for k N+I, (aN, cos2rkx)L: O,
giving IA(qN) --r2k2 C/k. Now

+
k=l k=l k=N+l

k=l k=N+l

1 1

k:l k:NT1

For sufficiently small and N sufficiently large, Hald’s continuous dependence result
[8] is applicable, giving

]lqN -q] C(Ak(qN) Ak)e C (Ak(qN) Ak)u

k:l k:NT1

C (a(q)-k)+ (a-k)
k=N+l k=N+l

<_c
k=N+l k=N+l

-N

k2(l+a)

Clearly, qN __+ q in L2 with convergence rate of order half.
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5. Numerical experiments. In this section we present some numerical exper-
iments that we carried out to illustrate the performance of the algorithm. We will do
so in three particular cases of the inverse Sturm-Liouville problem: symmetric q(x);
data consisting of two spectra; data consisting of the function Aj(H). We shall be
able to point out some of the features of the method and be able to show its strengths
as well as its weaknesses.

In order to construct data for the direct problem, that is, for given q(x), the
eigenvalues (and eigenfunctions if appropriate) we used the routine SLEIGN which is
described in [2].

For the remainder of this section we will adopt the following notations. The
function uj uj(x; q, .k) is the solution of the initial value problem

(5.1) uy(x) + q(x)uj(x) Auj(x), uj(O) 1, u)(O) h,

and the FrSchet derivative of uj, with respect to q in the direction Ck(X), we denote
by tjk(x). This satisfies

+
0, 0

with ,k Aj for 1 <_ j _< N and Ck(x) the kth element of the basis set, 1 _< k _< B.
If the boundary condition at the left endpoint is of Dirichlet type, then we modify
the above in the obvious way, choosing uj(0) 0 and normalizing by uj(0) 1. We
denote by Ajk the N B matrix with elements fijk. The boundary condition at x 1
we shall denote by

(5.3) B[u] =_ u’(1) + Hu(1) 0

and the resolution of the (finite-dimensional) inverse Sturm-Liouville problem requires
that there be q such that B[u(.;q;A)] 0 for A A, 1 <_ j <_ N for the given
eigenvalues {Aj}. Given the mth iterative approximation for q(x), we update by

Ou [q(m) ] O.+ ].eq

Since B is linear, we have

as our update strategy. In each of the computations of uj(x) and tjk(x), the current
approximation q(m) is used. We used a Runge-Kutta-Fehlberg adaptive routine to
perform the integration steps for the solutions of the initial value problems.

For the case of the recovery of a symmetric potential from the sequence of eigen-
values ,ki, 1 _< j _< N, the algorithm is outlined in Fig. 1. Note that in the
general symmetric case, symmetry is also required of the boundary data so that
B[u] =u’(1)+hu(1).

Note that this algorithm does not require any separate input of the value of the
mean f q(s)ds; the assumption of zero mean was only to simplify the analysis.

In all computations to be described we used the quasi-Newton version of the algo-
rithm; in every example we tried, the differences in each iterate between the Newton
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,t B[u] u’(1) + hu(1)
et qo(x)
do for 1 <_ n <_ max iterations

do or I <_j <_N {
ode compute(uj )

.=

do for l gkgB {
ode compute(i )

A B[fi ]
)

vd matrix Ait
zro ot .mall ainsular
aolv Ac -b

q. (-) +

FIG. 1. Algorithm flowchart.

and the quasi-Newton was within 1 percent. The difference in program running time
was, of course, significant.

An initial approximation qo(x) is required, and we took this to be the zero func-
tion. Provided reasonable values were used, the algorithm was not sensitive to the
choice of q0.

We found that the number of iterations of the procedure before effective conver-
gence of the functions qn was obtained was always very small; most of the reconstruc-
tion coming in the first iteration, and the remainder in the next two.

The reason for the phenomena described in each of the three previous paragraphs
is that the mapping from a given potential q(x) to the spectral data is apparently very
nearly linear. This observation was made in [18] where similar results were obtained.

The basis functions Ck(x), 1 <_ k <_ B should be selected to match the expected
functions q(x). We used trigonometric functions, linear splines, and cubic splines. The
algorithm allows the number of data items N to be different from the number of basis
functions B. Usually one would choose B N to maximize the amount of information
utilized. As the previous sections showed for the case of trigonometric basis functions
and Aj corresponding to the first N eigenvalues for the symmetric potential, we can
simply invert the system Ac b in order to solve for the basis coefficients ck of the
function iq. The matrix remains well conditioned for all reasonable values of N. For
other basis functions and spectral problems this is not always the case. In addition, we
may have the situation where the spectral data is subject to measurement error and
we wish to give additional data, that is, we have N > B. This is where the singular
value decomposition is employed. We can use this to edit out the small singular values
(those values ak with ak < amaxTOL) before back substituting to obtain the solution
vector c. For general values of N and B we are therefore finding a least squares
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fit to this solution vector from the given data. All the runs shown below were made
with TOL in the range (10-6, 10-4). In the case of the recovery problem with data
consisting of the values of )1 (Hi) for N values of the parameter H, we were never
able to recover functions with more than about six significant modes, and the use of
the least squares approach becomes an essential feature of the method.

As we shall show, the algorithm outlined above can be extended to those spectral
problems that consist entirely of eigenvalue data or eigenvalue data plus some point-
wise information about the eigenfunction. For convenience we describe here those
problems for which a uniqueness result for the inverse problem is known. In most
of these cases the modification required to the algorithm consists simply of using the
correct boundary operator B and perhaps a modification to the basis set.

Two spectrum case. Here we must recover the potential q(x) from a double se-

,:k(?)}, where we let {)1)} denote the eigenvalues corre-quence of eigenvalues {A}I) ’3

sponding to the boundary condition u’(1)+ Hlu(1) and {A}2)} denote the eigenvalues
corresponding to the boundary condition u’(1)+ H2u(1). If there are N/2 eigenvalues
from each set, and B basis functions, then A is again an N B matrix whose entries
are the values of B[jk], where H- H for j <_ N/2 and H H2 for N/2 < j <_ N.

Partially known q. If the function q(x) is known on the interval [0, 5] and one
complete spectrum is provided, then it is known that q(x) can be uniquely determined
over the remainder of the interval, [10]. To modify the basic algorithm we only need

1].modify the basis set to consist of functions that span the interval [5,
Endpoint data. Here we let {Aj } denote the N/2 eigenvalues corresponding to

the boundary condition u’(1)+ Hu(1). The data also includes the N/2 numbers ky
which are the values of the jth eigenfunction at x 1, which, in view of the known
boundary condition at the right-hand endpoint, also determines the values of u} (1).
Thus, in Fig. 1 we set the vector b to be

f u(1) kj ifj <_ N/2,
u(1)+Hky ifj>N/2.

Variable boundary condition data. In this version of the inverse Sturm-Liouville
problem, we are given the value of .M(H) as a function of H for some fixed eigenvalue
number M, and where H runs over some interval. The algorithm is, thus, virtually
identical to that depicted in Fig. 1. Suppose the data is of the form {Hi, Aj }, where

Ai denotes the value of (say) the smallest eigenvalue of the problem when H Hi.
Then for each j we set B[u] uy(1)+ Hyuy(1). Of course, the basis set must include
both even and odd functions on the interval.

Figure 2a shows a reconstruction of the symmetric potential

q(x) 1 exp(-20(x 0.5)2)

from Dirichlet eigenvalues and B N 3. The supremum norm difference between
the reconstructed q and the actual q is 0.038.

With B N 5, this error is reduced to 0.004. In this and subsequent such
graphs, the actual function is represented by a dashed line.

The asymptotic formula for the (Dirichlet) eigenvalues is given by ,n n272 --f q(s)ds + Ca, where Cn is in 2. As was shown in [14] and [18], the appropriate
measure of accuracy for the data are the numbers Cn; we can expect to recover the
potential from a reasonably small error in the Cn, but we can never expect to do so from
even a few percent error in the eigenvalues themselves. We added 10 percent random
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1.0

0.5

0.0

With N- 3
1.0

0.5

0.0
1

With 10% error in c

\

FIG. 2. Reconstruction of a symmetric q(x) from Dirichlet spectra.

error to the numbers An-n2r2-f q(s)ds and used the result in the recovery routine.
Figure 2b shows a reconstruction under these conditions using the first five Dirichlet
eigenvalues. Notice that in both these figures the reconstruction is much poorer at
the endpoints of the interval. This is due to the fact that the actual potential is not
a smooth periodic function on the real line, having discontinuities in the derivative
at the points x 0, 1, whereas any element in the span of the basis set is smooth.
Similar effects can be expected in any method that uses a finite trigonometric basis,

When the data consisted of two spectra we used as a test case the function

12.5x2 if0_<x_<0.4

q(x) 2 if 0.4 _< x _< 0.7

1 if0.7_< x_< 1

and provided both Dirichlet-Dirichlet (h H cx) and Dirichlet-Neumann (h
H 0) eigenvalues. Figure 3 shows the reconstructions for N/2 eigenvalues from
each problem where N 6,14,20. Both trigonometric {1, cos(2rx),sin(2rx),...}
and linear spline (chapeau function) basis were used with B N.

These computations were obtained by zeroing out some of the singular values. As
a general rule we found that the further the function deviates from a smooth function
when periodically extended, the larger the tolerance required to prevent overshoot at
the endpoints. The case of N 20 was run with TOL set to 10-4; with this setting,
only the first 14 trigonometric basis functions were retained. A lower value of TOL
will result in the algorithm overemphasizing the higher modes in order to compensate
for the discontinuity in the periodic function. This is already evident in the case of
chapeau basis functions with N 20, where a slightly larger value of TOL would
have offered some improvements. This problem is not an issue with trigonometric
basis functions in the symmetric case.

The problem of recovering the potential from spectral data consisting of the func-
tion A(H) for A corresponding to some fixed eigenfunction number is a considerably
more ill-posed problem than the other usual inverse Sturm-Liouville problems. The
easiest proofs of uniqueness rely on analytic continuation, [15] and this has to be
considered unreasonable as the basis of a numerical algorithm. The method of [18]
was able to handle all the known inverse Sturm-Liouville problems, except this one.
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2.0

1.0

0.0

Trigonometric basis N 6

2.0

0.0

Chapeau basis N- 6

1

2.0

1.0

0.0

Trigonometric basis N- 14

2.0

1.0

0.0

Chapeau basis N- 14

2.0

1.0

0.0

Trigonometric basis N = 20

2.0

1.0

- 0o0
1

Chapeau basis N = 20

FIG. 3. Reconstruction of a q(x) from two spectra.
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1.0

0.5

0.0

Trigonometric basis N 4

/, 1.0

0.5

0.0

Chapeau basis N 5

FIG. 4. Reconstruction of q(x) from 1 (H).

The uniqueness theorem requires that the set of values Hj should have a finite ac-
cumulation point, and it is not known, at least to these authors, whether any finite
data set can allow one to recover the lowest frequency modes of q as is the case when
eigenvalue data are prescribed. To see the performance of the algorithm, consider the
function q(x) 16x2 exp(-8x) which has been normalized to have a maximum value
of one. This is a smooth function that has a very small discontinuity in its periodic
extension. As such, the algorithm would recover it to within less than 1 percent er-
ror with spectral data consisting of 5 eigenvalues from each of two spectra, that is,
N 10. For the output of Fig. 4 we used as spectral data the value of 1 (H) for 10
values of H, namely H {0, 1, 2, 3, 4, 5, 10, 20, 50, 100}. With the value of TOL set
to 10-6 we were only able to keep about 5 or 6 modes with any of the basis functions
we tried. Here, for good accuracy, we should keep the value of TOL small for best
results and then delete any basis functions for which the corresponding singular value
is less than the tolerance. The results are shown in Fig. 4.

The use of the singular value decomposition is essential for the functioning of this
particular version of the algorithm. The number of values of H at which we computed
1 is not so crucial; much the same reconstructions would have resulted if we had used
anywhere between 7 and 20 points, provided they were roughly equally spaced. This
is due to the behavior of the analytic function A1 (H).

In terms of its numerical performance, how does this algorithm compare with
some of the others mentioned in the introduction? The method of Paine is the closest
in terms of methodology, although the implementation in [16] is only for the symmet-
ric case, and in fact it is not clear how to implement the algorithm for noneigenvalue
data. The mapping used is that between the potential and its eigenvalues. There is
an additional disadvantage in this approach; the computation of the Frchet deriva-
tive requires solving N2 (where N is the number of points at which q(x) is deter-
mined) Sturm-Liouville eigenvalue problems, and numerically this is an extremely
expensive proposition. In contrast, our method requires N B computations of an
initial value problem and this requires considerably less computation. In addition, the
quasi-Newton implementation means we have to compute this matrix only once. The
method of Rundell and Sacks [18] is able to recover virtually the full family of inverse
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Sturm-Liouville problems, the exception being the variable boundary condition data.
This method leads to an extremely fast algorithm. Indeed, the computational time
required to recover a potential from 10 or 20 items of spectral data is significantly less
than the time taken to compute even one eigenvalue of the direct problem using the
program SLEIGN. The method of this paper is unable, at least in the form presented
here, to recover q(x) from data consisting of eigenvalues and norming constants, but
this is the only exception. In comparison with the Rundell-Sacks method the accuracy
obtained is roughly the same, but the amount of computation required is consider-
ably greater. Our Newton-type algorithm performs slightly better under noise in the
spectral data, but this might be more a function of the particular implementations.
One of the drawbacks to the method of [18] is that it is necessary to have an estimate

of the mean of q, 1 f q(s)ds. For smooth functions, an adequate estimate can be
obtained from the spectral data, but this ability degrades with rougher potentials.
The method used here does not require the estimation of the mean. In addition, and
this we believe to be the most important point, the ideas presented here can formally
be extended to higher space dimensions, and this we intend to make the subject of
future work.

Appendix: proofs of the lemmas. In what follows, C denotes a constant that
is independent of k, , and N.

LEMMA A1. For q E VN and j k, w(t) Ouj(t; q, )j)/Oqk satisfies the estimate

1
w(t) + 4rkAj sin 2rkt cos

Proof. w solves

1)
-w" + qw Ajw Ckuj [q],

which has the solution

w(t) (Yl (s)y2(t) yl (t)y2(s))k(s)uy[q](s)ds,

where y and y2 solve

-y’ + qy Ay,
 i(0) o,

y(O) yl(O) 1.

Using the estimates [18, p. 13]

sin
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we obtain

I(Yl (8)y2(t) Yl (t)y2(8))
1

sin (t- s)l < lY (s)l

sin vt -f- ly2(8)llyl(t) cos Vtl
sins
1 IlqllL2)2+ V/_e

sin v/t

Observing that uj[q] y2 and using the estimate ly2(s)- (sin x/s/v/)l <
(ellqll-/) gives

Iw(t) sin X/(t s)k(s)sinsdsl

yl (8)y2(t) yl (t)y2(8)
/Z

sin V/(t s) Ck(s)y2(s)ds

+ V/
sin (t- s)k(s) y(s)-

sins

Now

sin X/(t S)k(S)sin V/S ds

sin 2rkt cos

4rk 2
cos 2rks cos 2V/s ds

2
sin 2X/s cos 2rks ds,

0
cos 2Vs cos 2rks ds

sin 2X/s cos 2rks ds

sin2( k)t sin2(V + k)t
4(-rk) + 4(V/+rk)

1 cos 2(V/ + rk)t 1 cos 2(V/- rk)t+4(X/ + rk 4(- rk)

and the result follows using IlCkllL= 1/x/ and ,y > 1 for sufficiently small.

LEMMA A2. Ifsinx/(1-t)cosv/tsin2kt(q() -q(2))dt

-< j2+ + sin 2rjt sin 2rkt(q ) q(2))dt
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Proof. Since q(i) E span(cos 2rlx}, this gives

I

sin V/(1 t) cos v/t sin 27rkt(q(1) q(U))dt

si f012
cos 2x/t sin 2kt[q() q()]dt- sin2tsin 2kt[q(1) q(l]dt.

Using the inequalities sin2t- sin2jt 21-jt 2t/rj2+a and

sinl /j2+. gives the desired result.
LEMMA A3.

1 fl 1 1
sijt(sit(q( ())t IIq(1

J0"= j=l

Proof. f sin 2jt sin 2kt[q(1) -q()]dt is the jth ourier sine coecient of sin 2kt
.(q(1) q()). The result follows from he Cauchy-Schwar inequality and Parseval’s
identity.

LMNa A4. For all sucientl smll,=(1/1-kl) C.

Pro@ It is eily verified that

1 l-jl 1 11 < 1 I-Jl
=1

For sufficiently small v/ >_ 1 and V/ -rk[ >_ for all j 7 k. The estimate

JlJ kl
< 3(1+Ink)

<3
k

and Assumption A gives the desired result.
LEMMA A5. For q(i) VN and sufficiently small

(uj[q()] uj[q(2)])(t) sin V/(t s)sin V/s(q(1) q(2))ds

Cllq(1) q(e)ll/:< 3/2

Proof. u uj [q(1)] uj [q(2)] satisfies

--u" ,ju q(1)u (q(1) q(2))uj[q(2)]
(0) ’(o) o

with solution

u(t) foo sin v(tv/ s) [q(1)u + (q() q(2))uj[q(2)]]ds"
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An application of Gronwall’s inequality gives

lu(t)l <_ ellq()ll Iluj[q(2)]lli:llq() q(2)ll/.

and from the estimate

u[q(2)]_ sin v/S

we conclude that

1/0 u(t) sin (t- s)sin X/s(q() q(2))ds

< e"q()"+ X/]]q()lliellq()ll I+V Ai3/2

The result follows from Aj _> 1 for fl sufficiently small.
LEMMA A6.. For j k and all sufficiently small

]’o ]osin Vf(1 t)cos 2rkt sin (t s)sin vfs[q(1) q()lds dt

_< C
j2+ + V/ + V/_ rkl

q()

11 }+ sin 2rjt sin 2rkt[q(1) q()]dt

Proof. An integration by parts gives

jO {j0 }sin V/(1 t)cos 2kt sin (t- s)sin X/s[q(1) q(2)]ds dt

1 j01 (j(tl }sin (1 s)sin scos2ksds sin2t[q(1) q(2)]dt

sin (1 s)cos scos2ksds sin t(q(1) q())dt,

where

sin X/(1 s)sin v/s cos 2rks ds

Xsin 2rktcos
+4rk 2

sin 2X/s cos 2rks ds

2
cos 2X/s cos 2rks ds,
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sin X/(1 s) cos VS cos 2rks ds

sinVsin 2rkt

4rk 2 cs2x/scs2rksds

2
sin 2V/s cos 2rks ds,

sin 2V/s cos 2rks ds

cos (/x2 + )t co (/x2 +1
4(+ rk)

cos( )t co(/x2 )

cos 2X/s cos 2rks ds
sin 2(X/ rk) sin 2(X/ rk)t

4(X/ rk)
sin 2(V/ + rk) sin 2(X/ + rk)t

A substitution gives

j01 {f0sin (1 t)cos 27rkt sin V/(t s)sin s[q(1) q(]d dt

8rk
sin2tsin 2kt[q() q(2)]dt

cs 11{  }+ cos2scos 2rks ds sin 2t[q(1) q(2)]dt

sin 1+ sin2kt sin2 t[q() q(2)]dt
4rk

COS1{+ sin2scos 2rks ds sin2 t[q() q(2)]dt

sin1{1

+ sin2scos 2ks ds sin 2t[q(1) q(]dt

sinll {1 }- cos2scos 2ks ds sin2 t[q(1) q()]dt,

and the result follows using sin2v/t- sin2rjt <_ 21t]//x/rj2+, sin V/l _<
/x/-rj2+, and k >_ 1.

LEMMA A7. Let w(x) w(x)- w2(x) where the functions Wl(X) (Ouj/Oqk)
(x; q(), Aj) and w2(x) (Ouj/Oqk)(X; q(2), Aj). For q(O e VN and all j and k, w(x)
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satisfies the estimate

C
IWlL ;----Ilq()

for all sufficiently small.
Proof. w(x) solves

--w" )jw q(1)w (q(1) q(2))w2 Ck(uj[q(1)] uj[q(2)]),
(o) ’(o) o,

and this has the solution

w(x) jo
x sin V/(x t)[q(1)w(t + (q(1) q(2))w2(t) + Ck(uj[q(1) uj[q(2)])]dt"

Using Gronwall’s inequality, we have

}lu/[q(2)] u/[q()]]li: <_ ellq<)n Ilu/[q(2)]]li.IIq() q(2)ll/:

1 IIq(:)11 andThe estimate now follows using uj[q(2)](8)- (sin x/s/v/) <_ e =

Aj _> 1 for all sufficiently small.
LEMMA A8. For q(i) E VN, j k and all sujficiently small

A \(Ou A) qkOUj (1; q(2), A))
-+- J+a -+- X/IYf rkl

iiq(.) q(2)IIL

}+ v’
sin :.# in :’:[q() (:)]d

Proof. Let w(x) w(x)- w2(x), where w(x) (Ouj/Oqk)(x;q(1),Aj) and
w2(x) (Ouj/Oq)(x; q(2),Ai). Then

w(1) fO sin X/(1 t)
X/

[q()w(t) + (q(1) q(2))w2(t) + Ck(uj[q()] uj[q(2)])]dt

jo sin V/(1 t)q()w(t)dt
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j01 sin vf(1 t) [ sin2rktcst](q(1)_q(2))dt+ V/ w2(t) +
4rkAj

1 fo+ 4rkA/2
sin V/(1 t)sin2rktcos v/t(q(1) q(2))dt

1 sin vf(1 t)+ Ck (uj[q(1)] uj[q(2)]

1/0 sin V/(t s)sin rs[q() q(2)]ds dt

1 jol {o }+--3- sin V(1 t)k sin v/(t s)sin s[q() q(2)]ds dt.

Now k > 1 and IlCkllL - 1/x/ for all k. The result follows from Lemmas A1, A2,
A5, A6, and AT.

Proof of Lemma 3. By Lemma AS,
N OuOu q(2) )j) qk j)j q(1; (1 q(1)

By Lemma A7, when j k, the remaining term is bounded by

(--q (1; q(2) Ak) OUk (1;q(1) Ak)), C

kkIIq(X) q(2)ll/=
_

CIIq() q(2)ll/..

The result follows from Lemmas A3 and A4.
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ERROR BOUNDS FOR THE ASYMPTOTIC EXPANSION OF THE RATIO
OF TWO GAMMA FUNCTIONS WITH COMPLEX ARGUMENT*

C. L. FRENZEN

Abstract. Error bounds are obtained for an asymptotic expansion of the ratio of two gamma functions
F(z+a)/F(z+b) when a and b are complex constants and Iz[ is large. These bounds reduce to earlier
bounds for the real case when a, b, and z are real. Properties of completely monotonic functions are used
to provide error bounds in the complex case, as in the earlier real case.
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AMS(MOS) subject classifications, primary 41A60; secondary 33A15

1. Introduction. In [1], Fields showed that for all n_-> 1,

(1.1)
r(z+a)
r(z+b) 1 F(1 2p + 2j) n(2p)," 1-2j --1-2n

j:O r(1-2p)(2j)! Ozj tp)w20- + O(w20

as woo with ]arg(w+p)l<Tr where a and b are fixed complex numbers, 2w=
2z+a+b-1 and2p a-b+l The u(2o)

,-,2 (p) are generalized Bernoulli polynomials,
defined by

I2 n(o(1.2) e’ 1
e’

t/ :o (2j)!

o (P) 1 (Itl <2).
The first few of these polynomials are

_p_ B2O(p p(5p+l) B(62o)(p)= p(35p2+21p+4)
(1.3) B(22)(P)

6’ 60 504

A list of the 1(2)
-,2 (p) for j 1, 2,..., 6 and a recurrence formula can be found in [3].

In [2], it was shown that when a, b, and z are real, z + a > 0, w > 0, and 0 < 20 < 1,
the error made by truncating the asymptotic expansion in (1.1) is numerically less than
and has the same sign as the first neglected term. The purpose of this paper is to
indicate how, with a little more work, computable error bounds can be obtained for
(1.1) when z, a, and b are complex. More specifically, we shall show that when
larg wl <37r/4 and a and b (and therefore p) are fixed complex constants such that
0 <_- Re(2p) < 1, then

F(w--p) 1F(1-2p +2j)
(1.4)

F(w-p+l) :o F(1-2p)(2j)!
1-2j

2 (P)W2- + R,(w, p),

where

(1.5)
F(1 Re (2p)+ 2n)’B(12l)(lpl)’12.1IF(1 -2p)l(2n)

(Re (w e-) -Jim p[ Isin/3[) Re (o)-,-2. elll,m (2o)1

* Received by the editors August 13, 1990; accepted for publication (in revised form) June 21, 1991.
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In (1.5) /3 is any number in the interval [-7r/4, 7r/4]. The bound (1.5) is valid when
w lies in the annular sector

(1.6) larg(we-i)l<r/2, Re(we-i)>llmpllsin I.
In the conclusion of this paper we shall show that the bound in (1.5) may, for
computational purposes, be replaced by

< //(12pl)
-’)

(1.7)
IR,,(w,p)l 11 2p[ elImpl] (IPl)l(Re(we

-IIm pl Isin/31) Re (2p)-l-2n e1/311Im (2p)I.

For given values of w and p, the bound for Rn(w, p) on the right side of (1.5) depends
on the value given to/3. A further discussion of this point will be given at the conclusion
of this article.

2. Derivation of the error bound. As in [2], we shall assume that simple
modifications to F(w+p)/F(w-p+ 1) have been made using the functional equation
for the gamma function (zF(z) F(z + 1)) so that 0 =< Re (2p) < 1. From [4, p. 119], we
can write

F(w+p) 1 e_Wtt_2p(sinh --20

(2.1) F(w-p+l)=F(1-Zp) \ t/2
dr,

assuming that Re (w+ t9) > 0. All powers in (2.1) have their principal values. Note that
if Re w < 0, then the reflection formula for the gamma function can be used to write

F(w+p) -sinTr(w-p) F(-w+p)
(2.2) F(w-p+l)- sinzr(w+p) F(-w-p+l)"

Without loss of generality, (2.2) allows us to assume Re w >0.
The function ((sinh t/2)/t/2)-2 is holomorphic within the sector 5f: [arg tl

/2-6, where 6 is any positive number satisfying 0< 6 < /4. Putting r+ is, it
follows that

r + isl r+ s

Isinh (r + is)l 2 (sinh r)z + (sin s)2
(2.3)

so that

-< 1 + (cot 6)2) =< (csc )z,
sinh r

(sinh t/2)-(2.4)
\

(CSC ) Re (2p) e 7rllm (2p)[

within Y’. Using the estimate in (2.4), we can rotate the path of integration in (2.1)
(although -20 is not analytic at t-0 the rotation is justified since Re (2p)< 1). It is
straightforward to show that (2.1) becomes, after rotating the path of integration,

F(w+p) 1 fo’e-’ (sinh/2) -2(2.5)
r(w-o+ 1)-r(1-2o) e-W’t-k dr,

where fl satisfies -(/2) < fl < (/2) and larg (w e-) < (/2).
Using (1.2), we write

(2.6)
k =o (2j)
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Substituting (2.6) into (2.5) and integrating the sum termwise then gives (1.4) with

1 io(2.7) R,(w, p)=F(1-2p) e-W’t-2r"(t’ p) dr,

where I1 < ,/2 and [arg (w e-’)l < r/2.
By letting u 1/2 e -is (for u [0, oo)) and w [w[ ei, (2.7) becomes, using (2.6),

1 I1 exp (i(a-/3)) -/9-1/2R,(w,p)
2F(1-2p)

e-’/ u

(2.8)

e F(u - u du.
j=0

In (2.8) the complex-valued function F of the real variable u is defined by

(2.9) F(u)=(G(u))-2

where

(2.10) G(u)
sinh x/u e -2il3 / 4

,,/u e-2i /4

and

F()(O) e-2io,
(2.11) ][(2p)

j! (2j)! ,-,2 (P).

From (2.9) and (2.10) we can write

(2.12) F(u)=exp -2pS
ue

4

where

sinh
(2.13) S(z) ln-z

Recall that a function f is completely monotonic on [0, ) if (-1)f(x)>_-0 on
[0, c) for n 0, 1, 2,. .. Iffis completely monotonic on [0, c) then If(x)]
for x [0, ) and n 0, 1, 2, . Since

S(1)(Z) 1

n=l Z + (nrr)2’

it follows that S(1) is a completely monotonic function on [0, oo). In [2] we showed
that the function

(2.14) hv(x e_vS( (sinh X1/2 -’)’

)

is completely monotonic on [0, o) for y > 0.
To establish the bound for R,,(w, p) in (2.8), we note that, by Taylor’s theorem

for vector-valued functions of a real variable, there exists a : between zero and u so that

(2.15) nlF(u) u
=o j! n!
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To compute F(n), we apply the Faa di Bruno formula for the derivative of a composite
function (see [5]):

(2.16)

where

[f(g(u))]0’)= fk)(g(u))A,,k{gl)(u),
k=l

g2)(u),’"’, g")(u)}

A,k{gl(u), g2)(U), g"(U)}
(2.17)

=2 ml!rn:! rn! 1! ni /

and the sum in (2.17), for given values of n and k, ranges over all nonnegative integer
solutions of the two equations

(2.18) rn+ma+...+mn=k, m+2m:+...+nm=n.
From (2.12), we can write F(u) =f(g(u)), where f(u) e-u and g(u) S(u e-2i/4).
Applying (2.16), it follows that

where

n! (s(l)(u e-2i /4) "1

ml [m2[ mn 1 (S(")(u e-it/4))(2.20)

the sum in (2.20), again ranging over all nonnegative integer solutions of (2.18).
Because S(1) is completely monotonic on [0, oe), it follows that (see [7, p. 158])

IS(1)(x -- iy)l IS(1)(x)] (0__<x <oe,-oe < y < oe).(2.21)

Indeed, we also have

(2.22) IS(J)(x + iy)l <- }S(J)(x)] <- Is()(o)l (o <-_ x < oo, -oe < y < oo),
since (-1)+1S(j) is completely monotonic on [0, oo) for j=2,3,..., when S(1) is.

Therefore, when Re (u e-z/4) _-> 0, i.e., when

(2.23)
4-- --4

equation (2.20), the triangle inequality, and (2.22) together imply

(2.24)

where

(2.25) Cnk m! m2! m, 1! n!

and the sum again is over all nonnegative integer solutions of (2.18). However, letting

{sinh x/2 -12pl

hl2ol(x) e-I2ls(x)=
\ iTF I

where S is given in (2.13), it also follows from (1.2) and the complete monotonicity
of both S(1) and hl2ol on [0, oe) (see (2.14)) that

n4"
(2.26) (--1)nhl(0)=k=l INplC"=(Rn)lB=’. "’
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with C,k given in (2.25). Consequently, (2.19), together with (2.24) and (2.26), then
implies

(2.27) IF")(u)l <-- n)i IF(u)l ln=, ,,

To bound IF(u)l, from (2.9) and (2.10)

(2.28) IF(u)[ [G(11)1 -Re (2p) eIm(2p)argG(u) eIm(20)argG(u),

where we have used the complete monotonicity of he 20)(x) on [0, ) (see (2.14),
(2.21) and (2.23)). Since [arg G(u)[ , one way to estimate [F(u){ from (2.28) is

(2.29) [F(u)l elIm (2o)1.

An alternative way to estimate IF(u)l is to note that since G(0)= 1 and arg G(0)= 0,
for small positive u (2.10) implies

(2.30) argG(u)=+arg(sinh( ul/e2
Noting that

2
=exp

2 2

equation (2.30) implies, for small positive u,
1/2

(2.32) arg G(u)=/3 ---- sin/3 +arg (1 -exp (_/,/1/2 e-it)).

The right-hand side of (2.32) represents arg G(u) for those u for which it is less than
or equal to 7r in absolute value. When u>0, Re (1-exp (-u 1/2 e-i))> 0, so that

(2.33) arg (1-exp (-u’/2 e-q3))=tan-l( -e-ul/2cSt sin (ul/2 sin ) )1--e-ul/zcsl3 COS (111/2 sin/3)

Employing the inequalities

e 1 sin x
<- (x>0); <1 (x0)
1-e x x

we have, for u > 0,
--1,/1/2 3 1/2e Isin (u sin/3)1 <

1- e-ul/zes COS (111/2 sin/3)=
(2.34)

--ttl/2cos 111/2e Isin sin/3)1
1 e-ul/2cs

Isin (u /2 sin/3)1
/,/1/2 COS

-< [tan/3[.
Since tan-1 is an odd increasing function and-(Tr/4)-<fl_-< (0r/4), (2.33) and (2.34)
yield

il3
(2.35) [arg (1-e-ul/2 )1_-<[/31 (u->0).

Equation (2.35) implies that
e-iB(2.36) sgn [/3 + arg (1 e-"1/2 )] sgn/3,
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and, therefore, the absolute value of the right-hand side of (2.32) is less than r for
all u satisfying 0< ul/21sin/31/2 < 7r. For this range of u, the triangle inequality and
(2.35) applied to (2.32) then imply

ul/21sin fl[
(2.37) larg G(u) fll <= + 1/31

2

We now note that (2.37) holds for all u, for when u /:lsin /31/2 _-> r the inequality there
is still satisfied because larg G(u)-tl-<r+l/l for all u. Combining (2.15), (2.27),
(2.28), and (2.8) then yields

(12pl)(] 1
IR(w, p)l -< In2..,1)1

2(1- 2p)
(2.38)

e-U/2(Re(we-iO))l,l n-Rep- eIm(2p)(argG(u)-D) du.

From (2.37), it follows that

(2.39) eIm(2o)(argG(u)-) e[Im(2p)l(u/2lsint3[/2+ll)

Assuming now that the second inequality in (1.6) is satisfied, we use the inequality
(2.39) in the integrand on the right side of (2.38), and, evaluating the resulting integral,
we obtain the error bound in (1.5).

3. Discussion of the error bound and conclusion. For prescribed values of w and
p the magnitude of the bound on the right-hand side of (1.5) depends on the value
assigned to/3. With arg w a, the ratio of the absolute value of the first neglected term
in the series (1.4) to the right side in (1.5) is

-2n (P)I e-" Im(2p)-l/3[lIm(20)l

IF(1 Re (2p)+ 2n)] IBl.l)(lpl)
(3.1)

(cos (a fl)
Ilmpl Isin/31)

2"+l-Re (2)

For large [w[ this ratio is approximately an O(1) function of w, p, and/3 multiplied
by (cos (a-/3))2"+-e(2). When a lies in the interval [-7r/4, 7r/4] we can choose
/3=a so that cos(a-/3)= 1. Note that in this case the exponential term in (3.1)
disappears when Im(2p)<0. However, when a lies in (r/4,37r/4) or
(-37r/4,-r/4)/3 must differ from a. As a approaches 37r/4 or-37r/4/3 must approach
7r/4 or -7r/4, respectively, and the bound (1.5) starts to exceed the absolute value of
the first neglected term by an increasingly large factor. In practice, however, (2.2) can
and should be used to avoid this possibility. We stress that the restriction of/3 to
[-7r/4, 7r/4] is necessary to obtain the error bound. A similar restriction is required
to obtain one of the standard forms of error bound for Stirling’s series for In F(z) (see
[6, p. 252]).
We can use

(3.2)

F(1 Re(2p) +2n)
IF(l- 2p)[(2n)t

(2n Re (2p))(2n 1-Re (2p)) (1-Re (2p))F(1 Re 2p)
(2n) !IF(1 -2p)
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and (see [4, p. 38])

(3.3)

together with

(Y) sinhry, sinh,a’y<_e.ly(3.4) 1-I 1 +
Try ry

to obtain from (3.2) the inequality

(x> 0),

F(1 Re 2p + 2n)
_< }1 2pl elImpl

Iv(1-2p)l(2n)!

Using (3.5) in (1.5) then gives the bound in (1.6).
To conclude, note that we could also have chosen the bound (2.29) for IF(u)l

instead of the bound used in (2.37). For large Re (w e-i), the resulting difference in
the error bound (1.5) is a factor of elIm (2p)I instead of eIt311Im (2)1. Since 1/31_-< 7r/4, the
bound obtained from (2.37) is usually better. Finally, observe that the bound on the
right side of (.1.5) reduces to the absolute value of the first neglected term in the real
case, for which Im (2p)= 0 and/3 0. In fact, by the results in [2], the error in this
case is numerically less than, and has the same sign as, the first neglected term.

Acknowledgment. The author acknowledges the support of the Naval Postgraduate
School Research Program.

REFERENCES

J. L. FIELDS, A note on the asymptotic expansion of a ratio ofgamma functions, Proc. Edinburgh Math.
Soc., 15 (1966), pp. 43-45.

[2] C. L. FRENZEN, Error bounds for asymptotic expansions of the ratio of two gamma functions, SIAM J.
Math. Anal., 18 (1987), pp. 890-896.

[3] Y. L. LUKE, The Special Functions and Their Approximations, ol. 1, Academic Press, New York, 1969.
[4] F. W. J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974.
[5] J. RIORDAN, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ 1980.
[6] E. T. WHITTAKER AND G. N. WATSON, A Course of Modern Analysis, Cambridge University Press,

Cambridge, 1973.
[7] D. V. WIDDER, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.



SIAM J. MATH. ANAL.
Vol. 23, No. 2, pp. 512-524, March 1992

() 1992 Society for Industrial and Applied Mathematics
011

FUNCTIONAL INEQUALITIES FOR HYPERGEOMETRIC
FUNCTIONS AND COMPLETE ELLIPTIC INTEGRALS*
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Abstract. The authors study monotoneity and convexity properties of the Gaussian hyper-

geometric function, particularly the special cases of complete elliptic integrals. They also prove
functional inequalities for these functions and various combinations of them and present some con-
jectures about inequalities for these functions.

Key words, elliptic integral, hypergeometric function
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1. Introduction. For real numbers a, b, c such that c 7 -p,p 0, 1, 2, 3,..-
the Gaussian hypergeometric function is defined by

(1.1) F(a, b; c; x) (a, n)(b, n) xn

=0 (c, n) n!

for -1 < x < 1, where we have used the ascending factorial notation (a, n) a(a +
1)... (a+n-1) for n- 1,2,3,... and (a, 0) 1. In the exceptional case c- -p, p-
0, 1, 2,..., F(a, b; c; x) is defined also if a -j or b -j, where j 0, 1, 2,... and
j _< p. We shall study some properties of this function and of its special cases, namely,
the complete elliptic integrals

1C(r)=F(1 1 ) -( 1 1 )2 ,;1;r2 g(r)=F -,;X;r2

The basic properties of these functions can be found in [WW]. Numerous identities
satisfied by these functions are given, for example, in [AS], [C2], [SO], and [PBM].
For a partial survey and bibliography of the hypergeometric function, see [A].

We now state some results of this paper.

THEOREM 1.1. For a E IR, c > b > O, x (-1, 1),
(1) F(a, b; c; x) F(-a, b; c; x) >_ 1,
(2) F(a, b; c; x) + F(-a, b; c; x) >_ 2.

Moreover, (2) also holds for a, x e (0, 1) and b, c e (0, oo). In particular,

(a) 1C(x)g(x) >_ 7r2/4,/C(x) + g(x) _> r for all x e [0, 1).
In this paper, we denote r’= v/1 -r2 for any r e (0, 1). In [AVV2, Whm. 2.2(3)]

it was shown that r’lC(r)2 is strictly decreasing from [0, 1) onto (0, r2/4]. In this paper
we extend this result and prove an analogous result for the other elliptic integral g.
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THEOREM 1.2. For each c e [1/2,2] the function f(r) (r’)CIC(r) is decreasing
and concave from [0, 1) onto (0, r/2]; the function V is also decreasing and concave.

THEOREM 1.3. The function f(r) =_ (r’)C$(r) is increasing on (0, 1) if and only
if c <_ -1/2 and decreasing if and only if c >_ O. Further, if-2 <_ c <_ -1, then f is
co.vex.

The elliptic integrals E(r) and $(r) are indispensable in many applications in
mathematics as well as in physics and engineering. Some examples are: rectification
of curves, quadrature of surfaces, and electromagnetic field computations [B], ILl.
Carlson [C2], [C3] has found a unified approach for effective computation of many such
integrals (see also [PT1]). Many generic classes of special funtions of mathematical
physics, such as Chebyshev polynomials and Legendre functions, are special cases of
the Gaussian hypergeometric function (1.1), while others, such as Bessel functions
and parabolic cylinder functions, are limiting cases of (1.1). (For an extensive list of
special cases see [SO, pp. 157-164], [AS], and [PBM].) Some generalized elliptic-type
definite integrals that occur in radiation field problems are also special cases of the
hypergeometric function (1.1) [KCH], [KLH].

The complete elliptic integrals also arise in a number of problems of geometric
function theory [LV], [AVV1], [Vu]--our work was in part motivated by this fact. We
also state some conjectures on the asymptotic behavior of K(r) near r 1, refining
the well-known asymptotic formulas in [BF].

2. The hypergeometric function. In this section we study some monotoneity
and convexity properties of the hypergeometric function and complete elliptic inte-
grals. The evaluation of the hypergeometric function can be based on the numerical
solution of the differential equation satisfied by this function (cf. [PT2]). A table of
the values of F(a, b; c; r) is given, e.g., in [CK].

THEOREM 2.1. (1) Let a, b, c E (0, oc). Then fl(x) F(a, b; c; x) is strictly
increasing and convex on [0, 1). In particular, gl(x) =- E(x) is strictly increasing and
convex on [0, 1).

(2) Let a e (0, 1), b, c e (0, cx)). Then f2(x) F(-a, b; c; x) is strictly decreasing
and concave on [0, 1). In particular, g2(x) $(x) is strictly decreasing and concave
on [0, 1).

(3) For a e (-1, 1), b, c e (0, cx) the function f3(x) -= F(a, b; c; x) + F(-a, b; c; x)
is strictly increasing and convex on [0, 1). In particular, the function g3(x) )(x)
$(x) is strictly increasing and convex on [0, 1).

(F(a, b; c; x) 1) is strictly increasing(4) Let a,b,c e (0, oo). Then fa(x) =_ -and convex on [0, 1). In particular, the function g4(x) x-2(E(x)- ) is strictly
increasing and convex from (0, 1) onto (r/8,

(5) Let a e (0,1),b,c e (O, oc),b < c. Then f5(x) =- -strictly increasing and convex on [0, 1). In particular, g5 (x) x-2( $(x)) is
strictly increasing and convex from (0, 1] onto (, 1].

(6) Let a e (0, 1), b, c e (0, cx)). Then f6(x)
strictly increasing and convex on [0, 1). In particular, g6(x) x-2(K(x)- $(x)) is
strictly increasing and convex from [0, 1) onto [,

1] b,c(O, cx) a+b<c. Then(7) Let a e [5,
1

fT(x) -(F(-a, b; c; x) (1 x)F(a, b; c; x))
X
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is strictly increasing and convex ]rom (0, 1) onto (1-(2ab/c), B(b, a/c-b)/B(b, c-b)).
In particular, gT(x) =- x-2((x)- (1- x2)/C(x)) is strictly increasing and convex from
(0, 1) onto (, 1).

Proof. The functions fl, 1 f2, f3, f4, fh, and f6 are represented by power series
with nonnegative coefficients in the specified ranges of a, b, c, x. Moreover, gj(x)
(2/r)fj(x2) for j- 1,..., 7, with a- b-- 1/2,c-- 1.

We shall give a proof for (7), since it is nontrivial. Using the series (1.1) we may
write

fT(x) 1
2ab - Cnx2n
c

n-1

where

(a,n)(b,n)
(c,n)n!

((a, n + 1) (-a, n + 1))(b, n + 1)
n + +

Now

(b,n)
(c, n)(n + 1)!

x [(n + 1)(a, n)
b+n
c+n(a(a + 1)... (a + n) + a(-a + 1)... (-a + n))]

(b,n)
(c, n)(n + 1)! [(n + 1)(a, n) (a, n)(a + n) a(-a + 1)... (-a + n)]

+ 1)
(c,n)(n + l)! [(a+l)...(a+n-1)-(-a+2)-..(-a+n)],

which is nonnegative since a+m-1 k -a+m for m 1,2,...,n and a E [1/2, 1]. Thus
fT(x) is increasing and convex, and fT(0+) 1-(2ab/c). The value of fT(1-) follows
from [WW, 14.11, pp. 281-282]. Putting a b , c-- 1 in the above theorem we
see that gT(x) is strictly increasing and convex from (0, 1) on (, 1). El

Proof of Theorem 1.1. In (1), by a well-known integral representation [R, Thm.
16, p. 47],

(2.1)

1 o01tb_lF(a, b; c; x) B(b, c b) (1 t)-b- (1 xt)-dt,

1 j01 tb_l( 1 t)c_b_l(1 xt)adtF(-a, b; c; x) B(b, c b)

for c > b > 0 and x e (-1, 1). Hence by Hhlder’s inequality [M],

F(a, b; c; x) F(-a, b; c; x) >_
2

B(b,c_b)21 (/oltb-l(1--t)c-b-ldt) --1"

For (2), in the first case it is clear that both summands are positive; hence by (1)
and the arithmetic-geometric mean inequality,

F(a, b; c; x) + F(-a, b; c; x) >_ 2[F(a, b; c; x) F(-a, b; c; x)] 1/2
_

2.
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In the second case the power series has constant term 2 and all coefficients positive,
so that (2) follows immediately.

1Finally, (3) follows from (1) and (2) if we take the special values a b
c-1.

Remark 2.1. Theorem 1.1 (1) can also be derived from Carlson’s logarithmic
convexity results in [C1], as he has pointed out to us.

LEMMA 2.2. Given a E (0, 1), 0 < b < c, (1 + r)F(a,b;c;r2) >_ F(a,b;c;r) for
r e [0,1). In particular, (1 -r)lC(r) >_ ]c(yr) for r e [0,1).

Proof. This follows directly from the power series expansion for F.
LEMMA 2.3. For a, b, c, d > 0 and 0 < r < 1,

(1) F(a, b; c; r) <_ F(a, b + d; c + d; r) for c >_ b,
(2) F(a, b; c; r) >_ F(a, b + d; c -t- d; r) for c <_ b.

Proof. Since the proofs of the two cases are similar we prove only (1). Because
both series in (1) have positive coefficients it is enough to show that the coefficients
on the right side are larger, that is, (a,n)(b,n)/(c,n) <_ (a,n)(b+d,n)/(c+d,n). But
this holds if and only if c _> b.

Remark 2.2. The asymptotic relation

(2.2) F(a, b; a + b; r) log(1 r)
as r-- 1

is well known [WW, Ex. 18, p. 299], [Ch, pp. 266-7] (for a generalization see [SS] and
the references there). See also [H].

We next prove an inequality relating the two functions in (2.2).
THEOREM 2.4. Denote g(x) (l/x)log(1- x). Then

(1) For a, b, x e (0, 1) we have

-g(x)
B(a,b) < F(a, b; a + b; x) < -g(x).

The lower estimate is sharp at x 1 and the upper estimate is sharp at x O.

(2) For a, b e (1, c) and x e (0, 1) the inequalities in (1) are reversed.

(3) For a b 1 we have F(1, 1; 2; x) -g(x)/B(1, 1) -g(x).
Proof. Part (3) follows by definition. The first part of (1) is proved by means of

the integral representation (2.1). We observe that for t E (0, 1) we have tb-1 > 1 and
[(1- t)/(1- xt)]a-1 > 1, and the first inequality in (1) follows by simple integration.
For the second inequality in (1) we compare the series expansions, noting that it is
sufficient to prove that

(2.3) (a, n)(b, n) <
n!

(a + b, n) (n - 1)

for n 1, 2, 3,.... Inequality (2.3) follows by induction, as we now show. For n 1,
it reduces to 2ab < a + b, which is true for a, b (0, 1) since 2ab <_ a2 + b2 < a + b.
Next, assuming (2.3) for n, it is true for n+ 1 if and only if n(ab-1)+ 2ab-a-b < O,
which is true. The proof of (2) is similar. Sharpness at x 1 follows from (2.2), while
at x 0 it is obvious.
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3. Complete elliptic integrals. In this section we continue the study of the
integrals/C and $ begun in [AV2] and [AVV2]. In particular, we obtain some estimates
for these integrals in terms of elementary functions and prove a monotoneity property
for a function defined in terms of them. These inequalities supplement similar previ-
ously known inequalities that appear in many books on special functions, e.g. [AS,
17.3.33-36], [SO, 61:9:1-8]. Note, however, that our/C(r) and $(r) defined in (1.2)
are K(V) and (v/) in the notation of [AS, 17.3.9-10].

The complete elliptic integrals K(r) and $(r) of the first and second kind, re-
spectively, are much better known than the hypergeometric function F(a, b; c; r) of
which they are special cases (cf. (1.1)). Thus algorithms for the computation of
and $(r) are given in many program libraries and they are tabulated in many tables
(e.g. [AS], [BF]). An algorithm for the computation of these functions can be based
on Gauss’ arithmetic-geometric mean iteration [AS, 17.6], which is adequate for most
purposes. See also [BB] and [PT1].

For later reference we list two basic identities due to Landen [BF, 163.01, 164.02];
cf. [WW, p. 507]:

1
(: +

1 -r) 1
/E

l+r =(l+r)/E’(r)"

In studying the convexity properties of K(r) and $(r) we shall need the following
lemma.

LEMMA 3.1. Let I, J be intervals in 1R, f I -- J be decreasing and concave, and
g J --. 1R be increasing and concave. Then h =_ g o f I -- 1R is decreasing and
concave.

Proof. For concavity let a, b E I and t E (0, 1). Then

(g o f)((1 t)a + tb) > g((1 t)f(a) + tf(b)) > (1 t)(g o f)(a) + t(g o f)(b).

That g o f is decreasing is obvious. [

Proof of Theorem 1.2. By [BF, 710.00], f’(r) -(r’)C-2g(r), where g(r) =_

crl- (- (r’)21)/r. For c >_ 1/2, differentiation [BF, 710.00, 710.04] gives

c_ - 1 h(r)+ >
2r2 (r,)2

where h(r) =_ ( (r’)2K) (r’)2(K ). But h’(r) 3r(/C ) > 0, and it follows
that g(r) > g(0+) 0 for 0 < r < 1. Hence f’ is negative and decreasing, so that f
is decreasing and concave on (0, 1). The limit f(0+) 7r/2 is clear, while f(1-) 0
follows from [AVV2, Whm. 2.2(2)]. Since V/ is concave and increasing on (0, cx)), it
follows from Lemma 3.1 that v/] is decreasing and concave on (0, 1). D

Proof of Theorem 1.3. By [BF, 710.02]

)C-2

which is nonnegative if and only if-c >_ sup{g(r)h(r)" 0 < r < 1}, where

g(r) =_
r2 h(r)-
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Now h’(r) -(- (r’)21g)/(rr’$2) < 0, so that h(r) is decreasing on (0, 1). Next, by
[BF, 710.05],

r4g,(r)__ r

Since (0) 0 and ’(r) (r/(r’)2)((r’)2g ) < 0 for 0 < r < 1 by [BF, 710.04,
710.05] and [AVV2, Whm. 2.2(7)], we have g’(r) < 0, so that g(r) is decreasing on
(0, 1). Hence g(r)h(r) is decreasing on (0, 1). By l’H6pital’s rule and [BF, 710.05] we
have

lim g(r)h(r)--lim 2(g-$)- lim
g: 1

r--*0+ r-.0+ 7rr2 r-0+ r(r 2 2

Thus sup{g(r)h(r)" 0 < r < 1} g(0+)h(0+) 1/2, so that f’(r) >_ 0 if and only if
c_< -.

Next, f’(r) <_ 0 if and only if c >_ -inf{g(r)h(r)" 0 < r < 1} -g(1-)h(1-)
0.

Finally, for -2 _< c <_ -1, we write f’(r) as (r’)-2(r), where (r) _= -cr$-

((r’)2/r) (g $). Then

b’(r) (2 + c + (r’)2r-2)(/C $) (c + 1)t >_ 0 on (0, 1),

so that f is convex.

THEOREM 3.2. (1) The function fl(r) r-a((r/(2x/))- K:(r))is strictly
increasing and convex from (0, 1) onto (r/128, oo).

(2) The function f2(r) (g:(r’)- 1)/(r2 log(l/r)) is increasing and convex from
(0, 1) onto (1/2, cx).

(3) The function f3(r) -= r2/C(r) + clogr’ is increasing if and only if c <_ 1 and
decreasing if and only if c >_ r. In particular, for 0 < r < 1,

r2K:(r)
1< <r.

log(1/r’)

The lower bound is sharp as r -- 1-, and the upper bound is sharp as r -, 0+.

Proof. The properties of f follow if we subtract the series for K:(r) from the series

7r r r ( l r 1. 5 r4 1. 5. 9 r )2x/7-(1-r2)-/4=-2 1+ + +4.8.12 +""

For (2) we use the series expansion

f2(r) E an 1 +
n=l

where

and

(log 4- 2bn) + (2n--)(2n))log(l/r)
r2n-2

1.3... (2n- 3))
2 2n-- 1

an 2 4 (2n- 2) 2n
for n>_2,

1 1 1
bn 1-- + +"" + (2n- 1)(2n)
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[BB, (1.3.11)]. Since

1 1 1 1 1
b,-l-+-/... 2n-1 2n

<lg2

it follows that f2(r) is strictly increasing and convex. Clearly f2(0+) al 1/2 and
f2(1-)

In part (3)since :(r)+ (r’)2K:(r)is decreasing from [0, 1] onto [1, r] by [AVV2,
Thm. 2.2(3)] it follows that

+f3(r)--(r)2

is nonnegative if and only if

c _< inf{t(r) + (r’)2K(r) 0 < r < 1} 1

and f(r) <_ 0 if and only if

c _> sup{(r)+ (r’)2(r) 0 < r < 1} r.

The bounds for r2lC(r)/log(1/r’) clearly follow, and they are sharp since 2(0) r/2
and limr_l_(r)/log(1/r’)= 1 [BF, 112.01].

COROLLARY 3.3. For 0 < r < 1,

<  C(r)
4r r

l+rlog (l+r)4r 1 r

Proof. Replace r by 2v/(1 + r) in the inequalities in Theorem 3.2(3) and use

(3.1).
Remark 3.1. The two lower bounds for 8(r) in Theorem 2.1(5) and 3.2(2) are not

comparable.
In the proof of our next theorem, which is close to the conjecture in [AVV2, 6],

we need a technical lemma.

LEMMA 3.4. For any natural number n,

(8.5) (2n + 2)2 >
2n + 2

Proof. For n 1, 2, 3, 4, 5, 6, the lemma follows by direct calculation. If n _> 7,
by Wallis’ inequalities [M, p. 192] it is sufficient to prove that

1
1 + (8.15) >

2n + 1 (2n + 2) 2n + 2’

which is equivalent to 2n2 12n- 5.5 > 0, true for n _> 7. [:]

The upper bound in Theorem 3.5 below also follows from [CG, p. 1072, (1.1)],
but our proof here is more direct. In connection with the lower bound see Conjecture
3.1(5) and Remark 3.3 below.

THEOREM 3.5. For 0 < r < 1,

() 4
8.5 + r2 log(4/r’) 3 + r2"
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Proof. By Wallis’ inequalities [M, p. 192] the first inequality is equivalent to

r (5, 9 9
(8. +) 1 +

n=t -i >91og4+ +n=n+l.
Comparing coefficients on both sides, for the constant term we have (8.5)(r/2) >
91og4 and for the coefficients of r2 we have (r/2)(1 + (8.5)) > 9/2 by direct
calculation, while Lemma 3.4 shows that the coefficient of r2+2 on the left exceeds
the corresponding one on the right.

For the second inequality, let

4
I()

Thn (0) /Z aog a < 0 nd

(1) [(3 + r)((r) log(4/r’)) (r’) log(4/r’)] 0

by [BF, 112.01]. Thus it is sufficient to prove that f is increing on (0, 1). Now
writing

(’)’() () ( + )(e (’)) + 2(’) a,
we have 9(0) 0 9(1). It is sufficient to prove that 9(r) > 0 t each critical point
in (0, 1). Now

’() =h(),

where h() ae+(’)-8 i tricty decreeing on (0, ). Sinc h(0) Z/e-8 > 0
and h(1) -4 < 0, h h a unique zero r0 (0, 1), and we need only prove that
9(to) > 0. By numerical estimates we see that h(0.74) < 0 < h(0.72), so that
0.72 < r0 < 0.74. Then, since (g- (r’)2)/r2 is inereing and (r’)2 is decreeing
we and rom standard tbs (cf. IBm, p. ]) that (0)/ > 3..

For later reference we remark that the double inequalities

r2 r2

(.e)

for 0 < r < 1, relating complete elliptic integrals of the first and second kind, were
obtained in [AV1, (6)], [AV2, (1)], respectively. The first two inequalities re sharp
at r 0, the third is ymptotieally sharp r 0, and the fourth r 1. The
inequality giving the upper estimate for

r2
()

In our next theorems we compare the quotient and product of the elliptic integrals
g and with elementary functions. A power series for g/ is given in [AS, 17.3.23].

We let rth denote the inverse hyperbolic tangent function.

THEOREM 3.6. For 0 < r < 1,

2 arth r (r) arth r
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Proof. The first inequality is equivalent to

1 +r 2r/C
f(r) :_ log 1--L--r 25- (r’)2;C >

0.

Since f(0) 0, it is sufficient to prove that f’(r) > 0 for 0 < r < 1. But by [BF,
710.00, 710.02, 710.04] and algebraic simplification we have

f’(r) > o.

Similarly, the second inequality is equivalent to

1 + r 2rK:
g(r)=_lOgl_r $

<0;

but g(0) 0 and g’(r) 2/C($ ;C)/(r’)2t2 < 0 for 0

THEOREM 3.7. Let f(r) ($- r’/C)/(1- r’) 2, 0 < r < 1, f(0) 7[/8, f(1) 1.
Then f is strictly increasing on [0, 1]. In particular,

7[(1 r’) 2 < $(r) r’lC(r) < (1 r’) 2
8

for 0 < r < 1. The first inequality is sharp at r O, and the second inequality is
sharp at both zero and 1.

Proof. The limit f(1-) 1 is clear, while by l’H6pital’s rule and [BF, 710.04,
710.05] we have

f(O+)= lim lim =-.
r-.0+ 2r2 r-0+ 4(r’)2 8

Next, for 0 < r < 1, by differentiation [BF, 710.00, 710.02] and algebraic simplifica-
tion,

rr’(1 r’)2 f’(r) g(r),

where g(r) (1 r’)(/C :) 2(1 + r’)($ r’K:). Then g(0) 0 and, for 0 <
r < 1, (r’)2g’(r) r(1 + 2r’)($- r’/C), which is positive by the first inequality in

THEOREM 3.8. Let f(r) =_ $(r)lC(r), 0 <_ r < 1. Then f is strictly increasin9
and convex from [0, 1) onto [7[2/4, cx)) and g(r) =_ x/Tf(r) is strictly decreasing from
[0, 1) onto (0,712/4]. In particular, for 0 < r < 1,

7[2 7[2

-4- < < 4v 

Proof. By differentiation [BF, 710.00, 710.02] and algebraic manipulations,

f(r)
$2 (r)212 $ rl ($ ) (1-r)2 1

r(r’)2 (1 r,)2 7 +/C
r "r-7"
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By Theorems 3.7 and 1.3 the first two factors on the right are positive increasing
functions, and it is easy to see that the last two factors are increasing. Hence f
is increasing and convex. Next, by Theorem 1.4 and [AVV2, Whm. 2.2(3)] g(r) is
the product of two positive strictly decreasing functions v@K:(r) and $(r), hence is
strictly decreasing. Finally, the limiting values and inequalities are clear. [:]

COROLLARY 3.9. For 0 < r < 1,

r
1- < K:(r) < (r’)-(1)

v4v < <
2 2

Proof. The lower estimates follow from (3.2) and Theorem 3.8. The upper esti-
mate in (1) is a consequence of Theorem 1.2, and in (2) it follows from the fact that

is decreasing. D
It follows immediately from the definition (1.2) that K:(r) _> rt/2. We now obtain

another pair of significant estimates for/C(r) in terms of elementary functions.

THEOREM 3.10. For 0 < r < 1, define the functions f, g on [0, 1) by f(r)
rlC(r)2/log((1 + r)/(1- r)), f(0) rr2/8, and g(r) f(r)/1C(r). Then f is strictly
increasing and g is strictly decreasing. In particular, for 0 < r < 1,

(artrh r )1/2 < 2K:(r)rr < arthrr
Both inequalities are sharp as r -- O. The second inequality is of the correct order as
r-+l.

Proof. Since f and g are continuous at zero, it is sufficient to prove the mono-
toneity properties on (0, 1). Now

( ( )1 + r
if(r) K:2 + 2/C

g (r’)2K7
log

1 + r 2rK:2
log

1 r (r’) 2 1 r (r’) 2

( og
which is positive by Theorem 3.6.

Similarly,

1 + r 2rK: )
1 r 2 (r’)2/C

( )2 ( g (r’)2K:) l+r 2r/C1 + r g’(r) K: + loglog
1 r (r’) 2 1 r (r’) 2

E ( l+r 2rK:)(r,) 2
log

1 r

which is negative by Theorem 3.6.
The lower estimate is sharp by continuity, and the upper estimate is of the correct

order as r - 1 since, by [BF, 112.01],/C(r) arth r r + 1.
Remark 3.2. The second inequality in Theorem 3.10 can be rewritten in terms of

r) < F(, 1 ; r)[C2 15], which is truethe hypergeometric function as F(, ; 1; p.
by virtue of Lemma 2.3.
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The next result improves an estimate in [AVV2, (1.8)].
THEOREM 3.11. For 0 < r < 1,

tO(r)
1 < /1 rE(V < min{f, (r’)- }.

Proof. Since r < v/ < 2v/(1 + r) it follows from [AVV2, Thm. 2.2(3)] and the
first identity in (3.1) that

1 r
((1 + r)K:(r))2 (1 r2)(r)2r’K:(r)2 > v/l- rK:(v/)2 > i+ r

Dividing by x/1 -r and taking square roots we obtain

x//1 + rI(r) < (x/) < /1 / rIC(r).

Finally, /1 + r(r) < /(V) since is increasing and r < V.
It is well known that K:(r)+log r is strictly decreasing from (0, 1) onto (log 4,

[AVV2, Thm. 2.2(1)]. The next result provides a dual of this fact.

THEOREM 3.12. The function f(r) =_ v/(r) + log r is strictly increasing from
(0, 1) onto (0, log 4). In particular, for 0 < r < 1,

1 4
log 7 < V/C(r) < log V"

Proof. The limit f(0+) 0 is obvious, while

f(1-) lim [v/(/C + log r’) + (1 x/)log r’] log 4

by [BF, 112.01]. For the monotoneity we write f’(r) g(r)/(rl/2(r’)2), where g(r)
g- 1/2(r)2K:- r3/2 tends to zero as r - 1-. Thus it is sufficient to prove that g(r)
decreases on (0, 1). But g(r) h(r)/(2r), where h(r) =_ - (r’)2K:- 3r3/2, and by
[AVV2, Thm. 2.2(7)], h(r) <_ r2 3r3/2 < 0 for 0 < r < 1.

V. I. Semenov [Se, (6)] has obtained the inequality

2r2(1 r2)E(r))(r’) <_ min{h(r), h(r’)}, h(r) r2 log 4_.
7r r

The following corollary, which is precisely the second inequality of [AVV2, Thm.
4.2(5)], improves upon (3.4).

COROLLARY 3.13. For 0 < r < 1,

2rrl(r)l(r) < min {rlog 4
rlog

4 }
Proof. By symmetry it is sufficient to prove one of these inequalities. By The-

orem 3.12 and [AVV2, Thm. 2.2(3)] we have v/-TE <_ log(4/r) and (2/)x/K: <_ 1.
Multiplying, we obtain (2/r)r’K:K7 _< log(4/r), and the first inequality follows.

Conjectures 3.1. Various generalizations of the classical relation (2.2) were ob-
tained by S. Ramanujan [A] (see also [SS]). We here focus on the particular case
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a b 1/2 of (2.2). Our computational work supports the validity of the following
conjectures, where 0 < r < 1, r (1 -r2)1/2"

4 7r(1) K:(r) < log(1 + 7)- (log 5- 5)(1 -r).
(2) The function 4/1 + rlE(r)/1E(x/F is increasing from [0, 1) onto [1, /).
(3) The function (K:(r) log(4/r’))/((r’)2 log(4/r’)) is increasing from (0, 1) onto

((r/log 16) 1, 1/4).
(4) The function (g(r)-(r’)21C(r))(g(r) 1)/(r’)2(l(r)-g(r))is increasing from

(0, 1) onto (1/2, 1).
(5) (cf. [AVV2, 6.4(2)]) The inequality in Theorem 3.5 can be replaced by

9 < (8 +
log(4/r’)

<9.1.

r’ exp(K:(r)) 4 2x/1 r
(6) (r’)2 _< <

exp () 4 2-r

Remark 3.3. After this manuscript had been completed R. Kiihnau kindly in-
formed the authors about his work in [K] related to conjecture 3.1(5).

Acknowledgments. We are grateful to Professor B. C. Carlson and to the ref-
erees for their helpful comments.
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SOME q-BETA AND MELLIN-BARNES
INTEGRALS WITH MANY PARAMETERS
ASSOCIATED TO THE CLASSICAL GROUPS*

ROBERT A. GUSTAFSONt

Abstract. Multidimensional generalizations of a q-beta integral of Nasrallah-Pahman and
Barnes’ second lemma are evaluated. These are integral analogues of Jackson, Dougall, and the
Pfaff-Saalschiitz summation theorem for hypergeometric series. These integrals can also be written
as group integrals over the special unitary group, the compact symplectic groups or conjugation
invariant integrals over the corresponding Lie algebras.

Key words, multivariate beta integrals, multivariate Mellin-Barnes integrals, q-beta integrals,
the classical groups

AMS(MOS) subject classifications. 33A15, 33A30, 33A65, 33A75

1. Introduction. One of the foundations for the classical theory of hypergeo-
metric series is Euler’s beta integral and the Mellin-Barnes contour integrals (see Baily
[4]). On the one hand, integral representations of hypergeometric series as well as or-
thogonal polynomials are obtained. On the other hand, an important tool for discov-
ering and proving many important special function identities is found. More recently,
multidimensional generalizations of Euler’s beta integral and the Mellin-Barnes inte-
gral have been discovered in the setting of root systems or simple Lie groups. Some
examples of these are Selberg’s beta integral [22], the q-Dyson-Zeilberger-Bressoud
theorem [1], [23], the Macdonald-Morris conjectures [15], [19], and some generaliza-
tions and analogues of the Askey-Wilson integral [3] for various compact Lie groups
and Lie algebras [8], [9]. The connection of these integrals to multidimensional spe-
cial functions is only beginning to be understood (e.g., see [10], [11], [16]). Another
aspect of this circle of problems is to obtain group-theoretic interpretations for these
fascinating multidimensional integrals and functions. Some progress has been made
in one dimension in interpreting some of the basic (or q-analogue) special functions
as spherical functions on quantum groups (e.g., see [12], [17]). In higher dimensions,
there is the theory of zonal spherical polynomials (see, e.g., [7]), spherical functions
for p-adic groups [14], and Macdonald’s polynomials [16], which contain all of the
above as special cases. It often appears that the discovery of new kinds of special
function identities has given the impetus for the discovery of new group-theoretic
interpretations of special functions.

Let q be a real number, 0 < q < 1. For any complex number c, define

[c] [c; q] II(1 cq)
k=O

and also

for any integer n.
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and DMS-9002342.
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A one variable integral with many parameters generalizing Euler’s beta integral
was isolated by Rahman [21] (see [2]) and is a special case of an integral of Nasrallah-
Rahman [20].

THEOREM 1.1. Let ai E C, 1 <_ i <_ 5, with ail < 1, then

(1.2)

where the unit circle T taken in the positive direction.
If we set, for example, al 0, then identity (1.2) reduces to the important Askey-

Wilson integral [3]. Identity (1.2) can be viewed as an integral analogue of Jackson’s
summation theorem for very well poised s7 hypergeometric series. The integrand
in (1.2) is also the weight function for a very general family of biorthogonal rational
functions [21], which include the hskey-Wilson polynomials [3] as a limiting case.

The purpose of this paper is to generalize integral (1.2) in the setting of the
special unitary groups SU(n) in 2 and the compact symplectic groups Sp(n) in 4.
In 5, we also evaluate some Mellin-Barnes integrals associated to the Lie algebras
su(n) and sp(n) which generalize a Mellin-Barnes integral analogue of (1.2) due to
Rahman [21]. Finally, in 3 we give a u(n) (the Lie algebra of hermit[an matrices)
generalization of Barnes’ second lemma [5], [4]. Barnes’ second lemma is a Mellin-
Barnes integral analogue of the important Pfaff-Saalschiitz summation theorem for
3F2 hypergeometric series. The integrals in this paper are given as multiple contour
integrals, but can also be written as integrals over the corresponding Lie groups or
Lie algebras. For details, see 10 of [9].

In future work [6], we plan to use the integrals evaluated here in order to derive a
number of other special function identities, including Jackson-type, summation theo-
rems for hypergeometric series associated to the classical groups and a generalization
of the 109 transformation for SU(n). We also hope to show that these integrals will
be useful in constructing generating functions and reproducing kernels for multivariate
orthogonal polynomials (see Nasrallah and Rahman [20]).

2. A generalization of Nasrallah-Rahman integral for SU(n). In this sec-
tion we prove a generalization of the Nasrallah-Rahman integral (1.2) associated to
the Lie groups SU(n). The SU(2) case is just the Nasrallah-Rahman integral (1.2).
Briefly, the proof goes as follows. We first show that both sides of the integral identity
(2.2) satisfy the same difference equation (2.8). This allows the proof of (2.2) to be
reduced to a double induction, one parameter n measuring dimension and the other
parameter k measuring the distance from an Askey-Wilson type integral for SU(n)
that has previously been evaluated [9]. An essential part of the induction proof is a
technical multiple contour integral argument.

The main result is the following.
THEOREM 2.1. For n >_ 2, let a , 1 <_ <_ n, and bj , 1 <_ j <_ n + 1, with

n ]-[nq-1Jail, [bj[ < 1 Set A Hi=I ai, S 11j=1 bj and C AB, then
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(2.2)

1 /
k--1 l(i,j(n

-ei- dzl

k=l i=1 j=l

dzn_1

Zn--

n+l n
n! I-I [b2iC]o I-I [aB]oo

j=l i--1

n+l n n+l
[q]noj[A]o 1-I [bftB]o 1-I 1-[ [aibj]o

j=l i=1 j=l

where l-I=i zk 1, the integral in each variable zl,..., zn-1 is over the unit circle T
taken in the positive direction, and Tn-1 is the n- 1 fold direct product of T.

Proof. Observe that if we define the n 1 case of the integral on the left-hand
side of (2.2) to be the evaluation of this integrand at Zl 1, then identity (2.2) is
valid for n 1. The n 2 case of identity (2.2) is a restatement of integral (1.2). The
general proof of Theorem 2.1 given here will include the n 2 case, but for n 2 our
proof is related to an earlier proof of Askey [2], though Askey’s simpler proof does
not seem to generalize for n > 2.

To begin our proof of identity (2.2) for n _> 2, we shall require that for any integer
g, bi 7 bjq for 1 _< i,j <_ n + 1, 7 j, and b 7 Cq for 1 _< j _< n + 1. This restriction
will be removed at the end of the proof of (2.2). We also remark that

n n+l n+l

b- C Hai H bj and b- c H bj
i=1 j=l j=l

both make sense when bk O.
To prove (2.2), we first show that both sides of (2.2) satisfy the same q-difference

equation in the parameters bj, 1 < j < n + 1. We will need the following version of
the partial fraction expansion.

LEMMA 2.3. (Cf. [18, Lemma 7.1].) Let {Xl,’",Xm},, {Yl,’", Ym+l} and t be
indeterminants with the yi distinct. Then

m+l ml-l ( )fi fi(2.4) E t yy (1 yxk) (1 txk).
--1 j=l Y YJ k--1 k=l

Proof. Identity (2.4) is equivalent to the r < s case of Lemma 7.1 of [181 (see
also [13]), which is a statement of the classical partial fractions expansion. To prove

1-l’+l (t yj) and obtain the following identity:identity (2.4), divide both sides by l ij=l

m+l m+l m m m+l

(2.5) E (t--Y)--I H (yi yj)-i H (l yeXk) H (l txk) H (t YJ)-i
=1 j=l k=l k=l j=l

Identity (2.5) is proved by observing that the left-hand side of (2.5) is simply the
partial fraction expansion of the right-hand side of (2.5).
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We now show that both sides of (2.2) satisfy the same q-difference equation.
DEFINITION 2.6. If f is a function involving the parameters be and C, then define

(,c) I(q, Cq).

LEMMA 2.7. With notation as in Theorem 2.1, let f be either the left-hand side
or right-hand side of (2.2). Assume that the parameters bi are all distinct. Then

(.8)
’+ ’i (c ’ ) Ry, Y.
=1 j=l

Proof. Let I and Q denote, respectively, the left-hand side and right-hand side of
equation (2.2). We have

(2.9)

ReI

n

l-I [c] I]
k=l _i,j_n

n n+l }fi YI [aiz;l] l-I [bjzk]
k=l i= j=l

H 1 bezk dz

k=
1 -Czk

dzn_

Zn--

Substitute the expression on the right-hand side of (2.9) into the left-hand side of
(2.8) and apply Lemma 2.3 with m n, t C, xi zi and yi bi. This proves that
I satisfies the q-difference equation (2.8).

Similarly, we have

nI1 (1-b-flB) I (1-aibt)(2.10) ReQ Q.
j=l 1-b- C

i=1 1-aiB

To verify that Q satisfies the q-difference equation (2.8), we need to show that

n--I nl [(C_bj)(i_blB)] i (l_aibe ) =1(2.11) E (be bj)(1 blC) i=1
1 aiB=1 j=l

Simplifying, we are reduced to showing that

(2.12)
B b./ (1 aibe) (1 aiB).

= =, -j. =, ,=,

Identity (2.12) now follows from Lemma 2.3 upon setting m n, t B, xi ai, and
Yi bi in identity (2.4). This completes the proof of Lemma 2.7.
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We now prove Theorem 2.1 by induction on n. As mentioned above, the n 1
case of identity (2.2) is trivially true. We will assume from now on that n _> 2 and
that the n 1 case of identity (2.2) is valid.

We first prove identity (2.2) in the special case that aN qk/lc-1 and b+l
q-kC, where k is a positive integer. This will proceed by induction on k, with the
cases k- 1 and k > 1 handled differently.

Assume that qk+l < iV < qk and that IqkC-11 < r-1 where r is a real number
chosen as close to 1 as necessary. We will also assume that Cn- is not a real number.

Let R r-1. For k > 1, we let

(2.13a) ai<R fori--1,...,n-1

and

(2.13b) bj < Rn-1 for j 1,...,n

For k 1, let 1 >_ t > 0 be a real number so that

(2.14a) tai < R fori--1,...,n-1

and

(2.14b) tbj < Rn-1 for j 1,...,n.

For k > 1, we will always let t 1.
Let N be the contour which is the union of the circle of radius R centered at the

origin, traversed in the positive direction, and the circle of radius e centered at the
point qkC-1 traversed in the positive direction, where e is a sufficiently small positive
real number. We will now use the following notation:

(2.15a) H(m,t)

and

n

[I [Cz]o 1-I [Zizl]cx)
=1 l<_i,j<_n

YI [qm+lC-lz[ll[q-mCzt] YI [aitz[1]c I-[ [bjtzt]
=1 i=1 j=l

(2.15b) H(m) H(m, 1),

where m is a nonnegative integer.
Rewriting the factors 1-[__1(1 q-kCzt) as (--q-kC) 1-ITS__=1(1 qkV-lz[1), we

find

We also have

(2.17)

H(k-1,t) dz--l., dzn-1
Zl Zn-- 1

Tn-2 T-N

dZl
Zl

dzn_ 1

Zn--
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Using Fubini’s theorem and the symmetry of the integrands with respect to permu-
tation of the variables Zl,..., zn-1, we find

n-2

S g(k-l’t)dz----l"’zl "--dZn-lzn- 1 E i i S H(k 1’ ) dZlzl dZn-lzn_
(2.18) T’-I J=OTn-2-J NJ T--N

+ i H(k-1,t) dz--., dzn-1
Z1 Zn--

N-I

With respect to the variable zl, consider the poles of the integrand H(k-
1, t) n-1I-[i=1 z-1 inside the region bounded by the contour T- N. The first pole is
at zl C-lqk and the other pole is at zl Cq-kz1... z1 (i.e., zn C-lqk).
Notice that for the second pole to occur either zi E T for all i 2,..., n- 1 or at
least one of the zi, 2,..., n- 1 must lie on the circle of radius centered at
qkC-1.

Let

J(k 1, t)

n

I] {(1- Cq-kzj)[Czj]}

n--1 n

[q]k-i[q] YI [aitCq-] I] [bjtC-lqk]
i--1 j=l

n n--1 n

H H [aitz[1]c H
=2 i----1 j=l

where 1-I=2 z Cq-k. From identity (2.18) and the following remarks, it follows
that

n-2 1 isi(2ri)n_l
H(k 1,

"= Tn-2-j NJ T--N

2 i J(k 1, t) dz dzn-1
(2.19) --(27ri)n- Z----’’" Zn_

Tn-2

n--2

jl
1 S S J(k i’t) dz2-

(27ri)n-2 z2
Tn-2-j N

dzl dzn-1
Z1 Zn--1

dzn_1

Zn--
-t-- eM(t),

where M(t) is a number which is bounded independently of .
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In the integrals on the right-hand side of (2.19) we can deform the contours N to
the contour T by attaching the circle of radius R in N to the circle of radius e by two
parallel line segments in opposite directions and then separating the line segments.
We can use Fubini’s theorem repeatedly, crossing no poles of the integrand during the
deformations. It follows that

(2.20) / /J(k-l’t)dz2""dzn---:=z2Zn-1 / J(k- l’t) dz-2z2
Tn-2-J NJ Tn-2

for 0_< j _<n-2.

Now let

dzn_

d (qkC-1)=l
for some choice of (n 1)th root of qkC-1. We make the change of variables

zi=zid fori=2,...,n-1,

a!=aid fori=l,...,n,

bj bid-1 for j 1,...,n,

and

C’ Cd-1.
n--1 nNote that C q 1-Ii=l ai 1-Ij=l bj.

In terms of the new variables we have

J(k 1, t)

n

I] {(1- d-z)[C’z]}
n--1 n

[q]k-l[q]c H [atC’q-l l-I [b}t(C’l-ql
i--1 j--1

n
2_i,j_n

n n--1 n

--1] H [bjtze]oI-I l-I [a,t(z)
--2 i=1 j=l

" 1. After making this change of variables and moving the contourswhere i=e zi
of integration, we find

(2.21) f J(k-1 t)dz...dzn f J(k-l,t) dz. dz-I
Tn-2 Tn-2

Consider the ce k 1. Then

H(O,t) 1,

n { 1[qC-lzl] [a tz[l] 
=1 i=1 j=l
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and the integral fg-I H(O,t) d-x’’" dz_ can be evaluated by means of the SU(n)
Zl Z_

generalization of the Askey-Wilson integral [9, Thm. 6.1]. By a contour deformation
argument similar to the above and by shifting the parameters air, 1 <_ i <_ n-
1, byt, 1 <_ j <_ n, and q-lC, it can be verified that the SU(n) Askey-Wilson integral
is also valid for the contour N and the parameters ait, byt, and qC-. We find

(2.22)

H(O, dz--!.., dzn-1 (27ri)n-ln![t2n-1]t)
Nn_ [q]-- qC- tn-1 ai n ] bj

i--1 j=l

.= [tqC-1by]
i=1

It2 ai
--1

Considering the limit as e tends to zero, then from (2.18)-(2.22), it follows that

(2.23)

1 / H(O t) dz--l
(2ri)n-1 Zl

Tn-1

dzn_

Zn--

n![t-]

[q]-i qC_ltn_ YI ai n by
i=1 cx j=l

H [tqC-lbY] H [t2ai
j=l i=1

--1

n / J(O t)dz__.., dzn_l
(2ri)n-2 z z

Tn-2

Both sides of (2.23) are analytic functions of the parameters ai, by, and t. If we
choose the ai and by appropriately and deform the contour T on the right-hand side
of (2.23), then we can take the limit as t -- 1 on both sides of (2.23). We obtain

(2.24)
1 / dzl dzn- n / dz dzn_l

(2ri)n_ 1 H(O) z--"" Zn------ (2ri)- J(0,1) Z-2 Zn_l
Tn-1 Ln-2

where L is an appropriate contour.
We have

J(0, 1)

n

I [d-nz}]c YI [z(z})-l]
j=2 2<_i,j<_n

n--1 n n n--1 n

H II 1-I II II
i=1 j=l =2 i=1 j=l

Since [[i=lrtn-1 ai’=llj=l Oj" d-, then the integral on the right-hand side of equation
(2.24) can be evaluated by the dimension n- 1 case of identity (2.2), which we assume
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is valid by the induction hypothesis on the dimension n. From (2.16) and (2.24), we
then obtain

1 f H(1) dz___}_.., dz,_.____._
(2ri)n-1 Zl Zn-1

(-1)n-in! 1-I [(b)-ld-=]o a
j-1 i-1 j--1

o

(q-lC)n[q]-I a: I b:
Li=l cx j--1 oc

i=1 j=l i=l

n }H[b;(Ct)-lq]
j---1

-1

Now rewrite identity (2.25) in terms of the parameters ai, by, and C. After some
computation and using that an q2C-1 and bn+l q-lC, then identity (2.25)
becomes the k 1 dimension n case of identity (2.2). This completes the proof of the
k 1, dimension n case of identity (2.2).

We now consider the k > 1, dimension n case of identity (2.2). The k- 1,
dimension n case is assumed to be valid. By a contour deformation argument similar
to the above and by shifting the parameters ai and by, it can be verified that the k- 1
case of identity (2.2) is also valid for the contour N and the parameters ai and by.
We find

(2.26)
n

(27ri)n-in! II [b-lc]
H(k- 1)dz--}-l.- dz,_ j=l

Z1 Zn_l [ n--1 ]-1 11

aiq-k+lC l-I bj
i=l j=l

n--1

H [q-k+lCai]2
i=1

(27ri)n-in! l-I [(b})-1C’] rI qai’
j=l i=1 "=

[qln-l[qlk_2 a l-I [q-k+lC’a]
ki=l x) i=1

H q(b})-
j--1

b [qk(C’)-lb;] [aibylcx)
i=1 x) i=1

-1
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In order to compute the integral of the function J(k- 1, 1), we will define a related
function I(k 1) and a difference equation involving I(k 1) and J(k 1, 1). Let

n

II II
j--2 2<_i,j<_n

I(k- 1) ’
n n--1 n

II II 1-I
t--2 i--1 j--1

If f(b, C’) is a function involving the parameters b and C’, then we define the shift
operator L by

n.f(b,C’) b’ C’--f(.q,

i.e. which shifts b’ C’., but fixes It then follows from Lemma 2.3 that

n--1 n

J(k 1, 1) [q]k-l[q] -k -lqk[aiCq ] [b (C’) ]o
i=l j=l

=1 j=l

where we require that the parameters b}, 1 <_ j <_ n, are distinct.
Identity (2.27) shows that the integral of the function J(k- 1, 1) can be computed

n-1 nin terms of the integrals of the functions LeI(k 1). Since C’ q l-L=1 ai 1-Ij=l bj,
then the dimension n- 1 case of identity (2.2) (which we assume is valid by the induc-
tion hypothesis) can be applied to evaluate the integrals of the LeI(k- 1) functions.
With a little simplification we have

dz dz1
J(k 1, 1)

(n- 1)! 1-I [(b})-lC’] qa
j=l i--1

n--1 n

n-l[q]k-1 YI ,-k[q] I1 [b}(C’)-lqk][q C q
i= j=l

Li:I
a q(b})

-1

-1Hb
i=1 o i=1 j--1

n

n--1

d -bj (1 q- C’) i=lYI (1 aibe)

j=l b b) n

ice 1- H b
i=1
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The expression inside the sum on the right-hand side of (2.28) can be rewritten as

(2.29)

n

i=1 (1 q(C’)-lb)) H (1n aib)
b- II b i=1

i=1

An application of Lemma 2.3 shows that (2.29) equals

(q-lC’) I d-n b}
d-n 1-I b = YI b bj

i=1 i--1

1-q(C’)-Hb 1-aiH
i=1 i=1 j=l

n

(1 q(C’)-ld-n) II(1 a;d
i=1

Taking the limit as e --, O, then from (2.16)-(2.21) and (2.26)-(2.30), it follows
that

(2.31)

1 / H(k)dZ___}.l... dzn-1
(27ri)n-1 Zl Zn-1

T=-X

n! YI [(b)-lC’]o 1-[ qa b
j=l i=1 "=

[q]n-[qlk_l a 1-I [aC’q-k]
ki--1 i=1

H q(b)-
j=l

111 b: [qkb}(C’)-l]
i=1 cx i--1

-1

(-1)n
(q-kC’d)n

n--1

(1 qk-1) I-I (1 q-kC’a)
i=1

1-dn H
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(q_lC,) n-1

(1 - 11-I (1
d-n- rI b i=l

i--1

(q-lC’) I d-n b}
d-1 YI b j=l 1-’[ (b) b}

i=1 i=1

1- q(C’) -1 b
i=1

1-aiHb
i=1 j=l

Since d-’ q-kC, it follows that the first two terms cancel in the bracketed sum on
the right-hand side of (2.31). After some further simplification, then the right-hand
side of (2.31) reduces to

(2.32)

n! YI [b-lc] aiq-kC YI bj
j--1 i=1 j=l

x)

[q]n-l[qlk_l [@+1C-1 ai I] [aiq-kC],,:,
i=1 cx) i=1

--1

kCb; II bi [qk+lC-lbj] [aibj]
i=1 cx) i=1

1- bj
i=1

--1

Recalling that an qk+lc-1 and bn+l q-kC, this completes the proof of the k > 1,
dimension n case of identity (2.2).

To complete the proof of the full dimension n case of identity (2.2), we begin
by choosing an arbitrary complex number an such that Iql < lanl < 1 and setting
b,+l qa-. Let al,... ,an-l,bi,"" ,bn-1 E , be fixed such that lail, Ibjl < 1. Then

n--1set bn qkal 1-L= (aib)-1 with k > 0 a sufficiently large integer so that Ibnl < 1.
From (2.a) and (2.32) it then follows that identity (2.2) is valid for a set of values
of bn which includes the limit point bn 0. (The case bn 0 reduces to the SU(n)
generalization of the Askey-Wilson integral [9, Thm. 6.1].) By analytic continuation
in the parameter bn, we conclude that identity (2.2) is valid whenever ab,+l q.

This last condition can also be eliminated. With notation as in Lemma 2.7, we
rewrite the q-difference equation (2.8) as

(2.33)
n

(bn+l-bjRn+lf H C bj
j=l

n

)
t=l j=l b bj

where f can be either the left or right-hand side of identity (2.2). Now suppose that
identity (2.2) is valid whenever bn+ qa- for some positive integer g. If we choose
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the parameters on the left-hand side of (2.33) to satisfy b,+l qt+lal, then those
on the right-hand side will satisfy bn+l qta1. It follows that identity (2.2) will also
be valid for bn/l q+la. The set of points bn+ qa for 1, 2, 3,.-. has the
limit point bn+ O. Again, at bn+ O, identity (2.2) reduces to the SU(n) Askey-
Wilson integral. By analytic continuation of the parameter bn/l, we now conclude
that identity (2.2) is valid for arbitrary bn/l. Finally, by analytic continuation we drop
the other restrictions on the values of the parameters bj and C. This completes the
proof of the dimension n case of identity (2.2). By induction, this proves Theorem 2.1.

3. A generalization of Barnes second lemma for u(n). In this section we
prove a generalization of Barnes’ second lemma associated to the Lie algebra u(n) (of
the Lie group V(n)). The u(1) case is Barnes’ second lemma [5]. The main result,
Theorem 3.1, is proved analogously to Theorem 2.1. We again use a double induction
on the dimension n and another parameter k.

The main result is the following.
THEOREM 3.1. For n >_ 1, let i E C, 1 <_ i <_ n + 1, and j , 1 <_ j <_ n + 2.

-n/ -n/2Set A_i-i (i + j:l J, then

1 = [ i=

(2ri)n n dz ,dzn

j:l li,jn

= j=

n+2
fl

where the contours of integration are defoed so as to separate the sequences of poles
going to the right ( + k 1 i n + 1, k 0, 1, 2,...} from the sequences of poles
going to the l (-i k l i n + 2, k O, 1,2,. .}.

Proof. If we define the n 0 ce of the integral on the left-hand side of (3.2) to
be 1, then identity (3.2) is valid for n 0. The n 1 ce of identity (3.2) is Barnes’
second lemma [5].

We begin our proof of identity (3.2) for n 1 by requiring that for any integer
g, i + for l i,j n + 2, i C j, and + for l j n + 2. This
restriction will be removed at the end of the proof of (3.2).

We will first show that both sides of (3.2) satisfy the same difference equation in
the parameters j and . We will need the following version of the partial fractions
expansion.

LEMMA 3.3. Let s m and let (Xl,’",xs},(yl,’",Ym+l) and t be indetei-
nants with the yi distinct. Then

e= = e-j k=l k=l

Proof. The proof is very similar to that of Lemma 2.3. If we divide both sides of
v[’+l (t then we obtain an obvious partial fractions expansion.identity (3.4) by j= yj
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We now show that both sides of (3.2) satisfy the same difference equation.
DEFINITION 3.5. If f is a function involving the parameters e and 7, then define

Pef(e, 7)= f(fle + 1, 7 + 1).

LEMMA 3.6. With notation as in Theorem 3.1, let f be either the left-hand side
or the right-hand side of (3.2). Then

Proof. The proof of identity (3.7) is quite similar to that of identity (2.8). A
simple application of (3.4) shows that the left-hand side of (3.2) satisfies identity
(3.7). Another application of a special case of (3.4) (i.e., equating the t" term on
both sides of (3.4) when s m) shows that the right-hand side of (3.2) also satisfies
identity (3.7).

We now prove Theorem 3.1 by induction on n. As mentioned above, by defining
the left-hand side of (3.2) to be 1, the n 0 case of identity (3.2) is trivially true. We
will assume from now on that n > 1 and that the n- 1 case of identity (3.2) is valid.

Similarly to 2, we first prove identity (3.2) in the special case that an+l k+l-7
and flu+2 7- k, where k is a positive integer. We will proceed by induction on k,
with the cases k 1 and k > 1 handled slightly differently.

Assume that k + 1 > Re(7) > k and that Re(7- k) < r, where r is a positive real
number chosen as small as necessary. For k > 1 we let Re(ci) > r and Re(flj) > r
for 1 _< i < n and 1 < j < n + 1. Let C be the circle of radius e centered at the point
-7 and traversed in the negative direction, where e is a sufficiently small positive
real number. Let T be the imaginary axis tranversed from -icx to icx, and let N be
the union of C and T. We will use the following notation

H(m)
H r(m + 1 7 ze)F(7 m + ze) H F(ci ze) H F(flj + ze)
=1 i=1 j=l

n

H + H r(z,-
t=l l<_i,j <_n

where m is a nonnegative integer.
We have

H(k)dzl dzn (-1)n f H(k 1)dzl dzn.
T T

Similarly to 2, we find that

(3.9)

H(k 1)dzl’’’ dzn

n--1

=fH(k-l)dzl’"dzn-- f f fH(k-1)dzl...dzn.
OT NJ CN .’=
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Let

It follows that

J(k- 1)-

n n+l n

H r( +- 1 H r( +-1 H (z + )
i=l j=l =2

n

(k- 1)! I-I F(- + zt) 1-I F(z-
--2 2<_i,j<_n

1-I IIr(- r( +
=2 i=1 j=l

n--1

T 1-j NJ C

n-1

E (2ri)n-1
J(k- 1)dz2...dz,

j=0
(3.10) T-I- Y

n--1
1 / J(k 1)dz2-.-dznE (27ri)n-1

j=0 Tn_

T-

since he function J(k- 1) in the variable , 2 _< j <_ n, has no poles in the disk
bounded by the contour 6’.

Consider the case k 1. Then

n { n n+l
I] r(1 -- z) 1-[ r(a- zt) I-[ r( + z)
g.=l i=l j=l

g(0)=
I] F(zi- zj)

l<_i,j<_n

and the integral fN, H(O)dzl..., dz, can be evaluated by means of the u(n) general-
ization of Barnes’ first lemma [9, Thm. 5.1]. We find

(3.11) J H(O)dz dz, O.
N

Applying identities (3.9)-(3.11), we obtain

(3.12) if n J J(O)dz dz, .
(27ri)n

H(O)dz... dzn (27ri)
T Tn-1

We have

n n+l 1--I H r(o/i- z) H F(/j -]- z)
J(0) II F(ci +- 1) l’I F(j 4- 1-/) /=2n i-1 j-1

i= j=, 1-I F(7- 1 + ze) 1-I .F(zi-
/--2 2 <_i,j <_n
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Therefore, the integral on the right-hand side of equation (3.12) can be evaluated by
the dimension n- 1 case of identity (3.2), which we assume is valid by the induction
hypothesis on the dimension n. From (3.8) and (3.12), we obtain, after simplification,

1 f H(1)dzl.’. dzn(i),
T,

(3.13) n nq-1 n n-I
H F(ai + /- 1) H F(j + 2--) H 1-[
i--1 j-1 i--l j-1

n+l

H r(-1
i----1

Since identity (3.13) is equivalent to the k 1 case of identity (3.2), this completes
the k 1, dimension n case of identity (3.2).

We now consider the k > 1, dimension n case of identity (3.2). The k- 1,
dimension n case is assumed to be valid. We have

(3.14)
H(k- 1)dzl’"dzn

N

n n+l
(1! H H r( +)

i--l j--1

n+l
(k )! H r( 1

j--1

n+l n

1-I r(- + )1-Ir( + + 1 1.
j--1 i:1

Similarly to 2, to compute the integral of the function J(k- 1) we will define a
related function I(k- 1) and a difference equation involving I(k- 1) and J(k- 1).
Let

(- )=
H H r(.- z) r(z + )
t=2 i--1 j--1

n

H r( + z) H r(z- z)
t--2 2<_i,j<_n

If f(/t, 7) is a function involving the parameters/t and 7, then we define the shift
operator At by

Atf(flt, 7) f(flt + 1, 7),

i.e., which shifts t, but fixes 7. It then follows from Lemma 3.3 that

n n+l

H r( +- ) H r( + k- 1
J(k- 1)=

i= j=l

(k- 1)!

fix (9/ k J) Ati(k l)
= = ( 1
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n n+lSince - 1 + Y]i=l ci / Y]j=l j, then the dlmenmon n- 1 ce of identity (3.2)
(which we sume is valid by the induction hypothesis) can be used to evaluate the
imegrals of the AtI(k 1) functions. Identity (3.15) then allows us to evaluate the
integral of J(k- 1). We find

1 f(2ri)_
J(k 1)dz2... dz

Tn-1
n nTl n nTl

i=1 j=l i=1

n+l(a.) (k-1) H r(-)

( 1( 1 ) (, +)

A simple extension of Lemma 3.3 (to the ce s m+ 1 in the notation of Lemma 3.3)
can be used to evaluate the sum on the right-hand side of (3.16). We have

(3.17)
n+l n

H (/- k ) (’ k + 1 ")’) II( k +
j=l i--1

Substituting (3.17) into the right-hand side of (3.16) and applying identities (3.8)-
(3.10), (3.14), and (3.16), we find

n

n! [I r(a +- k)
1 / H(k)dz... dzn =(3.18)

(2ri) n+l. r(k) l-I r(-#)
j-----1

n+l n n+l

j--1 i--1 j--1

Recalling that an+ k + 1 -7 and #n+2 "7- k completes the proof of the k > 1,
dimension n case of identity (3.2).

To complete the proof of the full dimension n case of identity (3.2), we begin by
choosing an arbitrary complex number O/nT such that 0 < Re(an+l) < 1 and setting
,+2 1-an+. Let 31,... ,an,,’" ,/, C be fixed such that Re(hi), Re(/j) >

n0. Then set n+l 1 + s a, Yi=(ai + i) with s C such that Re(s) >_ 0
and Re(n+l) > 0. From (3.18) it follows that (3.2) is valid for s 0, 1, 2,.... Using
Stirling’s formula to estimate the growth the left-hand side and right-hand side of (3.2)
as a function of s, it can be seen that the growth conditions for Carlson’s theorem [4,
p. 39] are satisfied. Carlson’s theorem now shows that identity (3.2) is valid for all
s E C (subject to the restriction Re(a),..., Re(an+l), Re(l),..-, Re(n+2) > 0).
In other words, identity (3.2) is valid whenever (n+ +/,+2 1.
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This last condition can also be eliminated. With notation as in Lemma 3.7, we
rewrite the difference equation (3.8) as

(3.19) P+f H + f E fie fl

where f can be either the left or right-hand side of identity (3.2). As in 2, suppose
now that identity (3.2) is valid when +2 e-+x for some positive integer e. If we
choose the parameters on the left-hand side of (3.19) to satisfy n+2 g + 1 +,
then those on the right-hand side will stis fin+2 e-n+. It follows that identity
(3.2) will also be valid for n+2 + 1 +. An application of Carlson’s theorem
similar to the above now shows that identity (3.2) is valid for arbitrary fin+2 C with
Re(+2) > 0. Finally, by analic continuation, we drop the restriction on the values
of the parameters i, flj, and 7. This completes the proof of the dimension n ce of
identity (3.2). By induction, this proves Theorem 3.1.

4. A generalization of the Nasrallah-Rahman integral for the sym-
plectic groups. In this section we prove a generalization of the Nrallah-Rahman
integral (1.2) sociated to the compact symplectic groups Sp(n). The Sp(1) SU(2)
ce is just the Nrallah-Rahman integral. The proof of the general integral identity
is very similar to that discussed in 2. The main result is the following.

THEOREM 4.1. For n 1, let ai C, 1 i 2n + 3, with lal < 1. Set
2n+3C xx= a, then

1 f(2ri)n 2n+3 n

= j=

2n+3

j=l

li<j2n+3

where the integral in each variable zj is over the unit circle T taken in the positive
direction.

Proof. Note that if the contour T is allowed to be shifted, then the restriction

lail < 1, 1 _< i < 2n / 3, may be eliminated. Also observe that the n 1 case of the
integral on the left-hand side of (4.2) is just the Nasrallah-Rahman integral (1.2).

To begin the proof of identity (4.2), we require that for any integer ,a ajq
e

for 1 < i, j < 2n + 3, i j. This restriction will be removed at the end of the proof
of

As in 2, we first show that both sides of (4.2) satisfy the same q-difference
equation in the parameters ai, 1 _< _< 2n + 3. We will need another version of the
partial fractions expansion.



q-BETA INTEGRALS WITH MANY PARAMETERS 543

LEMMA 4.3. Let (xl,’" ,Xm}, (yl,"" ,Ym+} and t be indeterminants with
yj and yiyj : 1 for 1 <_ i, j <_ s, = j. Then

(4.4)

m+ mi (t- yj)(tyj -1) m

E (y y)(yy 1) H (1 yxk)(1 yx;)
t=l j=l k=l

m

II (1 txk)(1
k--1

]-[m+l (t )(tyj 1) and compute residuesProof. Divide both sides of (4.4) by =1 -yd

with respect to the poles Yt and y-l, 1 <_ t _< m / 1.
We now show that both sides of (4.2) satisfy the same q-difference equation.
DEFINITION 4.5. If f is a function involving the parameters at and C, then define

Rtf(at, C) f(atq, Cq).

LEMMA 4.6. With notation as in Theorem 4.1, let f be either the left-hand side
or right-hand side of (4.2). Then

(4.7) )( )E C-a Ca-i .(Rtf) =Y.
t= j= aj ataj -1

Proof. Let I and Q denote, respectively, the left-hand side and right-hand side of
(4.2). Using (4.4), it is easily checked that I satisfies identity (4.7). To show that Q
satisfies the q-difference equation (4.7) is equivalent to verifying the following identity:

We can rewrite the left-hand side of identity (4.8) as

(4.9)
2n+3

k=n+2
n+ll.[ /’

n+l{() nil (ak l-i,Caj_lK-, C-C a ae C-j=l t=l j=l

aj )
2n+3 }k=n+2

Letting t be an indeterminant, then we have the following identity (which comes
from an extension of (2.4)):
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t-C-1 t-aj

t=i at C-1 at aj H (aeak 1)
j----1 k--n+2

2n+3 n+l 2n+3

II (ta-l)-(t-C-)II(t-ai) II a
k=n+2 j=l k=n+2

t aj

C- a II (C-ak 1).
j--1 k--n+2

i-[n+1Identity (4.10) can be verified by dividing both sides of (4.10) by (t- C-1) l li=
(t a) and then doing a partial fractions expansion of the right-hand side of (4.10)
with respect to the indeterminant t. Setting t 0 in identity (4.10) and substituting
into (4.9), we then prove (4.8). This completes the proof of Lemma 4.6.

The proof of Theorem 4.1 proceeds by induction on n, similarly to the proof of
Theorem 2.1. If we define the left-hand side of (4.2) to be identically 1 for n 0, then
the n 0 case of identity (4.2) is trivially true. We will assume from now on that
n >_ 1 and that the n- 1 case of identity (4.2) is valid. We first prove identity (4.2)
in the case that a2n+2 qk+lc-1 and a2n+3 q-kC, where k is a positive integer.
As before, for fixed n we will prove identity (4.2) by induction with respect to k, with
the cases k 1 and k > 1 handled differently.

Assume that qk+l < [C[ < qk and that IqkC-11 < r-i, where r is a real number
chosen as close to 1 as necessary. We also assume that lail < r for 1 <_ N 2n + 2.

Let N be the contour which is the union of the circle of radius r centered at
the origin, traversed in the positive direction, and the circle of radius e centered at
the point of qkC-1, traversed in the positive direction, where e is a sufficiently small
positive real number. We will use the notation

H(m)
n

I]
t=l

I] {[ZiZj]oo[z;lz;1]oo[ziz;1]o[Zlzj]cw}
l<_i<j<_n

n

rI {[qm+lC-lzg]oo[qm+lC--lz[1]o,:)[q--mCzi]x)[q--mCz[1]o}
l=1

fi
2n+1 }H [aize][aiz-[l]

=1 i=1

-1

where m is a nonnegative integer.
As in 2, we find

(4.11) / H(k) dz--A dZ,z,
T

(qkC-1)2n / H(k- 1)dz.__l...Zl dZnzn
T
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We also have

(4.12)

H(k 1) dz---!
Zl

Tn-1

dzn
n--1

J"-OTn-l-J NJ T--N

/ / H(k-1)dz---!’"dz---n’Zl Zn

dzn

With respect to the variable zl, the poles of the integrand H(k- 1)17Ln__l Z-1

inside the region bounded by the contour T-N are at z C-1qk and at Zl Cq-t:.
It follows that

(4.13)

n- 1 / / / H k l dZ___
j=0

(27ri)n zl
Tn-l-j N T-N

dzn
Zn

n--1

j=0

2

(2i)n-1 /J(k- 1)dz--!.. dz_._n,
Z2 Zn

where

J(k 1)- (1 q-2kC2)[C2q-k]
[q]k-[q]

n

zi)(1 Cq-kz-l)[Czi]oc[Cz][zl[z-9]}
2n+l n

[I {[aiC-lqkloc[aiCq-k] [I
i--1 j=2

H {[ZiZj]cx:)[zlql]cx:)[ZiZ 1]cx[zlzj](:x:)}"
2<_i<j<n

As in 2, we can deform the contour N into the contour T and show that

(4.14) / / J(k -1) dz--2 dz----%
z, / J(k -1) dz---2z2

Tn-l-:1 NJ Tn-2

dzn
Zn

for 0_<j_< n- 1.
Consider the case k 1. Then

H(0)

n

I]
=1

H
l<_i<j<n

YI [qC-lztl[qC-lz[ 1]
=1

2n+l }H [aizt]oc[aiz[1]o
i-1

and the integral fg’ H(O)dzi/zi... dz,/zn can be evaluated by means of the Sp(n)
generalization of the Askey-Wilson integral [9, Thm. 7.1]. We find

(4.15) / H(O) dz--! dz---2z O.
N
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We also have

[C2q-2]oo

n

H {[Cq-lzj]c[Cq-lz21]o[zlcx[z2]o}
j=2

[q]
rI [aC-’qloo[aCq-]oo H [aizjloo[aiz;l] oo
i=1 j=2

H [Zizjl[zlz;llc[ZiZ;1]c[zlzjlc"

The integral of J(0) can be evaluated by the dimension n- 1 case of identity (4.2),
which we assume is valid by the induction hypothesis on the dimension n. From
(4.11)-(4.14) and (4.2), we find

1 / H(1) dz___j_l.., dz,
(2ri)n zl zn

(4.16)

2n+l
2nn!q2n[C2q-2]o I] [Cq-la;1]cx

i=1

2n+1
C2n[q]n H [aiC-lq]x[aiCq-1]cx

i=1

-1

2n+l
2nn![C2q-2]oo [I

i=1

2n+1
[q] YI [aiC-q2]oo[aiCq-]oo H [aiaj]oo

i=1

This completes the proof of the k 1, dimension n case of identity (4.2).
We now consider the k > 1, dimension n case of identity (4.2). By the induction

hypothesis for k- 1, we have

1 / H(k- 1)dz____
(27ri)n Zl

N

dzn
Zn

2n+l
[qk-1]oo[q-kC2]oo H [Ca]oo

i=l

2n+l
[q]+ l-I [qkC-lai][q-k+lCai]oo [I [aiaj]oo

i=1

As in 2, we define a function I(k- 1), to be used in computing the integral of

g(k- 1). Let
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n

I] {[Czjl[Cz;1]o[zlo[z2]cx)}
I(k- 1)=

j=2

n 2n+l
H I1 [Z][/]
t--2 i--1

1-I [z,z][z;;][z,;1][z;l]

If f(at, c) is a function involving the parameters at and c, then we define the shift
operator

Ltf(b, c) f(bq, c).

It follows from Lemma 4.3 that

(4.18)

J(k- 1)= (1 q-2kc2)[C2q-k]
2n-t-1

[q]k-[q]o YI {[aiC-qklo[aiCq-k]}
i=1

(Cq-k-aj)(Cq ka-l)Li(k_l)
t= = (at a)(ata 1)

Identity (4.18) allows us to compute the integral of the function J(k- 1) in terms of
the integrals of the functions LI(k- 1). We have

(4.19)

1 J J(k 1) dz__2
(27ri)n-1 z2

dzn
Zn

2n+1
(n 1)!2n-1(1 q-2kC2)[C2q-k] [Ca-llc

i-1

2n+l
[ql[qlk-1 [-[ [aiaj] 1-I {[aiC-lqkl[aiCq-k]}

l<_i<j<_2n+l i=1

n

fi (Cq-k ad)(Cq-kaj 1)" (a. a)(ataj 1)
=1 j=l

2n+l

(1 q-c[1) I-[ (1 )
i=1

To evaluate the sum on the right-hand side of (4.19), we will use the special case
of identity (2.4) where we equate the tm terms on both sides of (2.4). This special
case of identity (2.4) is due to Louck and Biedenharn [13]. We have
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n

fi (Cq-k a.)(Cq-kaj 1)E (at a.)(ataj 1)
l=l j=l

2n+l

(1 q-lea[l) R (1
i=1

n

qk- II(q-kC a)(q-kCa 1)
j=l

n (1 -qC-lat)
at(at qkC-1)

2n+1
YI (aiat-1)

i--n+1
n

( q-c) ,.1.= (

n 2n+l
q- II(q-c ,)(,-c, 1) -,c-1 II ",

j=l i=n+l

(--1)n+l
n

H (--aj)
j=l

(1 qC-lqkC-1)
2n+1
I] (aiqkC-1- 1)

i=n+l
n

qkC-l(qkC-1 q-kC) 1-I (qkc-1 aj)
j=l

2n+1
(1 qe-q-C) I] (,q-C 1)

i=n+l
n

q-kC(q-kC qkC-) (q-kC aj)
j=l

2n+l
(q-C)(1 q--lc) (1 qC-)

i=1

(1 q-2kC2)

2n+1
(1 qk-1) (1 aiq-kC)

i=1+ (1 --q-2kC2)

2n+lwhere we have used the dentty q- C I]i= a. Substituting (4.20) into the
right-hand side of (4.19) and using identities (4.11)-(4.14) and (4.17), we find
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(4.21)

1 / H(k) dz___.., dzn
(2ri) Zl z

Tr
2n+l

2nn!iC2q-k-l]o YI [Ca-llcx)
i--1

2n-4-1
[ql[qlk-1 YI [aiaj] YI [aiC-lqk+l][aiCq-k]

l<_i<j<_2n+l i=1

This completes the proof of the k > 1, dimension n case of identity (4.2).
The proof of the general dimension n case of identity (4.2) is completed similarly

to 2. Let a2n+3 be an arbitrary complex number such that Iql < la2n+31 < 1 and
-1set a2n/2 qa2+3. Let al,...,a2+1 E (: be fixed so that lail < 1 for 1 < i <

2n 4- 1 Set a2n+l qka-1 2n
2hA-3 1-Ii=l a-1, with k > 0 a sufficiently large integer so

that la2n+ll < 1. From (4.21) it follows that identity (2.2) is valid for a set of values
of a2n+l which includes the limit point a2n+l 0. (The case a2n+l 0 reduces
to the Sp(n) generalization of the Askey-Wilson integral [9, Whm. 7.1].) By analytic
continuation in the parameters a2n+l, we conclude that identity (4.2) is valid whenever

a2n+la2n+3 q.
We use Lemma 4.6 to eliminate this last condition. With notation as in Lemma 4.6,

we rewrite the q-difference equation (4.7) as

2n+1

R2,+2f H
j=n+2

(a2n+2--aj) (a2n+2aj--1)C-aj \ Caj-1)

(4.22)
2n+l

=n+2

2_2 (C_a.) (Caj_l)(Rf)
j--aT2 a aj a.aj 1

where f can be either the left or right-hand side of identity (4.2). Now suppose that
identity (4.2) is valid whenever a2n+2 q’a-1 for some positive integer g. If we2n+3

q+a-1choose the parameters on the left-hand side of (4.22) to satisfy a2n+2 2+3,

then those on the right-hand side will satisfy a2n+2 qa- It follows that identity2n+3"
(4.2) will also be valid for a2+2 qt+la2n+3.-1 Just as above, we conclude by analytic
continuation that identity (4.2) is valid for arbitrary a2n+2. Finally, by analytic
continuation we also drop the other restrictions on the values of the parameters ay
and C. This completes the proof of the dimension n case of identity (4.2) and the
proof of Theorem 4.1.

5. Some multidimensional Mellin-Barnes integrals. In this section we give
analogues of Nasrallah-Rahman integrals associated to the Lie algebras su(n) and
sp(n). The integrals below can be viewed as limiting cases as q -- 1- of Theorems 2.1
and 4.1. The proofs are very similar to that of Theorem 3.1. The n 2 case of
Theorem 5.1 and the n 1 case of Theorem 5.3 below (which are equivalent) are due
to Rahman [21].

The first result is an analogue of Theorem 2.1.
THEOREM 5.1. For n > 2, let ai C, 1 < i < n, and j C, 1 < j < n + 1,
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n -n/lwith ae(i), ae(/j) > 0 Set g- Yi=I i,S z_,j= j and " A + B, then

n+l n

1-I II + B)
j--1 i--1

where nk=l Zk
Proof. The proof follows exactly the same lines as the proof of Theorem 3.1.

The only modification needed is that in the k 1 case of the induction on k, the
parameters ci and j should be modified by adding on an additional parameter t
with Re(t) > 0. Thus the k 1 case exactly parallels the proof in 2. Finally, an
application of Stirling’s formula and Carlson’s theorem, just as in 3, allows us to
complete the proof of identity (5.2) for general values of the parameters.

We also prove the following analogue of Theorem 4.1 in an entirely similar way.
x-2n+3THEOREM 5 3. For n > 1, let ai C, 1 < i < 2n + 3. Set 7 i=1 ai, then

(5.4)

where the contours of integration are deformed so as to separate the sequences of poles
going to the right {ai + k 1 <_ <_ 2n + 3, k O, 1, 2,...} from the sequences of poles
going to the left {-a k 1 <_ <_ 2n + 3, k O, 1, 2,.-.}.
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AN SU() q-BETA INTEGRAL
TRANSFORMATION AND MULTIPLE HYPERGEOMETRIC

SERIES IDENTITIES*

R. Y. DENIS AND R. A. GUSTAFSON

Abstract. A multidimensional integral transformation is proved which is an SU(n) integral
analogue of Bailey’s classical very well poised 10o9 hypergeometric series transformation. By applying
Cauchy’s theorem and specializing parameters, an SU(n) 1009 hypergeometric series transformation
is then deduced. An Sp(n) generalization of Jackson’s very well poised 807 summation theorem is
also proved.

Key words, q-beta integrals, integral transformation, hypergeometric series very well poised
on Lie algebras, multiple hypergeometric series, Jackson’s theorem

AMS(MOS) subject classifications. 33A15, 33A30, 33A65, 33A75

1. Introduction. In previous papers [4]-[6], the connection between summation
theorems for hypergeometric series very well poised on semisimple Lie algebras and
corresponding evaluations of multidimensional Mellin-Barnes and q-beta integrals
on Lie groups and Lie algebras was developed. In particular, integral analogues of
Gauss’s sum, the Pfaff-Saalschiitz sum, and Dougall’s and Jackson’s sum on various
Lie groups and Lie algebras were found. These integrals generalize important one-
dimensional integrals such as Barnes’ first and second lemmas [3], the Askey-Wilson
integral [1], the Nasrallah-Rahman integral [14], [15], and others. At the most basic
level, the proofs of the simplest of these multidimensional integral identities depend
on a use of Cauchy’s theorem to express the integrals as sums of multiple series
and then evaluation of these multiple series using a multidimensional form of the
bilateralized Gauss’s (1H1) sum or a 66 sum. At this point, the series depart from
the scene and other methods such as difference equations are used to prove the integral
identities. Just as with classical hypergeometric series, there is a hierarchy in the
integral identities: a u(n) Barnes’ first lemma [5] is used to prove a u(n) Barnes’
second lemma [6]; the generalizations of the hskey-Wilson integral [5] are used to
prove the corresponding generalization of the Nasrallah-Rahman integral [6].

In this paper we will come full circle, in the sense that integral identities will
now be used to prove series identities. In 2 we will prove an integral analogue of
the SU(n) 10o9 transformation and then, in 3, we use this integral to deduce the
corresponding SU(n) 10o9 series identity. In 4 we use an Sp(n) integral analogue
of Jackson’s sO7 sum found in [6] to prove the corresponding Sp(n) series identity.
The methods used in this paper clearly have a wider application and could likely be
used to give alternative proofs of the u(n) Pfaff-Saalschiitz series identities [7], the
SU(n) Jackson series identities [12], and other identities. It should be mentioned that
the SU(n) 0o9 series transformation found in 3 is probably equivalent to results of
Milne [13], though the method of proof here is completely different.

One application of the integral and series identities, such as Theorems 2.1, 3.1,
and 4.1, would be in the theory of orthogonal polynomials in several variables. It

Received by the editors August 6, 1990; accepted for publication (in revised form) June 14,
1991.

Department of Mathematics and Statistics, University of Gorakhpur, Gorakpur-273009, India.
Department of Mathematics, Texas A&M University, College Station, Texas 77843. This

research was partially supported by National Science Foundation grants INT-8713472 and DMS-
9002342.

552



AN SU(n) q-BETA INTEGRAL TRANSFORMATION 553

is possible that they will be useful in finding generating functions and reproducing
kernels for some of Macdonald’s polynomials [11]. For example, in the one-dimensional
case, see Nasrallah and Rahman [14]. Another possible application is to look for finite
field or p-adic analogues of Theorem 2.1 or the previous integral identities in [4]-[6].
For some beautiful one-dimensional finite field and p-adic analogues of Barnes’ first
lemma see [9]-[10]. These papers also give some clue to the group representation
theoretic significance of these integral identities.

2. A multivariate integral transformation. In this section we prove an in-
tegral analogue of the SU(n) 1009 hypergeometric series transformation. The proof
involves a double SU(n) integral. Applying Fubini’s theorem and the SU(n) gener-
alization of the Nasrallah-Rahman integral [15, eqn. (2.4)], the double integral can
be partially evaluated in two different ways. The resulting identity is the desired
transformation.

THEOREM 2.1. For n >_ 2 let a, bi, cj E C for 1 <_ i <_ n + 1 and 1 <_ j <_ n + 1,
v[n+with {a], ]bi ]cj{ < 1 Set S I]_+l bi and C llj=l cj, then

n

H II

I1[anc;lc]i-Ii ’] f
j-I l<_i,j<_niTj

rc- 1/1 n-t-1 n

i=1 j=l

dZl dzn-1
Zl Zn--1

=1 [blB]
T-I

n

YI ([aBz;1][anCzj]) 1-I
j-1 l<_i,j<_n

n+l n

i=1 j=l

dzl dzn-1
Zl Zn--

where I]k= zk 1, and the integral in each variable Zl, ,Zn-1 is over the unit
circle T taken in the positive direction.

Proof. Consider the following integral:

(2.3)

1

Tn-1 Tn-

1-[ ([anBzk][anCu-l]x)} YI
k=l l<_i,j<_n

([Ziz; 1]o [UiU;1]o }

n n+l n

H H {[bjzk]c[eju-l]x)} H
k=l j=l i,k=l

dzl dzn-1 dUl dun-1
Z Zn--1 t Un--1

where 1-Ik=l zk YI=I Uk 1. If we evaluate the integral (2.3) with respect to the
variables zi, 1 <_ i <_ n, or with respect to the variables ui, 1 <_ i <_ n, by means of
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the SU(n) Nasrallah-Rahman integral [6, Thm. 2.1], we obtain the following identity:

(2.4) n+l n
n! H [anb21B] I] {[aBukl[anCu-]}

j--1 / k--1
n+l n n+l

[q]n-l[an]o H [bflBlT I [I
j=l k--1 j=l

H [UiU;1] du__l dun-1
?-t

l<i,j<_n

n+l n

=1 / =1
n+l n n+l

[q]x![an] I] [c21C]T - [I II {[acyz;1]c[byzkl}
j=l k=l j=l

H [ZiZ;1]dZ1 dzn-1
Zl Zn-l<_i,j<_n

Simplifying (2.4) and replacing the variables uk by Z-1 1 _< k < n, on the left-hand
side of (2.4), we obtain identity (2.2).

3. An SU(n) 10o9 transformation. In this section we will prove an SU(n) very
well poised hypergeometric series transformation which correspronds to Theorem 2.1.
The proof consists of writing both sides of identity (2.2) as sums of multiple series
of residues and then specializing the parameters to make the series terminate. The
SU(2) case of this series transformation (3.2) is due to Bailey [2] (see Remark 3.7
below) and is one of the most powerful classical basic hypergeometric series identities.
At the end of this section we will also state the limit q --, 1- of identity (3.2). We
begin with the following theorem.

THEOREM 3.1. For n >_ 2 let a, by, cy E C for 1 < j <_ n + 1, with abici q-m
for some nonnegative integers mi for 1 <_ i <_ n- 1. Let ?i aci and wi abi for

n--1 --1 rtn--1 --1 l-[n+1 < i < n- 1, and 7n Hi=I [i and Wn 11i=1 Wi Set B l lj=l by and
1-In+l thenC lty=l

(3.2) n

nfil [anelc]oo j=YIl{[aC"/l]c[anB/j]cx]}
i=1 [c-Ic] n+l n-1

o [I H {[ac’l][b’]}
i=1 j=l

H
l<i,j<n

n+l

i#j E
H {[aci’flloo[bi’gn]} m>_o,...,y,_,>_o
i--1 yl --...--yn =o

n+l
n [qj/aC]y$ H [bi’j]y

i=1H n+l
Y= [anBTy] II [qTy/acily

i=1
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n

1-[ {[aBwf][a’Cwl}n+l [anblB] =1H [bClB] n+ln--1
,=1 H H

i=1 j=l

17I [WiWf1]
l_i,j_n

n+l E
II
i=1 //1 +’" .+y,=0

II wiqy w .qY )3

n

n+l
[qwj/aB]u 1-I [ciwj]y

i=1

n+l
J=t [anCwj]y I] [qwj/ab]

Proof. Let ac {ac,ac2,...,aCn+l}, a-1 {C-1, C--1, C_1} a
{abl,... ,abn+l}, and/-1 {b-i bl} Let A be the set of all 6 (Ul, Un)
where for some j, 0 _< j <_ n- 1,

and

{Ul’’’ Uj} C as,

{Uj+I "’’,Un-1} C fl--1
n--1

n H ?-1
i--1

ui # Uk for all i # k, 1 _< i, k < n.

Similarly, let A’ be the set of all 6’ (v,..-, vn), where for some j, 0 _< j <_ n- 1,

and

{Vl,’’’,Vj} C a,
{VjTl,’’’,Vn-1} C (--1,

n--1

Vn H VI
i’-"l

vi # vk for all # k, 1 < i, k < n.

We will temporarily assume that lal, Ibl, Icl < 1 for all i, 1 _< i _< n + 1. Following
the argument in [5, 6], upon expanding identity (2.2) in a series of residues and
cancelling various terms, we obtain
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(3.3)

nl [anc C]oo

66A i=1 oo

l<i,j<n

ri [aCu-]o[a"Buj]o
rt+l n

H
i=

Yl ’"yrt-’-- cx:)

II
l<_i<j<_n

n

n+l
H
i=1

n+l
j=l [arBujly I-[ [qui/aci]y

i=1

H V E H
l_i,j_n y,...,yn=--c l_i<j_n

i#j m+...+y,=o
n+l

,, II
i=1H n+l

j=l [anCvjly H [qv/abi]y
i=1

where 1-I’ means the usual product except that if c. q-e for some nonnegative integer
t, then the factor [c] in the product is replaced by [q-]e[q]o. Now multiply both

n--1sides of equation (3.3) by 1-Ii= [abici] and set abici q-m, 1 < < n- 1, as in
the statement of Theorem 3.1. The only terms not vanishing on the left-hand side of
(3.3) will be when (u,..., Un) satisfies

{Ul,’.-,uj} C {acl, aCn_l },
{Uj+I, ",Un--1} C {b- b- },’" -1

and

uiuj 7 acebe forl<i,j,g<n-1.

Similarly, the only terms not vanishing on the right-hand side of (3.3) will be when
5’= (Vl,..., Vn) satisfies

{Vl,...vj } C {abl,..., abn-1},
{Vj+I,’’’,Vn--I} C {C1,’’’,c-ll},

and

ViVj # actbt, for 1 < i, j, g < n- 1.
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We now claim that all of the nonvanishing series on the left-hand side of (3.3) are
equal. This can be proved by simply reversing the appropriate summations. For
example, consider the series on the left-hand side of (3.3), where (Ul,..., Un)
and for some j, 0 <_ j <_ n-l, we haveu- ac for 1 <_ i <_ j andu- b-1 for
j<i_<n-1. Then we find

n+l iJranc--l" ml rn 0

II I :IcI E"E E
:1 y1:0 yg:0 yi+:--i+

o

Yn- =--rnn_

n--1[abtcly, H [abtc]_y,
g=l

[q] [q-U]u [q] [qul-uoo =j+l o

n

H [aCu-[ q-Y1 anBuqy]
=1

n+l n

i=1 /=l
i for 1<<n-1

[aciu-lq-y][biueqY1

nl anc C m
i=1 [clC]

yl --’0

mE--1

E
Yn-- =0

H
<_i,<_n

n

1-[ [aC’q-y] anB"iqy1
=1

n+l n

II II
i=1 =1
i for 1<<n-1

[aciV[ q-Y*][bi7q 1

n--1where Yl+’"+Yn 0,i aci for 1

_ _
n-1 and’n 1-I=l - Simi-

larly, we show that all of the nonvanishing series on the right-hand side of (3.3) are
equal. Putting this together, we obtain identity (3.2). This completes the proof of
Theorem 3.1.

Let q - 1- in identity (3.2). We then obtain the following.
THEOREM 3.5. ForE >_ 2 leta, bj,cj E C for1 <_j <_ n+l, witha+bi+ci =-mi

for some nonnegative integer rni for 1 <_ <_ n 1. Let a + ci and wi a + bi
n-1 n--1for 1 <_ <_ n- 1, and /n -=1 / and w, -)--i=l wi. Set B z_y=l by and

x-n+l thenC z_,i=l cj,
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(3.6)
n+l n--1

I-[ l-[ {r(a + c 7)r(b + 71}
+1 F(C c)

i=l =i
nH F(C- c, + na) I] {F(a + C-Tj)F(na + S + 7j)}i--1

j--1

n+l

l-I {r(a + c .)r(b + .1}
i=1

II r(, )
l_i,j_n

E II
yl kO,’",yn- _O _i<j_n
yl +...+y,=0

’7i + Y "Tj Yj )

11 (1 + a C)
.= (na + B + /j)ys

n+l

1-I (b + 7J)ys
i=1

n+l
II (1 + )
i=1

n+l n--1

I] YI {F(a + b )r( + )}
n+l r(B b) ==
r(+ e bl II {r( + )r(+ c + /t

j=l

n+l

l-I {r(a + b Wn)r(c + Wn)}
i--1

I] r(w we)

E
yl _O,...,yn-l _O
Y+’"+Yn--O

wi + Yi wj yj

n

n+l
(1 + a B) I1 (c +)

i=1

n+l= (ha + C + wj)us l-I (1 + wj a bi)us
i=1

Remark 3.7 To show that the n 2 case of identity (3.2) is equivalent to Bailey’s
very well poised 109 transformation ([3], p. 68), set ablcl q-m in (3.2) and reverse
the series on the right-hand side of (3.2). Set a in Bailey’s notation equal to a2c here,
and c a2c2cl, d a2c3cl, e qc2 lc1 q-’f ablCl g ab2cl, h ab3Cl,
j qa-lB-lcl, and k c21, where the notation on the left-hand side of each equality
is Bailey’s and on the right-hand side is that of (3.2) here. From (3.2), we then obtain
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the following transformation in Bailey’s notation:

a, qv/-d, -qx/, c, d,
lO9 v/d, -v/d, aq/c, aq/d, aq/e,

.f g, h, J; q 1
aq/f, aq/g, aq/h, aq/j J

[f/a], [g/a][fgh/a][h/a]
[a-1] [fg/a] [gh/a] [fh/a]
[qa/fj]o [qa/gj] [qa/hj]o [qa/fghj]
[qa/j][qa/ghj] [qa/hjf][qa/jfg]

k, qvf, -qvf, kc/a, kd/a, ke/a,
1o9 x/, -/, aq/c, aq/d, aq/e,

f, g, h, j; q ]
kq/f, kq/g, kq/h, kq/j J

where k a2q/cde, cdefghj a3q2, and f q-’ for some nonnegative integer m.
Since f q-m, observe that

(3.9)

[a-1] [fg/a] [gh/a] [fh/a]
[a-lq-m]m[gha-lq-m]m
[ga-lq-m]m[ha-lq-m]m

[qa]m[qa/gh]m
[qa/g],[qa/h]m

[qa]oo [qa/fg]oo [aq/fh]oo [qa/gh]oo
[qa/f]oo[qa/g]oo[qa/h]oo[qa/fgh]oo"

Using identity (3.9) to substitute for the first part of the product on the it right-hand
side of (3.8), we obtain Bailey’s 109 transformation [3, p. 68].

4. A Jackson summation theorem for hypergeometric series on Sp(n).
In this section we generalize Jackson’s summation theorem [8] for very well poised s7
hypergeometric series to the setting of basic hypergeometric series very well poised
on Sp(n). The Sp(1) case reduces to the classical Jackson sum. The proof is very
similar to that in 3, except that the starting point is the Sp(n) integral identity [6,
Thm. 4.1].

THEOREM 4.1. For n >_ 1, let ai C for I <_ i <_ 2n + 3, with aya+y q-m for
]-[2n+3some nonnegative integers mj for 1 < j < n. Set C l i=1 ai. Then

E
(4.2) m >o,...,v,>o

q-,=lE(n+l-i)Y fi (1(1a--.)-aq2y)
j=l

H (1 aia- q-)(1 aiajqU+

l<_i<j<n (1 aia-l)(1 aiaj)



560 R.Y. DENIS AND R. A. GUSTAFSON

2n-F3n [aiajly[aia;ll-y
i=n+2

n

n-F1
j=l [Caj]y [Ca;ll_y YI [qa;

i=1

2n+3 n

H {[Ca-]o YI [aa}-l]oo}
i=n+l j=l

--1aj]y [qa[laj I-us

n

H [aiaj] 1--[ [a-lallx l-I [Ca]
n+l_i<j_2n+3 1<i<j_n i=1

Proof. Let us temporarily assume that ]ail < 1 for 1 _< i N 2n + 3. From [6,
Thm. 4.1] we have the following identity:

where the integral in each variable zj is over the unit circle T taken in the positive
direction.

Let S be the set of all injective mappings r" {1, 2,..., n} -- {1, 2,..., 2n + 3}.
Using Cauchy’s theorem and following the argument in 7 of [5], we can rewrite (4.3)

(4.4)

rS y ,...,yn =O

where 1-r is defined as in (3.3). Now multiply both sides of equation (4.4) by
nI-Iy=l[ayan+y]o and set aan+j q-m. The only terms not vanishing on the left-

hand side of (4.4) will be when the image of r c {1,..-, 2n}, and if j image of r,
then n + j image of r for all j, 1 < j < n. An argument similar to that in 3 shows
that on the left-hand side of (4.4), the corresponding series in Yl,’"Yr for all such 7r

are equal. Identity (4.2) and Theorem 4.1 now follow from (4.4) after simplification.
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We also have the following result when q -, 1- in (4.2).
THEOREM 4.5. For n > 1, let a E C for 1 < i < 2n + 3, with ay + an+y -my

-2nq-3for some nonnegative integers mj for 1 < j < n. Set C -,=1 a. Then

fi (ay + yy ) 1] (ai + Yi ay yy)(ai + yi + aj + yy)

y=l
ay

l<_i<j<_n
(ai aj)(ai + ay)

2n+3

YI +
H i=n+2

n+l
j=l (C -- aj)y (C aj)_yj H (1 a - aj)y (1 ai ay)_y

1-[ F(ai + ay) YI
n+l<_i<j<_2n+3 <i<j <_n

i=1

1-I r(c +
i--1

YI F(C ai) 1-[ r(a ay)
i=n+l j=l
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Abstract. An alternative form of a famous result of Ramanujan is given, which is quoted as Entry 29(b)
in Chapter 10 of Berndt’s [Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1988]. Other results
of a similar kind are reconsidered and generalized.

Key words, elliptic integrals, hypergeometric functions
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1. In his first letter to Hardy, dated January 16, 1913, Ramanujan [1] communi-
cated the formula

(1.1)
1

n+l
3F2

1,
1/2, n+l] (n!) (1/2)r
+ 2 r:O i;,5

which, together with certain generalizations, gave rise to a flurry of papers in the years
1929-1931. This result is quoted as Entry 29(b) in Chapter 10 of Berndt’s [2] second
book, where the related formulas-- q n+ =2G+ -5-

r:0

and

(_) 16F_() nl (_)2
(1.3) 2go n+ =1+

7" r:0 (-)r
are also discussed. In (1.2) and (1.3), o(z) is defined by

(1.4)
1) 1, z+ 1

for all complex z; moreover,

(_l)r
(1.5) G r=oE (2r + 1)2

is Catalan’s constant.
As far as we know, the most recent proof of (1.1) and (1.2) is due to Dutka [3],

who performed two distinct evaluations of the integral 1o x’2F(1/2, 1/2; 1; x2) dx, m being
a nonnegative integer.

In this note, we first derive an alternative expression for the finite sum on the
right side of (1.1). This is done in 2. In 3, we generalize Dutka’s procedure and
obtain some (perhaps new) formulas for 3F2 and 4F3.

* Received by the editors August, 1989; accepted for publication September 11, 1990.
f Dipartimento di Fisica, Universith di Milano, Istituto Nazionale di Fisica Nucleare, Sezione di

Milano, Via Celoria 16, 20133 Milano, Italy.
$ Centro Consiglio Nazionale delle Ricerche, Dipartimento di Biologia, Universitfi di Milano, Via

Celoria 26, 20133 Milano, Italy.
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2. Let us consider the integral

I,(a) 4(n!)2 ta+n-(/2)(1- t) -1/2 dt x"(1- tx) -/2 dx

Io’ Io-4 (nl)2.
t-{’/2)(1 t) -1/2 dt (1- tx) -1/2 =oE (--1) (1--xt) dx

4 (n !) t-(3/2) (- 1 )r
r=O r+1/2

dt

Ce-- (--1)r
r+-12 o)4 (n !)2 r=0

By putting c =-n, we get

(2.2)
4 (n!)2 x"2F, ,;1;x dx= n----=o 7i 2(n-r)+l

Now, by recalling Ramanujan’s formula (1.1),

(2.3)
4 (n!)2 x 2F1 ,,l;x dx-

4 (n!)2 n+l kl, n+2

r=O (r!)2"

Hence, by comparing (2.2) and (2.3), we obtain the identity

()r
(2.4)

(-) (1/2) 1 t2

n r=o r.l 2(n r) + 1 r=0 (;i)-2"

An alternative proof of (2.4) may be of some interest. To this aim, we start from

(1-- x)-l/2 (1) lot /2( -1/2 dt,=2F1 1, ; 1; x t- 1- t) (1--xt)-’

d 1

dx2
-log-- t-’/2(1 t)-’

0 X(1- t)
tan- dr,1-x/- 7r Ox 1-x /

whence

(2.5)
l+v/’ 1lot (/ ’t_1/2( 1 t)_ tan-

x(1 t)
dt.

1-x/ "rr 1-x ]

By observing that

on(1

xu)-(1 u)-/2(1 -xtu) -/2 du

=2[x(1-x)(1-t)] -/2tan- 1-x
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(2.5) becomes

(2.6)

X-1/2(1--X)-1/210g

1 Iot --1/2( /2 dtl-t) -1

(1/2)n+l
On+l--On (n"’l)!

This gives another reason why (2.4) is a useful formula.

since

the right side is

1-x y xn n!
--1/2( --3/2 tn+l

r n=o c dtt l-t) (1-

=(l-x) E c,x"
n=0

1 + (Cn+ Cn)Xn+l= 2El , 1; X
n=0

and, by comparing the coefficients of x" on both sides, the required identity (2.4)
follows at once. Incidentally, this derivation of (2.4) gives, together with (2.2), another
proof of Ramanujan identity (1.1).

It may be noted that, with 6 x(d/dx), (2.6) is equivalent to

(2.7) x_l/2(l_x)_l/21ogl-t-x/- (_) ( 1 )l_x/-B 6+1, (1-x)-12F1 ,;1;x
This follows from the fact that Ux(d/dx) U has the operational property uf(x) =f(ux),
f(x) being analytic in a neighborhood of x 0. By using

F(6 + ) 1 fro -1/2( -3/2( tl+8l-t) 1- at,(2.8)
F(6+ 1)x/-- 27r

(2.7) is formally inverted to give (with u(x) x-1/2(1 x) -1/2 log (1 + x//1 -x/)

(2.9) 2F1 ; 1; X --1/2(1 )--3/2[U(X) [U(X)] d.

This is a rather unusual expression for the complete elliptic integral of the first kind.
Equation (2.9) can also be proven directly from (2.4) and (2.8). Indeed, by

observing that

u(x) 2 , x" 2 c,,
,=o r=o r! 2(n-r)+l =o

(2.10) 2()r

(1 XU)--I(1 u)--l/2(1 xtu) -1/2 du

(1-u)-1/2(1-xu)-12F1 ,-; 1;xu du,



SOME FORMULAS OF RAMANUJAN, REVISITED 565

3. Let us consider

(3.1) As=- x"K (x) dx,

(3.2) B, =- x’E (x) dx,
o

where

(3.3)

(3.4)

K (x) (1 t2)-1/2(1 x2t2) -1/ at,

E(x) (1 te)-l/(1-xte)1/ dt

are the complete elliptic integrals of the first and second kind, respectively.
From the well-known formulas [4]

(3.5)

(3.6)

we easily obtain

(3.7)

and

x(1-x2)K’(x) E(x)-(1-x2)K(x),

x’(x) (x) I’; (x),

B-(A-A.+2)= X+I(1-x2)K’(x) dx

j.1 K(x)[(ce+l)x"-(a+3)x+]ax
o

-(c + 1)A, +(c + 3)A,+2,

(a +2)A+-aA B,

B, -As x+E’(x) dt= 1-(c + 1) xE(x) dx

1- (c + 1)B,

(3.8) (c +2)B, 1 +A.
Equations (3.7) and (3.8) imply

(3.9) (a + 2)A+2- (c + 1)a 1,

(3.10) (ce + 2)(a + 4)B,+2- (ce + 1)2B 2.

By introducing

(3.11) C
r(a + )

A2, 3F2F(a +1/2) 4 F(a + 1/2)F(ce +) 1,
1/2, c+1/2]
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and

(3.12)

it follows that

(3.13)

and

(3.14)

whence (n 0, 1, 2,. .)

(3.15)

and

(3.16)

By observing that [5]

1 [r(a+l)]Co+l Co F(o _t_ _)

1 F(a+l)F(a+2)
D+I-D = F(a +_32

c"+"= C" +-4 ,=o Lr(a + r+

1 nl r(o/-Jr r+ 1)r(a + r+ 2)

2G r
(3.17) C/2- 4

Co- C-1/4 "---,
7r 8

it is easy to obtain (1.1), (1.2), and (1.3) from (3.15). Our results (3.15) and (3.16) are
an interesting generalization of Ramanujan’s formulas.

With a 1/2, (3.16) becomes

(3.18)
(1/2)r()r

D,+(,/2) =-- r=0 (rl)2.
On the other hand, we have (cf. the derivation of (2.1))

1 F(n+)F(n+)lim. j’ fotDn+(1/2)=- (nl)2. --. o
t-(’/2)(1- t) -1/2 dt (tx)"(1- tx) ’/ dx

(3.19)
3r (). 1 r+l()8 nl (n r)l ;-3

2r=O

Hence, we get the identity

(3.20)
(1/2)r(-)r 3(). 1 r+l()

equivalent to the integral formula

L (1- x) -’/2-L X-3/2(1--X) 1/2 log
x 2 1 x/-

(3.21) ( 1 )(1-t)’/2(1-xt)-22F1 --,;1;xt at

B(6+1)(1-x)-2 FI( 1 1 ): -,; 1;x



SOME FORMULAS OF RAMANUJAN, REVISITED 567

which, by using

r(a+)
F( + 1)r()

t’/2(1 t) -5/2 1+ 1 +(1 + 6) l____t dt,
27r

can be formally inverted to give

(3.23)
F, -,;1;x =(1-x)2 t’/2(1-t) -5/

tw(xt)-w(x)+---- l+X-xx w(x) dt,

1
(1 x) -1/2 1

W(X)
X X-3/2(1 x)

Some final remarks are in order. First, we note that

3[, ’1 Io (x-/(1-x)-I/F ,o+n;a+n+l’x dx.
1, a+n+l r

Now [6, (25)]

(3.24)
2El ce + n; a + n + 1; x

(c q-1/2)n r=0 ( q- 1)r
(1--X)

(1)2F1 a+r,+r; a+r+l;x

and thus

(3.25)
1, ce+n+l (O "-" 1/2)n 0 (ce + 1)rrt

! 1/2+r,
.3F2

2,

r+l, ce+r+l .1

This formulamwhich, for a 1, reduces to (2.4)menables us to express

I ], 1/2+n, ce+n
n+l, a+n+l

in terms of fee+r_(1/2), r=0, 1,. ., n.
Next, we have

Io () ’Io’ Io’xa-12F ,; 1; x dx=-- t(1/2)-a(1--t)-l/2 dt (tx)a-’(1--tx) -1/2 dx

t-(1/2)-c(1 )-1/ dt x-(1-x)-/ dx

x-l(1 x) -/2 dx

t-(/-(1 t)-/ dt t-(/-(1 t) -/; dt
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that is, by expanding (1-t) -1/2 in a binomial series, and integrating term by term
[7, (2)],

(3.26)
1 3F2[1/2, 1/2, a] F(a)F(1/2- a) (1/2)2r 1

a 1, a+l =V(1-c)V(1/2+a)-r=o(r!)2 r-a+1/2"
Let us put n + (1/2), n =0, 1, 2,. . A straightforward calculation shows that (as
usual, (z) (d/dz) log F(z))

[ F(a)F(-a) ()2, 1 ]= 2
()] [(n+l)-li1/2 r(1 a)U(+ a) (n ])2 n a + (n )2

and thus

(3.27)
1 , , n+ 2’

() 1
2 (n+ 1)- n+

+ 3F2
1, n + =o (r ]) r n (n ])2

’ having an obvious meaning. Since

() 1 1, 1, n+,() 1 ()n+l 2

(3.28 + (il 4F3(;r n 2, n+2, n+2. r=O

(3.27) gives

1, 1, n+, n+]4F3 2, n+2, n+2 J
in terms of Cn.

We have explicitly checked (3.27), for n 0, 1, 2, 3, by writing
2 Io, [ (1) 2 ](-),.. 1 X-(n+l) 2El ," l’x,

()r
X dx

+1 ;i)2
F-- /’/ r=0 (r!)2

t-1/2(1- t) -1/2 dt x-("+1)

]r=o(tx)r aX,

and by using the formula

H.(t)=- X
-(n+l) (1-- tx) -1/2 r=O’-. (tx) dx

(3.29)

1 1

n qg"’(t)- n(n-1)

1"3 2

22 n(n- 1)(n-2)
q,-z,z(t)

1.3... (2n- 1)- 2"n!

where

(3.30) qn,r(t)-- (1 t) -(r+(1/2))- (r+1/2)i d
j=o j!
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and

(3.31)

Explicitly, we have

(3.32)

tl
L,(t)=- -[(1- tx) -("+(1/2))- 1] dx.

x

Lo(t)=_21og(l+v/1-t).2

furthermore, it is easy to show that

1
(3.33) L,+l(t) L,(t)+n+ 1/2 [(1

t)-("+(1/2))_ 1].

For the sake of completeness, we also quote the recurrence relation

2n+l 1 7r
(3.34) M.+I-2n+zM, (n+l)(Zn+l)+--4 (n+l)(n+l)!’

where

(3.35)

Last, we recall that

M, =- t"-(I/2)(1 t) -1/ log dt
2

f/2 (l+cosO) dO2 sin" 19 log
2

(3.36) Mo -27r log 2 + 4G.

This result follows from (3.35) by using

log(1+cs19) 2 (--1)r
cos (r+ 1)19-2 log 2.

2 =o r/l

The proof of (3.29)-(3.34) is left as an exercise to the reader.

Acknowledgment. We express our sincere gratitude to Professor B. C. Berndt for
his kind encouragement.
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ON TWO CONJECTURES CONCERNING THE MULTIPLICITY OF
SOLUTIONS OF A DIRICHLET PROBLEM*

HANS G. KAPERt AND MAN KAM KWONGt

Abstract. It is shown that there exist two strictly convex functions, both denoted by f on

(-oc, oc), the first satisfying the conditions ff(-oc) < 1 and n < f’(cx) < (n + 1) and the second
satisfying the conditions (n- 1)2 < f’(-oc) < n < f’(oc) < (n + 1)2, such that the Dirichlet
problem for the second-order nonlinear differential equation u" + f(u) h(x) on [0, x] has at least
2(n + 1) and five solutions, respectively. This settles in the negative two questions raised by Lazer
and McKenna [SIAM Review, 32 (1990), pp. 537-578].

Key words, nonlinear boundary value problem, multiplicity of solutions, variation index, topo-
logical degree

AMS(MOS) subject classifications, primary 34B15; secondary 35J25

1. The conjectures. Recently, Lazer and McKenna [1] proposed a modified
mathematical model for the onset of large-amplitude oscillations in suspension bridges
forced by winds with specific velocities. Their study was motivated by the inadequacy
of older theories’ explanation of the collapse of the Tacoma Narrows Bridge of Seattle
in 1941.

In the Lazer and McKenna model, the motion of the bridge is, as usual, governed
by a system of differential equations, the complexity of which depends on the degree
of approximation and the simplifications one is willing to accept. One of the new ideas
introduced by Lazer and McKenna concerned the asymmetry of the restoring force
that a cable exerts under expansion and compression. The authors’ basic assumption
is that the cable "strongly resists expansion, but does not resist compression." The
study leads to boundary value problems of semilinear elliptic equations with Dirich-
let conditions or second-order ordinary differential equations with periodic boundary
conditions.

The study of semilinear elliptic equations with nonlinear restoring-force terms is a
worthwhile subject, still largely unexplored. In their article [1], the authors collected
several interesting open problems, some of which have not been answered even in the
one-dimensional case, when the elliptic equation reduces to a second-order nonlinear
ordinary differential equation.

In this article, we take up two of these open problems, namely problems 4 and 3.
The problems concern the Dirichlet boundary value problem

(1.1) u" + f(u)= h(x), 0 < x < ,

(1.2) u(O) u(r) O,

where f is a genuinely nonlinear Lipschitz continuous function on (-c, c) and h is
any continuous function on [0, ]. The main objective is to determine upper and lower
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work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy, under contract W-31-109-Eng-38.
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bounds for the number of distinct solutions of (1.1)-(1.2), when f is strictly convex
and satisfies one of the following growth conditions:

(1.3) f’(-x) < 1, n2 < f’(cx) < (n + 1) 2,

(1.4) (n- 1)2 < f’(-ec) < n2 < f’(oc) < (n + 1)2.

Strict convexity is imposed to exclude certain degenerate cases. For example, when
f(u) n2u for u E I-A, A], while f’ still satisfies the inequalities in (1.3), the choice
h(x) 0 gives a continuum of solutions, namely, u a sin(nx) for any a < A.
However, when we construct our counterexamples in 5, we first work under less
restrictive conditions on f; we subsequently use a perturbation argument to meet the
full requirement.

In the following, we shall refer to a solution of (1.1)-(1.2) as a D-solution and
reserve the simpler term solution for one that satisfies (1.1), but not necessarily the
Dirichlet boundary conditions (1.2).

Lazer and McKenna proposed the following two conjectures:
CONJECTURE 1. If f satisfies the conditions (1.3), then the boundary value prob-

lern (1.1)-(1.2) has at most 2n solutions for any given h.
CONJECTURE 2. If f satisfies the conditions (1.4), then the boundary value prob-

lem (1.1)-(1.2) has at most 3 solutions for any given h.
In this article we show that there exist a constant-valued function h and a function

f, which satisfy conditions (1.3), such that the boundary value problem (1.1)-(1.2)
has at least 2(n + 1) solutions. A slight modification of this counterexample will give
a function which satisfies the conditions (1.4), such that the corresponding boundary
value problem has at least five solutions. These results refute both conjectures of
Lazer and McKenna.

Although all it takes to disprove a conjecture is one counterexample, augmented
by convincing numerical data, we prefer to discuss in more depth the theoretical
reasoning that led us to the discovery of the example. Such analytical considerations
give a better understanding of the structure of the solution space and shed light on
similar open problems.

We use the familiar shooting method. In 2 we sketch the simple concept of
the variation index of a solution and its use in tracking the number of solutions.
Although the index does not precisely indicate what must happen, it does show what
may happen and, in our case, suggests that something can go wrong if we start with
a solution having an undesirable index.

In 3 we present the analytical reasoning that led us to the counterexample. Our
discussion pertains only to the particular case n 2; extension to general n is obvious.
In 4 we present a serendipitous result about the number of solutions of the Dirichlet
problem (1.1)-(1.2) when the function h is even. In 5 we present the counterexamples
along with some numerical results.

2. The variation index. Proofs in this section are only sketched, since all are
elementary; in fact, some are quite well known. We consider the general inhomoge-
neons case (1.1) and the Dirichlet conditions (1.2).

The shooting method is intuitive. We replace the boundary value problem with
an initial value problem, where, instead of (1.2), we impose the conditions

0,
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Here, a E (-,) serves as a parameter. The solution of the initial value problem
is a continuous function of both x and a; we denote its values by u(x, a). If, for some
choice of a, u(r, a) 0, we have obtained a D-solution. Thus, by keeping tabs on
how often u(r, a) changes sign as a varies from - to oc, we can determine the total
number of D-solutions. The job is often done by analyzing the upward/downward
movement of the "tail end" of the solution trajectory.

Another technique, suitable for h(x) 0, is to carefully follow the zeros of u(x,
that is, the intersections of the graph of u with the x axis. Since a solution is never
tangent to the x axis, the zeros of u(x, a) can only slide along the x axis and appear
or disappear through the right endpoint r. More generally, and especially for inhomo-
geneous equations, we can follow the intersections of u(x, a) with a fixed D-solution,
u(x, ) say, for a suitable /3. By the uniqueness theorem for initial value problems,
no two distinct solutions u(x, a) and u(x, ) of (1.1) can be tangent to each other at
any x E [0, r]. Thus, as c varies continuously, the intersection points of u(x, c) with
u(x, ) can only slide along the graph of the latter. The intersection number of the
two solutions is an elementary interpretation of the abstract concept of topological
degree. If a decrease in the number of intersections is noticed as a varies from one
value to another, the lost intersection point must have slipped away through the right
endpoint at some intermediate value of a. That value corresponds to a D-solution.

The intersection number of a solution u(x,/3), with a neighboring solution u(x,
a /3, can be approximated by studying the function w,

which satisfies the variational equation

(2.3) w"(x) + f’(u)w(x) O, x > O,

with initial conditions

(2.4) w(0) 0, w’(0) 1.

In (2.3) we substitute the solution u(x, ) into the expression f’ (u) as if it is a known
function, and we regard (2.3) as a linear differential equation of w with the known
coefficient f’(u(x,)). The number of times that w(x) changes sign in [0, r] gives
valuable information. The fact that w satisfies a linear differential equation makes it
possible to apply the classical Sturm comparison technique.

We say that the variation index of u(x, ) is k if the corresponding function w
has k zeros in (0, r]. Note that x 0 is always a zero, but it is not counted. If,
furthermore, w(r) - 0, we say that the variation index is k+. For simplicity, we shall
use the abbreviated term indez.

The use of the variational equation to study multiplicity of solutions has a long
history, usually associated with bifurcation theory. In particular we note its use by
Coffman [3], and subsequently by McLeod and Serrin [4], Ni and Nussbaum [5], and
Zwong et al. [6]-[9] in the study of the uniqueness and nonuniqueness of the ground
state of semilinear elliptic equations. The concept of the index is used throughout
these works, even though it is not identified by name. A definition of the variation
index was given recently by Clemons [10].

What is the significance of the sign of w(x) at a given point x? The sign tells us
whether u(x, a) increases or decreases as a is slightly increased from/3. What about
the index itself? If the index is k+, there is sequence of k + 1 points

(2.5) 0 < x < x <... < x+ < -,
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such that

(2.6)

Thus, there exists a small enough e > 0 such that for all a E (/, + e),

> Z), < u(x ,

It follows that u(x, o) intersects u(x, ) at least k times. The same is true for a e
(- , ). Note that in the degenerate case, when the index is k but not k+, we can
assert only the existence of k- 1 intersection points.

Let us consider an example to see how the index can be used to deduce multiplicity
results. Under the assumption f/(_) < 1, it is easy to see that, given any fi/, we can
find an a sufficiently negative that u(x, ) does not intersect u(x, ) at all. On the
other hand, under the additional assumption that f1(oc) > 1, it can be shown that
there exists a 5 sufficiently large that u(x, ) intersects u(x, ) exactly once. Suppose
now that u(x, ) is actually a D-solution and that its index is known to be k+. Let
us decrease a from to ". Initially, when c is sufficiently close to , u(x,a) has
k intersection points with u(x, ). As c reaches , all of these are lost. We thus
conclude that at least k intermediate values of a give rise to D-solutions. Likewise,
if we increase c from/ to 5, k- 1 intersection points are lost, adding k- 1 more
D-solutions. Including u(x,/), there is a total of 2k D-solutions.

In [2], Lazer and McKenna studied the equation (1.1) with h(x) ssin(x)+hl(x)
for large s. They constructed a large, almost linear solution, which can be shown to
have index n+. Starting with this D-solution, we can use the above arguments to
obtain the main theorem of [2], namely, that there exist at least 2n D-solutions. The
proof we sketched here is, of course, only a paraphrase of that in [2], with the role of
the index underscored.

3. Toward the counterexamples. In this section, we confine ourselves mainly
to Conjecture 1 described in 1, assuming that (1.3) holds. Some of the observations
below, indicated by the presence of the modifiers generic or generically, are meant to
be intuitive and nonrigorous.

If there exist an infinite number of D-solutions, then the conjecture is obviously
false. So we henceforth assume that there are a finite number of D-solutions.

We order the D-solutions according to the magnitude of the corresponding pa-
rameter a and refer to the D-solution with the smallest (largest) c as the first (last)
D-solution. We know from the discussion in the preceding section that the index
of the first solution is zero or at most 1 (but not 1+). Intuitively, we know that a

degenerate index is nongeneric and occurs rarely. In any case, a small perturbation
can bump it into a nondegenerate index. Thus, generically the first solution has index
zero.

Using the comparison principle and the convexity assumption of f, it can easily
be shown that from the third D-solution onward, the index cannot be zero. The
discussion in the preceding section also shows that the index of the last D-solution is
at most 2. Hence, if more than two D-solutions exists, the last one generically has
index 1+.

The first solution cannot intersect any other solution in (0, ); otherwise, a conti-
nuity argument involving decreasing a will give an extra solution before the first one.
On the other hand, we claim that any two other solutions must intersect.
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We prove the claim by contradiction. Let u denote the first solution and u2, U3
two other solutions. If u2 _< u3 (they do not intersect), then both u2 -ul and u3- ul
are nonnegative functions satisfying a second-order differential equation of the form

(3.1) (ui ul)" + f(ui) f(u)
(ui u) 0, 2,3.

Ui tl

The convexity of f, however, implies that the coefficient in the equation for 3 is
larger than that in the equation for 2. Hence, by the Sturm comparison theorem,
u3 u oscillates faster than u2 u, a contradiction.

We now restrict ourselves to the case n 2 and assume that h is symmetric,

(3.2) h(x) h(- x), 0 < x < .
By (1.3), the coefficient f’(u) in (2.3) is less than 9. By the Sturm comparison
theorem, w(x) cannot change sign more than twice. Thus the index of any u(x, a) is
at most 2+. Ignoring the degenerate cases, we therefore have three choices: 0, 1+, and
2+. The Sturm comparison theorem also tells us that no two solutions can intersect
more than twice in (0, r]. It follows that no two D-solutions can intersect more than
once in the interior (0, ).

The first D-solution, denoted by u(x,), has index zero; hence, as we increase
a from/, the tail of the graph, u(, a), initially moves upward. Thus u(, a) > 0
for a greater than but close to . In order to produce the next solution, u(x, y), the
tail must start to move downward for some value of a before and continue to do so
until is reached. Such movement of the tail can happen only if the index of u(x,
is odd (again ignoring the degenerate case); thus, the only choice is 1+. If u(x, ") is
not the last D-solution, we can continue this argument to conclude that, generically,
adjacent D-solutions have indices of opposite parity. The argument also shows that
generically we expect an even number of D-solutions, an expectation that is confirmed
in the symmetric case below by Theorem 1. A degeneracy may occur when the tail
of the graph moves towards zero and then bounces back in the opposite direction, in
which case we have a degenerate index. With all these observations, we conclude that
the possible generic configurations of indices are 0, 0 or 0, 1+ for two D-solutions and
0, 1+, 2+, 1+ for four D-solutions.

What additional properties are imposed by the symmetry of h? The first D-
solution must be symmetric; otherwise it intersects its reflection, contradicting our
assertion that the first solution does not intersect any other solutions. If more than
two D-solutions exists, the last one cannot be symmetric. Indeed, it must intersect the
second D-solution exactly once in (0, ). Reflecting the second D-solution will then
give another D-solution having a larger a than the last D-solution, a contradiction.
Now that we know the last D-solution is not symmetric, its reflection must be a
different D-solution and must have the same index 1+. The only way this situation
can happen in the four D-solution case is, therefore, that the second and fourth D-
solutions are reflections of each other, and this forces the third to be symmetric with
index 2+ (recall that the first D-solution must be symmetric).

Although intuitive, these observations provide us enough clues for the search for a
counterexample. Suppose we start with an equation that has a symmetric D-solution
with index 1+. We have just seen that this is incompatible with the case with four
D-solutions. Hence, either we .have only two D-solutions or the conjecture is false. We
pick an example in which the index of the symmetric D-solution is 1+ but very close
to 2. Let the maximum of the D-solution be M. We still have freedom to modify
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f(u) for u > M. A small decrease in a brings part of the solution above M, and this
enables us to manipulate f(u), for u > M, so that the solution will bend down fast
enough to give one more D-solution--thus excluding the case with two D-solutions.

Once a concrete example has been constructed, it is not difficult to furnish a
rigorous proof.

We can argue in a similar way to obtain a counterexample to Conjecture 2. It so
happened that almost the same nonlinear function f(u) worked for both conjectures.

4. Interlude. Before proceeding with the actual construction of a counterexam-
ple, we digress for a moment to give a serendipitous result on the evenness of the
number of D-solutions for symmetric equations, which follows from the arguments
used in the preceding section.

THEOREM 1. Suppose that (1.3) and (3.2) hold. Then (1.1)-(1.2) has either
exactly one D-solution or an even number of D-solutions. In the latter case, there is
a pair of distinct symmetric D-solutions.

Proof. As seen before, the first D-solution is symmetric. If there is a nonsymmet-
ric D-solution u(x, ), its reflection u(x, /) u( x, ) is also a D-solution. At the
midpoint of the interval, u’(/2,)=-u’(/2,,) 0. A shooting argument shows
that at some intermediate c between/ and ,, u’(/2, a) 0, and this will give a
second symmetric D-solution. There cannot be a third symmetric D-solution; other-
wise it will intersect the second symmetric D-solution at some point different from
r/2. By symmetry the two D-solutions will have more than two intersection points
in (0, ), contrary to the upper bound imposed on f(u). The conclusion now follows
from the fact that the remaining nonsymmetric D-solutions must occur in pairs. D

5. The counterexamples. Let us, for the time being, overlook the requirement
of strict convexity on f and choose for f a non-C function. This will simplify the
analysis and the programming for our numerical computation. For the first coun-

terexample, let

8u- 439/100,
f(u) 361u/100,

-361C/100,

u e [1,),
ue I-C, 1),
u e

where C is some suitable large positive number. For the second counterexample, we

simply let C be x in the second line of (5.1) and eliminate the third line. We choose
a constant forcing term on the right-hand side of (1.1),

h(x)=
361 (1 +cos)

which is determined so that the function

1 19 1 + cos 2-6(5.3) u(x,/3)
1 + cos

cos x- +
cos 2-6

is a D-solution of (1.1), where
The existence of at least six D-solutions, for large C, and at least five D-solutions,

for C oo, is confirmed numerically. We start our computation by shooting solutions
from x 0 with initial slope between -10 and 10 at increments of 0.1. For the
integration we use a fourth/fifth-order Runge-Kutta method from MATLAB, with
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an error tolerance of 10-6. More accurate computations carried out near the D-
solution, by using smaller tolerances and increments of the initial slope, confirm our
conclusion.

The data given in Figs. 1 and 2 belong to the choice C 1.

-8 -6 -2

initial slope

FIG. 1. Final height u(r, c) vs. initial slope

Figure 1 shows the graph of the final height u(r, c) as a function of the initial
slope a u’(0, a) for c E [-9,5]. Each intersection of the graph with the c axis
gives a D-solution. Six D-solutions are clearly identifiable. No other solutions turn
up when a wider range of a is used. For the second counterexample, with C oc, the
corresponding graph is almost the same, except that the part where the initial slope
is less than -5 is entirely above the axis; hence, there are five D-solutions.

Figure 2 shows the graphs of three shooting solutions x H u(x, a) for different
values of the initial slope a.

Note that the graph in Fig. 1 is nowhere tangent to the a axis, indicating that
none of the D-solutions is degenerate. It follows that a sufficiently small perturbation
will not alter the total number of D-solutions. Thus, if we replace our choice (5.1) of
f by a strictly convex smooth function, all six D-solutions will be preserved.

A theoretical proof of the existence of more than four D-solutions can be given
along the line of reasoning set forth in 3. The computations, which are straightfor-
ward, are omitted.

The D-solution (5.3) is represented by the point B in Fig. 1 and by the graph
labeled u(x,b) in Fig. 2. It has index 1+, since the variational equation is

361
(5.4) w"(x) + -i-w(x) 0, w(0) 0, w’(0) 1,

whose solution w(x) sin(19x/10) has only one zero in (0, zr). As shown in 2,
this means that if c decreases from , the final height u(r, a) moves upward, at least
for a while. This property is confirmed in Fig. 1, as the part of the graph to the
immediate left of B is above the a axis. In Fig. 2, the same property is manifested by
the fact that the solution labeled u(x,a) intersects u(x,b) once and remains above
it afterwards.

We continue to decrease a to ’7; the corresponding solution u(x,’7) is labeled
u(x,c) in Fig. 2. All these solutions can be computed analytically because the
equations are linear in each of the two disjoint regions u < 1 and u > 1. Indeed,
the difference u(x, 13)- u(x, "7) is simply a multiple of sin(19x/20), as long as u(x, a)
remains less than one. The portion of the solution above the dotted line u 1 is
now subjected to a much larger "restoring force," as the coefficient of the linear term
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1.5-

0.5

-0,

O.5 2.5

FIG. 2. Shooting solutions for three different initial slopes.

has jumped from 361/100 to 8. It is not hard to show that the duration for which
the solution can remain above u 1, i.e., the length PQ in Fig. 2, cannot be more
than r/v/g. The horizontal distance between the point S, where u(x,c) crosses the x
axis, and the point P diminishes as 7 decreases and can be arranged to be arbitrarily
small if C is chosen sufficiently large. The symmetry of u(x, c) about the point R,
halfway between P and Q, implies that the graph must intersect the x axis again
at some point T, with SR RT. If S is sufficiently close to P, then T falls within
(0, r), as shown. The change of sign from u(Tr, a) to U(Tr, 7) implies the existence of
a D-solution between c and 7. There are two intersection points between u(x, ) and
u(x, 7). As the initial slope is further decreased below 7, two more D-solutions must
occur before both of the intersection points are completely lost. Of these three extra
solutions, one may be the first D-solution and so is symmetric. The other two will
give two more D-solutions upon reflection.

It is easy to see how the construction can be extended to values of n > 2. We need
to start with a symmetric D-solution having index (n- 1)+, which can be perturbed
slightly to give a symmetric D-solution with index n+. We leave it to the readers to
supply the details.
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VARIATIONAL FORMULATIONS FOR THE DETERMINATION OF
RESONANT STATES IN SCATrERING PROBLEMS*
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Abstract. Consider the scattering of an acoustic wave by a rigid obstacle. The poles of the analytical
continuation of the resolvent operator are called scattering frequencies. On their localization depend the
time-decay of the solution and the location of the energy peaks of the steady-state solution.

Two methods are proposed to construct explicitly the analytical continuation of the resolvent: the
localized finite element method or the coupling between variational formulation and integral representation,
which both rely upon the reduction of the exterior Helmholtz problem to a bounded domain. The determina-
tion of the scattering frequencies then amounts to solving a nonlinear eigenvalue problem for a completely
continuous operator.

Then, the expansion of the approximate steady-state solution in the vicinity of a scattering frequency
is computed. Numerical results for a simple one-dimensional problem are presented.

Key words, scattering frequencies, localized finite element method, integral representation

AMS(MOS) subject classifications. 35B60, 35P25, 45C05, 65N25

1. Introduction.
1.1. Motivation. One of the most important questions in the study of coupled

vibrations of an elastic solid and a compressible fluid is the determination of the energy
transfer between the solid and the fluid. The question of determining the values of the
excitation frequency of the structure which makes maximum the radiated acoustic
pressure is usually denoted a "radiation problem" (see [7]); these frequencies are
referred to as "resonant frequencies." In the case of the scattering of a plane monochro-
matic acoustic wave, they are the frequencies for which the response of the system
shows maxima of amplitude. A similar problem arises in naval hydrodynamics in the
study of periodic motions of a ship under the influence of a monochromatic swell; the
question is now to compute the frequencies inducing motions of maximum amplitude.

The purpose of this work is to describe a practical method of computation of these
frequencies together with the associated values of the response of the system. The
direct determination of the resonant frequencies appears to be difficult; the study of
the singularities of the scattering matrix (the so-called "scattering frequencies" which
occur for complex values of the frequency) is, however, easier and provides valuable
information about the resonant frequencies which stay along the real axis in the vicinity
of these scattering frequencies (see Fig. 1). Recall that the scattering matrix is the
operator connecting the asymptotic behaviour of the scattered wave to the incident
plane monochromatic wave.

For the wave equation in the exterior of a rigid obstacle, Shenk and Thoe [10]
have shown that the scattering frequencies are nothing but the poles of the analytical
continuation of the resolvent of the Helmholtz operator. The method we propose relies
on this result.

1.2. A brief description of the principle. The method of coupling between vari-
ational formulation and integral representation [5] or the localized finite element
method [6] allows us to reduce the exterior Helmholtz problem to a problem set in a
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A: Amplitude
e: Resonant frequencies
O: Scattering frequencies

(v)

FG.

bounded domain and to exhibit the analytical continuation of the resolvent. The
determination of the scattering frequencies reduces then to the solution of a nonlinear
eigenvalue problem for a completely continuous operator. This approach is similar to
that of Shenk and Thoe [9], which relies upon an integral equation method; it is,
however, easier to handle, due to its variational character and due to the fact that no
volume potential is needed to remove fictitious singularities of the analytical continu-
ation of the resolvent. The next step consists in expanding the solution in the vicinity
of a scattering frequency in order to compute the location of the resonance and the
associated amplitude of the solution.

The practical efficiency of our method has been tested in the case of the coupling
between a vibrating string and a beam through a density of springs; it is the simplest
model for fluid-structure interaction. In this paper we shall only describe the method
in the simple case of the wave equation; the application to naval hydrodynamics will
be accounted for in a forthcoming paper.

1.3. Some other procedures. Other procedures have been designed for the computa-
tion of resonant frequencies. The method of Wei, Majda and Strauss described by Wei
[13] relies upon the transient theory of scattering of Lax and Phillips [4]; the solution
of the wave equation is actually subject to an asymptotic expansion with respect to
time in the following form:

u( t) Z %(x) e -i/,

where the uj are the scattering frequencies. The numerical computation of the longtime
solution of the wave equation then allows the identification of the uj. The advantage
of our procedure is to rely upon the stationary theory of scattering and, therefore, to
apply to situations which are not relevant to Lax and Phillips theory, for example, the
sea-keeping problem 12]. Also worth mentioning is the work of Ohayon and Sanchez-
Palencia [8], which is about the coupling between a structure and a slightly compressible
fluid. They first investigate the convergence of the scattering frequencies to the eigen-
frequencies of the limit problem associated to an incompressible fluid. Then, they
determine the resonant frequencies by expanding the solution with respect to the
compressibility in the vicinity of the eigenfrequencies.



VARIATIONAL FORMULATIONS FOR RESONANT STATES 581

2. The resolvent. By 1) we denote the exterior of a compact set in En; its boundary
is denoted by F. The function (x, t) is the solution of the wave equation

Ot----c2A 0 in ,
Re (f(x) e-i’,)

On
on F, f and to being given,

( 0, )(x, 0),-- (x, 0) (l(x), 2(x)), given.

ei’(The limiting amplitude principle (Eidus [2]) shows that, as +, (x, t)+
i(x, t+(r/2to)) tends to q(x) in the energy norm on compact sets, where q is the
solution of the reduced wave equation

2

A + Voq 0 in f, with /0 2

(Pro) f(x) on F
Or/

o(R-(,-’/2) (outgoing radiation condition).

If v is any complex number of positive imaginary part, then problem

A, + vq 0 in ,
(Qv) 0

-f onF
On

has a unique solution in H(12). In variational form (Q) reads:

f Vq V dto v fa q dto f f d VbHI(), i’e’,

(I+ S(u))q F(f) in HI(), where

(S(v)q O)Hl(m-- --(1 + v) ff qq dto and (F(f)IO)H’() | fUp ds.
.1

By R(v) (resolvent) we shall denote the operator (I+S(v))-: Hl() HI().
As v- Vo R+, with Im (v)> 0, by the limiting absorption principle the solution q

of (Q,) tends to the solution of (P,,) (Wilcox [14]). In the sequel we shall show that
R(v), defined for values of v such that Im(v)>0, actually extends to C\R- as a

meromorphic function of v; the poles are, of course, located in the half-plane of
complex numbers satisfying Im (v) < 0.

Remark 1. When the same limiting procedure is applied to the solution of problem
(Q) with Im (v)<0, it no longer leads to the solution of problem (Pro), but to a
function satisfying the incoming radiation condition

+ ix/-o q o(R-("--1)/2).
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3. Coupling between variational formulation and integral representation.
3.1. Reduction to a bounded domain. The main difficulty we face in studying the

way R(v) depends on v lies in the fact that the limit of R(v)F(f) no longer belongs
to HI() when v tends to the positive real axis. We shall thus be led to give another
formulation of (Q) allowing a precise control of the behaviour of R(v)F(f) at infinity.
For the time being we shall assume that Im (v)> 0.

By G(x) we shall denote the fundamental solution of A+ vI; for instance:

1
(1) G,(x) =-t H()(x/ Ilxll) in two dimensions

1 e i,/-llxll
(2) G,,(x)- in three dimensions,

where4=x/-fie/ for=pe and 0
The following representation formula holds for the solution o of (Q):

go(y)--Ii.{q(X)O G(x-y) OrP(x)G(x )}dsxOn--- ---n -Y

It follows that on any boundary E surrounding F, we have

y -on
with D= ((Ox/On)+ IX)Ia and y(x, y)= -(DG)(x- y).

We are thus led to set the following problem in the bounded domain fi limited
by F and (see Fig. 2)"

Aq3 + vq3 0 inl,

(0.) O_f on F,
On

DqS(. )= qS(x) y(x, )-O--
By V(E, A) we shall denote the denumerable set of the eigenvalues of the following

associated problem:

Aq,+v,=O in ’,
(Z,) Dq, 0 on Z,
where 12’ is the bounded domain with boundary Z (see Fig. 3).

Remark 2. When Im(h)=0 (respectively, Im(h)<0, respectively, Im(h)>0),
then V(Z, A) is included into R (respectively, into {vlIm (v) < 0}, respectively, into
{vlIm (u) > 0)). 1

FIG. 2



VARIATIONAL FORMULATIONS FOR RESONANT STATES 583

FIG. 3

PROPOSITION 1. For Im (v)> 0 and v : V(E, A), problem () is well posed and
its solution is nothing but the restriction to of the solution q of Q).

Proof From Green’s formula, we have, for y 1),

(y)
"

G(x-y)---On (x)G(x- y) ds.

Put

q(y)= (x)--n G.(x- y)---n (X)G.(x- y) dsx;

clearly, q extends to the whole ’ as a solution of (Z). If v V(E, h), then

(y) (x)
0 Off (x)G,,(x- y) dsx

r G(x-Y)-o--
from which we deduce that q3 extends to the whole as a solution of (P). The
conclusion follows then by uniqueness of (P). [3

Under variational form, problem (() writes as

(I 4- (v))q3 -/(f, v) in n(), with

((v)q ).,(fi -(1 + v) Odo)+A qds

(3)

Ir. (y) fi. (x) oT(x’ y)
ds,,dsy

O rtx

and

((f v)[)H’(fi)= fvfds-I(y) f.f(x)3’(x,y) ds,dsy.

3.2. Analytical continuation of the resolvent. Formulas (1) and (2) extend analyti-
cally to C\-; the continuation of (v) follows.

PROPOSITION 2. e operator () is completely continuous on H(); moreover,
function " v (v), CkN- (H(), H’()) is holomowhic.

Proo (i) We have

I(.)ff l.,(fi) Sup
1

f, t] dsx),
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and as a consequence,

o, + GII + c ll
the compactness of (v)" H()- H() follows.

(ii) The holomorphic dependence of (v) on v is a straightforward consequence
of that of G,. V1

From now on, we shall denote (I+ (u))- by/(v).
COROllARY 1. Function R(u) extends meromorphically to C\N-
Proof From Proposition 1, I + (v) is invertible for Im (v)> 0 and v V(E, 1);

the conclusion follows then from Proposition 2 and from Steinbe.rg’s theorem 11 ]. [3

Proposition 1 shows that V(Z, A) is included in the set E of the poles of R(v).
The construction we carried out thus seems not to be intrinsic: it depends on Z and
A. We shall, however, show below that it provides the analytical continuation of the
resolvent R(v). Let us recall that u- q(u) is holomorphic on D if, for each open
bounded set U included in f, u - qt(v)lt is itself holomorphic on D; notice that the
uniqueness of the analytical continuation remains valid for functions with values in
Ho(n).

COROLLARY 2. The poles of the analytical continuation of v - R(,)F(f, v) and
those of v- R()F(f, v) are the same.

Proof. (i) For fixed and Z, we put q3 =/(v)/(f, ) and by q we denote the
function equal to q3 in and to

(4)

For Im (v)> 0 and v. V(E, h), Proposition 1 shows that this function is nothing but
R(v)F(f); formula (4) together with the holomorphic properties of G, show that
v - q is holomorphic for v C\(-U E). It follows that q defines the analytical
continuation of R(v)F(f).

(ii) If/(v)(f, v) is holomorphic in the vicinity of B, then by formula (4),
is also holomorphic; each pole of the analytical continuation of R(v)F(f) is thus a
pole of R(,)F(f, v).

(iii) Assume on the other hand that the analytical continuation q of R(v)F(f)
is holomorphic in the vicinity of 3; as ql =/(,)/7(f, v) Vv/, then /(v)/V(f, v)
is holomorphic in the vicinity of . It follows that each pole of R(,)(f, v) is a pole
of the analytical continuation of R(u)F(f).

We shall now show that a relevant choice of parameter h allows the determination
of the poles of R(v)F(f) from those of/(v).

This result is especially meaningful because it is much easier to compute the poles
of/(v) than those of R(u)F(f). They are the values of v for which -1 is an eigenvalue
of S(v); in other words, they are the solutions of the following nonlinear eigenvalue
problem:

V V qt do) + ds g(y) (x) On--x y(x, y) dsx dsy v dw.

In the sequel, we shall devise a numerical method for its solution.
THEOREM 1. For Im () > 0 and Im (u,) < 0, thefollowing assertions are equivalent"
(i) , is a pole of v R(v),
(ii) :If LZ(F) such that v, is a pole of v- R(v)F(f).
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Proofof (ii)-(i). We shall show that, if v, is a pole of/(v), then #(f, v,) cannot
belong to Im (I + (v,)) for all f L2(F). The proof is by contradiction" let us assume
that

Vf L2(F), #(f, v,) Im (I + (v,)) (Ker (I + *(,,)).
From formula (3), we have

(*(v,)[tp)n,()=-(l+ v,) ffdoo+ fds
Assume that ff belongs to Ker (I + g*(v,)), then ’f L2(F),

thus

(6) q;(x) Jx (y)y,,,(x, y) dsy on F.

On the other hand, by formula (5), q; is a solution of the following problem:

Aq; + v-q; 0 in fi,

0+h=0 onX.
On

Function (y),(., y) dsy extends to the whole ’; it agrees with in , since they
both are solutions of +,=0 on , with the same Dirichlet and Neumann
boundary conditions on F. As a consequence, by formula (6), extends to ’ and
satisfies"

+,=0 in’,

on .
On

By Remark 2, it follows that =0, and consequently Ker (I + *(p.))= {0}which is
inconsistent with (i). We thus proved the existence of f in L(F) such that F( p.)
Im (I + S(.)), therefore, . is a pole of R(p)F( p); as a consequence by Corollary
2, it is a pole of R(p)F(f).

(ii)-(i) Conversely, if . is a pole of R()F(f), then by Corollary 2, . is a pole
of ()( ); it is thus a pole of (p), since ( p) depends holomorphically
on .

4. Te lelie fiite eleem et.
4.1. Reeti t a be. We shall describe below an alternative way

for the reduction of (P) to a bounded domain. For the sake of definiteness, we shall
choose the space dimension equal to 2; the method actually applies to any space
dimension. For the time being we assume that Im (p)> 0.



586 M. LENOIR, M. VULLIERME-LEDARD, AND C. HAZARD

Let E be a circle of radius r surrounding F, the domain bounded by F and E,
and 1 the domain exterior to E (see Fig. 4).

As before, we. must find boundaryconditions on E such that the solution of the
problem set in gl is the restriction to 1 of the solution of (0).

Let X H1/2(E), and consider the following auxiliary problem:

(7)
Ati+ mi 0 in,

ti=X on Z.

By 3-, we denote the Calderon operator associated to problem (7), i.e., the continuous
function

X - 3-(X)= from H’/2(E) to H-1/2().an

Assume that g, defined on , satisfies the reduced wave equation; we can easily prove
that condition:

(8) on

implies the analytical matching between g and the solution oW(l=) of problem (7),
with the Dirichlet datum X gl.. We are thus led to the following problem, set in the
bounded domain "

Find t H(), such that

A+ v=0 in l’l,

Og_f on F,(n) on

9-.(al=
On

on X.

PROPOSITION 3. Problem (I) has a unique solution , which is nothing but the
restriction to of the solution u of Q).

Proof The restriction to of the solution u of (Q) is a solution of (l’I).
Conversely, if t is a solution of (I’I), then the function whose restriction to is equal
to and whose restriction to 1 is equal to 5(t1,) is the solution of (Q.).

FIG. 4
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An explicit formula for -, can be obtained through diagonalization: we perform
a Fourier expansion of the solution in the exterior domain. Let q. 1/2.,/ e i" n 7/

and r. be the orthogonal projection on . in L2(-Tr, +r)"

r, (X X dO;

we have

X= Z r.(X)O. VxL=(-,+T) and

(9) (H(2))’(v r)
-(X)=-x/.EE r,(X) H(.I)(c- r

On-

The definition of the Hankel function H(n1) is taken from 1 ]. A variational formulation
of problem (l’I,) then leads to

(I + ’(v)) =//(f),
where

(10)
(/(f) 1))Hl(): fFf ds.

H(.))’(x/ r)
H()(v/ r) %(vl), and

4.2. Analytical continuation of the resolvent. By Z. we denote the set of the zeros
of Hl)(x/- r), and we set Z= t_J, Z,.

PROPOSITION 4. Formula (10) actually defines the analytical continuation of
v-- T(v) to C\{-UT/} as an holomorphic function with values in (HI(), HI()).

Proof The following formula holds"

H(1))’(x/’- r)
<-I’u’ >H-I/2(,),HI/2(;)-----’-’ "E %(u)%(v) H(.,)(/- r)

Let z r; we have

H(.’)(z) H2)(z) H2)(z)
with m Inl, and m’= Inl+ 1. From [1], we have

HZ!(z) m
---2-- for moc.H2)(z) z

H!(z) m

n2  z) z’

It follows that

(11) (H<’))’(z)--In-J forH(.I) (z) z

and consequently,

(H?))’(x/- r)
H()(x/ r)

As a consequence, the series expansion of -u converges uniformly over any
compact subset of C\-, and the continuation of - that it defines is continuous from
H/2(E) into H-1/2(E). The statement of the proposition follows. [3
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As operator T(v) is not completely continuous, Steinberg’s theorem no longer
applies; the following results hold, however.

PROPOSITION 5. I + (v) is a Fredholm operator of index 0 in HI(I).
Proof We shall prove that T(u) is the sum of a completely continuous operator

and of an operator whose real part is positive. Clearly, it is enough to prove this result
for operator U(u) defined by

Formula (11) shows that Re ((H(.1))’(x/ r)/H(.)(x/- r)) is negative beyond some rank
N; since

’ H?))’(,/-; r)
)(x/ r)

the statement of the proposition follows.
From now on we shall denote (I + (u))-1 by (u).
PRoPosrrioN 6. For altf LZ(F), function (u)lQ(f extends meromorphically to

CkE-; moreover each pole of (u)m(f) is a pole of R(u).
Proof (i) From Propositions 1 and 3, the following identity holds for any

u V(E, A) with Im (v) > O:

(v)#(f v): (v)(f), Vf6 Lz(F).
This identity actually defines the analytical continuation of (v)(f) to CX-, for
all f 6 Lz(F).

(ii) The last assertion of the Proposition follows then from Theorem 1.
THEOREM 2. (i) (V) extends meromorphically to CX-.
(ii) For Im (v,)<0, the two following statements are equivalent: v, is a pole of

(v), and f L2(F) such that v, is a pole of (v)(f).
(iii) For Im (v,) <0 and Im (A)>0, (v) has the same poles as (v).
Proof (i) If v, is a singular value of (v), then f L2(fl) such that v, is a

ple of (v)M(f). As in the proof of Theorem 1, we shall assume that Vf L2(F),
M(f) Im (I + T(v,)) (Ker (I + *(v,))). From formula (10), we get

--(2)(H.)’((, r)(12) (T*(,)ff[V)H,():--(,+I) adw-4, E r.(al)
n H2)( r)

with , v,. Moreover, if Ker (I + *(p,)), then

Vf Lz(F), ((f)[fi),,)=O, i.e.,

It follows that 51v=O. From (12), we deduce that 5 is a solution of the following
problem:

Aff+/x,tT=0 in,
(13) fflv 0,

where

a -,(/lx) on X,
On

-,(x):-,/#-#, Y .(x)
(H#))’(x/’/z, r)
H(.2)(, r)
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Since Im (/x,)> 0, the functions H)(//x. r) decrease exponentially at infinity;
07-2 is nothing the Calderon operator associated with the problemtherefore, /..

Find fi H1(), such that

Afi+,fi=0 in(,

fi =X on E,

and thus is the restriction to f of the solution of the following coercive problem:

Find u H1 (f), such that

Au+/x,u=0 inf,,

Ulr 0.

As a consequence, u, and thus if, vanish. We actually proved that Ker (! + ’*(u,)) {0},
which is inconsistent with the hypothesis.

(ii) From Theorem 1 and Proposi.tion 6, we infer that the poles of (u)//(f)
are poles of/(u); as a consequence, (u) has only isolated singularities which are
poles of (u). Moreover, if u, is a singular value of (u), then -1 is an eigenvalue
of T(v), of finite multiplicity by Proposition 5. It follows (Kato [3, p. 574]) that (u)
is meromorphic in the vicinity of u,, and consequ.ently on C\-.

(iii) Finally it is clear that, if u, is a pole of (u)/r/(f) for some f L2(’).), it is
thus a pole of

Remark 3. What we just proved is that the scattering frequencies are also the
solutions of the following nonlinear eigenvalue problem"

f (Hl)’(/-- r) f(E) V V&o-. H. (v/- r)

This is an alternative formulation to Problem (Ea), a condition for this last formulation
to hold is that E be a circle.

4.3. The set of the zeros of the Hankel functions. Up to now, T() has only been
defined outside the set Z of the zeros of the Hankel functions; it is thus necessary to
know whether these zeros are scattering frequencies or not. Let Vn be the operator
defined by

PROPOSITION 7. Operator Vn is of rank 1.

Proof By Riesz’ theorem, there exists a unique e’ in Hl((l) such that

It follows that

HI()
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Remark 4. The function e; exhibited in the proof of the preceding proposition
is actually the solution of the following coercive problem"

-Ae.+e.=0 in,

(14)
0e;

(I). on
0,

Oen
-0 on F.

From now on we shall scale e. in H(I) and set e. e;/]len[I.’(m.
Let E. be the orthogonal supplementary to {e.} in H():

and accordingly the matrix decomposition of operator (I + T(,))"

(A.(,) B.(,)
C.(,) D.(,)/"

By u* we denote a zero of H()( r); from formula (10) we infer that A,(u) expands

a.(,)=a(,)+, where .()=(,)),(.() )

tends to zero when u u*, and A(u) depends continuously on u in the vicinity of
u*. Similarly, operators B,(u), C,(u), and D,(u) depend continuously on

THEOREM 3. A zero u* ofH)( r) is apole of(u) ffand only ffoperator
is not invertible at *.

Proof Since Z and the set of the poles of () are discrete sets in C-, there
exists a neighborhood of * which does not contain an other point of Z

(i) Assume that D,(u*) is invertible; in {u*}, (I + T(u)) is also inveible and
the matrix decomposition of its inverse has the following form"

(M() ())%() .(u),
with

.(,) -d.(,).()D.()-,
%(u)=-M.(v)D.(p)-’C.(), and

according to the fact that M.(), which is a multiplication operator, interchanges with
any other. When u tends to u*, then M.(u), .(u), and %(u) vanish; moreover,

.() =-(.(,)a(,) + V.)(.(,)C.(,).()-(.()A;(,)+ V.).())

tends to D.(u*)- when uo u*. It follows that (v) can be continuously extended at
point v* as

( (,_,
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(ii) Conversely, assume that v*/, then there exists .(v), cO.(v), and
such that

(15)

(16)

+ v. )) n(V) + B(v)(v)=0.
C(v)@.(v) + D.(v)@.(v)= liE,..

When v- v*, .(v) vanishes by formula (15), and consequently (16) implies:

D,(v*),(v*) liE.,
showing that

Remark 5. For practical purposes it is worthwhile to give an explicit expression
for operator

0 D.(v)

which we shall now simply denote by D.(v). Assume u and v belong to H(), then

(D..(v)u[v)..()=((I+ (v))uJv)..()-((I+

IVu Vdw_ v Ifi udw_ E r(u)r(v)e(v)
-( ffi Vu Ve-- do) v ffi ue- dw- 7"k(u)’rk(e"))(,,)

(v).

As ’(e) , we obtain

(17)

5. Approximation of the scattering frequencies and of the associated resonant

5.1. Discretisation of the nonlinear eigenvalue problem. By Vh we denote a finite-
dimensional subspace of HI(), following, for example, from a finite element discretiz-
ation. If (’l’)h denotes the scalar product in Vh, we define 3h and h(V) by the
following formulas:

(18)

(19)
(h(l")qghll[Yh)h----(lq-P)ff qghl]lhd(’oq-’’IEqghl[J---ds

(y) (h(X) (X, y) ds dsy V(h Oh Vh,

states. In the preceding sections, we described two different methods for reducing the
determination of the scattering frequencies to a nonlinear eigenvalue problem, for a
compact operator. We introduce at first, the internal approximation of this problem,
then we perform an asymptotic expansion of the resolvent in the vicinity of a scattering
frequency; the approximate location of the resonant frequencies and of the associated
maxima of the response of the system follow.
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The approximate determination of the scattering frequencies by the method of coupling
between variational formulation and integral representation consists in solving the set
of equations"

(20) ]Jh( Ph*) -1,

where the Xh(’) are the solutions of the following generalized eigenvalue problem:

g(,)e(,) (’)heh(’).

Remark 6. Using the localized finite element method consists in replacing gh(V)
defined at formula (19) by

The solution of (20) by Newton’s method requires the derivative x,(,) of xh(’).
Assume, for example, that xh(’) is a simple eigenvalue of dlNh(,), then

’() (’( v)eh P) gh( 12))h,

where gh(U) is the associated eigenvector of the adjoint operator, i.e., satisfying:

N*h(’)gh(’) =Xh(U)3hgh(’), and

(Oe() g(,)) 1.

In the sequel, we shall give expressions for the evaluation of x(,) in more complicated
situations.

The next step will consist of expanding the solution of the diffraction problem in
the vicinity of a scattering frequency. Let

(22) (Fh(f, ’)]Oh)h .fOb as --(y) .f(x) (x, y) ds ds,;

the use ofthe coupling method between variational formulation and integral representa-
tion leads then to expand the solution qh(’) of problem

(23) (s + (,))(.)= F(f,

Remark 7. When using the localized finite element method, we replace Fh (f, ’)
by Fh(f), defined by

(24) (Fh(f) lOh)h f. fO---- ds.

In the sequel, we shall only consider the approximate problem, consequently we
shall omit index "h"; ,, will denote the approximate scattering frequency under
consideration. We shall first construct the Laurent expansion of the approximate
resolvent (,)= [3+ N(,)]-I in the vicinity of ,,: this is an application of the perturba-
tion theory of Kato [3]. An explicit calculation of the expansion of the solution of
problem (23) will then be produced, which will provide an approximation of the
resonant frequency.

5.2. Canonical form of the resolvent. Let us begin with some notations. The
following expansion holds in the vicinity of u,"

() + E (
n=l
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or, equivalently,

U(/2) U + Z (/2-/2,) "U(n>, with

U(/2)=d]-l(/2), U=O-I and U(")=3-(") Vn>0.

Since U(e) is a holomorphic function of e, the number of distinct eigenvalues of U(e)
is a constant independent of e, apa from isolated values of e which are called
exceptional points (e, may be such an exceptional point). Let (e), k 1, K (respec-
tively, , 1, I where I K) denote the eigenvalues of U(e) for e e, (respectively,
of U), and (e) (respectively, ) the associated eigenprojections. The spectrum of
U(u) for u # u, can be divided into I "i-groups" {k(P), k Pi} such that:

(u)i as ,, kJi, i=l,L

A scattering frequency , makes -1 an eigenvalue of U; we can choose, for example,
=-1 and {1,. ., s}. P =P denotes the eigenprojection for the eigenvalue -1.

The "(- 1)-group" is then defined by

()-1 as uu,, k=l,s.

From now on we shall assume that U() is diagonalizable in the vicinity of u,.
The canonical form of the resolvent is thus written:

(26)
v -# v,, where

and RR(V)= 2
k=s+ 1 + x,(v)

Es(U) is the singular part of the resolvent and ER(V) the reduced resolvent, which is
holomorphic near u u,. As a matter of fact

(27) En(u) =3-1+ 0( /2 /2,), where

Notice that Q is the operator which associates to a given G the only solution X of

(0+U)X=(n-)G and X=0.

5.3. Expansion of the eigenvalues and eigenprojections of the (-1)-group. The
question is now to compute the expansion of the singular part of the resolvent. Let us
first assume that the (-1)-group has only one element/x(/2) (i.e., s 1). In this simple
case, the eigenvalue/x(/2) and the eigenprojection 1(/2) are holomorphic near/2--/2,:

;1(/2)----1 +(/2-/2,)1x(’)+(/2 -/2,)2/x(2) + 0(/2 -/2,)3,
(28)

,(v) P+ (v- v,)P{’) +O(v- v,)2,
with

/x( 1 1
tr [U)], /z(2) tr [2) UIQU)]

M
(29) p() _pU()Q QU()p

where M is the multiplicity of the eigenvalue -1 of U (which agrees here with the
multiplicity ofthe eigenvalue (v) of U(v)). If () is different from zero, the expansion
of the singular part of the resolvent writes

(30) Ns(v)
(.__ , (1) (1
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If/z(1)- 0, we have to find the order of the first nonvanishing term in the expansion
(28) of/zl(u). An expansion similar to (30), beginning, however, at order (u-u.)-l

holds.
Let us now study the case where the (-1)-group has several elements (i.e., s > 1).

By t(u) we denote the total projection associated with the (-1)-group"

()= (), ,.
As we assumed that U is diagonalizable, -1 is a semisimple eigenvalue of U, and we
can assert that the operator

10()- ( + U())P’(.)

is holomorphic near u u,:

0(.) (J + E ("- u,) "O(n), with
n-----1

(31) (J PU()P, and

(32) (J() PU(2)P pU(1)pU(I) pU(1)U(1)P U(1)pU(1)P.

Let ].k(/), k= 1, s be the eigenvalues of 0(v) for v# v,, and g(V) the associated
eigenprojections. We obviously have:

(33) Ig(v)=--l+(v--v,)fk(V) and k(V)=k(V), v#v,, k=l,s.

These eigenvalues can be divided into several "j-groups" where the j are the
eigenvalues of , their number being less or equal to s. For the sake of simplicity, we
shall assume that v, is not an exceptional point for (v), i.e., that 0 has exactly s
eigenvalues. Consequently, the k(V) and k(U) are holomorphic near v u, and can
be expanded as (28)"

/2k(/2) /2k -- (P /]::t)/.i,(kl) -11- O( p /3::t) 2,(34) Pk(U) Pk "I- (/2 /],)(kl) "[" O(P /],)2,
with

(35)

where k is the eigenprojection for the eigenvalue/2k of , /f/k its multiplicity (which
is equal to the multiplicity of the eigenvalue tXk(U) of U(u)), and the k are given by"

k= 1, s.

If all the eigenvalues fik are different from 0, Es(U) thus writes:

P P, k= /Lk k=

Otherwise a similar expansion beginning at order --l=--MaXk=l,s l(k), where l(k)
denotes the order of the first nonvanishing term in the expansion (34) of 2k(V), can
be obtained.
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We have thus studied the case where v..is an exceptional point for the eigenvalue
-1 of kJ but not for the reduced operator U(v). If v. is an exceptional point for at
least one eigenvalue/2 of J, this reduction process can go further on provided that
J is diagonalizable, and so on, as many times (but in finite number) as necessary.

5.4. Expansion of the solution in the vicinity of ,.. We now come back to problem
(23) for obtaining the expansion ofthe solution q(v) in the vicinity of v.. The expansion
of the right-hand side is straightforward"

F(f, ) E ( ,)F().
n----0

Since p(v) simply writes i(v)F(f, v), its expansion follows from the one of the
resolvent (v):

() Y (- ,)(").

We have

(37) q(v) E (v- v,)"q ("), with

(38) q(-) =(-!)F() and (1--1) =(-)F(O)+(-)F()"

We shall give here the explicit calculation of the first two terms of this expansion; we
shall restrict ourselves to the simple case where v, is not an exceptional point and
() (in (28)) differs from zero (formula (30)). Fuher cases can be treated exactly in
the same way by using the proper expression of the expansion of (v).

Let em(=e), m 1, M (respectively, e, j 1, M(i), 2, I) be a basis of the
eigenspace associated with the eigenvalue -1 (respectively, , i= 2, I) of U:

e=-3e, m=l,M and ge0=3ei, j=l,M(i), i=2, I,

and gm (respectively, g) the associated eigenvectors of the adjoint chosen such that:

(3e,[g,y) ,,,, j 1, M(i), j’= 1, M(i’), i, i’= 1, I.

The eigenprojections and , i= 2, I can then be expressed in this basis:

M M(i)

X= E (X]g)e and X= E (Xgo)e, i=2, I,
m=l j=l

and Q (defined by (27)) writes"

i=2 1+i j=l

whence we infer the expression of the coefficients of the expansion of () (given by
formula (29))"

(2)= (N(2)emlgm) 2 2 (()em[go)(N()eij[gm)
M = i=2 1+

From formulas (27) and (30) follow E(-) and E(o), and finally the first two terms of
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the expansion of the solution:

(39) q(-’)-/x(’) m=,E (F()lgm)em and

o 1 (F,lg) (F(lgm)
1 "’

(1) m=l i=2 1 + i j=l

(40)
+ (f()lgij)- 2 (F()lgm)(N()emlg) e
i= 1 + i j=l m=l

There is a simpler way for obtaining, in some respects, more general formulas, provided
the existence of expansion (37) is assumed from the beginning; it will be worked out
in the appendix.

5.5. Approximation of the resonant frequencies. The expansion (37) of the solution
q(u) we obtained in the preceding paragraph makes it possible to compute an approxi-
mation of the (real)value Uo of the frequency where the maximum of I1   )11 is reached.

As a first approximation, we have

thus,
1

Ilqg(/)l] 2

(O2q." f12)/(]lXll2-+-2ce Re (X Y) +213 Im(XIY))=A(a),

where u- u. ce + ifl, q (-l) X and q(1-l) y.
The maximum of A(a) is reached when a is a solution of

(-2/) Re(Xl Y)- (11x112/2/3 Im (X Y)) +]32 Re(X[ Y)=0,

i.e., as a first approximation for

132 Re (XI Y)
/(11xII2/2 Im (X Y))’

it follows that

Re
(41)

6. Some numerical results. In this section, we shall deal with a generalization of
the previous problem: the coupling between an elastic structure and an unbounded
acoustic fluid; numerical results will be presented, which show the efficiency of the
method.

6.1. A simple coupled problem. The problem under consideration is the coupling
between an infinite vibrating string and an elastic beam; the connection is realized
through a density of springs (see Fig. 5). When the system is at rest, the beam is
assumed rectilinear and parallel to the string; only simple bending motions will be

density of springs

FIG. 5
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considered. By U(x, t) and Y(x, t) we denote, respectively, the vertical displacement
of a point on the string and the displacement of a point on the beam.

The system will be subject to a monochromatic incident wave of pulsation w"

U(x, t)= Re (u,(x) e-i’), with ui(x)=

it is a time-harmonic solution of

1 02UI 02U
--=0 on R.

C
2 0 2 Ox

The following linearized equations hold then for the perturbation displacements
of the string and of the beam"

1 oZu oZu
-+K(x)( U- V) -K (x) U, on

C
2 0 2 Ox2

y o ( Y]+ E(x)I(x) -K(x)(U- Y)=K(x)U, on ]-L,+L[,(,) p(x)
Ot2 Ox2

OY
(L)=

0 (E(x)I(x) OZYOx O ](L):0, where

c is the velocity of the waves in the string (assumed constant), p(x) the mass of the
beam per unit length, E(x) its Young modulus, and I(x) the geometrical ineaia of
one section. By K (x) we denote the stiffness per unit length of the springs; it vanishes
outside the segment I-L, +L[. The first two equations in (,) model, respectively, the
propagation of waves in the string, and the bending motion of the beam; notice the
additional coupling terms, taking into account the action of the springs. The last
equations are the free-conditions at the ends of the beam. The study of the behaviour
of the longtime solution leads to the following problem"

2 2w d
c u-+(x)(u-y) =L on ,

_..d2 ( ]d2y-p(x)y+ z(x)t(x) -(x)(-y)=L on ]-, +L[,

() dy d ( aY ()=0,

du
0 radiation condition,

where - K(x) u... Aiytiel ett f te resle. We consider now the extension of
problem () to complex p values of ma; for the time being p is assumed to be of
strictly positive imaginary part:

Find (u, y) in = H(R) x H(]- L, +L[) such that

du
c u

dx
+ g(x)(u -y) =L on ,

-O(x+ (x(x]-(x(-= on ]-,+[,

e(x(](=0.
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Under variational form, problem () writes as

find (u, y) in Y(, such that ’q’(v, z)e g(,

a,,((u, y), (v, z)) f,O dx + fy dx,
-L

where

K(x)(u-y)(O-) dx.

PROPOSITION 8. The bilinear form a is continuous and coercive on .
Proof From Young’s inequality we infer that

la((u, y), (u, y))l2

>= 1- -x dx + E(x)I(x) dx + K(x)lu- yl2 dx
L dx2 -L

+[(l-n)(Re())+(Im())] lu dx+ O(x)yl dx
-L

for each 0. Now let = l+(Im ()/Re (p)); from the previous inequality we
deduce that

la((u,y),(u,y))leM(v) - [u dx+
du 2

p(x)lyl dx + E(x)I(x)
L

and by Lion’s lemma the coerciveness of a.
By A we denote the operator on W associated with the bilinear form a"

(A,,(u, y), (v, z))x= a,,((u, y), (v, z)),

the resolvent thus being R(v)=(A)-1.
The explicit continuation of R(v) to C\E- is performed along the same lines as

in 4, which is quite easy for one-dimensional problems. Let d >= L and Im (v)> 0;
problem () is then well posed. Its solution is the restriction to ]-d, +d[ of the
solution (u, y) of problem ()"

Find (t, 37) in = HI(]- d, +d[) H2(]- L, +L[)

--7-s+K(x)(-f) =f on ,
ax-

d2( d2fi-uO(X)f+-x E(x)I(x) -x] K(x)(ff f) fy

such that,

on 1- L, +L[,

dx x E(x)I(x)x2] (+L)=0.
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A variational form of this problem in Y is as follows:

(I + S(,))(a, ) F, where

a dx + flY. dx(S(v))(a,)7)[(fi, )) -(1 + v)
a

+ K(x)(a-)(-)dx
-L

(ff(+d)ff(+d) + ff(-d)ff(-d)),

and

(F, (, ))= Lax+ Lax.
d L

Notice that has been equipped with the following scalar product:

adx+ p(x),.dx((a, :), (, )) --fi -,

f+a d d+ J-a dx dx
d2. d2dx+ E(x)I(x) dx.
dx2 dx2

We easily check that (,) defines a holomorphic family of compact operators;
as (I+S(,)) is invertible for Im (,)> O,

k() (+())-’

extends meromorphically to C\- (Steinberg [11]). The poles of R(,) located in the
half-plane Im (u)_-<O are exactly those of the analytical extension of R(u); i.e., the
scattering frequencies of the coupled problem or, equivalently, the solutions of the
following nonlinear eigenvalue problem:

+d d__ff d.___ dx + E x I x x2 dx
dX + K(x)(ff-)7)(t--)dx

-d dxdx -L L

(42)
ix/ [f_-d_ J’+L ]+((+d)(+d)+a(-d)(-d))= , ffdx+ p(x)dx
C d -L

6.3. Numerical implementation. The discretization of the problem by the finite
element method is carried out as follows. Let us consider a subdivision SN
{x,,k=-N,N} of [-L,+L] (where x,<x,+l and x+N=+L) and Sn+e
{x,, k =-N-P, N+ P} a subdivision of I-d, +d], which contains Su. We denote by

Wh c C([-d, +d]) x CI([-L, +L])

the finite-dimensional subspace of defined by the pairs (Uh, yh) such that Uh (respec-
tively, Yh) is a polynomial of order 1 (respectively, 3) on each interval [xk, Xk+a] of
SN+p (respectively, Su). For the sake of simplicity, the mechanical data E(x), I(x),
p(x), and K(x) are assumed constant. Let (.,.)h be the scalar product in Ygh; we
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define the matrices /h, h, and Ch (respectively, the "mass," "stiffness," and "coup-
ling" matrices of the system) by"

blhVh dx + oyhzh dx,(Mh(Uh, Yh), (Vh, Zh))h -- a
+" clu cl([Nh(Uh, Yh), (Vh, Zh))h
-d dx dx

+L

dx + E1
-L

dyh dh
dx2 dx2

K Uh Yh Vh Zh dx,

(Ch(Uh, Yh), (Vh, Zh))h =-(Uh(+d)Vh(+d)+Uh(--d)Vh(--d)).

These matrices are computed classically by assembling the associated elementary
matrices of each element. One can easily check that h and Nh (but not Ch) are
hermitian matrices, Mh is positive, and h is nonnegative. Notice that the same matrices
could be obtained by a standard difference scheme.

Let us first consider the initial problem (2), i.e., when the system is subject to
a monochromatic incident wave of frequency w"

u,(x)=ei(/)x.
The approximate response of the system is thus the solution of the following linear
problem:

(43) Ah(Wz)(Uh, Yh) Fh, where &h(wz) [--to2Mh +Nh + wCh],

and the second member Fh 2(h is defined by:

(Fh, (Vh, Zh))h KU,(Zh--Vh) dx.
-L

This system is solved by the elementary method of Gaussian elimination. Once the
solution has been computed, we can then calculate the total energy of the beam, which
is given by:

(44) Eb(OO)-- 1/2([O-)2]h -[-h](0, Yh), (0, Yh))h"
The determination of this quantity for each to over a given frequency range leads us
to the "response curve" of the beam whose maxima show the resonant states associated
with the beam.

On the other hand, let us consider the matrix nonlinear eigenvalue problem
deduced from (42):

(45) [Nh +/- Ch](Uh, Yh)= 1][flh(blh, Yh),
whose solutions are the approximate scattering elements. By Ak(V) we denote any of
the eigenvalues of the problem:

(46) [INh +V’- Ch](Uh, Yh)= Ak(V)Mh(Uh, Yh),

which actually are branches of analytic functions of v with only algebraic singularities
(Kato [3]). An approximate scattering frequency is thus a solution of the fixed-point
equation Ak(V) u. The application of the iterative Newton method consists in comput-
ing, for a given initial value Vo and a given k, the sequence:

vj+,=vj--(Ak(Vj)--vj) \--v(v)--I
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where the iterations will be terminated if [uj+l-uj[ becomes less than the expected
error e. However, from a numerical point of view, the algorithm cannot be implemented
in this form, for we cannot a priori know at each iteration which eigenvalue of problem
(46) (with u u2) corresponds to the chosen branch Ak(U), even if all the eigenvalues
of (46) are computed. This leads us to modify the previous relation as follows:

where A (,) is now the closest eigenvalue to the given initial value po. In this case, the
sequence (p) will converge (if it actually does) to the closest scattering frequency to
po. Let us notice again that nothing can ensure that, for two successive iterations, I()
and 1(p+) are points of the same branch: in paicular, the algorithm will probably
fail if o is chosen in the vicinity of a branch point.

The eigenvalue 1(p) and the corresponding eigenvector are computed by the
inverse iteration method 15] (assuming that I (p) is simple); it consists in the determi-
nation of a sequence (u, y) defined by"

r+l, y+l[h+Ch POh](Uh )= mrh(Uh, y),

r+l)where m is such that II(u2+, y I1 1 and (u, y) is an arbitrary unit vector. Of
course, the termination criterion (see [15]) must be chosen so that the precision on

A(u) is better than the expected precision e of the Newton algorithm.
Since (u) has been assumed simple (and thus cannot be a branch point), its

derivative dA/du is obtained quite easily. Let (uh, Yh) be an eigenvector associated
with the eigenvalue A(u), and (Oh, Zh) a left eigenvector (i.e., an eigenvector of the
adjoint problem) chosen so that (h(Uh, Yh), (Vh, Zh))h 1; we have:

dv(V)= 2Ch(uh’yh)’ (Vh’Zh)
h"

In our case, the left eigenvectors are simply given by a (u, y) (where a is a nonzero
complex number), for [h+Ch] is a symmetric (but not hermitian) matrix.

For a scattering frequency , which is close enough to the positive real axis, the
expansion of the solution of problem (43) in the vicinity of v, can be performed as
described in 5 with:

This expansion is"

(47) Uh, Yh W
2 ’,)-’X(-’) + X() + 0(w 2 ,,),

where X-) and X) are given by formulas (39) and (40) (with M 1). The computa-
tion of the former is obvious; the latter requires the calculation of all the eigenvalues
and corresponding right and left eigenvectors of problem (46) for t,--,," they are
obtained by the classical "QR" method 15]. The expansion of the total energy of the
beam (44) follows directly from (47)" it thus provides an approximation of the response
curve in the vicinity of the real part of a scattering frequency.

6.4. Numerical results. We report in this last paragraph the outcome of one typical
numerical application. It is related to the following data:

c=l, K=1.4, p=0.5, El=O.1, L=I.
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2 3 4 Revr-
o(c): 2.98- i0.10

(): 2.15-i0.12

(a): 1.41 -i0.33

FIG. 6. Response curve and location of scattering frequencies.

REAL PART IMAGINARY PART

FIG. 7a. Scattering modemCase (a).

REAL PART IMAGINARY PART

FIG. 7b. Scattering modenCase (b).

REAL PART IMAGINARY PART

FIG. 7C. Scattering modenCase (c).
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The discretisation is shown in Fig. 7:20 elements for the beam and 20 + 2 6 elements
for the string (75 degrees offreedom). For the computation ofthe scattering frequencies,
the expected precision is 10-2 for the Newton algorithm and 10-4 for the inverse
iteration method. The considered frequency range is [0.5, 4.5].

The numerical experiments have shown that the choice of the initial value Vo is
of the highest importance for the convergence of the Newton iterations. First, if ’o
is of small modulus (say I,ol < 1.), the sequence (,j) generally does not converge: this
is probably due to the fact that 0 is a branch point of the matrix [h +V/ Ch] in (46).
When ’o is chosen in the vicinity of the positive real axis (say Im (Uo)>-0.5) and is
not of small modulus, two situations occur. On one hand, if ’o is close enough to a
scattering frequency (which is of course a priori unknown), the sequence (,j) converges
to it (generally in less than 10 iterations); on the other hand, if o is unfortunately
chosen about the middle of the gap between two scattering frequencies, the sequence
may oscillate between them: actually, the computed eigenvalues ,(,j) result from two
different but neighbouring branches Ak(’) of (46). At last, if the imaginary part of Vo
increases, no convergence will be obtained.

The upper part of Fig. 6 is the response curve of the beam in the frequency range
[0.5, 4.5], i.e., the total energy (44) of the beam obtained by solving problem (43). The
lower part of the same figure shows the location in the complex plane of the computed
scattering frequencies (solutions of problem (46)). Notice that their real parts coincide
approximately with the resonant frequencies, i.e., the locations of the maxima of the
response.

Figure 7 shows, for each scattering frequency, the real and imaginary parts of the
associated eigenvector: the upper and lower parts of each figure represent, respectively,
the vertical displacement of the points on the beam and on the vibrating string. These
"scattering modes" show what kind of motion is "excited":

(a) is a "roll" motion of the beam with very little bending strain;
(b) is a "heave" motion coupled with a bending mode of the beam;
(c) is a pure bending motion.
Figures 8 and 9 show the estimation of the response in the vicinity of the scattering

frequencies (a), (b), and (c) using, respectively, the first term (order -1) and the two
first terms (order -1 and 0) of the expansion (47) (the dotted curve reproduces the

2 3 4 o

FIG. 8. Approximation of the response at order -1.
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/b(to)

2 3 4 to

FIG. 9. Approximation of the response at order O.

response curve of Fig. 6). In case (c), the first term provides a good approximation of
the response and no significant improvement is given by including the second term
(order zero) of the expansion. But in cases (a) and (b), this second term becomes
necessary; in particular, it provides an approximation of the difference between the
real part of the scattering frequency and the resonant frequency (see formula (41)):
notice that although the imaginary parts of the scattering frequencies (b) and (c) have
the same order of magnitude, this difference is negligible only in case (c).

7. Conclusion. The numerical results we obtained show the efficiency of our
method: the knowledge of the scattering frequencies and of the associated scattering
modes not only allows us to locate the resonant frequencies without computing the
whole response curve, but also provides an approximation of the solution of the
steady-state problem in the vicinity of these frequencies. However, as regards the
numerical computation of the scattering frequencies, there still remains the question
of which is worth studying: we actually need a priori bounds to provide good initial
guesses for the iterative algorithm which solves the nonlinear eigenvalue problem.

In a forthcoming paper, we will show how the method can be extended to a more
complicated fluid-structure interaction problem: the "sea-keeping" problem, i.e., the
study of the motions of a floating body on the sea.

Appendix. A direct way of expanding the solution. In this section, we shall assume
that the solution q(u) of (23) is subject to an expansion similar to (37): in the vicinity
of u,, for some integer p _-> 0, we have

(48) q(v) Z (v- v,)rq r).

The expansion of the right-hand side member F(f, u) and of operator (u) are
straightforward:

F(f, u) Y u u,)"F’) and $(u) 2 (u u,)"$").
=0 =0

By replacing the different terms by their expansion in (23), we obtain the following
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relations between the coefficients"

q--1

(49) ,(q--r)((r)"t-(--,(O))f(q)-- F(q), q>=-p.

In the sequel we shall give explicit expressions for the solution of system (49); the
difficulty originates from the fact that the diagonal element (d+ (o)) is singular.

Some definitions. We will use the same notations as defined in 5. Moreover, for
m 1, M, we set

h(),, e, and, recursively

(50) Hor)= $(or+’-S)h) with
s=0

h(mor+l)= __Qdl-lH(mor) (r>=0,

and

Z(or) Y’. (or-S)z() (r_-> -p with

z() Q3-1(F(’) Z(’)).
Notice that Z(or)- 0 for 0 and z()= 0 for < 0, since F()= 0 for n < 0; it follows
that

Z()= 5(-’)z(’).

Finally, by 2(or) we denote the following matrix:

)m=(H(Z)lgm,), m, m’= 1, M, o-=>0,

and by q the following vector:

) (F(q+l)-Z(q+’)lg,).
Notice that (q)=0 when q <-1.

POOSTION 9. Provided that expansion (48) holds in the vicinity of ,, we have

M q

(i) @(q) E 2 @a)h-) + Z(q)"
m=l =-p

moreover, if 0() denotes the vector of the ), m 1, M,
q

(ii) )t)(q--’) I]/(or) ,Og(q), q -> -p.

Proof. The proof is recursive; the first step consists in proving formula (i) for
q =-p. By formula (49) we have

(d]+ (0))p(-o) F(-o); consequently

and thus

(-p)
M

e, + Q3-F(-).
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(ii) We assume formula (i) is satisfied at ranks q --p, Q, and we prove it at rank
Q + 1. By (49)

--p cr=--p

which is nothing but

M Q

m=l

or, equivalently,

It follows that

q)h-)+ z(r)] + (3 + ())qg(+l) F(Q+’),

Q

P(,,,) (+l-r)h-)+ E (Q+l-r)z(r)-- F(Q+I)"
r=--p

M Q

m=l cr=--p

p()H(Q-) F(q+)_

(52)

M Q

Pd-(F(q+x) Z(q+’)) Z Z
m=l o-=--p

M M

p(O+’)= E P(mO+’)em + E qg(m’)h(mQ+I-’)+ z(O+’).
m=l m=l

(iii) From formula (52), we infer that

’)(HQ-’) g.,, (FQ+’) z(Q+’) gm,
M Q

m=l

Vm’=I,M, VQ>--p, i.e.,

Q

(Q-)@() 9(Q)

This proposition allows the determination of the (d). Three situations occur:

(i) If W(o)=0, then

q-1

’(q-)@(’) (q), q => -p,

which is similar to formula (ii) of Proposition 9, with (o) replaced by (). We are
thus brought back to the initial situation.

(ii) If (o)is invertible, then

(53) p()=((o))- o,C(cr)__ (--r)o(r) for >-p;--

notice that () vanishes for <-1.
(iii) If (o) is not inwrtible, and ifwe assume that its eigenvalue zero is semisimple,

then the solution of (ii) of Proposition 9 is a similar problem to solving (49), where
(o) replaces (+ (o)) and (") replaces (q), q > O.

In the simple case where M 1, this discussion becomes straightforward: by we
denote the lowest integer such that (t) O, and we obtain

2 (q-O

it follows that 0() vanishes for (r <-1-/.
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Remark 8. The following quantities are needed in the preceding formulas:

h(m+l)=-Qd]-lH(m) and z()=QJ-I(F(-Z();

we are thus led to the solution of singular systems"

(54)
[ M ](dl+;())h+1=- H)- E (H()lgm’)Je.,’

m’=l

(3h’+1) g,,)-0,

and

(55)

M

(3+(O))z()= F(o-)_Z()_ (F()-Z()lg,,)3em
m’=l

(Jz() g.,)=0, m’= 1, M.

A special case. We now give some details about the case where y(o) has only one
eigenvalue, different from zero; moreover, assume that y(<o> is diagonalizable, then it
is diagonal and eventually a multiple of the identity

(o) 1 M

(g()]gm)ll (H)lgm,)l]
m=l

Furthermore, if U() is assumed diagonalizable, an explicit expression of the operator
Q is available:

1 M(i)

OG-- E E (Glgij)ei.
i=21q-lzi j=l

As ()=0 for cr <-1, it is enough to choose p 1; as a consequence:

H) (1)e,,

1 M(i)

h)= 2 (s(1)em gij)eij,
i= l+/i j=l

1 M(i)

H() (2)e’- i=2E l_k_/ jE1"= ((1)em]gij)(1)eij,

and

1 M(i)
z()- E E (F()lgi)eo,

i=21 --/Zi j=l

1 M(i)
Z(1)-- i=2E l+/xi jEI.= (F()[g)()e"

It follows that

(-, (F(O g),
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and thus,

M

Finally, we obtain

Em= (F() gin)era

(o)

Remark 9. It is worth noticing that these formulas agree with (39) and (40) if
is assumed diagonal.
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GLOBAL SOLUTIONS TO THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS FOR A REACTING MIXTURE*
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Abstract. Existence theorems are established for global generalized solutions to the compress-
ible Navier-Stokes equations for a reacting mixture with discontinuous Arrhenius functions, which
describe dynamic combustion. Equivalence of the Navier-Stokes equations in the Euler coordinates
and the Lagrange coordinates for the generalized solutions is verified. The asymptotic behavior of
the generalized solutions with different boundary conditions is identified and proved.

Key words, global generalized solutions, asymptotic behavior, equivalence, combustion, dis-
continuous Arrhenius functions, a priori estimates, Navier-Stokes equations
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1. Introduction. We are concerned with the existence and asymptotic behavior
of global solutions to the compressible Navier-Stokes equations for a reacting mixture
with discontinuous reacting rate functions, which describe dynamic combustion. These
equations in the Euler coordinates are of the following form (cf. [1]-[3])"

(1.1)

+ (pu) 0,

(pu) + (p: +) (),
(pE)t + (u(pE + p))x (#uux)x + (,Tx) + (qdpZ),

(pZ)t + (puZ) -K(T)pZ + (dpZ),

where p, u, E, and Z are the density, the fluid velocity, the total specific energy, and
the mass fraction of the reactant, respectively; the constants #, , d, and K are the
coefficients of bulk viscosity, heat conduction, species diffusion, and rate of reactant,
respectively; and T is the temperature.

The total specific energy has the form

u2

.) E + - + qZ,

where e is the specific internal energy and q is the difference in the heats of formation
of the reactant and the product.

For an ideal gas mixture with the same --gas laws, the internal energy e and the
temperature T are often given via thermodynamics through the following equations
of state:

j" /( 1),
(1.3)

T pv/a.
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1 (the specific volume) and a RM > 0, where R is the Boltzmann’s gasHere, v
constant and M is the molecular weight.

The rate function (T) is typically determined by the Arrhenius law:

Te-A/T, T > Ti > O,
(1.4) (T)--

0, T<,

which is generally a uniformly bounded and discontinuous function, where Ti is the
ignition temperature and A is the activation energy.

We begin with a bounded region with impermeably insulated boundaries. We
assume that the distribution of p, u, T, and Z is known at the initial instant t 0.
By scaling, we can form the following initial boundary value conditions:

(p,u,T,Z)lt=o (po(x),uo(x),To(x),Zo(x)), 0 <_ x <_ 1,

(t, ) o,
(1.6) T(t, i) O, O, 1, t >_ O,

z(t, ) o,

(1.7) O < mo <_ po(x),To(x) <_ Mo < cx, O <_ Zo(x) <_ l,

with the compatibility conditions:

uo(i) To(i) Zoo(i) O,
i O, 1.(1.8)

(apoTo (#uox)x)lx=, O,

In addition to the impermeably insulated boundaries, we consider the source
boundaries. In particular, we are concerned with the following inhomogeneous initial
boundary value conditions:

(1.9) (p, u, T, Z)[t=0 (po(x), uo(x), T0(x), Zo(x)), 0 <_ x <_ 1,

u(t, ) o,
(1.10) T(t, i) q(t), 0, 1, t >_ 0,

z(t, ) (t),

(1.11)

with

(1.12)

0<m0_<p0(x),T0(x)<_M0<cx, O <_ Zo(x) <_ l,

-o() o,
To() (0),
Zo(i) ri(O), i O, 1,
0 < mo <_ qi(t) <_ Mo < cx,
0 <_ ri(t) <_ 1.
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Assume that the region filled with the reacting gas is the whole space, and that
the distribution of p, u, T, and Z is known at the initial instant. For this case we can
form the following initial conditions:

(1.13) (p, u, T, Z)l=o (po(x), so(x), To(x), Zo(x)), -oc < x < oc,

(1.14) { (po(x), so(x), To(x), Zo(x)) (1, 0, 1, 0),

0 < m0

_
p0(x), To(x)

_
M0 < cx), lu0(x)[

_
M0, 0 <_ Zo(x) <_ 1.

As a result of the ignition phenomena in combustion problems, the rate function
(T) is generally a discontinuous function in the solution space, and we must consider
nonclassical solutions. We denote (0, 1) or (-oc, cx). A function (p, u,T,Z) is
called a generalized solution to the system (1.1) in (0, L) gt, with the initial boundary
value conditions (1.5)-(1.8), or (1.9)-(1.12), or the initial conditions (1.13)-(1.14), if

p- 1 e L(0, L; Hl(t)), pt e L2(0, L; L2(t)),
(u,T- 1, Z) e L(O,L;HI(gt))NL2(O,L;H2(t)),
(st, Tt, Zt) e n2(0, L; L2(t)),

and if the function satisfies the system (1.1) almost everywhere in (0, L) t and the
prescribed initial boundary value in the trace sense of the function belonging to the
above classes (see Adams [4]).

It is well known that there are two coordinate systems to describe the flow of
fluid in fluid dynamics: the Euler coordinates and the Lagrange coordinates [5]. The
Euler coordinates represent a coordinate system imposed on the physical space, while
the Lagrange coordinates represent a coordinate system imposed on the flow field.
A different choice of independent space coordinates will lead to a different system
of partial differential equations. In 2 we introduce the Lagrange coordinates and
translate the preceding initial boundary value problems and the Cauchy problem in
the Euler coordinates into corresponding problems in the Lagrange coordinates. A
calculation using the product rule and chain rule shows that these corresponding
problems are equivalent for classical solutions (when such solutions exist). While
the discontinuity of the reacting rate function precludes the use of the product rule
and chain rule in the classical sense, we verify the equivalence of these corresponding
problems in the two coordinates for the corresponding generalized solutions.

In 3 we first establish the existence of global classical solutions of typical initial
boundary value problems for the compressible Navier-Stokes equations with a smooth
reacting rate function in the Lagrange coordinates. The local solution is based on the
Banach theorem as a result of contractivity of the operator, which is equivalent to the
solution constructed by linearization of the problems on a small time interval. The
global existence theorem is established by extending the local solution with respect to
time, based on a priori global estimates. These estimates are obtained by using the
maximal principle and the techniques of energy estimates. To deal with the discontin-
uous rate function , we concentrate our attention to the dependence of the a priori
estimate constants for . The main finding of our analysis is the crucial independence
of the a priori estimates in H on the bounds of the derivative functions of . By
smoothing and taking the limit, we finally obtain a global generalized solution for
the initial boundary value problems with the discontinuous Arrhenius function (1.4).
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Different smoothing approaches generate different forms of the discontinuous Arrhe-
nius function near T Ti. We also transform the general initial boundary value
problems (cf. (1.9)-(1.10)) to typical ones and similarly establish a global existence
theorem.

Our results show that there are global solutions for the initial boundary value
problems in spite of the fact that the Arrhenius function is discontinuous. In fact, our
analysis indicates that the H norm of the solutions is independent of the bounds of
the derivative functions of the Arrhenius function. This finding should be useful in
the related problems in the combustion theory.

Our further objective is to study properties of the solutions with the discontinuous
Arrhenius functions (1.4). In 4 we focus onthe asymptotic behavior of the solutions
as t -. oc. We compare the asymptotic behavior of the solutions with two different
boundary conditions: the impermeably insulated boundaries and the thermal source
boundaries. We conclude that the asymptotic behavior of the solutions with the
discontinuous Arrhenius functions (1.4) for the first case is determined not only by the
initial data, but also by the Arrhenius functions and the amount of heat released by the
given chemical reaction. However, for the second case, the asymptotic behavior of the
solutions with the Arrhenius functions (1.4) is completely determined by the boundary
data and the initial density, and is independent of the initial velocity, temperature, and
mass fraction as well as the scale of the Arrhenius functions and the amount of heat
released by the given chemical reaction. We remark that the discontinuous Arrhenius
functions (1.4) can have different forms near the ignition temperature T Ti. These
results show that the asymptotic behavior of the solutions is independent of those
different forms near T Ti for . From the difference between the two cases, we can
also find a difference in the asymptotic behavior between a reacting mixture and a

nonreacting gas [6].
Finally, in 5 we establish an existence theorem of global generalized solutions

for the Cauchy problem of the.compressible Navier-Stokes equations for the reacting
mixture.

In connection with earlier work, we recall that Gardner [7] and Wagner [8] stud-
ied the existence and behavior of steady plane wave solutions to the compressible
Navier-Stokes equations for a reacting gas and confirmed some phenomena observed
in numerical calculations and predicted by the ZND theory, which had been developed
independently by Zeldovich, von Neumann, and Dbring (see [1] for details). Several
theoretical and computational properties regarding the structure and stability of re-
acting shock waves of the system (1.1) are documented and analyzed in [9] and the
references cited therein. For recent developments and strategies in the mathemati-
cal theory of combustion, we refer the reader to [2], [3], [10] and the references cited
therein.

The existence of global solutions to the one-dimensional nonsteady equations of
a viscous compressible gas was first studied in [11]-[12] for simple models. Kazhikhov
and Shelukhin [6], [13] established the unique solvability and decay of the solutions for
the initial boundary value problems of the viscous heat-conducting perfect gas with
large initial data. For a systematic study of existence and decay of the solutions to the
system of equations of a viscous compressible gas for small initial data, we refer the
reader to [14]-[17] and the references cited therein. We also refer the reader to [18]-
[19] for global well-posedness of the Cauchy problem for the nonreacting compressible
flow with discontinuous initial data.
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2. Equivalence of the Navier-Stokes equations in the Euler and La-
grange coordinates for generalized solutions. The relation between the Euler
coordinates (t, x) and the Lagrange coordinates (t, y) is given by

(2.1) P" (t, x) (t, y), y p(t, s)ds,
(t)

where x(t) is a well-defined particle path satisfying x’(t) u(x(t),t). Using this
transformation, we obtain the compressible Navier-Stokes equations for the reacting
gas in the Lagrange coordinates from (1.1)"

( T) and/(u, v, T)- E (u,where (v, T) p t’
The initial boundary value conditions (1.5)-(1.8) can be translated into similar

conditions"

(2.3) (v, u, T, z)l:o (co(y), no(y), To(y), go(y)), 0 y 1,

(t, i) O,
(2.a) %(t, ) 0, 0, , t >_ 0,

Z(t, i) -0,

0 < mo <_ vo(y), To(y) <_ Mo < x, O <_ Zo(y) <_1,

with the compatibility conditions:

(2.6)

o(i) o,
To(i) o,
Zo,(i) O, o, ,

o.
\ o o ,s ,

Here we take x(t) 0 in (2.1) and, for simplicity, assume that f po(x)dx 1.
Similarly, the boundary conditions (1.9) can be transformed into the following

form:

(t, i) o,
(2.7) T(t, i) qi(t), 0, 1, t _> 0,

Z(t, i) (t).
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More general boundary conditions can be expressed by

(t, i)
(2.8) T(t, i) qi(t), i o, 1,

Z(t, i) ri(t),
t>_O,

with

no(i) pi(O), To(i) qi(O), Zo(i) ri(0),
Ipi(t)l

_
Mo < oc, O <_ ri(t)

_
l,

0 < mo <_ q(t) <_ Mo <
(t) lo 0() + I(() -0()) > > 0.

The initial conditions (1.13)-(1.14) can be written into the same form:

(2.10) (v, u, T, Z)lt=o (vo(y), no(y), To(y), Zo(y)),

with

(2.11)

lim (vo(y), u0(y), To(y), Zo(y)) (1 0 1, 0),

}uo(y)l <_ Mo < oc, 0 <_ Zo(y) <_ 1,
0 < mo _< vo(y), To(y) <_ Mo < cx.

We have the following theorem.
THEOREM 1. The coordinate transformation P given by (2.1) induces a one-

to-one correspondence between the generalized solutions of (1.1) satisfying 0 < c <_
p(t, x) <_ M < oc, almost everywhere for some c and M, and the generalized solutions

of (2.2) satisfying 0 < <_ v(t, y) <_ N < oc, almost everywhere for some and N.
In addition, there is a one-to-one correspondence between the corresponding prescribed
boundary conditions and initial conditions for the corresponding generalized solutions.

Proof. We first notice that the transformation y fxx(t)p(t, s)ds is actually a

classical formula for the solution to the gradient system:

Oy0 (, x), -(u)(, x),Ox Ot

which is consistent because of pt -(pu)x, and P is a bi-C homeomorphism from
(0, L) onto itself because 0 < c <_ p(t, x) <_ M < oc and (p, u)

Similar to Wagner [20], we make the transformation P by using the change of
variables for integrals with the Jacobian p for the generalized solutions (p, u, T, Z) to
the system (1.1). We write the system (1.1) as

U + F(U) (DU) + H(U),

with initial data U(O,x) Uo(x). Then

(2.12) J (tU + (F DUx) + CH)dxdt + / CUolt=odx 0

(0,L) xfl fl
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for all C test functions with supp cc [0, L) x .
Using the transformation P for integrals, we obtain from (2.12)

{(,
(O,L) xl

o P-1)(U o p-l) + (x o P-1)(F o p-1 (D o P-1)(U o p-l))

=-dy.
Po

Note that P is a bi-C homeomorphism of [0, L) fl onto itself and that the
induced map o p-1 is a bijection on the set of test functions on [0, L) .
We have

() + F U v fiDUy y + --Z

Oo

Thus the system (1.1) is transformed into the following form:

Zt + K(T)Z= \ v2 y"
Moreover, from the conservation of volume, It -F 0x 0, we have

that is,

(1) -uy O,

Vt Uy O.

Conversely, we can deduce the system (1.1) from the system (2.2) by checking
the process step by step.

Furthermore, we can similarly prove the one-to-one correspondence between the
corresponding prescribed boundary conditions for the generalized solutions, in the
trace sense of the solution functions belonging to the corresponding classes. This
completes the proof of Theorem 1.

In the following sections we restrict our attention to the existence and asymp-
totic behavior of the global generalized solutions to the compressible Navier-Stokes
equations in the Lagrange coordinates. The results can be completely translated into
the corresponding results for the compressible Navier-Stokes equations in the Euler
coordinates. For instance, the existence theorems for the problems (2.2)-(2.3) and
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(2.8)-(2.9) can be translated into existence theorems for the problems (1.1) and (1.5)
with free boundary conditions of the following form.

Given pi(t) e HI(0, L), i 0, 1, there exist unique 61 functions xo(t) and xl(t)
such that xi(t pi(t) and

(t) 1

o(t) v(t, s
ds 1.

The boundary conditions are

(t, x(t)) (t),
T(t, xi(t)) qi(t),
Z(t, (t)) (t).

O, 1, t >_ O.

In particular, if pi(t) 0, i 0, 1, and f vo(y)dy 1, then the existence theorems of
the system (2.2) with the boundary conditions (2.3)-(2.6) and (2.8)-(2.9) are simply
the existence theorems of the system (1.1) with the boundary conditions (1.5)-(1.8)
and (1.9)-(1.12).

Now we introduce some notations for the subsequent development.

3. Existence of global solutions of the initial boundary value prob-
lems. Scaling the variables, we can write the system (2.2) into the following form:

(3.1) vt uv 0,

y V y

(.) T + +
V y V

(a.4) Zt+K(T)Z= Z
For concreteness, we are concerned with the typical initial boundary value problems:

(3.5) (v, u, T, Z)lt=0 (vo(y), uo(y), To(y), Zo(y)), 0 <_ y <_ 1,

(t, i) -0,

(3.6) Tu(t, i) 0, or T(t, i) 1,

Zu(t, i) =0, or Z(t, i) O,
i-0,1, t >_ O,
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0 <mo <_ vo(y), To(y)

f o(1 , O <_ Zo(y) <_ l,

with the compatibility conditions:

uo(i) O,
Toy(i) O, or To(i) 1,
Zoy(i) O, or Zo(i) O,

At first, we assume that the reacting rate function (T) is a C function and that

(3.9) { ]1[]c
(T)

<- <oc, 0<(T)<M<
=0 asT<_T,

where the constants e and Ti are positive, and the constant M is independent of e.
Then we have the following theorem.

THEOREM 2 (Local solutions). Suppose that there exists a constant Mo > 0 such
that

M-1 _< min(vo, To), max(vo, To) _< Mo < c,

Iivoll+, IIuo, To, Zol[2+ <_ Mo <
o <_ Zo(v)<_ ,

and that the conditions (3.8) and (3.9) hold. Then, for any M > Mo, there exist
constants Lo Lo(M), N N(M, e) >_ Mo such that there exists a unique solution
(v, u, T, Z) for every initial boundary value problem in (3.1)-(3.9) on QLo that satisfies

v e B+(QLo), (u, T, Z) e B+(QLo),
M- _< v <_ M, N-1 _< T_< M,
I]vll+,Lo, ]]u, T, ZI]2+,L < N.

The proof of Theorem 2 is based on the Banach theorem and the contractivity of
the operator:

B+(QLo (B2+(QLo))3 H B+(QLo (B2+(QLo))3
(v, , T, z) (, , T, Z),

defined by the following linearization of the problems:



618 GUI-QIANG CHEN

with the initial boundary value conditions:

(5, , T, Z)]t=o (vo(y), no(y), To(y), Z0(y)),

1= 0,

vly==O or ly=-l, i=0,1, t>0,

Zv]= O or Z[= O,

on a small time interval [0, Lo]. We omit the details of the proof.
Based on the local solvability and the a priori estimates below, we can extend

the local solutions in Theorem 2 and obtain the following existence theorem of global
solutions.

THEOREM 3 (Classical solutions). Let the initial data satisfy the conditions (3.7)-
(3.8), and

vo E Cl+(0, 1), (u0, To, Zo) e C2+(0, 1),
[luo, To, ZOilH1 <_ Mo,

and let the reacting rate function (T) satisfy the condition (3.9). Then there exists a
unique classical solution (v, u,T, Z) for every initial boundary value problem in (3.1)-
(3.9) such that, .for any n > O, there exist constants M(Mo) (independent of e and n),
N(Mo, e, L) > 0 and the following estimates hold on QL:

M-1 < v <_ M, 0 < N-1

_
T

_
M, lu[ <_ M, 0 <_ Z(t,y) <_ 1,

I[v,, vyl[2(t) + f [[v,, vv[[2(T)d" <_ M,

[[uv, Tv, Zv[i2(t) + f [luvv, Tvv, Zvv, Uy, Ty, Zy, ut, Tt, Zt]]2(T)dT <_ M,
Ilvlli/,/, Ilu, T, Zll2+,,i <_ N.

Now we make these a priori estimates. The main insight from our analysis is the
crucial independence of the a priori estimates on the parameter e. For simplicity, we
use M to denote all positive constants that depend only on ao, M0, and I111, and
are independent of e, L, [Iv0111+a, [[u0, To, Z0[12+, and use N to denote the universal
constant that specially depends on e and L.

For concreteness, we first deal with the impermeably insulated boundaries.
We have from (3.2) and (3.3)

(3.11) Tt + + + qK(T)Z.
V

Uy
V y V

We can immediately conclude the following lemma from (3.1)-(3.4) and (2.3)-
(2.6).

LEMMA i.

(3.12) ]ov(t, y)dy vo(y)dy 1,

Z(t, y)dy +
1

K(T)Zdy dT Zo(y)dy,
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(To+oo (T + - + qZ) dY oo + qZo) dy,

(3.15) U(t) + (V(T) + W(T))dT

a(vo 1 -lnvo) + + (To 1 lnTo) d

where

LEMMA 2. 0

_
Z(t, y) <_ 1.

Proof. Set Y Ze-t, > 0 constant. Then Y(t, y) satisfies

Yt + ( + K(T))Y -Yy
y

Yy]y=o,1 O,

1=o- Zo().

We claim that
Y(t,y) >_ O.

On the contrary, there exists (to, yo)E [0, L] [0, 1] such that

to, yo) min Y(t, y) < O.

Then

We have

However,

(to, o) o, (to, o) _< o, y(to, o) > o.

(d ) (to, o) > O.
V2

Y
y

(Yt + ( + K(T))Y)(to, yo) < O.

This is a contradiction. It follows that

z(t, ) y(t,) >_ o.

On the other hand, if we multiply both sides of (3.4) by pZp-1 p

_
2, then we

have

(pdZp-IZy ) (Kc(T)Zp dZ2y) (dpZp-IZy )(z,) v ’ + (’ )z,- v--- <- ,
y y



620 GUI-QIANG CHEN

Integrating this inequality from zero to 1, we obtain

d
d- llZllL,(t) O.

This means that
IlZll  ( ) _< I[Zoll  .

Let p-- +cx. We obtain

LEMMA 3. M-1

_
v(t, y) < M.

Proof. We know from Kazhikov [6], and Kazhikov and Shelukhin [13] that v(t, y)
and T(t,y) satisfy the following equalities and estimates using (3.1)-(3.2) and the
boundary conditions (u(t, x), T(t, y))[x=0,1 (0, 1)"

(1) For any t >_ 0, there exists yl (t) e [0, 1] such that

(3.16)
1 ddT)

{ a]:tT(T’Y) exp(Ifo fo )}1 + - D(T, y) - au (u2 + aT)dds dT

where

1 Y

u(t,)d xi uo()dD(t, y) =vo(y)exp - (t)

-+- fol VO(l) (fon UO()d) drl) }
(2) For any t > 0, there exists y2(t) e [0, 1] such that

(3.18) v(t,u)
1 + f -T(T, y)P(’r)Q(T, y)d’r

P(t)Q(t,y)

Here

(3.19)

and

{]i a T
(T, y2(t))dT}P(t) vo(y2(t))exp -fi-

(u0() u(t, ))dQ(t, y)
vo(y)v(t, y2(t))

exp

(3.20) ao < v(t, y2(t)), T(t, y2(t)) </30,

where the positive constants c0 and/3o are roots of

y- 1- lny E1
1 ( jol )min{1, a} Eo + q Zo(y)dy
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(3) T(t, y) satisfies

(3.21) so < T(t, y)dy < o.

The estimate (3.21) is a direct corollary of the Jensen inequality and the convexity
of the function T- 1 -lnT. In fact, we have

T(t, y)dy 1 In T(t, y)dy < (T(t, y) 1 lnT(t, y))dy < E1 < +cx3,

by using (3.13) and (3.15).
Set

mv(t) min v(t,y),
ye[0,1]

roT(t) min T(t, y),
ye[o,1]

My(t) max v(t, y),
u[o,l

MT(t) max T(t, y).
e[o,1]

Using (3.15), we conclude that there exists a constant M > 0, which is independent
of t, such that

(3.22) M- <_ D(t, y), Q(t, y) <_ M <

Furthermore, we observe that

(3.23) 0 < a < (u(t, y)2 + aT(t, y))dy < a2 < +oc,

by using (3.13), (3.15), and (3.21), where

al aoa,

a2 0a + 2(E0 / q f Zo(y)dy).

Therefore, we have from (3.16) and (3.23) that

v(t, y) < Mexp(-alt) 1 + -fi MT(T)exp(alT)dT

Thus

(3.24) Mv(t) < Mexp(-alt) 1 + - MT(T)exp(alT)dT

Moreover, for y2(t) e [0, 1] satisfying (3.20), we have

T(t, y)/2 T(t, y2(t))/: + dy
.(t) 2T/2

1
V(t)M(t) Tdy<_ T(t, y2(t))/2 +

< T(t, y2(t))/2 + Y(t)M(t)

1/2
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Similarly, we have

(0 )1/2T(t, y)1/2 >_ T(t, y2(t))i/2 -V(t)M,(t)
Therefore,

(3.25)

and

MT(t) <_ M(1 + Mv(t)V(t)),
roT(t) >_ M-1(1- Mv(t)V(t)).

Using (3.24) and (3.25), we have

My(t) _< M 1 + exp(-al(t- T))V(T)Mv(T)dT

(/o )(3.26) Mv(t) <_ Mexp M V(’)d" {1 + exp(-at)} <_ M.

Furthermore, we have

{a for }(3.27) m(t) >_ M-lexp(-a2t) 1+ - mT(T)exp(a2T)dT

Substitute (3.25)into (3.27). We obtain

{ /o’ }roT(t) >_ M- 1- M exp(-a2(t-’))V()dT

Notice that

lim exp(-a2(t- T))V(T)dT O.

Therefore, there exists an L0 > 0 such that

M-
(3.28) my(t) > when t > Lo.

2
On the other hand, we have from (3.12), (3.18), and (3.22) that

fOP(t) P(t)v(t,)d

1 + f T(T, y)P(7)Q(7, y)dT
Q(t,y)

dy

M 1 + P(T)d7 T(7, y)dy

M 1+ P(T)d7

This means that
P(t)

_
MeMr,

that is,

(3.29) m,(t) >_ P(t)-lQ(t, y)-i _> M-le-MLo > 0 when

Combining (3.28) with (3.29), we have

m(t) >_ M-1 > O.

This completes the proof of Lemma 3.

O<_t<_Lo.
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LEMMA 4. T(t, y) >_ N-1 > O.
Proof. Set T-1. Multiplying (3.11) by T-2, we obtain

() a21
(3.30) Ot u - 4# vy T2 v v

Multiplying (3.30) by 21021-1,1 1, 2, 3, we have

a2 21021-1
(ez)t <

4# v

a2 2102z-<
4# v

21(21_1)02-2 2Y + (u(O2)y)v v y

Therefore, we obtain

d a2 fl 02z_ 1

Jo dy(llO[IL=’(t))2-x IlOliL(t) <-- v

a2 _1 L2(t).
v

Using the HSlder’s inequality, we have

a 1
r., (,.r)dT-IlOll., (t) _< IIO11=,(o) + II;

a2 fo 1<- IlOllLz(O) + -p my(T)
dT

< I111., (o)+ M,.

Set - +cx. We obtain

mT()-1

__
M(1 + t),

that is,

LEMMA 5.

mT(t)

_
M-l(1 + t) -1

_
N-1 > 0.

live, , T 1, glib(t) + I1,, T, Zll=(w)d + K(T)Z2dy dT <_ M.

Proof. Set w T + - 1. Then

wt + + qK(T)Z.
y V y y

We multiply both sides of the above equality and (3.2) by w and U3, respectively.
We then integrate them with respect to y from zero to one and use the interpolation
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formula. We obtain

(w2 -+- ua)dy q- (Ty2 -F u2u2y)dy dT

_<M (wo(y)2 - uo(y)a)dy

+ (u2Tu + K2(T)2Z2 -t- K(T)Z)dydT

_<M 1 + u2(w2 +ua)dydr

/ u2 (u2

(/o_<M 1 - max u(r, y)2 (w2 -+- ua)dy dT
Y

-F max u(r, y)2 (u2
Y

_<M 1 + max (r,

+ max u(r, y)2 (w2 + ua)dy dT
Y

by using the estimate

( u/01 )/01T + - T(t, y)dy <_ (T2 + u2u2y)dy.

Notice that

(/0 )U2(t, Y) <_ u2ydy
U2 00<_ TdY vTdy <_ MV(t),

and V(t) is uniformly integrable. We have

liT- 1]12(t)+ I[Ty[l(T)dr <_ M

by using the Gronwall’s inequality.
Furthermore, we have

V V V

from (3.1) and (3.2). We multiply both sides of the above formula and (3.2) by vy/v
and u, respectively, and then integrate them. We obtain

/o /o (a (v) ,u)dy +
v - +

v
dy dT

_
M.
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Notice that there exists 0 </ < 1 such that

uf(T + -)dy

from (3.21). We have

+foo -dyjou2lv2ydy)
( oli o 1 ),,, + M T- T ,+ T,

Therefore,

Notice that

(/oo’Io’,,d <_ M Td ,,d + T,,d

oo fool(Ty2 + Tv2y)dydt <_ M.

We immediately conclude that

fot oo v2ydy dT <_ M.

Finally, we multiply (3.4) by Z and obtain

+ + K(T)Z2
2 y 2

Therefore, we have

Z2dy + (Z + K(T)Z2)dy dT <_ M.

This completes the proof of Lemma 5.
LEMMA 6.

live, , T, Zll(t) + IIv, u,T, Z, u, T, Zll(-)d M.

Proof. We multiply both sides of (3.2) by uyy and use the interpolation inequal-
ities:

max u2y <_ f3 U2yydx + C5 f3 udy,
Y

maxT2

_
2 f Ty2dy + 2 Tdy

Y
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We deduce that

Iluyl]2(t) + Iluuyll2(T)d <_ M

by using Lemma 5.
Next, we multiply both sides of (3.11) by Tyy and integrate it. We have

dy + v v
Uy #U2v qK(T)Z) Tyydy,

and then

]o ]01+ Ty2ydy <_ M (T2u2y + U2y + q2K2(T)2Z2)dy.

Notice that

/o (/o /o )/ouaydY <_ Uy2 dy + C u2ydy u2ydy,

izlo
T2U2dy <_ 2 T2dy-t- Tdy v2ydy,

K2(T)2Z2dy dT <_ M K(T)Z2dy dT <_ M.

We obtain

IITll(t) + IITyy]12(T)dT <_ M.

Finally, multiplying (3.4) by Zyv, we have

’--- dy / -Z2yydy dT K(T)ZZyy +

<_ M (K(T)Z2 + Z2)dy dT <_ M

2dvy )v3 ZuZuu dydT

by using f v2ydy <_ M and the interpolation inequality

This completes the proof of Lemma 6 by using (3.1).
LEMMA 7. lUl

_
M, 0 < N-1

_
T _< M <

Proof. Notice that

(/o )(/o )u2 -- 0 (u2)ydy - 2 u2dy udy
1/2

We define an auxiliary function f by

T

f(T) v/T 1 -lnTdT.
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Then

However,

f(T) +oc as T --* +oc.

y

If(T)l <_ x/T- 1 -lnTITvldy

1/2

(/o )< (T- 1 lnT)dy

Therefore,
O<N-1 <T<M<oo.

This proves Lemma 7.
With these a priori estimates and (T) E C1, we obtain the following estimates

by using the standard method (cf. [11]-[12]) and the Schauder estimates (cf. [21]).
LEMMA 8. IIVlII+,L, IlU, T, ZII2+,L _< N.

This proves Theorem 3 for the impermeably insulated boundary conditions.
For the Dirichlet-type boundary conditions, we must use other techniques to

arrive at the result.
Notice that the equalities (3.12) and (3.15) still hold by using (3.1) and (3.2), and

the boundary conditions (u(t,y),T(t,y))ly=o,1 (0, 1). Now we consider (3.4) with
the initial boundary value conditions:

Z[=o, O,
(3.31) / zl=o Zo(x) > o.

Then we have the following lemma.
LEMMA 9. The solution Z(t, y) of (3.4) and (3.31) satisfies

(3.32)
0 _< Z(t,y) < 1,

f Z(t, y)dy + Kf f (T)Zdy dT <_ f Zo(y)dy.

Proof. Similarly to the proof of Lemma 2, we first conclude that

Z(t, y) >_ O.

The estimate

Z(t, y)

_
1

is a direct corollary of the maximal principle.
We multiply (3.4) by flZ-l,fl E (1,2). Then we have

(Z)t + K(T)Z gZ-1 -{Zu
y

Thus

Z(t, y)dy + K(T)Zdy dT <_ Zflo (y)dy.
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Notice that, for any fixed point (T, y) e (0, t] x (0, 1),

z0(u) Zo(u),

when/3 ---, 1 and

Using the dominated convergence theorem, we obtain

ootJi LZ(t, y)dy + K (T)ZdydT <_ Zo(y)dy.

This completes the proof of Lemma 9.
LEMMA 10.

T> N-1 >0.

Proof. Set X Te-Z fl max I-1. Then X(t, y) satisfies
Q5 v

x, +
v y

Xl=o, e-t,
XIt=o To(x).

+ e- + qK(Xet)Ze-t,
v

We conclude that
X(t,y) >_ min(e-L min To(y)) > 0

ye[0,1]

by using the maximal principle, which means that

T(t, y) >_ N-1 > O.

Using Lemma 9, we can obtain the uniform bound of v(t, y), which is independent
of t and e.

LEMMA 11. M-1 _< v(t, y) <_ M.
In fact, using Lemma 9 and (3.15), we can obtain the estimate (3.23). Following

the proof of Lemma 3, we then can complete the proof of Lemma 11.
The remaining arguments are the same as those discussed for the insulated prob-

lem. For the mixed problems, we can arrive at the result in the same fashion. This
completes the proof of the theorem.

We know that the reacting rate function (T) is typically of the form (1.4) because
of the ignition phenomenon in the combustion process. We modify (T) as follows"

{ Tae-A/T, T >_ T + ,
(T)

0, T<_T-e,

Then we follow the scheme given above and obtain global solutions (v, u,T, Z)
such that

v E BI+(QL), (u,T, Z) B+(QL),
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and

where M is the constant independent of e.

Using this fact, we can obtain the following theorem.
THEOREM 4 (Generalized solution). Let the initial data satisfy (3.7)-(3.8), and

(v0(y), u0(y), T0(y), Zo(y)) e HI(O, 1).

Then there exists a generalized solution (v, u,T, Z) for every initial boundary value
problem in (3.1)-(3.8) with the discontinuous Arrhenius function (1.4) satisfying the
same estimates as (3.33).

In fact, we can immediately assert from (3.2) that there exists a subsequence
converging in the strong topology of L2 such that

(vc, u,T,Z) (v,u,T,Z) E Hl,

where (v, u, T, Z) is a generalized solution for the corresponding problem.
Remark. These existence arguments can be generalized to general initial bound-

ary value problems. As an example, we consider the problem (3.1), (2.3), and (2.8)-
(.9).

Construct function (Ul (t, y), T1 (t, y), Z1 (t, y)) as follows:

k(t) foul (t, y) l(t) v(t, )d + po(t),

where k(t) pl (t) po(t).
Tl(t, y) and Z1 (t, y) are solutions of the following linear problems:

y \-y,], 0<y< 1,

T1]y=i qi(t), 0, 1, t _> 0,

Tll=o To(),

O<t<L,

and

respectively.

(0Z1 c [ d cZ1

Zlly:i ri(t), 0,1,

Zl=0 z0(),

Using the functions and mapping

0<y<l, O<t<L,

(, T, z) - (, x, Y)
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by
(t, ) (t, u) (t, u),

T(t,y)
x(t,) ,
Y(,) z(, ) z(, ),

we transform (3.1)-(3.4), (2.3), and (2.8)-(2.9)into the following problem:

(3.34)

wl=o, O,
(3.35) Xlu=o,1 1, t >_ O,

Yly=0,1 0,

and

(3.36) (v, w, X, Y)It=o (v0(y), uo(y) l(O) vo()d p0(0), 1, 0

In the same manner we can solve the problem (3.34)-(3.36) and obtain similar
estimates of the solutions to (3.21) for 0 <_ t <_ L < +cx.

4. Asymptotic behavior of the solutions for the initial boundary value
problems. For concreteness, in this section we restrict our attention to the two typ-
ical boundary conditions:

(t,i) =0,

(I) Tu(t, i) O,
zv(t, i) -0,

i=0,1, t_>0,

and
(t,i) 0,

(II) T(t, i) 1,

Z(t,i) =o.
i=0,1, t_>0,

We compare the asymptotic behavior of the solutions to the system (3.1)-(3.4), satis-
fying the boundary conditions (I) and (II) with the initial condition (3.5) and discon-
tinuous Arrhenius functions (1.4). We have the following theorem.
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THEOREM 5. Let the initial data satisfy the conditions of Theorem 4, and let the
reacting rate function be of the form (1.4). Then

(A) Any generalized solution (v, u, T, Z) to the system (3.1)-(3.4) with the bound-
ary conditions (I) satisfies

(4.1)

where the constants T and Zo satisfy

I j01(T + qZ To(y) + qZo(y) + dy,

(Toc)Z 0.

(B) Any generalized solution (v, u, T, Z) to the system (3.1)-(3.4) with the bound-
ary conditions (II) satisfies

(4.2) [Iv- vo(y)dy, u,T- 1, ZIIHI(O,1)(t -* 0 as t - oc.

Proof. The generalized solutions of the two problems satisfy the estimate

from Theorem 4. Therefore, we have

d d
12

d

and

(llvyll2(t) + Iluyll2(t) + IITull2(t) + IIZu]12(t))dt <_ M.

This means that

(4.3)

For (A), we have
(4.4)

( 01 )2 ( 01 )2 j01v vo(y)dy v v(t, y)dy < vdy ]lvyll2(t) -- O,

u2 uudy < udy ]luy]12(t) --+ 0, t --
(T + qZ (T + qZ))2 T + qZ + (T + qZ + v)dy

I T ll:(t) + + Mi   ll:(t) 0 -- Mu2
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by using (3.12) and (3.14).
Furthermore, since

(T)Zdy dt <_ M <

we deduce that

This gives us (4.1).
For (B), we have

(T)Z =0.

u: (:u) <_ IIll(t) - O,

(T 1)2 (f Tydy) 2 <_ f3 Ty2dy IITyl[2(t) -- O,

Z2 (f Zydy) 2 <_ f Z2ydy I[Zy[12(t) -- 0

by using the boundary conditions (II) and (3.12). This completes the proof of
Theorem 5.

The boundary conditions (I) correspond to the impermeably insulated boundaries.
Theorem 5(A) shows that the asymptotic state of the solutions of the problem is
determined by the initial data and the Arrhenius functions. In particular,

(i) If the initial data satisfy

To(y) + qZo(y) +- dy > T + q,

then Zo --0, that is,

(ii) If the initial data satisfy

ast --- cx;

(4.7) To(y) + qZo(y) + dy < Ti,

then
To <_T.

Thus, in the impermeably insulated container, five factors determine whether the
reacting process completes: the ignition temperature, the amount of heat released
by the given chemicM reaction, the initial temperature, the velocity, and the mass
fraction of the reacting mixture after a sufficiently long time. In particular, if the
initial temperature is appropriately high, and/or the initial velocity appropriately fast,
and/or the initial mass fraction of the reacting mixture appropriately large such that
(4.6) holds, then the reacting process will certainly complete, and all unburnt gas will
be burnt out after a sufficiently long time. If the initial temperature is appropriately
low, and the initial velocity appropriately slow, and the initial mass fraction of the
reacting mixture appropriately small such that (4.7) holds, then the reacting process
will certainly stop after a sufficiently long time.
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In contrast, the boundary conditions (II) correspond to the thermal source bound-
aries. Theorem 5(B) shows that the asymptotic state of the temperature T and the
mass fraction Z of the problem are completely determined by the boundary data in-
stead of the initial data, the scale of the reacting rate functions, and the amount of
heat released. This reacting process will certainly complete, and all unburnt gas will
be burnt out after a sufficiently long time.

These arguments may be generalized to more general boundary conditions.

5. Existence of generalized solutions of the Cauchy problem. We now
establish an existence theorem of global generalized solutions of the Cauchy problem.

THEOREM 6. Let the initial data satisfy the condition (2.11), and let

(vo(y)- 1, uo(y),To(y)- 1, Zo(y)) e Hl(-oc,

Then there exists a generalized solution (v,u,T,Z) of the problem (3.1)-(3.4) and
(2.1O) satisfying

v(t, y), T(t, y) > 0, 0 <_ Z(t, y) <_ 1.

The proof of Theorem 6 is based on the same arguments as in 3 and the local-
ization lemma of Kazhikhov [6].

LOCALIZATION LEMMA. For each interval In In, n+ 1), there is a point Yn (t) E
In such that

o < (t, ,(t)) _< o,
so <_ T(t, Yn (t))

_
o,

so <_ fn v(t, y)dy, fin T(t, y)dy <_ o,
where the positive constants so and o are two roots of the equation

y- 1- lny

mAn{a, 1} (u___ + a(vo -1- lnv0) + (To -1-lnT0)) dy

We omit the details of the proof of this theorem.

+ q Zo(y)dy
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SOLUTION OF THE CAUCHY
PROBLEM FOR A CONSERVATION LAW

WITH A DISCONTINUOUS FLUX FUNCTION*

TORE GIMSE AND NILS HENRIK RISEBRO

Abstract. The Cauchy problem is solved for a conservation law arising in oil reservoir simu-
lation where the flux function may depend discontinuously on the space variable. To do this front
tracking is used as a method of analysis.

Key words, conservation laws, discontinuous coefficients, two-phase flow

AMS(MOS) subject classifications. 35A05, 35L65, 35R05, 76T05

Introduction. In this paper we study the Cauchy problem for two phase flow
through a one-dimensional porous medium. Darcy’s law together with the equations
of mass balance gives

(0.1) s / (fo(s)(v g(x)k(s)) )x O,

where s s(x, t) denotes the saturation of one of the phases, f0 is the fractional flow
function, v is the total Darcy velocity, and k(s) is the relative permeability of the
phase not denoted by s. The gravitational term g(x) includes the density differences
between the phases as well as the absolute permeability of the rock and the angle of
dip of the reservoir. This term is, therefore, not necessarily a continuous function of
x. Equation (0.1) is an example of a conservation law

(0.2)
ut + f(u, x)x --0,

o) u0(x),
where u may be either a vector or a scalar variable. Such conservation laws do not in
general possess continuous solutions, and by a solution of (0.2) we mean a solution in
the distributional sense, such that for each E C
(0.3) (net + f(u, x),) dt dx + (x, 0)u0 dx O.

The solution u is then called a weak solution of (0.2). Krushkov proved the existence
of a weak solution to (0.2) for a scalar u under the assumption that Of/Ox was
bounded [10]. This assumption does not hold for (0.1) since the geology often varies
discontinuously in a porous medium. The analysis of Isaacson and Temple [9] shows
that equations of the type (0.2) under reasonable restrictions on f, in general, possess
a unique weak solution of the Riemann problem provided the initial states are close.

Here we are interested in the initial value problem for (0.1), and we prove the
following theorem.

THEOREM. If g(x) has bounded total variation, (0.1) possesses a weak solution
s(x, t) for arbitrary initial data so(x) of bounded total variation.

This theorem is proved through construction of a sequence of approximate solu-
tions. These solutions are constructed by the method of front tracking introduced by

*Received by the editors October 22, 1990; accepted for publication (in revised form) June 14,
1991.

fDepartment of Mathematics, University of Oslo, Oslo, Norway.
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Dafermos [1] and developed by Holden et al. [4]. This front tracking method is based on
the solution of the Riemann problem for (0.1) which was studied by the authors in [3],
and here we give a brief review of its solution. The solution of the Riemann problem
for (0.1) is similar to the solution of the Riemann problem for the oil-polymer system
studied by Isaacson [6]. This similarity is sufficient for us to use some of the ideas
developed by Temple [12] for the oil-polymer system, most notably, the construction
of a mapping from (s, g) to (z, g) such that the total variation of the approximate
solutions remains bounded in (z,g). We will define a functional F F(ue) where
ue is our approximate solution generated by the front tracking scheme. Then F is
shown to be nonincreasing in time, and this enables us to show that the sequence
of approximations is well defined in the sense that each approximate solution can be
.defined at any time. Furthermore, we show that each approximate solution is constant
on a finite number of polygons in x t space. Via a standard compactness argument,
we can now show that a subsequence of the approximate solutions converges. The
approximate solutions are constructed in such a way that they are weak solutions of
equations which are close to (0.1). This makes it straightforward to prove that the
limit is a weak solution.

In 1 of this paper we give some of the "physics" of the problem which leads to
(0.1). In 2 we review the solution of the Riemann problem. In 3 we present the
front tracking scheme and introduce the mapping and the functional F. We then
show that F is nonincreasing and that this implies that the approximations are well
defined. In 4 we prove that a subsequence of the approximate solutions converges
towards a weak solution. Finally we make a remark on the applicability of this method
of analysis to the oil-polymer system.

1. Physical motivation. We want to study two-phase flow in porous media,
assuming for each phase Darcy’s law:

pa),

where v is the Darcy speed, , is the mobility, P the phase pressure, p is the density,
and G a gravitational term. Combining Darcy’s law with the source-free equation of
mass conservation for each phase

pt + V(vp) 0,

we find (for a more detailed treatment of these equations see [11]):
(1.1) a(Opwsw)t + (apwFw)z 0

which is the one-dimensional saturation equation, ignoring capillary effects (diffusion).
Here a is the one-dimensional cross-sectional area, is the rock porosity, p is the
density of water, and sw is the saturation of the water at position x at time t. Lower
indices x and t indicate derivatives with respect to space and time, respectively. F
is the flow function of water:

(1.2) Fw fw (v K)o(p po)g),
where fw is the fractional flow function of water, f A/( + Ao), Aw and Ao being
the phase mobilities of water and oil, v is the total Darcy velocity, K is the absolute
rock permeability, and g is the component of gravity along the reservoir. Even if a,, and p are constants, so that (1.1) simplifies to read:

() =0,(.3) (), +
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F may be a function of position as well as saturation, F F(s,x). Hetero-
geneities like a varying reservoir angle (and thereby changing g), or changes in the
rock permeability, K, along the reservoir, may both affect the flow function. This
positional dependence of F may be smooth, when the parameters vary continuously
along the reservoir, or discontinuous. The latter is probably very important and
perhaps more common, since the rock is usually layered to some extent throughout
the reservoir. Between such layers, introducing abrupt changes in rock permeability,
K K(x) should be modeled discontinuously.

In general, the phase mobility curves A A(s) are assumed to be convex func-
tions, typically shaped as indicated in Fig. 1.1. This gives an s-shaped, increasing
fractional flow function f f(s), as shown in Fig. 1.2. In general, with increasing
gravity or permeability, f decreases, so that two different flow functions typically look
like Fig. 1.3. We will be interested in the Cauchy problem for (1.3).

Ilo (Sw) /

FIG. 1.1 FIG. 1.2 FIa. 1.3

2. The Riemann problem. We let s denote the saturation variable, introduce
a variable g g(x) representing the geology, and let u (s, g), so that (1.3) may be
written as a so-called triangular system ([2], [5]):

(2.1)
ut + f(u)x O,

0)

Here f(u)= (h(s,g), 0) with

h(s, g) fo(s)(1 gk(s)),
fo fo(s) being a Lipschitz continuous, increasing function with one point of inflection
(s-shaped) with f0(0) 0 and f0(1) 1 as in Fig. 1.2. The relative permeability k(s)
is usually assumed to be a decreasing, convex function of the saturation such that
k(0) 1 and k(1) 0, cf. Fig. 1.1. Note that this implies that h(1, g) i for all
g. Also, each h(., g) is Lipschitz continuous and has (possibly) one minimum and two
points of inflection within the interval of definition, and finally Oh/Og <_ 0, cf. Fig. 1.3.
The Riemann problem for (1.3) or (2.1), which is the initial-value problem with initial
constant states, denoted by UL (st,gt) and uR (sr,gr), separated by a single
geological discontinuity, has been studied by the authors in [3], where existence and
uniqueness results are proved. Here we will need to know the solution of Riemann
problems, so before proceeding with a more general treatment of (2.1), we will briefly
summarize the main results of [3].
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The one-dimensional Riemann problem for 2.1) may be written in the fbrm

st + ft(s)x =O forx<0,
(2.2)

st + f(s) O forx>0,

with initial data

s(x,O)= { st if x<0,

sr if x > 0.

In the above notation, ft(s) f0(s)(1- gtk(s)) and fr(s)= f0(s)(1- gk(s)). Thus,
to the left of the origin the flow function is ft and to the right f. The saturation
variable s is in the range 0_< s _< 1. We define s_ and s+ to be the limits of the
solution s(x, t) as x approaches zero from below and above, respectively. Note that
if the solution to (2.2) is unique, these values are independent of t. The Hugoniot
relation at x 0 gives

(2.3)

The procedure for determining possible values for s_ and s+ is explained in full detail

in [3], where it is proved that two such points always exist, and by introducing an

additional entropy condition for the shock at x 0, s_ and s+ are uniquely deter-
mined. This entropy condition says that the jump Is_ s+ at x 0 should be the

smallest possible jump here satisfying (2.3). This minimal jump condition is proved
to be equivalent to the viscous profile entropy condition for an enlarged system of

equations, in some extent equivalent to (2.2). The reader is referred to [3] for fur-

ther details. We will now turn our attention to the two different waves involved in

the solution of (2.1). First, s-waves are defined to be waves of constant g. Thus, in

(s, g) phase space, these are found along horizontal lines. The other kind of waves are

g-waves, which according to (2.3) have constant flow value, f const. Hence, it is

useful to draw the level curves of f in the (s, g) diagram. This is done in Fig. 2.1.

The bold curve labeled T in the figure is the transition curve, where f8 0. Solving
the Riemann problem now consists of finding a sequence of s- and g-waves that go
from UL to uR. The solution to the Riemann problem may now be found in the (s, g)
phase space by the procedure indicated in Figs. 2.2 and 2.3 (use Fig. 2.2 for UL to

the left of T, and Fig. 2.3 for UL to the right of T). Follow arrows that continuously

connect UL to UR. Then find the solution by graphing the corresponding waves in the

(x, t)-plane in the direction of the arrows. Note that any Riemann problem gives a

solution consisting of at most three waves, an s-wave, a g-wave, and another s-wave.

We write this composite solution wave as [ULUR] sgs’. We close this section by
displaying an example of how a Riemann problem like (2.2) is solved by the method
indicated above. Given a Riemann problem as indicated in Fig. 2.4, in the (s, f) plane
the solution looks like Fig. 2.5: Starting with a shock moving backwards along ft from

st (s-wave), crossing from s_ over to s+ at f (minimal jump, 9-wave), and finally

continuing from s+ to s with a rarefaction along fr (another s-wave). In Fig. 2.6

we have indicated this solution in the (s, g) phase space, and finally in Fig. 2.7 the

solution in the (x, t) plane is shown.
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T

FIG. 3.1.

3. The front tracking scheme. In this section we present the scheme we will
use to generate a sequence of approximate solutions to (2.1). This scheme is a gen-
eralization of Dafermos’ [1] scheme for the scalar conservation law. The basic idea
of this scheme is to generate a sequence of exact solutions to approximate equations
obtained by taking a piecewise linear approximation of the flux function. Via a stan-
dard compactness argument, we then show that this sequence possesses a convergent
subsequence and furthermore that this converges towards a weak solution of (2.1).

In order to define our approximation we first have to define the approximate flux
functions. Roughly speaking, these will be defined for a fixed g to be piecewise linear
continuous in s. Assume that go(x) is a function taking values in the interval [0, G].
We make a partition of this interval by choosing equally spaced points {i} such that- for some fixed 5 Let

(3.1) sT(g) min f(s, g)
8

and define f(sT(), ). We choose {]} to be an equally spaced partition of the
interval If(sT(G), G), 1] such that h [+1, where [x the largest integer smaller
than or equal to x. Let

(.) ()

and define t gT(]). Now we define

min g
f(8,g)=c

This defines a "mesh" in the (s, g) plane (cf. Fig. 3.1), and we see that the solution to
a Riemann problem defined by two points in the mesh will have intermediate states
that are in the mesh. We wish to simplify the solution to the Riemann problem further
still by requiring that the s-waves consist only of states that are part of the mesh.
This we do by approximating f(s, gi) by a piecewise linear function for each gi. More
precisely let

(3.4) so(g)--0 arid 8i+l(g)- min{s > s(g) lf(s,g E {fi}lM }
for 1,... ,n(g); note that Sn(g)(g) 1. Let si,j denote s(gj) and fi,j denote
f(sd, gj). We have that the intersections in the mesh have coordinates (s,j, gj), cf.
Fig. 3.1. Finally we can define the approximate flux functions
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Yi+ l,j fi,j

(3.5)
he(s, gj) fi,j + s

si+,j si,j

o)
for s [si,j, si+,j] and for j 1,... ,N.

The solution of the Riemann problem defined by

8t+hs(s, gj)x =0,

(aa) / if < 0,

s ifx0
consists of a number of constant states separated by discontinuities moving apart.

t(9) For a complete discussionFurthermore these constant states are a subset of {si,j ji=
of the Riemann problem for piecewise linear flux functions, see, e.g., [4].

In the following we let u denote the pair (s, g) and u,j denote (s,j, gj). Assume
no(x) to be a function taking values in the rectangle [0, 1] x [0, G]. We can construct
an approximation to no, which we call uo,5(z), such that for each
and

(3.7) lim lluo uo,51ll 0.
50

Condition (3.7) can be achieved since gj -gj_ 5 and s,j S-l,j O(), where
the right-hand side of the last equation depends on Of/Os on the T-curve.

We will now generate a weak solution us(x, t) to the initial value problem

(a.s) + Ie( e) 0, 0)
The initial function u0,5 defines a series of finitely many Riemann problems, and by
construction the solution to these problems are constant states (which are included
in the set {ui,j}) separated by discontinuities. We can track these discontinuities
and thereby propagate the solution forward in time, until two of them collide. At
this point we have a situation similar to what we had initially, namely a sequence of
Riemann problems. Therefore we can solve these and propagate the solution until the
next collision. Note that by construction u5 is a weak solution of (3.8). We call this
process front tracking, and it is clear that it can be repeated an arbitrary number
of times. We do, however, need to justify that we can propagate the solution in this
manner up to any given time by a finite number of operations. But in order to do
this we first define a certain functional F which is nonincreasing for each collision of
fronts.

We may think of a wave of u5 either as a discontinuity in the (x, t) plane or as a
directed path in (s, g) space. If the wave is an s-wave, this path is just the straight
line from the state to the left of the discontinuity to the state to the right of the
discontinuity. If the wave is a g-wave the path is the curve f const, from the left
state to the right state. Thus u5 can be thought of as a finite sequence of connected
waves in the (s, g) plane, representing the discontinuities in u5 as we move from left to
right in the (x, t) plane. We will call any finite sequence of connected s- or g-waves in
the (s, g) plane an I curve, where by connected we mean that the left state of a wave in
the sequence is the right state of its predecessor, and we say that an I curve connects
uc to u if the left state of the first wave is ug and the right state of the final wave is
u. We will use the techniques developed for the oil-polymer system by Temple [12]
and construct a certain 1- 1 mapping from (s, g) to (z, g), and a functional F(I)
such that F(u5) dominates the total variation of o u5. We then prove that F(u5)
is nonincreasing for each collision, and that this implies, first, that the approximation
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procedure can be continued to any time by finitely many operations, and, second, that
a subsequence of the approximate solutions converges in L1.

The mapping is similar to the mapping used by Temple in [12], and it involves
the intersections of the T-curve with the level sets of f. Since f does not take all values
on T, we must extend both T and the level sets outside [0, 1] [0, G]. Assume for the
moment that this is done in such a manner that for each point (s, g) in [0, 1] [0, G]
we can find a unique point (s’, g’) on T such that f(s’, g’) f(s, g). Then z is defined
as follows:

(3.9) I" -1 if (s, g) is to the left of T or above T,
signz-

1 if(s,g) is to the right of T or below T.

We have two cases of how to define the point (s, g) when f does not take the value
f(s,g) on T, depending on whether T intersects the s-axis or the g-axis. Assume
first that T intersects the s-axis. Then we can extend T and the level curves of f
in a smooth manner such that they intersect T at their minimum, cf. Fig. 3.2. If T
intersects the g axis we make a smooth decreasing extension g(s) of T defined for
negative s. If f does not take the value f(s, g) on T, then f will take this value on
the line g -0 at some point . We then define (s’, g’)- (-,g’(-)). Since the line
s 0 is a level set for f, this mapping will be continuous and smooth, cf. Fig. 3.3. As
in [12] we have that is 1- 1 and regular everywhere except on T. In the following
we let w (u).

Now we can define the functional F. We define the strength of an s-wave to be

and the strength of a g-wave

(3.11) [gl

We can write u5 as bl,
define

if g is to the right of T and gL < gR,

or g is to the left of T and gL

if g is to the right of T and gL :> gR
or g is to the left of T and gL < gR.

bn I, where bi is either an s-wave or a g-wave, and we

(3.12) F(I) Ib l.

Here follow8 the main 1emma regarding F.
LEMMA 3.1. Let J be any I curve connecting UL to uR, and let [ULUR] be the

I curve that solves the Riemann problem defined by UL and HR. Then F([uLuR]) <_
F(J).

The proof of this lamina is analogous to the proof of the corresponding lemma
(Lamina 5.1) in [12], and since it involves the study of a number of cases, it is presented
in an appendix.

Now let F0 denote F (us(., t)), where t is taken to be so small that no collision has
yet occured. The main theorem of this section then follows immediately from Lemma
3.1.

THEOREM 3.1. Assume that Fo is finite, and let t <_ t2, then

(3.13) F(us(.,t)) >_ F(us(.,t2)).
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Proof. It is clear that F only changes value when we have a collision of discon-
tinuities in us. At any one time we can have only finitely many collisions, and the
change in F is a sum of the changes in F at each collision point. Consider, therefore,
two discontinuities that collide, the one on the left separating states ui and UM, the
one on the right separating states uu and un. The theorem now follows, since by
Lemma 3.1 F([ULUM][UMUR]) >_ F([ULUt]). El

It is clear that F at each collision of u either remains constant or changes by at
least A, where A is the minimum distance between the states of which u5 may consist,
i.e.,

(3.14) A min
(i,j)#(k,l)

We wish to investigate those collisions which are possible if F remains constant for all
time. Let s+ (s-) denote those s-waves over which s is increasing (decreasing), and
let sR (SL) denote an s-wave with left and right state to the right (left) of T.

LEMMA 3.2. Assume that F(u) is constant and that u contains the wave

sequence gs (s-[g). Then no s-wave will collide from the right (left) with g.

Proof. Let the s wave separate states s < s. Since F is constant it can only
collide with s-waves that separate states s < s. The result of this collision is a single

s wave separating states s < s. If the s-wave collides with a g-wave the result of

the collision must be gs+ since F is constant. Since all sR waves have positive speeds,
the lemma follows. An nalogous argument takes care of the case
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LEMMA 3.3.
can occur:

(1)

Assume that F(ue) is constant, then only three types of collisions

An s-wave separating states st s,, colliding with another s-wave sep-
crating states Sm St, giving as a result a single s-wave separating
81 St.

(2) a
as result ("an s-wave passing through a g-wave").

(3) An s-wave colliding with a g-wave, giving s-gs+n as a result.

The proof of this lemma consists of checking a number of cases of Riemann so-
lutions in the Figs. 2.2 and 2.3. It is straightforward and is, therefore, omitted.
Combining the last two lemmas, we see that if F is constant; our approximation u5
is well defined. However, Theorem 3.1 implies that after some finite number of colli-
sions, F will change by an amount less than A for all subsequent collisions, i.e., F will
remain constant for all collisions thereafter. Therefore, the approximation u5 is well
defined and u5 is constant on a finite number of regions in R R+. These regions are
separated by a finite number of straight lines.

4. Convergence. Let Varab u denote the total variation of u with respect to the
variables a and b. By construction, F(I) >_ Varzg J for any /-curve J. Hence, by
Theorem 3.1, we may find a uniform bound on Varzg ue(., t), provided F0 is bounded.
We show this by applying Temple’s argument [12]" Let S(e) be a strip of width e

around the T-curve. If UL or UR are outside the strip, the Riemann problem solution
[ULUR] has a finite number of waves, each globally bounded, and the waves intersect
transversally in the (z, g) plane. Thus, Varzg[ULUR] O(1)IWR--WLI if WR (ZR, gR)
and WL (ZL, gL) are the images of u and UL under . Secondly, if UL and uR are
in S(e), Varzg < 51wg -w by construction, for e sumciently small. Therefore, for
any Riemann problem, Varg I O(1)lwg- wR I. Let {Ji} denote the solutions of the
initial Riemann problems. This gives

Fo _< 4E Varzg Yi

(4.1) <_ O(1) E IWL wRI
_< O(1) Var u0,e,

proving that Var ue(., t) is bounded for each fixed ,t.

Having proved boundedness in space for each time t, we want to prove Lipschitz
continuity in t.

LEMMA 4.1.
:

lwe(x, t2) we(x, tl)ldx <_ O(1)[t2 tll Var u0,e.

Proof. Let M be the maximum speed at which a wave may propagate. M is
given by the maximum slope of any fe(’,gj). Thus, if tl < t, Iw(,t)- we(x, tl)l is
bounded by the spatial variation of we(y, tl), where z-MIt-tll < < x+MIt-tl.
However, as pointed out above, we(., t) is of bounded variation, so that we may write:

/_ /_fx+MIt2-tll dweIwe(x, t2) we(x, tl)l dx O(1)
cx x:) d x M

dx dy

Here, Idwe/dy dxdy is a measure of mass Varzg we(x,t), and by changing the order
of integration we have:
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lwS(x, t2) WS(X, tl)l O(1)M[t2 1] Varzg ws(x, t)dx _
O(1)41t2 tl] Varzg uo,5(x),

the last inequality holds since

O(1) Varzg us(’, t) g(us(., t))
It remains to prove the convergence of the sequence {us}.
THEOREM 4.1. Let wo uo be any initial data such that Varzg w0 < . Then

for any sequence {5}, such that 5 O, there exists a subsequence 5j and a function u,
such that for any finite time T, us (., t) converges uniformly to u(., t) in Loc(X for
any t T.

Pro@ We have demonstrated that ws(., t) has uniformly bounded variation for
each t, and so it follows from Helly’s theorem, that a subsequence converges in Loc(X).
By a diagonalization argument, such convergence is achieved on a countable dense set
of t-values, tj, 0 tj T. Let ws be this subsequence. By a further diagonalization
argument, we may find a subsequence of {ws }; w, which converges uniformly in
L[-M, M] at a fixed ty. Thus, for this sequence:

IW, (x, t) w, (x, t)l dx IW,l (x, t) w, (x, t) dx
M M

+ ]w.1 (x, tj) w. (x, tj) dx
M

M

Here the first and third term approach ero by Lemma 4.1, and the second term is small
by the boundedness ofw,(., t). Therefore, w, converges uniformly in L[-M, M]. This
argument may now be applied a countable number of times, concluding the existence
of a sequence, which we, for convenience, also label {w}, such that for any t > 0,
we(.,t) w(.,t) uniformly. The uniform continuity of - gives the theorem for
e -w and

inally, we want to show that the limit obtained above is indeed a weak solution
to the problem (2.1). or T < we define:

W(u) (tu + .f(u)) dx dt + CUo dx

for (x, t) an arbitrary function in C. For u lims_o u5 we want to show that
W(u) O. Since u is a weak solution of (3.8)"

I::oo" (tue + Cxf6 (u6)) dx dt + uo,6 dx O,

which gives"

W(u) Ct(u ue) + Cx (f(u) f6(u)) dxdt + (uo uo,)dx

for all . Thus,
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IW(u)l  11 11 Ilu uallx + I1 11 Ill(u) fa(ua)lll + I111 Ilu0

(4.2b) + I1 11 Ill(u) f5(u)llx

(4.2d) + I111 Ilu0 -u0, ll .

Here, by Lipschitz continuity of and fs, the terms (4.2b) and (4.2c) above are small.
Furthermore, (4.2a) is small by the construction of u as the L limit of us, and (4.2d)
is small by the construction of u0,5. Hence, for any given > 0, we may choose 5
so that [W(u)l < e, concluding that W(u) 0, and the limit u is a weak solution of
(e.1). n

Remark. The system of conservation laws modeling polymer flow in porous media

(4.3) ’ + ((’ )) 0,, + ((, )) 0

studied by Temple [12], and Temple and Isaacson [7], [8], has a structure of the solution
to the Riemann problem that is remarbly similar to the Riemann solution used in
this paper (Compare Figs. 8 and 9 in [12] with Figs. 2.2-2.3.). It is this similarity that
enabled us to use essentially the same techniques as [12] to show that the functional F
was nonincreasing and to obtain the estimates on Vrg ws. This in turn guaranteed
that our approximation u5 was well defined and that the sequence {us} possessed
subsequence which converged towards a weak solution of (2.1). We could have defined
an analogue of us, (ss, bs) as an approximation to the solution of (4.3). Since the
whole subsequent argument hinges on the fact that F is nonincreasing, it applies
equally well to (ss, b) as to us. Therefore, the front tracking method presented here
gives an alternative proof of the existence of a solution to the Cauchy problem for
(4.3).

5. Appendix. Here we present the proof of Lemma 3.1.
LEMMA 3.1. Let J be any I curve connecting UL to uR, and let [ULU] be the

I curve that solves the Riemann problem aetna bu

Since the structure of the solution of the Riemann problem is similar to the
structure of the solution of the Riemann problem for the polymer system studied by
Temple [12], Lemma 3.1 is proved by essentially the same arguments as the corre-
sponding lemma in [12]. We first prove three lemmas; Lemma 3.1 will then follow
from these.

Let g+ (g-) denote g wave over which s is increasing (decreasing), nd let gR

(gL) denote a g-wave to the right (left) of T. We can now define the "addition" of
waves; the addition of s and s2 is the s-wave that goes from the left state of s to
the right state of s2. If g and g2 are both gL or gR waves then the addition of g nd
g2 is the combined g-wave. If two g-waves are of different type nnd g(uL) < g(UR)
(g(UL) > g(Un)) then their addition is the unique wave gs (sg) that goes from UL to
R.

Assume now that J sg (J gs) connects UL to UR. If UL and UR are on the
same side of T and a parallelogram of s and g waves can be drawn with UL and un
as diagonally opposed corners, the interchange of J; J is defined to be the unique 1
curve (g) that connects UL to UR. If UL and UR are on different sides of T we can
only define ff if J sg or J gs. The interchange of sg is the unique I curve
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J=sg

R

L/

J=gs

R

R

R-

Y

In this case F(J)=F(I) as is
seen from the figure.

If is to the right of P then
we caLn interchange waves. Else
the Riemann problem is solved by
sgs’, and F(J)>F(I).

In this case the solution of the

Riemann problem is either sg or
gs. F(I)=F(J) in both cases.

If R is to the left of P then

we can interchange. Else the

solution of the Riemann problem is

sgs’ and F(I)=F(J)

If
R

is to the left of P then
we can interchange. Else the
solution of the Riemann
problem is sg_s and F(I)<F(J).

In this case the solution of the
Riemann problem is either sg or
gs and F(I)=F(J) in both cases.

FIO. A1
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g-R+ that connects the same endpoints. Other/-curves do not have an interchange.
As in [12] it is easy to show that if J is the addition of bl and b2 then F(blb2) >_ F(J),
and if ] is the interchange of J then g(J) F(). Furthermore, if J connects UL to
uR and J has an interchange ], then [ULUR]-- J or [ULUR]

LEMMA A1. If J connects UL to UR and J gs or J sg then F(J)

Proof. If J has an interchange then the lemma holds. Assuming that J does not
have an interchange, we have eight cases to check: J sg or gs, g gR or gL, g g+
org- But ifJ +gRs or sg- then J has an interchange. This leaves six cases which
are checked in Fig. A1.

LEMMA A2. If J connects UL to UR and J sgs’ then F(J) >_ F([ULUR]).
Proof. If gs or sg can be interchanged, we can interchange and add waves so

that Lemma A1 applies. Assume, therefore, that neither can be interchanged. This
implies that s and s both cross T and that g gL+ or g. This leaves two cases to
check as an exercise for the reader.

LEMMA A3. If J connects UL to uR and J gsg’ then F(J) >_ F([ULUR]).
Proof. We can assume that s crosses T and that g - g+ and g g Also ifR

the variable g is increasing over g and decreasing over g (or vice versa) it is easy to
show that F(J) >_ g() or g(), where or connects UL to uR. In this case,
we can now use Lemma A1. Now s can cross from left to right or right to left, i.e.,
gsg’ g+Lsg or gsg-. In both of these cases J contains a "strong" g-wave, whereas
[ULUR] sg+s, i.e., the Riemann solution has a "weak" g-wave. The presence of this
strong wave makes the lemma hold. [:]

Proof of Lemma 3.1. Once Lemmas A2 and A3 are established, the proof of this
lemma carries over literally from the proof of Lemma 5.1 in [12] if "c-waves" are
substituted with "g-waves."
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LINEARIZED STABILITY AND IRREDUCIBILITY FOR A FUNCTIONAL
DIFFERENTIAL EQUATION*
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Abstract. A principle of linearized stability is given for the abstract functional differential equation
ti(t)= Bu(t)+Kut, t->_0, uo=f, where B generates a strongly continuous semigroup of bounded linear
operators on a Banach space X, and K :E C([-r0, 0], X)--> X is a nonlinear, continuously Fr6chet-
differentiable operator. The strong positivity property of irreducibility is also investigated for the semigroup
associated with solutions of the linearized equation. The theory is applied to the stability analysis of an

equation from population dynamics.
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1. Introduction. In a recent paper [11] a result of Desch and Schappacher [2]
was used to develop a principle of linearized stability for the abstract functional
differential equation

fi( t) Bu( t) + dput, >- O,
(E,)

/’/0 --’f
where B generates a strongly continuous semigroup of bounded linear operators on
a Banach space X, 4 is a nonlinear Lipschitz continuous operator from E
C([-r0, 0], X) to X, and the functional u, E is defined by u,(s) u(t + s) for s

[-ro, 0]. As a consequence, recent results from positive semigroup theory can be used
to study the stability of (FDE1), as indicated in [11].

In the present work we are motivated by a widely used equation (see, for example,
[7], [1], [5], [14]) which describes the growth of a spatially distributed population
with delay in the birth process:

0--- (x, t) dox2 (x, t) + au(x, t)

(E) 1-bu(x, t)- u(x, t+ r(s)) drl(s
-1

x6[0, r], t>_--0.

In [7] positive semigroup theory is used to study the stability of the solution semigroup
corresponding to the (abstract) linearization of (E) at a stationary solution. However,
no conclusions regarding the stability of (E) could be drawn from this analysis. The
connection between the stability of equilibria of the nonlinear functional differential
equation (E) and the stability of the zero equilibrium of the corresponding linearized
equation will be established in the present paper as a consequence of our abstract
results. Because of the nature of the nonlinearity which appears in (E), this equation
cannot be modeled by an abstract equation of the form (FDE1). Our goal here is to
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develop a principle of linearized stability for abstract functional differential equations
of the form

fi( t) Bu( t) + Ku,,
(FDE2)

t/0 --f

where B generates a strongly continuous semigroup of bounded linear operators on
a Banach space X and K E C([-ro, 0], X) -* X is a nonlinear, continuously Fr6chet-
differentiable operator. (These assumptions are made more precise below.) This prin-
ciple will be applied to (E) and, using the results of [7], we will be able to conclude
an asymptotic stability result for an equilibrium of (E).

A second purpose of the present paper is to further examine the role of positive
semigroup theory in the stability study of the linearizations of (FDE1) and (FDE2).
More specifically, we will consider the consequences of the strong positivity property
of irreducibility for the solution semigroup corresponding to the linear functional
differential equation

fi( t) Bu( t) + ut, >= O,

Uo =f

where B generates a strongly continuous semigroup of bounded linear operators on
X, and is a bounded linear operator from E to X. The applicability of this theory
to the study of the linearization of (E) is also given.

2. Stability result for (FDE2). For x X, a Banach space, [[x]] denotes the norm
of x. Forf E C([-ro, 0], X), where ro is a fixed positive constant, the norm off
[If liE, is defined by Ilfll =sup0e[-ro,0] [[f(0)l{. We use 1.[ to denote the norm of a
bounded linear operator.

We consider the equation (FDE2), where we assume the following hypotheses hold"
(H1) B generates a strongly continuous linear semigroup T(t), >-0, on X.
(H2) K" E C([-ro, 0], X)o X is a nonlinear, continuously Fr6chet-differenti-

able operator at each f E, that is,

K(f) K(f)+ K’(f)(f f)+o(f f)

for allf E, where K’(f) is a bounded linear operator from E to X, is a continuous
function from E to X, and b is a continuous increasing function from [0, oe) to [0, eo)
such that b(O)=0 and [[o(f)[[ =< b(r)llfJ[E for all f E such that II/[l -<- r. In addition

IK’(f,)- K’(f2)[ _<- d(r)Ilf, --f2 IIE
for all fl,f2 E such that ]]flllE, [IfZ[lE <- r, where d is a continuous increasing function
from [0, ) to [0, o).

In the three lemmas that follow we show the existence of a unique local solution
of (FDE2). The method of proof is similar to that of Webb [16, Chap. 4], adapted for
delay equations, and is therefore omitted. Basic existence and stability results for
abstract semilinear functional differential equations (under various hypotheses) have
also been obtained by other authors, including Fitzgibbon [3], Lightbourne [8], Rankin
[12], Travis and Webb [15], Webb [17], and Martin and Smith [9].

LEMMA 2.1. Assume that (H1) and (H2) are satisfied. Then for each f E there
exists a maximal interval of existence [-to, Tf and a unique continuous function
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--> u (t; f) from [- to, Tf to X such that

(1)
u(t;f)- T(t)f(O)+ T(t-s)Kusds,

u(t;f)-f(t), t [-to, 0],

t[O, Tf),

and either Tf=oo or lim,_r? sup Ilu(t;f)ll
LEMMA 2.2. Assume that (H1) and (H2) are satisfied. Then the function u (t; f)

ofLemma 2.1 is a continuous function off in the sense that iff E and 0 <= < T, there
exist positive constants C and e such that iff E and IIf-ll , then t T nd
[[u(s;f)-u(s; f)[I <= CIIf-fIIfor all -ro<=S<= t.

LEMMA 2.3. Assume that (H1) and (H2) are satisfied. Forf E let u t; f) be the
function given by Lemma 2.1. If f(O)D(B),f’E, and f’-(O)=Bf(O)+Kf, then
u(t; f) D(B) for 0<= < Tf, the function t-> u(t; f) is continuously differentiable and
satisfies d/dt u(t; f) Bu(t; f) + Kut on [0, T:r ), and Uo f.

After the following definition we state a principle of linearized stability for (FDE2).
DEFINITION 2.1. The growth bound to of a linear semigroup U(t), => 0, is defined

by

to(U(t)) inf {w R" There exists M such that U(t) -< MeW’ for all => 0}.

THEOREM 2.1. Let B and K satisfy (H1) and (H2). For each f E let u( t; f) be
the solution of the integral equation (1) on the maximal interval of existence [-ro, Ts).
Let X satisfy B+ Kf O, where f E is defined by f (s) for all s [- ro, 0]. Let
T(t), >-_ O, be the strongly continuous semigroup of bounded linear operators in E with
generator ,3. defined by Af =f’,

D(A) {fe C([-ro, 0], X)" f(O) D(B), f’(O) Bf(O) + K’(f f}.

If oo(T(t)) < 0 then f is a locally exponentially stable equilibrium in the following sense:
There exist e > O, 1(4 >- 1, and y < 0 such that iff E and f-f IIe --< e, then Ts oo and

Ilu(t;f)-;ll<- e"llf-fll for all t>-O.

Proof If X satisfies B+ Kf= 0, then u(t; f) for all >- 0 by Lemmas 2.1
and 2.3. The fact that , generates a strongly continuous linear semigroup (t), t-> 0,
in E is proved in [10, B-IV, Thm. 3.1]. Also, ’(t) is a translation semigroup, that is

(2) ’(t)f(s) {f(t + s) if + s _-< 0,
’(t+s)f(O) ift+s>=0,

and (t)f(0) (=((t)f)(0)) has the representation

:?(t)f(0)= r(t)f(O)+ r(t-s)K’(f)(’(s)f) ds, feE, t>-O.

(3)

In analogy to Webb [16, (4.100), p. 199] we claim the following fact:

Let f E and tl > 0. Let h" I-to, t] X be continuous. Let b’[-ro, hi - Xsatisfy

iob(t)= T(t)f(O)+ T(t-s)(K’(f)bs+h(s)) ds, O<-_t<-tl

b(t)=f(O), -ro<=t<=O.
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Then

b(t)= ’(t)f(0) + (t-s)hs(O) ds, 0 <- t<= t,.

To prove (3), let g:[0, tl]--> E be defined by

g(t)(O)=
’(t)f+ ’(t-s)hsds (0)

if t+OO,
f(0) if t+ONO,

and let g:[0, t] E be defined by

g((o= (f+ (-)h, (o), -roCOCO.

Iff D() and h is continuously differentiable on [-ro, q], then by [6, p. 486],

d
d g’( t) Agl( t) + h,.

It can readily be verified that for f and h as above, and for every 0 [-ro, 0] and
G [0, tl] such that + 0 0, the function

(t)f+ (t-s)h,sD(3) and

Thus,

Let

Since

d
.--7 g,(t)(0) ,g(t)(0) + ht(0)
la

Bg(t)(O) + K’(f)g(t) + h(t).

b,(t)=
T(t)f(O)+ T(t-s)(K’(f)g(s)+ h(s)) ds,

(j7 (0), -ro<= t<=0.

g,(t)(0) f(t)f(0)+ ’(t-s)hs(O) ds,

g,(0)(0) =f(0),
d

dt
g,(t)(O)= Bg,(t)(O)+ K (f)g(t)+ h(t), 0<= <-

this implies, again by [6, p. 486],

g,(t)(0) g(t)(0) b,(t), 0<= <- t,.

For 0 [-to, 0], [0, t,] such that + 0 ->_ 0, g(t)(0) g(t + 0)(0) b,(t + 0) by the
translation property (2).

For, 0, such that t+O<=O, g(t)(O)=f(O)=bl(t+O). Therefore, g(t)=bl, and
b(t) b(t), 0<= t<= t. The fact (3) is thus proved for the case where f D(,) and h
is continuously differentiable. Iff D() and h is not continuously differentiable, the
argument of [16, p. 199] can be modified and applied to yield the conclusion again
that g(t) bt, 0 <-_ <= t
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Let o5 c (o(’(t)), 0). Then we can choose M=> 1 such that [’(t)l<=Me’ for t=>0.
--2o5rLet ca e and let r > 0 such that I[o(g)[I =< (-/2Mc,)[lgtlE for all g c E such that

[[g[[e <r. Let e=r/Mca(=r/Me2’ro). Letf E such that [[f-f[[ <e, and let
be the largest extended real number such that [lu(t; f)- [[ =< r for 0-<_t< tl. By (1)
and (H2) we have for 0=< < t,

u(t; f) T(t)f(0) + T(t- s)Kus ds

(4) T(t)f(O) + T(t- s)

[Kf+ K’(f)(U-f)+o(u-f)] ds.

We also have

(5) =u(t;f)= T(t)+ T(t-s)Kfds,.

From (4) and (5) we have

u(;f)-2= r(t)(f(0) -)+ r(t-s)[K’(f)(u-f)+o(u,-f)] ds.

Applying the fact (3) we obtain

u(t,f) :(t)(f-f)(0) + :(- s)h,(O) ds,

where

Thus,

h(s)" (o(uo-f),
s6[0, t] (t<tl),
s[-ro, 0].

(6) ]]u(t;f)-;]]<-]l’(t)(f-f)]]E+

For s[0, t], t<tl,
Since

J,I(U’+o)’ s+ O c [0, t],
h(s + O)

(Uo- s + O [-ro, O],

sup
o-o, o] 2Mc

for some [O,s]. Let =s+s, s[-ro, O]. If sro, then s+O[-ro, s] for
[-2ro, 0], and

Ilu-dll sup
[-ro, 0]

sup Ilu(+o)-ll.
0[--2ro, 0]

If s<ro,

/c [--ro, 0]

sup
Oc[-ro-s, 0]
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For s [0, t], < tl, we define a continuous function s "[-2ro, 0]-> X by

u(s+O;f) ifs+0[-ro, s],
u,( O) a(s + O; f)

[.f(-ro) if s + 0 6 [-2ro, -ro].
Then for all s [0, t], < tl,

sup
O[--2ro, O]

(8)

If [0, q), 0 [-2ro, 0] such that -ro =< + 0 < 0, then

7(t + 0; f) [[ Itu(t + 0; f) 11
]]f(t + o)-(t + o)11

(9)
--< [[/-fll
_<- M e(’-ro) II/-i I1.

If [0, h), 0 [-2ro, 0] such that + 0 [-2ro, -to],

sup II(s+O)-[I d
0[--2ro, O]

<-_ M e-2"o e’ [lf f ll + e(t-s) e-2r sup
O[--2ro, O]

Io<=Me-2’oe’Z"llf-fllv+ e’ e- sup Ila(s+O;f)-;[[ ds.
0[-2r O]

(10)

From (8)-(10) we can conclude that

e -’;-’t sup [[5(t+o;f)-l[
0[--2ro, O]

<= M e-2 IIf-]ll / e-"

:[If(-ro)-f(-ro)][
-< II/-f
<_-- M e5(t-2r) IIf-/II .

sup Ila(+o;f)-ll ds.
Oe[-2ro, O]

and hence

(-2) sup ,ltT(s + 0)- 9[,.(7) Ilhsll N 2 or-2,o,O:i

From (6) and (7) we obtain for 0 <= < ll,

u f <- M e’ f f + (-)
e(’-’ sup Ila(x/o)-ll dx.

O[--2r O]

If [0, 6), O [-2ro, O] such that 0 -< t+ 0=< t< q, then replacing by t+ 0 in the
above we have
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Applying Gronwall’s inequality we have

e sup
0[--2ro, 0]

Ila(t + 0; f)- 11 =< M e-2r IIf-] I1 e-(/2’

< eM e-2r e-(/2)t.

Thus, for all [0, tl)

Ilu(t;f)-ll<eMe-o e(’/t<__r.

By Lemma 2.1, cx3 and we have shown that

u f <- l(/l e rt IIf-fll,
where IQ M e-2’r’r and y 03 / 2.

3. Positivity and the linearizations of (FDE1) or (FDE2). We consider the linearized
abstract functional differential equation

ft( t) Bu( t) + IUt,
(FDE)L

/’/0 --f
where we assume that B satisfies (H1) and p satisfies

(H2)’ p (E, X) (that is, p:E --> X is a bounded linear operator).

Let X be a Banach lattice. (The reader can refer to [10] or [13] for basic facts
about Banach lattices and positive semigroups.) Then E C([-ro, 0],X) is also a
Banach lattice with the natural pointwise order and the supremum norm. Let X/ be
the positive cone of X (that is, X/ {x X: x > 0}, and let E/ be the positive cone of
E.

DEFINITION 3.1. An operator B with domain and range contained in a Banach
lattice X is a positive operator on X if Bx X/ whenever x X/. A semigroup T(t),

_>- 0, on X is a positive semigroup if T(t)x X/ whenever x X/ and R/.
DEFINITION 3.2. Let A be the generator of a strongly continuous linear semigroup,

T(t), t_-> 0, on a Banach space X. The spectral bound of A, s(A), is defined by

s(A) sup {Re A: h o-(A)}.

(Here r(A) denotes the spectrum of A.)
If X is finite-dimensional, s(A)=to(T(t)), the growth bound of the semigroup

(defined by Definition 2.1), and hence we obtain the classical Lyapunov stability
theorem. It is well known that in general s(A)<= to(T(t))< +oo, but strict inequality
may occur. However, for positive linear semigroups, we can often conclude the uniform
exponential stability of the zero equilibrium of the semigroup whenever s(A)< 0. We
state below some of the known important consequences of positivity for the stability
study of (FDE)L.

DEFINITION 3.3. A strongly continuous linear semigroup T(t), _-> 0, on a Banach
space X, with generator A, is called

(i) exponentially stable if there exists 7 > 0 such that limt_ e rt T(t)fll =0 for
every f D(A).

(ii) uniformly exponentially stable if there exists 7 > 0 such that limt_ eVtl T(t)l 0.
We note that if to(T(t)) < 0, the semigroup T(t) is uniformly exponentially stable.
PROPOSITION 3.1 [10, C-IV, Thms. 1.1 and 1.3]. Let A be the generator ofa positive

linear semigroup T(t), >=0, on a Banach lattice X. Then the following properties are
equivalent:

(a) The semigroup T(t) is exponentially stable.
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(b) The spectral bound s(A) is less than zero.
If, in addition, X is a space C(K), K compact, Co(Y), Y locally compact, or Ll( Y, ix)
or L2( Y, ix) for some measure space (Y, ix), then the above properties are equivalent to

(c) The semigroup T(t) is uniformly exponentially stable.
PROPOSITION 3.2 10, C-Ill, Cor. 1.4]. Let T( t), >= O, be apositive linearsemigroup

defined on a Banach lattice X, and let A be its generator. Then s(A) o(A) unless
s(A) -o.

DEFINITION 3.4. For A C, x X, g E C([-ro, 0], X), define the following
operators:

(i) eh(R)xE by (eh(R)x)(s)=ehs. x, s[-r0,0];
(ii) Hh(E) by Hhg(t)= eh(’-)g(s) ds, t[-ro,0];
(iii) h (X) by 0h(x) #(eh (R)x).
PROPOSTtON 3.3 [10, B-IV, Prop. 35 and Thm. 3.7]. Let X be a Banach lattice.

Assume, in addition to (HI) and (H2)’, that B generates a positive semigroup and 0 is
a positive operator. Let T(t), >-_ O, be the strongly continuous semigroup of bounded
linear operators in E C([-ro, 0], X) with generator defined by

f=f’,
D(A) {f Cl([-r0, 0], X)" f(O) D(B),f’(O) Bf(O)+ Of}.

Then the semigroup (t) is positive. For the generator of ’(t) and h R the following
statements hold"

(a) If s(B + Oh) < h, then s(A) < h;
(b) If s(B + Oh)= h, then s(A) h;
(c) Suppose that B has compact resolvent and there exists ix R with o-(B + 0) # .

Then

s(B +) if and only if s(,) .
(In particular, s (B + 0o) < 0 if and only if s() < 0.)

DEFINITION 3.5. A continuous map r" [-1, 0] - R_ satisfying min_l_<s=<0 r(s) -to
is called a delay function on [-ro, 0]. If is a bounded linear operator from
C([-1, 0], X) into X, the delayed operator Or (E, X) is defined by Off p(fo r),
feE.

PROPOSITION 3.4 [7, Thm. 4.3]. Let X be a Banach lattice. Assume that B satisfies
(H 1) and generates a positive semigroup on X, and is a positive bounded linear operator
from C([-1,0],X) to X. Let Tu,,r(t), t>-O, be the strongly continuous semigroup of
bounded linear operators in E with generator AB,,r defined by B,,f =f’,

D(u,,) {f Cl([-r0, 0], X): f(0) D(B),f’(O)= Bf(O)+ Of}.
If s(B + o) < 0 then s(u.,) < 0 for every delay function r.

DEFiNITiON 3.6. If , 2 e (E, X) then 0 is said to dominate ge if IOfl <= Ollfl
for allfe E. (Here Ill =sup (f, -f).) Tl(t), t>-o, are semigroups on E, Tl(t)
is said to dominate Te(t)if IT_(t)fl<-_ T,(t)lf] for every fe E, t->0.

PROPOSITION 3.5 [7, Cor. 4.4]. Let X be a Banach lattice. Let B be the generator
of a linear semigroup T(t), t>-_O, on X, and let (C([-1, 0], X), X). Assume that
there exists a emigroup T( t), >-_ O, on X with generator B which dominates T( t), and
an operator which dominates O. Then the linear semigroup u,,(t) (described in

Propositio,n 3..4) is uniformly exponentially stable for all delay functions r if the spectral
bound s(B + o) < 0 and one of the following conditions is satisfied"

(a) X C(K), K compact;
(b) ( t) is norm continuous for > 0 (that is, the function --> ’( t) from (0, c) into

oL#(X) is norm continuous).
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We now examine the consequences ofthe strong positivity property of irreducibility
for the stability study of (FDE)I.

DEFINITION 3.7. An operator B on a Banach lattice X is strictly positive if x X/,
x 0 implies Bx X/, Bx 0. A linear semigroup T(t), >= 0, on X is irreducible if
given xX/, xO, x* X*+,x* SO, there exists to>0 such that (T(to)X,X*)>O. (For
y X, y* X*, (y, y*)=y*(y).) A bounded operator T on X is irreducible if the
semigroup { Tn’n N} is irreducible.

It is well known that the eigenvalues of irreducible square matrices have special
properties (see, for example, [13]). Likewise, positive irreducible semigroups possess
special properties which are useful in the stability study of certain equations (see, for
example, 10]).

We first give sufficient conditions which insure that the semigroup T(t) correspond-
ing to (FDE)I (in the sense described in Proposition 3.3) is irreducible. A corresponding
result for the functional equation u(t)=eOu,, t>=O, uo=f, was obtained in a recent
paper by Grabosch [4, Prop. 3.7]. In that paper E LI((-, 0], F, e ns ds) and F is a
Banach lattice. The method of proof of the proposition below was motivated by the
proof of [4, Prop. 3.7].

PROPOSITION 3.6. Let X be a Banach lattice. Assume that B and q satisfy (HI)
and (H2)’. In addition, assume that B enerates a positive irreducible semigroup and q
is strictly positive. Then the semigroup T(t), >=0, of Proposition 3.3 is irreducible.

For the proof we will use the following two lemmas.
LEMMA 3.1 [10, C-Ill, Def. 3.1]. Let E be a Banach lattice and T(t), t>O, be a

strongly continuous linear semigroup on E with generator . Thefollowing assertions are

equivalent"
(i) T( t) is irreducible.
(ii) For some (every) A > s() the resolvent R(A, ) is irreducible.
(iii) For some (every) A > s(A), R(A, A)f is a quasi-interior point of E+ whenever

f> 0 that is, for all dp E *, ch > O, (R (A, )f oh) > 0).
LEMMA 3.2. Let be a quasi-interior point of X/. Then e (R) (as defined by

Definition 3.4) is a quasi-interior point of E/.
Proof of Lemma 3.2. Let : be a quasi-interior point of X/. Then the ideal I

which is generated by is dense in X (see [13, II, Def. 6.1]). Since eA is a quasi-interior
point of C([-ro, 0])/ [10, C-I, p.,238] the ideal I is dense in C([-ro, 0]). Hence
I(R)I is dense in C([-ro, 0]) (R) X, which is isomorphic to E C([-ro, 0], X)
[13, p. 237]. (We are using here the tensor product notation from [13].) But I(R)

_
I (R)

I implies that I(R) is dense in E, and hence that eA (R) is a quasi-interior point of E/.
Proof of Proposition 3.6. From [10, B-IV, Prop. 3.4] we have A p(B + A) if and

only if A p (A), and

(11) R(A, ft)g=eA(R)[R(A,B+OA)(g(O)+OHAg)]+Hg, geE, where qA
(X) and HA (E) are defined in Definition 3.4.

We will first show that

(12) R(A, B+tPA)(g(O)+OHag) is a quasi-interior point of X+ (for sufficiently
large A) whenever g E, g > 0.

We note that if g > 0, then g(0)->0. Also, HAg > 0 if g > 0. Thus, due to the strict
positivity of q, we have qHAg > 0 if g > 0. Therefore, if g > 0 then g(0) + qHag > 0. So,
if we show that R(& B + OA)f is a quasi-interior point of X+ whenever f X, f> 0,
then this will establish (12). From [10, (1.12), p. 44] there exists Ao R such that

(13) R(A,B+,A)=R(A,B)(I-OAR(A,B))-1 forA->Ao.
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Since we are assuming that B generates an irreducible semigroup on X, this implies
by Lemma 3.1 that R(A, B)f is a quasi-interior point of X/ whenever f X, f > 0.
Thus, if we show that f" =(I- R(A, B))-lf>OOwhenfO, then, by (13), R(A, B/
)f is a quasi-interior point of X/ whenf 0. Since 1 p(R(A, B)) for A Ao and
we know that R(A, B) is irreducible (hence strictly positive) and is strictly positive
(since is strictly positive), we have forf 0

(I-tR(A,B))-lf=R(1, OR(A,B))f E (bR(A,B))"f>0.
n=l

Thus, R(A,B/O)f is a quasi-interior point of X/ when f0. By Lemma 3.2,
e(R)[R(A,B/Oh)(g(O)/d/Hg)] is a quasi-interior point of E/. Since Hg>O for
geE, g>O, e(R)[R(A,B/)(g(O)/Hg)]/Hg is a quasi-interior point of E/ as
well. Thus by (11) and Lemma 3.1, R(A, A) is irreducible and T(t) is irreducible.

Using Proposition 3.6 along with known facts from positive semigroup theory we
obtain our main result for this section.

THEOREM 3.1. Let X be a Banach lattice. Assume that B and 0 satisfy (H1) and
(H2)’. In addition assume that B generates a positive irreducible semigroup T( t), -O,
which is compact for each O, and d/ is strily positive. Let ( t), -O, be the strongly
continuous semigroup in E with generator A, as defined in Proposition 3.3. Then the
following assertions hold:

(i) There exists a unique real number Ao- s(,)- to((t)) and a rank 1 projection
P such that

Ile-ao
for suitable constants > 0, M >_- 1, and all >-_ O. The projection P has theform P b (R) h,
where h is a quasi-interior point of E/, and qb is a strictly positive linear form on E.

(ii) Ao is the unique solution of the equation
Remark. Assertion (i) of Theorem 3.1 says that under the given conditions,

solutions of (FDE)L have asynchronous exponential growth. The constant Ao is called
the Malthusian parameter and P is called the exponential steady state.

Proof of Theorem 3.1. The hypotheses that B generates a positive irreducible

semigroup^ and is strictly positive, along with (H1) and (H2)’, imply by Proposition
3.6 that T(t) is irreducible. The assumption that T(t) is compact for each t>0
guarantees that T(t) is eventuality compact (that is, compact for > ro) [15, Prop. 2.4].
By [10, C-Ill, Thm. 3.7(c)], tr(A) # . Assertion (i) follows from [10, C-IV, Thm. 2.1
and Remarks 2.2(d), (e)]. Noting that r(B) # (which again follows from [10, C-Ill,
Thm. 3.7(c)], we have -oo< s(B) <= s(B + Oh) for all A e R, which implies that tr(B +
h) # . Thus assertion (ii) follows from [10, B-IV, Prop. 3.6].

If, in Theorem 3.1, # is not strictly positive but is dominated by a strictly positive
bounded linear operator, then we have the following result.

COROLLARY 3.1. Let X be a Banach lattice. Assume that B and d/ satisfy (HI) and
(H2)’. Assume that B generates a positive irreducible semigroup T(t), >_,0, which is

compact for each > O. Assume there is a strictly positive linear operator d/ (E, X)
such that IOfl <-- ’lfl for all f E. Let ( t), >-_ O, be the strongly continuous semigroup
in E with generator A, as defined in Proposition 3.3. Then there exists a unique real
number A0 s(,) to(Tc,(t)) and apositive constant Msuch thatfort >- 0 and eachf E,

(t)f]l =< M eo’llf +o(ehot).

(Here ,(t), t>-O, is the linear semi,group, with generator ,,, defined in a fashion
analogous to T(t) and A except with 0 replacing 0 (cf. Proposition 3.3).)
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Proof By [7, Prop. 3.2[ we know that [f(t)fl -< ’,(t)lf I. Since B and satisfy
the hypotheses of Theorem 3.1, assertion (i) of that theorem holds for T(t). This
assertion can also be formulated as follows" There exists 4 E*+, 4 0, and a quasi-
interior element h of E+ such that for >-0 and each f6 E,

Thus,

or, equivalently,

’, f c f e" h + e’X

lim lie-ht f(t)f[[ =<lim lie-t ’;(t)[fl[

f(t)fl[ <= M eo’llfl + o(ehot).

4. Example. We now apply some of our results to the motivating population
equation

OU
(x, t)=dAu(x, t)+au(x, t)

Ot
(E)’

o[1-bu(x,t)-f u(x,t+r(s))dr/(s)],
-1

where x[0, zr], t>-O, A=O2/Ox2 with Dirichlet boundary conditions, a, b, d are
positive constants, is a strictly positive measure on [-1, 0] such that b + [[rt[[ 1,
and r is a delay function on I-ro, 0]. If a > d then it is known that there exists a

stationary solution h e C2[0, zr] of (E) which is strictly positive on (0, ) (see [14]).
Thus dh"+ ah(1 h) =0.

Let X= {fe C[0, ]: f(0) =f() =0} and

d 2

Bo-dx2 with maximal domain in X.

As an abstract equation in X, (E)’ can be written as

(t)=dBou(t)+au(t) 1-bu(t)- (Ut r)(s) dn(s)
--1

I=dBou(t)+au(t)-abu(O)-au,(O) (u, r)(s) d(s).
--1

(14) fi(t)= Bu(t)+ Ku,, >-O,

where Bu dBou + au, and for g E C([-ro, 0], X),

I(15) Kg -abg2(O) ag(O) (go r)(s) drl(s).
--1

It is well known that Bo generates a contraction semigroup on X and B generates a
strongly continuous semigroup on X. It is easy to check that K is continuously
Fr6chet-differentiable in the sense of (H2). Thus if we let uo=f, then (E)’ has the
abstract form of (FDE2). From Lemmas 2.1-2.3 we have the existence of a unique

Thus we have
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local solution of (14) for eachf E. From Theorem 2.1 we know that the linearization
of (14) at the stationary solution has the form

(16) fi(t)=Bu(t)+qtut, t>-O,

where 0 K’(f), and f is the constant function in E defined by f(s)= h for all
s [-ro, 0]. We see from (15) that

OUt Kt(j)Ut

(17)
fo io=-2abhu(t)-au(t) hdrl(s)-ah (u, r)(s) drl(s)

--1 --1

I=-abhu(t)-ahu(t)(b+llll)-ah (uto r)(s) drl(s)
-1

O

=(-ah-abh)u(t)-ah (u, r)(s) drl(s ).
-1

In [7], Kerscher and Nagel show that if a > d and b > I1 11 then the linear solution
semigroup corresponding to (16), or the abstract equation in E, v’(t)=v(t), is
uniformly exponentially stable independent of the delay function r. From Theorem
2.1 we can conclude the following.

PROPOSITION 4.1. If in (E)’, a > d and b > II, then the equilibrium f E, where

f (s) h, s [-ro, 0], is locally exponentially stable in the sense of Theorem 2.1, indepen-
dent of the delay function r.

Proof. For completeness, and to illustrate the use of positivity in obtaining stability
in.formation for linear semigroups, we sketch the proof from [7, Prop., p. 48] that,
under the given hypotheses, the linear solution semigroup corresponding to (16) is
uniformly exponentially stable independent of the delay function.

It is well known that the operator Bo generates a positive irreducible semigroup
on X which is compact for t>0 (see [10, B-III, 3]). Let Mg denote the bounded
multiplication operator with the function g X. Then the same properties hold for the
semigroup generated by Bo + Mg (see 10, A-II, Thm. 1.30 and B-III, Prop. 3.3]). Since
the function h is strictly positive and dh"+a(1-h)h=O, this implies that zero is an
eigenvalue of B1 := dBo+ Ma(1-h), which admits a strictly positive eigenfunction. It
follows that the spectral bound of B1 is zero (see [10, B-III, 3]). Equation (16), with

as given in (17), is equivalent to the equation

(18) ti(t) Bu(t)+

where := dBo+ M._,_,). and Chrf := -ah o_ (f r)(s) drl(s) for feE. Let B2 :=
/ + b [o. Since bo(X) b (1 (R) x) for x X, where bf := ah o_ f(s) drl(s), Cho(X)
-Ma ll llx. This implies I 1o--Ma ll ll. Thus,

B2 dBo -J- Ma(l-h-bh "j- Mah

dBo+ Ma(-h) Mah(b-llnll) <= B1,

by the assumption that b > r/II. Hence s(B2) <- s(B) 0. Assume that s(B2) 0. Then
there exists a strictly positive fixed function g X for S2(t), t>-O, the semigroup
generated by B2 i.e., Se(t)g g for >- 0 (see 10, B-IV, 2]). Thus, S(t)g >- S(t)g g,
>-0, for the semigroup S(t), >-0, generated by B1. But S(t) possesses a strictly

positive invariant linear form (see [10, B-II, 3 and B-III, Prop. 1.5 and Thm. 1.6]).
Hence S(t)g=g and Big=0 Bg, which is impossible since Mah(b_llnl[)0. We
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therefore conclude that s(B2)< 0. By Proposition 3.5, the solution semigroup corres-
ponding to (18), and hence (16), is uniformly exponentially stable independent of the
delay function r. The conclusion of the proposition follows from Theorem 2.1.

We can observe from the proof of Proposition 4.1 that the operator B in (16)
generates a positive irreducible semigroup that is compact for each > 0. Also q, as
given by (17), is dominated by the strictly positive operator q defined by qf=
a(1 + b)hf(O)+ ah Ilf(r(s)) dq(s) forf E. Therefore we can apply Corollary 3.1 to
obtain the estimate

(19) II’(t)fll <=Meat Ilfll+o(eo’)
for the linear semigroup T(t) corresponding to (16). From the analysis of [7] given
in the proof of Proposition 4.1, the conclusion that

allows us to conclude that

Ao s(35) w(’(t)) < O.

Thus the conclusion of uniform exponential stability of T(t) is also obtained here by
using the estimate (19).
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ANALYTICAL AND NUMERICAL RESULTS
FOR THE AGE-STRUCTURED S-I-S EPIDEMIC MODEL
WITH MIXED INTER-INTRACOHORT TRANSMISSION*

M. IANNELLIt, F. A. MILNER$, AND A. PUGLIESEt

Abstract. A model which describes the dynamics of an S I S epidemic in an age-
structured population at the steady state is considered. The model consists of a nonlinear and
nonlocal system of equations of hyperbolic type and has already been partly analyzed by other
authors. Here, a special form for the force of infection is considered. Explicitly computable threshold
conditions are given, and some regularity results for the solutions are proven. An implicit finite
difference method of characteristics to approximate the solutions is used. Optimal error estimates
are derived and results from numerical simulations are presented. The discrete dynamical system
arising from the numerical algorithm, is also analyzed, showing that it shares many properties of the
continuous model.

Key words, age structure, epidemic models, numerical method, discrete dynamical system

AMS(MOS) subject classifications. 35L60, 47H20, 65M25, 92D30

1. Introduction. The importance of age structure in epidemic models has been
recently stressed by many authors who have considered models for many different
situations. Recently, Busenberg et al. [4], [5] have provided a complete analysis of
a fairly general SIS model with age structure, showing existence of a threshold for
endemic states. Our aim, in this paper, is to further develop this model by considering
a special form for the force of infection, and to provide a numerical algorithm to
approximate the solutions.

Since the model concerns diseases which do not impart immunity, it does not
have many applications. Nonetheless, our results have a theoretical interest, and can
be viewed as a preliminary step towards the study and simulations of more complex
models such as the SIR models, which are used in the description of most childhood
diseases. A significant advantage in the SIS case studied here is that the asymptotic
behaviour of the model is completely known theoretically.

Let p(a, t) be the age distribution of a population that is contaminated in part
by a disease which does not impart immunity or affect the death rate. Within this
population we distinguish the subpopulation of infected individuals and that of suscep-
tibles. Let i(a, t) and s(a, t) denote, respectively, the age distributions of infected and
susceptible individuals. The fact that the disease does not impart immunity means
that

(1.1) p(a, t) i(a, t) + s(a, t).

We shall assume that infected and susceptible individuals interact with each other
freely and uniformly. Thus, we shall assume that i and s are solutions of the following

*Received by the editors January 19, 1990; accepted for publication (in revised form) August
5, 1991.
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coupled system of equations:

Oi Oi- + O-- -#i + As-Ti’ a > O, t > O,

i(O, t) Bi(t) q (a)i(a, t)da, t>_O,

i(a, O) i(a), a >_ O,

(1.3)
Os Os- + 0--- -#s- ,ks + 7i, a > O, t > O,

s(O, t) B(t) (a) [s(a, t) + (1 q)i(a, t)]da,

s(a, O) s(a), a >_ O,

t>_O,

where it it(a) is the age-specific death-rate, A A(a, i) is the age-specific force of
infection, fl -/(a) is the age-specific birth-rate, and - (a) is the age-specific recov-
ery rate. The constant q is the probability that the disease be transmitted vertically.
When there is no vertical transmission q 0 and thus Bi 0, that is, all newborns
are susceptible. Adding (1.2) and (1.3) we arrive at the well-known McKendrick-von
Foerster equation for p:

(1.4)
-+Oa--itP’ a>0, t>0,

p(O, t) B(t) (a)p(a, t)da,

p(a, O)= p(a), a >_ O.

t>O,

On the demographic functions we make the hypothesis that there exists a maxi-
mum age a for the population so that we can restrict our attention to the age interval
[0, at]. We also assume

(1.5) (a) is a nonnegative continuous function on [O, at] and it(a) is a nonnegative
continuous function on [0, at.

Under assumption (1.5), a steady state solution of (1.4) exists if and only if the
net reproduction rate is equal to unity:

at
f2 (a)dada 1.R

In this case the steady state solutions are

(1.6) .p(a, t) p(a) be a e [0, at],

where b is an arbitrary constant, representing the number of newborns.
Throughout the paper we shall assume that R 1 and that the population has

reached its steady state, i.e., p(a) p(a). It should be noted that this restriction
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is a severe one in general, and one which is not satisfied by most animal species in our
world. A further analysis for time dependent populations will be carried out elsewhere.
However, for diseases that have a fairly rapid spread, it is not inadequate to assume
the population at a steady state.

Note that in the case we consider here, since (1.6) is the known explicit solution
of (1.4), we see from (1.1) that the unknown s can be eliminated in (1.2) to yield a
single equation for the infective subpopulation. In this case (1.3) in unnecessary since,
once we have solved (1.2) for i, we find s directly from (1.1) and (1.6).

As for the form of the force of infection, Busenberg et al. [3] considered

t(a)i(a, t) (intracohort),
(1.7) A A(a; i(., t))

n(a)I(t) (intercohort),

where I(t) f* i(a, t)da. They found that in either case there exists a threshold
parameter T (the reproductive number of the epidemic) such that for T _< 1 all
nonnegative solutions of (1.2) tend to zero as t goes to infinity; for T > 1 there exists
a unique positive stationary solution of (1.2) (an endemic state for the disease) which
is locally asymptotically stable.

Recently, Busenberg et al. [4], [5] have analyzed the more general case

A(a; i(., t)) ao(a)i(a, t) + fOa? a(a, a’)i(a’, t) da’.

They proved that, under mild assumptions on n(a,a), the threshold phenomenon
always holds. More precisely, they rewrote the equation (1.2) using as variable the
fraction of infected individuals in the population

(1.8) u(a, t) i(a, t)
p(a)’ t>_O, ae[O, ai].

It follows from (1.1), (1.2) (1.6), and (1.8) that u is a solution of the following initial-
boundary value problem:

Ou Ou
Ot + -a +/u= )(1-u), t > O,

(1.9) u(O, t) o fOa (a)p(a)u(a’ t)da, t >_ O,

u(a, O) u(a) i(a)/p(a), a e [0,

Note that 0 _< u(a) <_ 1, a >_ 0, and (1.9) ensure that 0 _< u(a,t) _< 1 for a,t > O,
as the model requires. The advantage of the formulation for the fraction of infected
individuals (1.8) over (1.2)-(1.3) is that the death rate # does not appear explicitly
and, when there is no vertical transmission (q 0), neither does the birth rate /
appear in (1.9). On the other hand, (1.6) says that the death rate is given in terms of
the population age-density function p(a) by the relation #(a) log(b/p(a)),
and thus we see that, both with or without vertical transmission, (1.9) really does
involve #.
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In [5] (1.9) was formulated as an abstract semilinear equation in the space
E L (0, at). Let A and F be defined by
(1.10)

D(A) f E f is abs. continuous, f(O) (a)p(a)f(a) da

Af -f’

and by

(1.11) IF(f)] (a) (a, f(.))(1 f(a)) (a)f(a).

If we define

(1.12) C= {f eE’O< f(a) < l a.e.}

then (1.9) can be written as the following Cauchy problem in the closed convex set C:

(1.13) tu(t) An(t)+ F(u(t)),

u(O) no,

where u(t) =_ u(., t) and u0 u(.).
Concerning this abstract problem, if we assume the following general conditions,

(1.14) A DA C E E is the infinitesimal generator of a strongly continuous
semigroup etA such that etAC C C.

(1.15) F :C -+ E is a Lipschitz continuous function, and there exists a E (0, 1) such
that (I + F)C c C.

Then, for any u0 E C, problem (1.13) has a unique mild solution (see [12]), i.e.,
a solution u C([0, T]; C) of the integral equation:

(1.16) u(t) etAuo + e(t-)AF(u(s)) ds.

In [4], [5] Busenberg et al. prove that A, F, and C, as defined in (1.10)-(1.12), do
satisfy conditions (1.14)-(1.15) (see [4], [5] for the precise assumptions on the functions
a0(a) and a(a, a’)). Therefore, letting S(t)uo be the mild solution of (1.13), they prove
the following asymptotic result.

THEOREM 1.1. Let
G (I cA)-l(I q- cF),

where (0, 1) is a constant chosen so that (I + aF) is positive. Let p be the spectral
radius of DG(O), the Gateaux derivative ofG at zero with respect to C. Then, if p <_ 1,
for each uo C, S(t)uo - 0 as t -+ oo. If p > 1, there exists a unique uoo C,
uoo k 0 such that Guc uoo; moreover, for each nontrivial no, S(t)uo --+ uoo as
t- oo.

Remark 1.2. The theorem does not provide an explicit calculation of p. In the
next section we give, for a particular choice of a(a, a’), a computable threshold condi-
tion equivalent to p < 1.
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2. The inter-intracohort case. Here, we shall restrict ourselves to a combina-
tion of the inter- and intracohort cases (1.7). Specifically, we assume

(2.1)

where

and

A(a, i(., t)) cl(a)i(a, t) + c2(a)I(t),

a?
I(t) i(a, t) da

(2.2) c(a) and c2(a) are nonnegative, continuous functions on [0, a+].

Busenberg et al. [3] have established an explicit threshold condition for both
the intracohort case and the intercohort case without vertical transmission. Here we
compute the threshold for the inter-intracohort case with vertical transmission. The
result is somewhat analogous to the threshold established in [2] and [7] for epidemics
in a heterogeneous but not age-structured population.

THEOREM 2.1. Let c2 O. The solution u =_ 0 of (1.9) is globally stable if and
only if

(2.3) T o (a)p(a) exp [c(a)p(a) (a)] da da < 1

and

(2.4)

q ft l(a)p(a) f exp{f[C(T)p(T) /(T)] dT}c2(a)da da

If the previous condition does not hold, then there exists a unique positive stationary
solution of (1.9), which attracts all nontrivial initial data.

The case c2 _= 0 was studied in [3]. In that case T2 0, and the condition for
the global stability of u 0 becomes T1 <_ 1. When c =_ 0, (2.3) is automatically
satisfied as long as 0 or q < 1; if c 0 and q 0, (2.4) reduces to the condition
given in [3].

Note that the denominator of the first addendum in T2 is b(1 T1). Therefore,
when T1 _> 1, T2 is negative or undefined. In this case we consider T2 to be undefined,
since the condition T _> 1 is enough for establishing the existence of a stationary
positive solution.

Proof. Because of Theorem 1.1, it is enough to study p, the spectral radius of
DG(O). Since DG(O) is linear, completely continuous, and leaves invariant the cone of
nonnegative functions, by Krein-Rutman’s theorem, there exists an eigenvector v _> 0
with eigenvalue p. By definition, v solves the problem
(.5)

(p v(a) [c (cl(a)p(a) /(a)) + (1 p)] v(a) + oc2(a) p(T)V(T) dT,

fo
e,

v(O) (T)p(T)V(7) dT.
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Let r/-- f0a* p(T)v(’r)dT. Then (2.5) can be solved explicitly. If we define

(2.6) {yx cl(T)p(x)(T) (T) dT +-- ( I) (x--y)}P(x, y, z) exp
1

z c

for x >_ y >_ 0 and z > 0, then, by integrating the first equation of (2.5), we obtain

a

v(a) v(O)P(a, O, p) + P(a, a, p) c2(a) da.
P

The second equation of (2.5) then implies

where we set, for z > 0,

at joW(z) (T)p(T) P(T, a, z)

Z(z) (T)p(T)P(T, O, Z) dT.

c2(a)
da dT,

z

Concerning these functions, we note that, if a is small enough (as it was to ensure
the positivity of I + aF), we can have O/OzP(a, a, z) < 0 for all a, z > 0, 0 _< a < a;
therefore,

(2.9)
W(z) and Z(z)
lim Z(z)=

z---O+

are strictly decreasing in z,

In the following we assume that a is chosen so that (2.9) holds. Since v must be
nonnegative, (2.8) implies that p must be such that

(2.10) Z(p) < 1.

If q > 0, let z* be the solution of qZ(z*) b, which is unique because of (2.9). If
q 0 we let z* 0. Because of (2.10), we have that

pz*.

Using (2.8), we finally obtain

f0 ][ q_W(p) P(a,O,p) + P(a,a,p) da(2.11) v(a) r/[b0 qZ(p) p

and, by multiplying both sides of (2.11) by p(a), integrating from 0 to at, and using
the definition of r/, we get:

(2.12) Ha(p) 1,
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where we have defined, for z > z*,

/0 /0 /0qW(z) at
p(a)P(a, O, z) da +

at
p(a) P(a, a, z)Ha(z) bO qZ(z)

c2(a)
da.

z

Therefore, p can be found as a solution in (z*, +oc) of the scalar equation (2.12). As
for the subscript , we remind that P(a, a, p), and therefore p, depend on a. It is clear
that Ha(z) is a decreasing function of z on (z*, +oc), that limz__.(z.)+ Ha(z) +oc
and lim__.+ Ha(z) 0. Therefore, we obtain from (2.9), (2.10) and (2.12),

p_<l if and only if 0Z(1)<l and Ha(1)_<l.

This is just the thesis.
Remark 2.2. Note that, although p in general will depend on a, Z(1) and Ha(l)

do not depend on it; that is, the threshold condition is, as expected, independent

3. Regularity of solutions. Here we prove some regularity results that we will
use in the analysis of the numerical algorithm. A standard assumption that guarantees
regularity of the solutions of (1.16) is F E CI(E, E). Unfortunately, this assumption
does not hold in this case. The restriction of F to C N L is indeed in CI(L,L),
but A is not the generator of a C-semigroup in L. Our proof of the regularity rests
upon another regularity theorem concerning equation (1.16).

THEOREM 3.1. Let (1.14) and (1.15) hold. Assume that there exists a space Y
densely embedded in E such that:
(3.1) C c Y, C is closed in Y.
(3.2) (I- cA) -1 L(Y) e > 0 small enough.
(3.3) F(C) c Y and F can be extended to a mapping F Y - Y such that F

Cl(y,Y).
(3.4) V x e Y OF[x]: Y -- Y can be extended to a linear bounded mapping DR[x] e

(3.5) The mapping x -- OF[x]: C c E --. L(E) is strongly continuous in E. There
exists M > 0 such that

IDF[x]IIL(E)

_
M Vx e C.

Then, if uo DA C and Auo Y we have:

u(.) e CI(O,T;E) NC(O,T;DA),
u’ (t) An(t) + F(u(t)

Let us first point out the following.
LEMMA 3.2. Let (1.14)hold. Let

(3.6) An A I_ _1A -HI + n I -A

be the Yosida approximants of A. Then, for n large enough,

etA" C C C.
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Proof. We first note that, if A is the generator of a C-semigroup, the condition

etAC C C for all t > 0

is equivalent to the following:

(I- oA)-IC C C for > 0 small enough.

Take in fact x E C, and recall that

(I aA)-lx e--tetAx dt

Since -5 fo e--zt dt 1, if etAx C for all t > 0, (I A)-lx C also.
Conversely, we have

etAx- lim (I_ _t A)_nx
n- n

VxEE.

Thus if (I- aA)-IC c C, then also etAC C C.
Using this observation, we consider (I-aAn)-lx for x C. We have the identity:

(n-A) ( cn+l )-1(I-An)-lx I- A x
n n

cn+lX+ 1-cm+l I
n

A x.

Thus (I- aAn)-lx, being the convex combination of two elements of C (for n large
enough), belongs to C.

Proof of Theorem 3.1. Consider the problem

u(t) etAuo + e(t-)AF(un(S)) ds.

Since An e L(E), (3.7)has a solution un(t) e CI(O,T;E); moreover, un(t) e C
[0, T], and

Un --* u in C(0, T; E).

Now, by (3.2), An can be restricted to a bounded linear operator in L(Y), so that, by
(3.1)-(3.3), problem (3.7) can be viewed as a problem in Y. Since F CI(Y, Y), we
have

Un(’) e CI(0, T; Y).

Thus, setting v (t) Un (t), (3.7) yields

Vn(t) etA(Anuo + F(uo)) + e(t-8)ADF[u,(s)]v(s) ds.

Now consider the limit problem in E (see (3.4)):

v(t) etA(Auo + F(uo)) + e(t-8)ADF[u(s)]v(s) ds
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(3.8) has a unique solution v E C(0, T; E) that can be found, thanks to (3.5), as the
limit in C(0, T; E) of the iterates wn defined by:

(3.9)
w(t) eAt(Auo + F(uo)),

foown+l(t) eAt(Auo + F(uo)) + eA(t-8)F’(u(s))wn(s) ds.

It is easy to show, using (3.4)-(3.5), that

vn -- v in C(0, T; E),

proving that u e CI(0, T; E) and u’(t) v(t).
Finally, differentiating (3.7) we get

Un (t) Anun(t) -t- F(un

so that

Using (3.6), since

Aun(t) --, u’(t) F(u(t)) in C(0, T; E).

( )_1I- -1A u(t) --, u(t)
n

in C(0, T; E)

and A is a closed operator, this implies

uC(O,T;DA); u’ (t) Au(t) + F(u(t)).

We shall make the following assumption on the parameters:

(3.10)
(a),-y(a), c(a), c(a), and c2(a) are Lipschitz functions on [0, at];

{/0
o }#(a) exp #(a) da is bounded on [0, at).

The first regularity result is the following.
PROPOSITION 3.3. Let (1.5), (2.2), and (3.10) hold. Let uo be a Lipschitz function

on [0, at] such that

O oa’
(a) da.uo(O) (a)p(a)uo

Then, for any T > O,

(3.11)

(3.12)

u(t) CI([O, TI;LI(O, at)) NC([O,T];D(A)),
u’(t) e L(0, at), a.e. t e [0,T],

and there exists K > 0 such that

(3.13) Ilu’(t)]l

_
K, a.e. t e [0, T].



AGE-STRUCTURED S-I-S EPIDEMIC MODEL 671

Proof. Equation (3.11) follows from Theorem 3.1. In fact, our assumptions imply
that (3.1)-(3.5) are fulfilled with Y L(O, at). In particular, (3.2) follows easily
from the following formula for the operator (I- cA) -1 (see (3.11) in [5])"

((I eA)-lf)(a) q ft (a)p(a) f e-1/4(a-8) f(s) ds da

To obtain (3.5), start from the expression

+ e- 8)__s_ds.f()

We want to prove that, if f E C, fn --* f in LI(0, at) then, for each g E LI(0, at)
we have

(3.14) DF[fn]g DR[fig

To obtain (3.14) we compute

(DF[fn]g- OF[fig)(a)

(3.15)

in LI(0,

The L norm of the last two terms is bounded by

bllc211ollgilllf fnll

and

As for the other term in the right-hand side of (3.15), suppose that it does not converge
to zero in L. Then there would exist a constant c > 0 and a subsequence {fnk }
such that

a?
cl(a)p(a)]g(a)llf(a) fnk (a)] da c

as k goes to c. Since fn f converges to zero in L, there exists a subsequence, still
denoted by the same name, such that f, f converges to zero almost everywhere
Then we have

cPlgllf fn - O a.e.

aplgllf fnl 2bllcllllgl
since f and f are in C. Lebesgue’s theorem then implies that cplgllf- fl
converges to 0 in L1.

Next, v(t) u’(t) satisfies the integral equation (3.8) and can be obtained as the
limit in C(O,T;Ll(O, at)) of the iterates w defined in (3.9). We want to prove that
these iterates satisfy the relations

w(t) e L(0, at), t e [0, T],
(3.16)

Ilwn(t)ll < Met, a.e. t e [0, T],

where M and w are suitable positive constants depending on A, F, uo, and G.
Once (3.16) is proven, (3.12) nd (3.13) follow because closed ball of L(0, at)

is closed in LI(0, at). In order to prove (3.16) we need two lemmas.

(DF[f]g)(a) ,(a, g(.))(1 f(a)) A(a, f(.))g(a) 9/(a)g(a).
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LEMMA 3.4. If uo E L(O, at), then eAtuo L(O, at) and

where maXaE[0,a?](/(a)}.
Proof. The explicit representation of eAt is

uo(a- ), a > ,
(eAtuo)(a)--

B(t-a)[uo], a < t,

where B(t)[uo] is the solution of the integral equation

B(t) J(t) + K(t- s)B(s) ds,

with

J(t) .qoo ()p()0( t)a,

and
K(t)- /(t)p(t).

Since I(t)l _< qll011 and Ig(t)l <_ , aronwa’s lemma yields

Finally, as SUPa>t{luo(a- t)l } _< Ilu011, the lemma follows.
LEMMA 3.5. Let S be any measure space and let f C([a, b]; LI(S)) be such that

f(t) e L(S), t e [a, b],
IIf(t)ll <_ g(t), a.e. t e [a, b],

where g(t) is a continuous real function in [a, b]. Then,

f(t) dt e L(S), and f(t) dt <_ g(t) dt.

Proof. Since f(t) e n ([a,b];n(s)), there exists ] e n([a,b] S) such that

f(t) =_ ](t, .); moreover, f: f(t) dt f: ](t, .)dr, and the thesis follows easily.
Now we are ready to prove (3.16). Observing that, by our assumptions, Auo +

F(uo) lies in n (0, at), we set

M eZT]lmuo + F(u0)l], w eZT sup
te[0,T]

where C is the convex set defined before. Now (3.16) is clearly true for n 0; assuming
that it holds for n, Lemmas 3.4 and 3.5 yield

/1(t) ll -< M + Ma M,

and (:3.16) is proven.
As far as the solution of (1.9) is concerned, since (t) (., t), ’(t) t(’, t),

A(t) -(., t), the previous result states that

ut e L ([0, at] [0, T]).
Consequently, since Ua -ut + 7u + (1 u), we also have

Ua e L([0, at] [0, T]).
This leads to the following result.
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PROPOSITION 3.6. Under the same assumptions as in Proposition 3.3, u(a, t) has
bounded derivatives through second order in the characteristic direction T 2 (1’ 1).

Proof. For a and t fixed, set

+ +

This function has a distributional derivative satisfying

g’(s) A(s)g2(s) + B(s)g(s) + C(s),

where
A(s) -cl(a + s),
B(s) cl(a -t- s) c(a + s) c2(a + s)I(t + 8) "(a + s),
C(s) c(a + s) + c2(a + s)I(t + s).

Since A, B and C are differentiable, then g(s) is two times differentiable; moreover,
since A(0), B(0), C(0), A’(0), B’(0), and C’(0) belong to L ([0, at] x [0, T]), so do
g’(O) OU/OT and g"(0) 02U/OT2, and the proof is complete. [3

4. A numerical algorithm. We shall now describe an algorithm for the ap-
proximation of the solution of (1.9), based on a first-order implicit finite difference
method along the characteristics. Higher-order methods that require more regularity
of the solution (hence, more compatibility conditions on the data: see [11]) need a
more sophisticated analysis, which we intend to carry out in the future. The scheme
analyzed here has a special interest because it preserves, for any time step of the
discretization, many properties of the continuous system, as discussed in 5.

Let At > 0 be the age-time discretization parameter. We shall find an approxi-
mation U of u(jAt, nat), n >_ 0, 0 <_ j _< A [Aa--t + 0.5] by the finite difference
method of characteristics as follows:

(4.1)

At Aj_-’jU? n-l(1 U?) n_>l, l<_j<_At,

At

U=-o jpj Uj 1At, n>0,

0 0<j<At,U) uj

where we have used the notation fj f(jAt) for any function f f(a), and where

(4.2)
At

Aj c-I-., 1 2 n

k=l

is the discrete transmission rate, and

(4.3)
At

Bo EkpAt
k=l
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is the discrete analogue of the newborn count

at
bo poo(O) (a)poO(a)da.

This algorithm is an adaptation of the one used in [8].
We can prove that, without any restrictions on At, if the initial datum is between

zero and one, the numerical solution (just as the real solution) stays between zero and
one. Since u represents a ratio, this is a necessary constraint for the model to make
sense.

PROPOSITION 4.1. If 0 <_ uo(a) <_ 1, then, there exists K > 0 such that, for all
At > O and all n >_ O, O <_ j <_ Ai, we have

(4.4) 0 _< U _< 1,

and

(4.5) 0 <_ A _< K.

Proof. Note that (4.1) defines U explicitly, for j _> 1, as

(4.6) (Aj_ At + U;_-11) / [1 + At(7 + Ay_-)].n-1

Hence, 0 _< U’fl_ _< 1 implies that 0 _< U _< 1 for j >_ 1 because , >_ 0. Moreover,
0 _< U-1 _< 1 for all j >_ 1, by (4.3), implies that 0 _< U _< 1. This proves (4.4)
inductively. Finally, (4.5) follows immediately, with

[ /0K max {c} 2+ p(a) da
0<k<2; j>_0

since p(a) b exp{- f #(a) da} is a nonincreasing function.
Using the regularity results obtained in 3, we can prove that the discrete function

U defined by (4.1)-(4.3) converges uniformly to the solution u of (1.8) at a first-order
rate.

THEOREM 4.2. Let (1.5), (2.2), and (3.1) hold. Then, for each T > O, there
exists a constant K, independent of At, such that, for u u(jAt, nat), 0

_
j

_
At,

o N

lu- V?[ KAt.

Proof. Note that Taylor’s theorem implies that

(4.7)
(Uj Uj_ % CU

+0 At
At - j

Ou
(jAt, nat) + (jAt, nat) + O(At)o-? -$da

If we set

(4.8) O<_j<_A, O<_n,
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we have, from (4.6)-(4.8), the error equations

(4.9) At

(4.10)
oo (a)pO(a)u(a, nat) da jp? U’-At

A
+ q(BoboBo-bo) Ejp? U2_IAt, n > O.

j-’l

It is also clear that, if f is a Lipschitz function,

(4.11)
Ata*

f(a) da E fJ At
j=l

<_ MAt,

where M is the Lipschitz constant of f. Using (4.11) in the integral in (4.10) and in
the definition of b0, we obtain

(4.12)

Atwhere II’llx Ej:0 I1At, and the constant C depends on the Lipschitz constants
of and p and on the bounds for lutl and lUal. Using (4.11) again, we see that

(4.13) [/j Aj-1 -(l[ At),

where 0 depends on the Lipschitz constants of c, C C2, and p and on the bounds
for lutl and lUal.

Using (4.9) and (4.13), we have that, modifying perhaps the constant (,

(4.14)
-)zxt)I1-< 121(1 / ( / Aj_I

< (1 + dAt)l_-ll + mtlln-Xllz / (At), l <_j <_At, l <_n.

Multiplying (4.14) by At and summing on j, and adding to the resulting relation
(4.12) multiplied by At, we obtain

(4.15) IInlll (__ (1 + KAt)llff-lllt + K(At)2,
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for some constant K > 0. Gronwall’s lemma applied to (4.15), together with 0,
then imply that

and, therefore, for any T > 0, there exists/ such that

(4.16) IInlll <_ KAt

for all n < T/At.
Using (4.16) in (4.12), we directly obtain

(4.17) I1 <- KAt.

Substituting (4.16)in (4.14) we have

(4.18) Iql <- (1 +/At)[l +/(At)2, 1 <_ j <_ A 1 <_ n.

Applying Gronwall’s lemma to (4.18), we have

eJcAtl-J + (eJcat 1)At, n > j,
(4.19) I[ <

encAt 0 (encAtj-nl + 1) At, n j.

Using (4.17) and 0 in (4.19), we have the thesis. [

5. The discrete dynamical system. Here we want to point out that the
algorithm illustrated in the previous section itself defines a (discrete) dynamical system
that inherits the behaviour of the originating continuous flow.

To this purpose, and in view of (4.1) we consider the mapping

F" RAt+l -- RAt+l

defined (denoting x E RAt+l as x (x0, xl,... ,XAt) as follows

At
Fo(x) -o EflPxAt

i=1

Xi--1 -" Ai-1 (x)AtF(x)
1 + (/i + Ai-l(x))At

1,... At,

where B0 is defined in (4.3) and

At
hi(x) 2 EpxkAt.cipi xi + ci

k=l

We shall assume

2(H) q > 0, and there exists 0... A 1 such that c + c > 0.

Also recall that i cannot vanish for all index > 0 because the net reproduction rate
is equal to 1.
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We restrict F to the compact set

C={xRAt+’O<_x<_I, i- 0,1,...A}.
In fact, C is left invariant by F; is essentially proven in Proposition 4.1.

We now enumerate several properties of F to be used later in the section.
First note that F is continuous in C and hence also bounded. Moreover, F(0) 0.

Next note that F is monotone nondecreasing, with respect to the usual componentwise
partial ordering of RAt +1. Indeed, for 0 < j < A and 0 < < A we have:

0

q
--Fo(x) (1 5o,j)- o

i--l,j
1 + (-/i + Ai_(x))/t +

c 2 (1 5o,y)p?At] At(1 + At’yi Xi--1) i_15i--1,j --Ci_

[1 + (-y + A-I (x))At] 2

both of which are nonnegative for x E C.
We finally consider the Jacobian matrix F’(0)

(5.3)

(5.4)

(1 < < At, 0 < j < At) and discuss its irreducibility.
For this purpose, we will write P + Pj if ci,j > 0; then, a path from i to j is a

sequence of indices (i0 i, il,"" in j) such that Pk - Pk+l for all k 0... n- 1.
We remind the reader that the irreducibility of F’(0) can be stated as the existence
of a path from i to j for all couples (i, j). Now note that for i 1... A we have
c,i-1 > 0. Consequently, the connectivity graph of the matrix a contains at least the
path

It follows that, in order to have F’(0) irreducible, it is necessary and sufficient that
there exists a path from P0 to PAt" It is then necessary to have q > 0 and/3 > 0 for
some index i, as assumed in (H). To have a sufficient condition, consider

m- max{/- 1...At’fli > 0}

(the largest reproductive age); it is then enough to have:

(5.6) There exists h < rn such that c > 0.

In fact, since/, > 0, we have c0,m > 0 and, in view of (5.4), Ch+l,At > 0; then
(5.6) means that we have the path:

(5.7) Po -- P, --+"" gh+ --+ PA
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Equations (5.5) and (5.7) yield the irreducibility of F’(0).
Condition (5.6) means that some age class below the maximum fertility age can

be infected through intercohort transmission. Note that this corresponds exactly to
the restriction imposed in [5] for the continuous case.

Furthermore, note that neither the case without vertical transmission nor the
case of pure intracohort transmission result in an irreducible F’(0), as F is defined in
(5.1). However, in the case without vertical transmission, we may define

F (F1,’", FAir) RAr -+ RAr.
In the pure intracohort case, we may define

F =_ (Fo,... ,Fro)" R"+ -+ Rm+,
where m is, as above, the maximum reproductive age. In fact, it is clear that ages
beyond m do not contribute to disease transmission to ages below m.

All the following considerations can be easily adjusted to these cases. For the
sake of simplicity we will instead assume (H) and (5.6) for the rest of the section.

Now we define on C the discrete dynamical system:

Vn+l F(Vn)
(5.s)

u0 c

for which the following holds.
THEOIEM 5.1. Let F be defined in (5.1), and let (H) and (5.6) hold. Then:
(i) If p(F’(O)) <_ 1, F has no nontrivial fixed points in C and Un n-z- O, for all

Uo EC;
(ii) If p(F’(O)) > 1, F has one nontrivial fixed point U C; U is strictly

positive, and we have Un n-z- U for all U C, U O.
The proof of this theorem is, for the main part, contained in Theorem 2.1 of

[9]; however, we cannot rely completely upon that theorem because our mapping F
does not satisfy a strict sublinearity condition needed there to prove uniqueness of the
positive fixed point. Thus, to prove Theorem 5.1, we preliminarily prove uniqueness
in an independent way.

PROPOSITION 5.2. Under the assumptions of Theorem 5.1, F has at most one
positive fixed point.

Proof. Let 3 be two positive fixed points of F. Without loss of generality we
can assume y , so that, since and are strictly positive, it is possible to find the
maximal (0, 1) such that 3 _> . Let

(5.9) k max{/- 0...A "3i i}-

We will consider three cases, showing that each gives rise to a contradiction:
(a) k > 0 and Ck_ -C_1 > O.
(b) k > 0 and there exists h, 0 < h < k such that C_ Av C_ > 0 and ci + ci

for all i h...k- 1.
(c) k>_0andci_11 +ci_2 =Oforalli, l_<i_<k.
Assume case (a). Then we have Ak-l() > 0. The inequality Fk(/) >_ Fk()

gives"
k- + {A_()At

1 + (’)’k + A}_())At’
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that is,

[1 + (/k + Ak-l())At] k >_ (k-1 + A-I()At) + (1 )flkAk_l()At.

Hence,

and so,

in contradiction with (5.9).

(1 )Ak-1 (2)At
1 + (’k +

Ak-l(2)At ]1 A- (3’k -4- Ak-l())/kt > 2k

In case (b), we note that it implies, for h <_ i < k, A(x) 0 V x E C; conse-
quently, if i+1 2i+1, from

(5.10)
Yi+I Fi+l () 1 + At+1

xi

1 + At+1

we obtain

Applying this iteratively for i k- 1... h, since k 2k, one gets:

9h 2h and c_1 + c_1 > 0.

We can therefore apply the argument of case (a).
In case (c), we have Ai(x) 0 for all i 0... k- 1; therefore, we can apply (5.10)

iteratively for k 1 to i 0 to obtain

(5.12) 0 20.

Moreover, comparing (5.6) with (c), we see that k < m, that is,

(5.13) m > 2m.

Then, we have

(5.14)

contradicting (5.12). The strict inequality in (5.14) comes from (5.13), since

m>0.
Once uniqueness is proved, we use the following reduced version of Theorem 2.1
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THEOREM 5.3. Let O(x) be a continuous, monotone, nondecreasing function that
maps [0, 1]n into itself. Assume that 0(0) 0 and 0’(0) exists and is irreducible.
Suppose also that is sublinear, i.e., if x E [0, 1] n, then

(5.15) O(x) _> O(x) V e (0, 1).

Then any nonzero fixed point of is strictly positive. Moreover, if p(O’(0)) > 1,
has a positive fixed point. Vice versa, if has a positive fixed point, p(O’(0)) >_ 1; if
2 is a positive fixed point and p(O’(0)) 1, then

(5.16)

Proof. The proof of this theorem is essentially the same as that of Theorem 2.1
in [9]: here condition (5.15) replaces strict sublinearity.

The proof of existence does not require sublinearity. In order to take care of the
fact that our domain is [0, 1]n instead of R_, we have to note that, if x [0, 1] n is
such that xi 1, then Oi(x) _< xi.

Finally, if has a positive fixed point 2, we can apply the argument of Hethcote
and Thieme to 2 and obtain

(5.17) 0’(0)2 >_ 2.

Since 2 is positive, (5.17) implies, by Perron-Frobenius theory, that p(O’(0)) >_ 1. If
p(O’(0)) 1 (5.17) implies that 2 is an eigenvector of O’(0), i.e., (5.16).

To apply this theorem to the proof of Theorem 5.1, we need to check that F
satisfies (5.15), the other properties having already been established. From (5.1) we
have

Atq

i=1

and, for 1 At,

+ > +(5.18) Fi(2)
1 + (i + Ai-l(2))At 1 + (% + Ai-l(2))At

To exclude the case that there exists a positive fixed point 2 of (5.1) if p(F’(O)) 1,
we note that in this case (5.16) would hold, i.e., F(2) F’(0)2. This means (see

+ h -x +(5.19)
1 + (% + A-I (2))At 1 + 7At

for all 1...A. Since 2 > 0, (5.19) implies A_(2) 0 for all i I"’A.
Assumption (H) then yields 2 0, in contradiction with its being positive.

Finally, as for the asymptotic behaviour of Un, we note that it follows from
Krasnoselskii’s theory (Theorem 6.6 in [10]; see also [9]) that any U C, U 0,
will converge to the positive fixed point (when it exists), ns long s there exists N 0
such that FN(Uo) is strictly positive. This condition comes immediately from (5.1)
and (5.6).

Proceeding exactly as in 2, we can compute the threshold condition. More
precisely, we have the following.
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and

(5.21)

where

and

PROPOSITION 5.4. The equilibrium U =- 0 is globally stable if and only if
At

TI(At) 00 < 1,

A

( qAl3i
T2(At) E B0(1 T1)

i--1

+ 1 p .j+AtP,j+ At _< 1,
\i=0

i--1 oo
CkPkpj=

1+ At
1 nt- "k+ At

k-’j

At
A EpP,oAt.

i--1

Comparing Proposition 5.4 with Theorem 2.1, we realize that the threshold con-
dition for the discrete dynamical system approaches that of the original continuous
one as the time step tends to zero.

COROLLARY 5.5. If At is small enough, there exists C > 0 such that

(5.ee) ( Xt) I, Ir(At)- rl _< CAt.

Proof. It follows from the expressions (5.20)-(5.21) and (2.3)-(2.4), noting that,
if f E L (0, a), f >_ 0, we have

(5.23) 0_<exp EfkAt --H(l+fkAt) <_exp EfkAt ellYl’(At)2-1
k=j k=j k=j

Equation (5.22) then follows from (5.23) and the approximation of integrals with
Riemann sums. [

We finally prove that the endemic equilibrium U of the discrete dynamical
system approaches the endemic equilibrium u of the continuous system as the time
step At goes to zero.

For h At, let

i.e., u is the linear spline through U.
PROPOSITION 5.5. If T1 >_ 1, or T2 > 1, u converges to u uniformly in [0, at].
Proof. We first note that u are everywhere differentiable from the right and

from the left with
(5.24)

n+u(a)-- C ([] h)p ([] h)u: ([] h)+c2 ([] h)
k=l

(i-u ([a h) u
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and D-u(a) equal to D+u’(a), except when a/h e N, in which case we substitute
a/h in (5.24) with (a- h)/h, and (a + h)/h with a/h.

From (5.24) it also comes out that Uh are Lipschitzian with common Lipschitz
constant

{ /0n max bllclll + ][c2][o p

Take a sequence (h}, hn O. Since (Uh= } are equi-Lipschitz (and so equicon-
tinuous) and uniformly bounded, by Ascoli-Arzel theorem, there exists a subse-
quence, still denoted by the same name, uniformly converging to ft.

Then, from (5.24), we see that both D+u and D-uh converge uniformly (see
Assumption 3.8) to

[ L’t
c(a)poO(a)t(a) + c2(a) pOO (1 fi(a))

and therefore fi is differentiable, and its derivative is equal to (5.25).
Considering also the conditions on u(0), we obtain that Gfi fi, with G as in

Theorem 1.1. By Theorem 1.1 there exists a unique positive function u such that
Gu u0. The only other possibility would be to have fi 0, but this will be
excluded below.

We have therefore proved that, from any sequence {hn}, ha n__ O, we can extract
a subsequence uniformly converging to u, proving, therefore, the convergence as h
goes to zero.

We have still to exclude the case that there exists a sequence {hn}, hn n_:_ O,
and u ’L_ 0.hn

We find a lower bound, when At is sufficiently small, for U yielded by Theorem
5.1, using the fact, arising from the Proof of Theorem 2.1 of [9], that, if V is such that
F(V) _> V, then U >_ .

If T1 > 1, there exists z < 1 and h0 > 0 such that, for At < h0,

At
TI,(At) EipPi,oziAt > 1,

i--1

with Pi,o as in Proposition 5.4.
Now take V0 e, Vi ePi,0zi, with e such that zAi_()At < 1 z for all

i= 1...At.
Then, we have

Fo(V) o =e Eipopi,oziAt 1 > O,
i--1

(1 + oo At) + 2 At ,--=-t oo-.At-1 ci_pi_ Ci_ 1 Pj V9g (v)
1 +-yAt + A_(S)At

z
1

At)[(1 +-yAt)(1 z) zA_l ()At]Vi-l(1 + Ci_lpi_

(1 + "yAt + A-I()At)(1 +
Ci-
1 +-yAt + A_(v)At"

oo At1 + Ci_lPi_
vi-1
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Therefore, we have F() >_ and so U _> e, and u(0) >_ e for all h < h0.
Now suppose T1 1, or T1 < 1 and T2 > 1. Then there exists z < 1 and h0 > 0,

such that for At < ho,

TI,.(At) < l/z,

A
T2’z(At) 1/z Tl,z

where

Now take

with e as above.

At
B +EPDAt > 1,

i--1

We have

Note that

i--1 cAtDi E 1 + 3,j+lAt
PiS+lzi-j’

j=O

At
A EPPi,zi At,

i--1

Aq
B EipDiAt.

i--1

eB
vo 1/z- Tx,’
i Pi,ozifo + eDi,

At At
pipi ,o Ato+euFo() o -oE z pDiAt- o

1--z
=eB >0

1
A,i-1(1+ m {)+ 2 {j=l -’{ci_p_ c_ pj va()

1 + iAt + A_(9)At
1+ AtCi--lPi--1

Z Vi-1
1

2 Atel-1
1

vi-1- (1 + gi-lPi-llm {)[(1 + i{)(1 z) zai-l(9){]
(1 +e+ a_(v),)(1 +e)

eC_lt ((1 + Tit)(T2,z z) zai-l()t))+ (1 + iAt + A_()At)(1 +
mlt) + eC_lti-1 (1 + Ci_lPi_> (1 z za_(v)e) (1 +,+ A_(v)e)(1 +,) > 0.
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Therefore we have U _> , in particular, using (5.26) and T2,z > 1,

A?

i--1

for all At < h0. Since the left-hand side of (5.27) are Riemann sums for u, any limit
function fi must satisfy

Note that, in contrast to the other results of this paper, through Proposition 5.5,
we do not state anything about the order of convergence of u to u.

6. Numerical experiments. The form of the force of infection we chose in
(2.1) is (a; i(., t)) X[1,+)(a) [k0 + klT(a)i(a,t)+ k21(a)I(t)/P], where kj, 0

_
j _< 2 are nonnegative constants, and l(a) and T(a) are continuous piecewise linear
functions given by

0, a

_
1,

a/5, l < a _5,

T(a) 1, 5 < a <_ lO,

1 -(a- 10)/5,
0, 15 < a,

10 < a <_ 15,

and
0, a <_ 0,

l(a) all5, 0<a<_15,

1, 15 < a.

The choice of these shapes is only indicative; they are a complication of the "catalytic
logistic curve" introduced by Collins [6] and used more recently by Anderson and
May [11.

We used the algorithm described above for the analysis of the asymptotic behavior
of the subpopulation of infected individuals, and to see whether the convergence to the
steady state is monotone or not. For the tests we took a steady state age distribution
defined by (1.6) where #(a) was the actual mortality rate of the population of the
United States in 1980. For the sake of simplicity, the fertility function (a) was
chosen as a sinusoidal centered at the age of 30 years, and with support between 15
and 45 years. Tests were run with and without vertical transmission. The cure rate

7 was taken to be uniform in age, and such that the mean infective period is of 8
months.

We first studied the dependence of the threshold quantities on the coefficients of
transmission kl and k2. It is clear that T1 is independent of k2, while T2 depends
linearly on it. The dependence of T1 and T2 on kl is shown in Fig. 1. It appears
that T1 grows exponentially with kl (notice the logarithmic scale in the figure), while
(when k > 0) T2 starts almost linearly, and then approaches an exponential. Notice
also that, even for rather small values of k2, the first quantity to pass the threshold is

T2. Finally note that, when k2 > 0, a change from q 0 to q > 0 increases T2 by a
very small amount.

We then performed several simulations of various cases (intracohort, intercohort,
and mixed), with and without vertical transmission, below and above the threshold.
The algorithm generally behaved in agreement with theoretical expectations: the total
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FIG. 1. On the y-axis the threshold parameters T1 and T2; on the x-axis kl. In
all graphs 1.5. The solid line represents T1, computed with q 0.111111; T2 is

computed with k2 0.1, and either q O, or q 0.111111 (these are the two dashed
lines). Finally the threshold value 1 is shown in the figure.

number of infectives converged to a positive equilibrium above the threshold, and to
zero below the threshold; and the same was true for all age classes. Some plots of the
total number of infectives vs. time are shown in Fig. 2; the solid lines corresponds to
cases below the threshold, the dashed lines--above the threshold.

Note that in the intracohort case, it is not clear whether the lower simulation
approaches zero or a positive equilibrium, despite a value of T1 noticeably lower than
one. In this case we have T1 (At) < T1; therefore, theoretically, the discrete algorithm
should also converge to zero. The lack of convergence to zero must thus be due to
error accumulation.

In general, it seems that the intercohort case is much more well-behaved than the
intracohort case; in the former case, changing the time step from 1/16 to 1/128 did not
change the results noticeably, while in the intracohort case this caused differences of the
order of 20% in certain cases at certain times. In this respect, the mixed case resembles
the intercohort; a small amount of intercohort transmission is enough to stabilize the
simulations. Probably, for the purely intracohort case, it should be worthwhile using
a higher order method for integration along the characteristic lines; in order to do this
a method where age discretization is kept distinct from time discretization should be
used, such as the method introduced by de Roos [13].

From our simulations it appears also that, in the intercohort case, the convergence
to the equilibrium is monotone (the same was true for all age classes, reaching at most
something like a critically damped oscillation), while in the intracohort it can be
oscillatory. The mixed case is intermediate in this respect.

Finally, in Fig. 3 we show the age distributions of the infectives at various times;
we used rather high infectivities, in order to make these distributions visible. Clearly
they are centered at the ages where the possibility of getting infected is highest:
between the ages of 5 and 15 for the intracohort case; at later ages for the intercohort
case. Notice that the addition of a small amount of intercohort transmission is enough
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II kl 3.26 e-5, TI 0.85

" .,’-"=’,, * I_

0 50 100 50

12o00o

1ooooo

intercohort

J k2 1.7, T2 1.05

\ k2 1.6, T2 0.988
/

6000O

inter-intra cohort

50 100 150

time

graphs correspond (from high to low) to the intracohort case (k2 0), intercohort (kl
0), inter-intracohort (kl,k2 > 0). The two lines in each graph correspond to different
values of a specified parameter. Other parameter values are /-- 1.5, q 0.111111.

for a very quick convergence to the equilibrium, but the age distribution remains
similar to the intracohort case.

Acknowledgments. We thank an anonymous referee for several comments and
suggestions that greatly improved the paper.
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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC
DELAY*

H. I. FREEDMAN? AND JIANHONG WU:I:

Abstract. A single-species population growth model is considered, where the growth rate response to
changes in its density has a periodic delay. It is shown that if the self-inhibition rate is sufficiently large
compared to the reproduction rate, then the model equation has a globally asymptotically stable positive
periodic solution.

Key words, single-species, population growth, oscillations, periodic solutions, delay equations, global
stability, fixed point theorems

AMS(MOS) subject classifications. 92A17, 34K20

1. Introduction. The main focus of this paper is on a model of single-species
population growth which incorporates a periodic time delay in the birth process. In
particular, we show the existence of a stable periodic solution of a retarded functional
differential equation to be given later which has the feature of periodicity right in the
time delay. To the best of our knowledge, this is the first time equations with such
delays have been considered in the literature.

This paper is motivated by the laboratory work of the group led by U. Halbach
(see [4], [21]-[24], [40], [44] and the references therein) on rotifers. They noticed that
in laboratory populations, periodic phenomena due to time delays in gestation occurred,
and that the length of delay was a function of the controlled temperature. These
periodic variations in population numbers also occurred when the temperature itself
was varied periodically (thereby inducing a periodic delay) on a daily basis. This led
us to a conjecture that periodic solutions should exist for single species delay models
with periodic delay.

Previous work has shown that periodic oscillations could occur in autonomous
delay differential equations [5], [6], [10], [13], [15], [16], [20], [25], [29]-[31], [35],
[37], [40], [43], [45], as well as delay equations for population growth in fluctuating
environments [2], [9], [11], [12], [14], [19], [28], [32]-[34], [39], [45]. However,
periodic oscillations are not automatic in single-species models with delay as shown
in [3], [7], [8], [18].

In the case where the delay in growth rate is a constant, the mechanism causing
oscillation is for the delay to be so significant in terms of the time length of the delay
or the magnitude of the delayed effects that the positive equilibrium point (carrying
capacity) loses its stability. For details, we refer to [13] and the references therein.

The technique used in the analysis of our model is to first show that due to the
periodicity of the growth rate and of the delay, there exists a positive periodic carrying
capacity which is not a solution, but yields a globally stable periodic oscillation in the
species density. In contrast with the aforementioned research for the constant delay
case, we find that the periodicity in various growth rates and in the delay can cause
stable oscillation of the species density about the carrying capacity even when the
delay is small.

* Received by the editors May 1, 1989; accepted for publication (in revised form) September 11, 1991.

? Applied Mathematics Institute, Department of Mathematics, University of Alberta, Edmonton,
Alberta, Canada T6G 2G1.The research of this author was partially supported by Natural Sciences and
Engineering Research Council of Canada grant NSERC 4823.

$ Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3.
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The idea here is to then treat the periodic oscillation as being generated from the
periodic carrying capacity by proving the existence of an attracting region containing
the carrying capacity.

The organization of this paper is as follows. Model equations and our major
results are described in 2. We will state our results for the linear growth rate case in
detail and briefly indicate the possible extension to the nonlinear growth rate case.
The proofs of the theorems are contained in 3. Under the assumption of the existence
of a periodic carrying capacity, we construct a Lyapunov function about the carrying
capacity and employ the Lyapunov-Razumikhin technique to obtain an attracting
region. Section 4 contains a brief discussion of our results and some related open
problems.

2. Model equations and main results.
2.1. Linear growth rates. We first consider the following single-species model

involving a discrete periodic delay

(2.1) (t) x(t)[a(t) b( t)x( t) + c( t)x( "r( t))],

where the net birth rate a(t), the self-inhibition rate b(t), the reproduction rate c(t),
and the delay r(t) are continuously differentiable, w-periodic functions, and a(t)> 0,
b(t) > 0, c(t) >_- 0, z(t) -> 0 for R (-, +o). This model represents the case that
when the population size is small, growth is proportional to the size, and when the
population size is not so small, the positive feedback is a(t)+ c(t)x(t- r(t)) while the
negative feedback is b(t)x(t). Such circumstances can arise when the resources are
plentiful and the reproduction at time is by individuals of at least age z(t) units oftime.

The above model, with constant coefficient and delay, and its variants, has been
utilized by many authors as a model of single species growth (see 18] and the references
therein). The delay in the term c(t)x(t)x(t-z(t)) is a delay due to gestation. Thinking
of small animals such as rotifers (as in the work of Halbach and co-workers mentioned
in the introduction), there is a small delay in the time between final feeding before
reproduction and reproduction. Hence, the reproduction rate has a component which
is proportional to those animals present a short time earlier and those animals currently
present (random mating).

Let z* max,o.,o r( t). It is a well-known fact that for any given q
C([-’*, 0]; R), there exist a (0, ) and a unique solution x(t) x(t; q) of (2.1) on
I-r*, a); that is, x(t) is continuous on I-z*, a), continuously differentiable, and
satisfies (2.1) on (0, a) and x(0)= q(0) on [-z*, 0]. Moreover, if q(t)-> 0 on [-z*, 0],
then x(t) remains nonnegative for all [0, a), and if x is noncontinuable past a and
a < +c, then Ix(t)[-* c as t-* a-.

The following theorem sets forth the principal result of this paper.
THEOREM 2.1. Suppose that the equation

a(t)- b(t)K(t)+ c(t)K(t-z(t)) =0

has a positive, w-periodic, continuously differentiable solution K(t). Then the model
equation (2.1) has a positive w-periodic solution Q( t). Moreover, if b( t) >
e(t)Q(t-r(t))/Q(t) for all t[0, to], then Q(t) is globally asymptotically stable with
respect to positive solutions of (2.1).

Remark 2.1. K(t) represents the carrying capacity of the environment. If all of
the growth rates a, b, and are constant in time, then K a/b-c. In the case where
z is also a constant, it is shown in [18] that the condition b > c guarantees the global
asymptotic stability of the carrying capacity. Our result here indicates that such a
global asymptotic stability holds even when is not a constant.
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Remark 2.2. In the case where a(t)/(b(t)-c(t)) is not a constant, the carrying
capacity K (t) must be an to-periodic function, and the periodic solution Q(t) obtained
in our results is nonconstant.

Remark 2.3. In the case where b(t) > c(t) for [0, to], by iterating the equation
K(t)=a(t)/b(t)+c(t)/b(t)K(t-r(t)), we can get an explicit expression for K(t)

a(t) co mi(t) a mJ+’(t)
(2.2) /

j=o i=o bo m-(-ti bo mJ+l(t)
where m(t) t, m(t) t-z(t), mi(t)=momi-(t) for t R and i_> 1. It is easy to
see from the formula (2.2) that if a( t)/ b( t) c( t) is not a constant, then the major
role ofthe periodicity ofthe delay is to cause a periodic fluctuation ofthe corresponding
carrying capacity about the carrying capacity which occurs when r is a constant.

Remark 2.4. In applications, it is useful to have an estimate for the location of
the periodic solution Q(t). The proof of this theorem in the next section will provide
a rough estimate of the constants e and M > 0 such that

e <
Q(t)

<-M for t[0, to].

This inequality also indicates that we can regard the periodic oscillation as being
generated from the carrying capacity, in contrast to Cushing’s result [14], where the
periodic oscillation bifurcates from the trivial solution.

There is some experimental evidence [9] which indicates that continuously dis-
tributed delays are more realistic and more accurate than those with instantaneous
time delays. Inspired by this evidence, we consider the following Volterra integro-
differential equation

(2.3) (t)=x(t)[a(t)-b(t)x(t)+Ip(t,s)x(s) ds],
where p(t, s) is a nonnegative continuous function satisfying p(t+to, s+to)=p(t, s)
for -< s _-< < +c, and there exists a constant y > 0 such that

j-(2.4) p(t,t+O) e-dO< for t[0, to].

The above assumptions are motivated and satisfied by the following special delay kernel

(2.5) k(t,s)= 21( .(t-s).exp[ 1 ]" t) --r-- (t--S)

which attains its maximum at s t- r(t) for any fixed t. Therefore, (2.3) represents a
continuously distributed delay analog of the difference-differential equation (2.1) with
periodic discrete delay.

Let

lim eVq(0) exists}Cr q e C((-, 0]; R)
o-,-

with

sup el(0)l, c,

and define F: R x Cv - R by

F( t, tp)= q(O)[a(t)-b(t)q(O)+ IoP( t, t+ O)q( O) ao] (t, q)6 R x Cv.
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Then (Cr, l" [c) is a Banach space which satisfies all of the fundamental axioms
described in [26], and F is a continuous functional which is Lipschitz in q Cv. We
notice that (2.3) can be reformulated as (t)= F(t, x,). Therefore, by Theorems 2.1-2.5
of [26], for each qCr there exists a:= c(q)>0 and a unique solution x(t; q) of
(2.3) defined on (-o,a) with Xo=q, and the mapping (t,q)(0, a(q))xCc__
R x Cr- x(q) Cr is continuous. Moreover, if x(t; q) is noncontinuable past a(q)
and c(q) <oe, then lim_,,-Ix(t;

The following result represents an analog of Theorem 2.1 in the case of distributed
delay.

THEOREM 2.2. Assume that there exists a continuously differentiable positive
periodic function K (t) satisfying

a(t)-b(t)K(t)+ f" p(t,s)K(s) ds=O, tR;
d-

then the model equation (2.3) has a positive to-periodic solution Q(t). Moreover, if

b(t)> f p(t, s)
Q(s)
O(t)

ds, tR,

then Q(t) is globally asymptotically stable with respect to positive solutions of (2.3) in
the state space Cv.

2.2. Nonlinear growth rates. In this part, we indicate a possible extension of our
previous results to nonlinear growth rates. We consider the following model

(2.6) )(t) x(t)[-D(t, x(t)) + B(t, xt)],

where the death rate D(t, x) is continuous in (t, x) R2, to-periodic in t, increasing
and continuously differentiable in x; the birth rate B(t, q) is continuous in (t,
R x C([-r, 0]; R) (r is a constant), continuously differentiable in q C([-r, 0]; R),
and is to-periodic in in the following sense.

(HI) For any continuous to-periodic function x" R --> R, B(t, x,) is to-periodic as
a function of t.

This model represents the case where there is a delay in the per capita birth rate,
whereas the death rate is instantaneous [3], [5]. We assume that all positive feedbacks
are included in the birth processes and any negative feedback is included in the death
rate. Our crucial assumption is the following.

(H2) There exists a positive to-periodic continuously differentiable function K (t)
such that D(t, K(t)) B(t, Kt) for R.

With this assumption, Theorem 2.1 can be modified so as to apply to our nonlinear
case.

THEOREM 2.3. Suppose that
(i) (HI)-(H2) are satisfied.
(ii) For all [0, to ], we have

(H3) inf Dx( t, x) sup liB,(t, q)ll .maxoo,,,3 K(0)>0
/ K(t)

where IIB,(t, qg)l denotes the operator norm of the bounded linear operator B,(t, 99)"
C- C.

(iii) There exists a constant 0 such that for every o (0, ), andfor any q C
with q(s)_-> q(O) 6o, we have B(t, q)-D(t, q(O))->_O.
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Then the model equation (2.6) has a positive w-periodic solution Q( t). Moreover, if

inf Dx( t, x) sup Iln(t, ,;)11 maxoto,,o] Q(0)>0
xR ,c Q(t)

for all [0, co], then Q(t) is globally asymptotically stable with respect topositive solutions
of (2.6).

3. Proofs of theorems. In this section, we give detailed proofs for Theorems 2.1
and 2.2 and briefly indicate how to modify these proofs to the nonlinear case.

Let C C([-z*, 0]; R) denote the Banach space of all continuous functions with
the sup-norm

IIp[] sup ]p(O)] for qC.
o [- -*,0]

C+ denotes a subset of C consisting of all nonnegative functions, x(t; q), >=-z*,
C+, denotes the unique solution of equation (2.1) satisfying x(t; q)=q(t) on

[-z*, 0], and x,(q) C is defined as x,(q)(s)=x(t+s; q) for all s [-z*, 0].
LEMMA 3.1. There exists a constant t3 > 0 such that for every o (0, 6), the set

C C+Bo={p "q(0)=>3o forO[-z* 0]}
c implies xt (q) B c for all > O.is invariant, that is, q Bo

Proof We select a constant 6 > 0 such that

inf {a(t) b(t)} > 0.
t[0,to]

CLet 60 (0, 6) and q B be given. We consider the solution x(t) x(t; ) of (2.1).
If at an instant => 0 we have x(s) >-_ x(t) 6 for s z*, t], then [x:(t)]’-< 0.
However, from (2.1) we have

[x2( t)]’ 2x2(t)[a(t) b( t)x( t) + c( t)x( ’( t))]

>- 2x2(t)[a(t) b( t)3o]

>0.

This contradiction indicates that min {mino_.,o] x2(t + 0), 6} is nondecreasing, and
therefore

min{ o[-*,0]min x2(t+O),6}>=min{ 0[-*,o3min
for all >_-0. This completes the proof.

LEMMA 3.2. For any p > 1, we have

px In (px) >= [x In x for all x >- 1

where p- In p.

Proof Let G(x) p In x-ln (px)+(1/x) In p. Then G(1) =0, G(c) =, and

1
G’(x)=-[(p-1)x-ln p]

from which we know that G’(x)>O for x>lnp/(p-1) and G’(x)<O for x<
In p(p- 1). Therefore there exists a unique x*> 1 such that G(x*)=p- 1, G(x)> 1
if x > x* and G(x) < p 1 for x < x*.
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Consider now f(x) (px-ln (px))/(x-ln x). Then

f’(x)
p 1 p In x + In (px) (ln p)/x

(x-ln x)2

p-l-(x)
(x-ln x)2

which implies that f’(x) > 0 if x < x*, and f’(x) < 0 if x > x*. Therefore

f(x) -> min {f( 1 ), f(oo)} min {p In p, p} p In p

for all x->_ 1. This completes the proof.
The following result describes a dissipative property of the equation, where the

existence of an attracting region is essential for our main results.
LEMMA 3.3. Assume that

c(t)
K(t)
K(t-r(t))<b(t) on [0, ,o].

Then

(i) For any >= 6, there exists a constant d := d () > 0 such that for any q C with
6<=q(O)<= on I-r*, 0], we have 3<=x(t; )<=d() for all t->0;

(ii) There exists a constant M >-3 such that for any fl >-3 there is a constant
T= T(fl) > 0 such thatfor any q Cwith6<=q(O)<=flon [-r*, 0] we have 6 <_ x( t;
Mfor all t>- T().

Proof According to the assumptions, we can find a constant p > 1 such that

c(t) }min b(t)-p. .K(t-r(t)) =31>0.
,to,,ol K(t)

For such 3’ > 1, define

2 {M*=-7 max (p-1)c(t) max K()+ + max
o-<_,-<_,o oto.,oa K (t) Jol

Define a continuous map V" R x (0, oo) R by

X X

V(t,X)=K(t----lnK(t) for(t,x)6R(O, oo).

Suppose x(t)= x(t; q) is a solution of (2.1) with minot_**,ol o(0) -> 3. By Lemma 3.1,
x(t) ->_ 3 for all >_- 0, and therefore V(t, x(t)) is well defined and differentiable for
>_-0. Moreover, we have

d--d V(t,x(t))= 1- X(t) J tKit [a(t)-b(t)x(t)+c(t)x(t-r(t))] ------K (t)

_x(t)-K(t) { /(t)}K(t) a(t)-b(t)x(t)+c(t)x(t-r(t))-K(t)
x(t)-K(t) {K (t)

b(t)[x(t) K (t)]

c(t)[x(t-’r(t))- K(t- r(t))]- K(t)
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Suppose at some t-> 0, we have

V(t+s,x(t+s))<-(p-lnp)V(t,x(t)) fors[--*,0]
and x(t)>= M*. Then by Lemma 3.2, we have

x(t+s)
-In

x(t+s) <px(t) (px(t)
K(t+s--- K(t+s--=K(t-----ln\K(t)]

for all s [-’*, 0]. From the choice of M*, it follows that

x(t) M*
>- >--1,

K(t)-K(t)-
and therefore by the increasing property of the function u- In u for u >= 1, we get

X(t+s) px(t)
for s I--r*, 0].

g(t+s) K(t)

x(t+s)-K(t+s)<=
K(t+s)
K(t)

Hence

for all s [-r*, 0]. This implies that

p[x(t)- K(t)]+(p- 1)K(t+ s)

d
-K(t)-t V(t,x(t))= b(t)[x(t)-K(t)]2-c(t)[x(t)-K(t)][x(t-r(t))-K(t-’(t))]

I(t)
K(t)

-[x(t)-K(t)]

>= b(t)[x(t)-K(t)]2-c(t) .K(t-7"(t)) [x(t)-K(t)]2p
K(t)

I( t)
-(p 1)c(t)K(t- r( t))lx (t) K t) K( t)

[ c(t) ]>-- b(t)-P K(t)’K(t-’(t)) [x(t)-K(t)]

-[(p-1)c(t) oto,o]max K(O)+[K(:l[]lx(t)-K(t)](
>=8,[x(t)-K(t)]2

-[(p-1)c(t) max K(o)+lI;C(t))l]lx(t)-K(t)o[o,o] K(t

1
>=-6lx(t)-K(t)[.
2

[x(t)-K(t)]

That is,

d
V(t,x(t))<__ 1 ix(t)_K(t)l2

dt 2 maxoto,o,l K (0)
whenever V(t + s, x(t + s)) <= (y-ln 3/) V(t, x(t)) for s [-’*, 0] and x(t) >- M*. There-
fore, employing a variation of the standard argument of the uniform boundedness and
uniform ultimate boundedness theorem of Lyapunov-Razumikhim type [25], we can
prove the conclusion with any given constant M > M*.
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The following result from [27] is our major tool used in guaranteeing the existence
of a w-periodic solution.

LEMMA 3.4 (Horn’s fixed-point theorem). Let So c $1 $2 be convex subsets of the
Banaeh space X, with So and $2 compact and SI open relative to S2. Let P $2- X be a
continuous mapping such that, for some integer rn > O,

(a) W(S) S2, 1 <=j <= m- 1,
and

(b) W(S,)So, m<=j<=2m-1.
Then P has a fixed point in So.

Now we are in a position to prove our major results.
Proof of Theorem 2.1. Let M => 6 be given according to (ii) of Lemma 3.3. By (i)

of Lemma 3.3, we can find a constant MI> M+ 1 such that 6-< q(0)-< M+ 1 on
[-r*, 0] implies 6 <-x(t; q)<= M1 for all t>_-0. By (ii) of Lemma 3.3, we can find a
constant T > 0 such that 6 -< q(0) -< M + 1 on [-z*, 0] implies 6 <= x(t; q) <= M for all

>_- T1. Similarly, we can find constants M2 and M3 > 6 such that

on [-r*, 0] implies 6 -< x(t; q) <_- M6 <- q(O) =< .M + 1

for all >= O, and

<-_ ( O) <- M
for all => O.

Define

and

on [-r*, O] implies 6 =< x(t; q) =< M3

L=M sup {a(t)+b(t)M3+c(t)M3}

So={uc; <-(O)<-M+I,I(o)-()ILIO-[ for 0, rt [- r*, 0]},

S={qC;6<-q(0)<Ml+l, lq(0)-q(q)l<-_L[0-rll for0, r/[-r*,0]},

S:={qC;3<-q(0)<-M,lq(0)-q(q)[<-_L[0-rtl for 0, [-r*, 0]}.

As well, define a Poincard map P’S- C by

P(q) xo() for $2.

Then by the uniqueness and continuous dependence of solutions and the periodicity
of a, b, e and z, we have pn() xno (q) for all integers n >= 0, and furthermore P is
a continuous map. Evidently, So c S $2 are convex subsets of the Banach space C,
with So and $2 compact (Arzola-Ascoli’s theorem) and S open relative to $2. Choose
an integer rn > 0 such that mto > T1. Then

PJ(s1) S2 for all j->_ 1

and

W(S)_So for allj=>m.

Now by Horn’s asymptotic fixed point theorem, P has a fixed point in So. That is,
there is a w-periodic solution Q(t) of (2.1) with Q(t)>-6 for t[0, to].

To prove the global asymptotic stability of Q(t) with respect to positive solutions
of (2.1), we note that

lnQ(t) =-b(t)[x(t)-Q(t)]+c(t)[x(t--(t))-Q(t--(t))].
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Let u(t) x(t) Q(t). We get

In l+Q(t)] =-b(t)u(t)+c(t)u(t-z(t)).

The change of variable

In l + Q( t)]
y( t)

or equivalently,

u(t)--[ey(t)-l]Q(t)

leads to the equation

(3.5) ))(t) -b(t)Q(t)[ey(’)- 1]+ c(t)Q(t-z(t))[ey(t-(t- 1].

Consider the function W(t)--[ey(t)- 1]2 and choose a constant p*> 1 such that

p*c(t)Q(t-z(t))<b(t)O(t) for t[0, to].

If at an instant t_-> 0, we have

W(y(s))<-_p*W(y(t)) for alls[t-z(t),t],

then

d

dt
W(y(t)) -2 eY(t{b(t)Q(t)[ey(’)- 1]2-c(t)Q(t-’(t))[ey(’-(t- 1liey(t)- 1]}

<--2 ey(t){b(t)Q(t)[ey(t- 1]2-p*c(t)Q(t-’(t))[ey(t- 1]2}

<- -2e ey( t)[ ey( t) 1 ]2,

where e=inf,{o,,o{b(t)Q(t)-p*c(t)Q(t-z(t))}>o. Therefore, by the uniform
asymptotic stability theorem of Lyapunov-Razumikhin type, we are assured that the
zero solution of (3.5) is globally uniformly asymptotically stable, that is, the w-periodic
solution Q(t) of (2.1) is uniformly globally asymptotically stable with respect to positive
solutions of (2.1). The proof is completed.

Proof of Theorem 2.2. First of all, using an argument similar to that for Lemma
3.1, we can show that if 6 > 0 is sufficiently small, so that a(t) b(t)6 > 0 for e [0, to],
then for any qe Cv with q(0)_-> 6 for 0_-<0, we have x(t; q)>=6 for t=>0.

Let Bc={eC;supo=o[(o)[<}. We next prove that for any (=> there
exists d()>0 such that if qeBCv is given, so that 6-<q(0)=<:e-r for 0-<_0, then

_<- x(t; q) <- d (q) for >= 0. In fact, for the function V" R x (0, ) R defined by
V(t,x)=(x/K(t))-ln (x/K(t)), and for x(t):=x(t; q), we have

d x(t)-K(t)
d---t V(t, x(t))=

K(t)

b(t)[x(t)-K(t)]- p(t,s)[x(s)-K(s)] dS-K(t)
Since u -In u is an increasing and unbounded function for u -> 1, we can find a constant
Nl->max_<_(o)__< V(O, q(O)) such that if max{N1, V(s,x(s))}<=V(t,x(t)) for s<=t,
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then max {N2, x(s)/K(s)}<-x(t)/K(t) for s <- t. where

l2 t)[/K t)
N: max

tto.,ol b(t)-t_op(t, s)[K(s)/K(t)] ds

Therefore, if max {N1, V(s,x(s))} <- V(t,x(t)) for s <- t,
(K(s)/K(t))[x(t)-K(t)] for s<-_t, and

then x(s)-K(s)<=

d
d-- V(t, K(t))

K(t)
b(t)- oP(t,s)ds [x(t)-K(t)]2-

Ig(t)l
K(t)

Therefore, V(t, x(t))<=N1 for t_>0, which implies the existence of d(:).
We then show that there exists a constant M => 6 such that for any :->_ 6 there is

a constant T(sC)>0 such that if qeBCv and 6-<q(0)-<sCe-V for 0_-<0, then 3_-<

x(t; q)<-M for all >= T(). In fact, from the condition (2.4), for any q >-3, we can
choose q(:) > 0 such that

f (e) p( t, + O) e- dO <= + d(q) + IKolv +maxo<______o K(s)’
t[O, o].

Therefore,

f )p(t, t+O)lx(t+o)-g(t+o)l dO

<-- p(t, t+ O) e-’ dO +lgol ,

p(t, + O) e-v dO [su<_p_ [x(t + s) K(t + s)[ ev(t+s) e-’It

+-t_-<s_-<oSUp Ix(t+s)-K(t+s)l 1
+ d()+ o=<,_-<.,max K(s)]

We now find a constant p > 1 such that

{ f K(S) ds}min b(t)-p p(t, s) ..
te[o,o]

and define

M*=-2- l+(p-1) sup p(t,s)K(s) ds+
o<=<=o K(t

Then using an argument similar to that for Lemma 3.3, we can see that if at some
t>-O, V(s,x(s))<-(p-lnp)V(t,x(t)) for se[t-q(), t] and x(t)>-M*, then

K(s)
x(s)-K(s) <- p[x(t)-K(t)]+(p-1)K(s)

K(t)
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for s q(), t], and hence

-K(t)d V(t,x(t))>=b(t)[x(t)-K(t)]2- P(t,s)[x(s)-K(s)] dslx(t)-K(t)l

K(s)
p(t,s) K(t) O[X(t)-K(t)]2 as

t--q()

p(t,s)(p-1)K(s)lx(t)-K(t)l ds
t--q()

1[ t)l Ix(t) K t)l
K(t)

> 1 12----f lx( t) K t)

Therefore, employing a variation of the standard argument of the uniform ultimate
boundedness theorem of Lyapunov-Razumikhin type [25], we can prove the existence
of M.

The rest of the proof is similar to the proofs for Theorem 2.1 and Theorem 3.1
of 1 ], and therefore is omitted.

Proof of Theorem 2.3. We construct a Lyapunov function V(t,x)=
(x/K(t))-ln (x/K(t)) for (t, x) R x (0, ), and select a constant p >0 such that

xinf/ Dx(t,x)-p sup IIn(t, )11 maxoto,,o K(0)> 61>0,
c K(t)

where 6 > 0 is a constant. It is easy to obtain

d
V(t,x(t))=

x(t)-K(t)
d--- K(t) [D(t,x(t))_B(t,x,)]_x(t)K2( )K(t) (t)

x(t)-K(t)
[D(t, x(t))- O(t, K(t))]

K(t)

x(t)-K(t)+ [B(t, xt)-B(t, Kt)]
x(t) K(t) i(t)

K(t) K2(t)
[x(t)-K(t)]2

<- inf Dx(t,x)
K(t) xR

Therefore, if

and

+sup liB.(t,  o)11 [x(t)-K(t) x(t)-K(t) I(t).
c K(t)

IIx,-K, II- K2(t)

V(t+s,x(t+s))<=(p-lnp)V(t,x(t)) fors[-’*,0]

x(t) > M*=2-- sup (p-l) sup liB.(t, q)ll max K(O)+
61 to,,o c ,o,, K (t)

+ max K(O).
o[0,o]

dV( t, x( t))
< Ix(t)-K(t)l2.

dt 2 maxoto,,, K (0)

Then by Lemma 3.2, we can obtain
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Hence results in Lemma 3.3 are valid. The rest of the proof is exactly the same as that
for Theorem 2.1 and therefore is omitted.

Discussion. In this paper we have considered several single-species models with
time delays where both the coefficients and the delays are periodic functions. These
models are based on laboratory evidence in observing the population growth of rotifers.

The model given by (2.1) is of retarded type, whereas the model described by
(2.3) incorporates a distributed periodic delay. However, both of these are of Lotka-
Volterra type. It would be of interest to consider equations of single-species which are
more general. Unfortunately, we are not able to do so at this time, since some of the
technical steps in our method of proofs of the existence of positive periodic solutions
require the Lotka-Volterra format.

It would also be of interest to consider higher-dimensional systems with periodic
delays, representing predator-prey or competitive systems. Again, this is likely to be
considerably more difficult, and we leave this for future work.

Acknowletlgment. The authors thank the referees for their valuable comments and
suggestions which led to a substantial improvement of our original manuscript.
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HOMOCLINIC SOLUTIONS FOR AUTONOMOUS
DYNAMICAL SYSTEMS IN ARBITRARY DIMENSION*

JOSEPH GRUENDLERt

Abstract. An autonomous differential equation in 7 with two parameters, it1, tt2, is con-
sidered and it is assumed that when both parameter values are zero the equation has a hyperbolic
equilibrium and a homoclinic solution. Curves are sought through the origin in the #l-it2 plane
along which the homoclinic solution persists for nonzero parameter values. By using the method of
Lyapunov-Schmidt, a function, H, is obtained between two finite-dimensional spaces where the zeros
of H represent homoclinic solutions for nonzero parameter values. The implicit function theorem is

applied to H in various cases. For n 2 a single curve is obtained as in the work of Melnikov. When
n 2 and the stable and unstable manifolds of the hyperbolic equilibrium have an intersection of
dimension one, a result of Palmer is achieved which, again, yields a single curve. When this dimen-
sion of intersection is greater than one, original results give multiple curves. The various cases of the
theory are illustrated by seven examples: one in 72, one in T3, four in 74, and one in 76.

Key words, differential equations, dynamical systems, homoclinic solutions, bifurcations

AMS(MOS) subject classification. 34C35

1. Introduction. The problem of determining parameter values for which an
autonomous dynamical system possesses a homoclinic or heteroclinic solution arises
in a variety of applications. Some of these are predator-prey systems [3], diffusion
problems [7], traveling waves in neurons [8], [12], [13], shock waves in gas dynamics
[9], [15], climate models [10], [24], chemical stirred tank reactors [16], [17], and chemical
kinetics [22].

Various techniques have been used for detecting homoclinic solutions. In [4],
Cart uses bifurcation from a center equilibrium. In [18], Kopell and Howard follow
the bifurcation of one equilibrium to two, which can produce a heteroclinic solution.
In [21], Mock uses topological degree.

In this work we consider an autonomous dynamical system involving two param-
eters, #1, #2, and assume that when both parameter values are zero the system has
a known homoclinic solution. We then locate curves through the origin in the #1-#2
plane along which the homoclinic solution persists for small nonzero values of the
parameters.

The seminal work along these lines is by Melnikov [20]. He assumes that the
dynamical system is in2 and is analytic, that the unperturbed system is autonomous,
and that the perturbation is periodic. A generalization of [20] to :Rn can be found in
[11].

In the present work we consider a C3, autonomous system in Tn and utilize the
method of Lyapunov-Schmidt. Previous work of a similar nature is by Chow and
Hale [5] and Chow, Hale, and Mallet-Paret [6]. Our work is a generalization, in the
autonomous case, of [5, 11.3] from T2 to 7n.

*Received by the editors November 8, 1989; accepted for publication (in revised form) September
18, 1991.

tDepartment of Mathematics, North Carolina A&T State University, Greensboro, North Car-
olina 27401.
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We assume the unperturbed system has a hyperbolic equilibrium and a homoclinic
solution. The assumption of a homoclinic solution is equivalent to the assumption that
the stable and unstable manifolds for the equilibrium intersect. Now, in the plane the
intersection of the stable and unstable manifolds is equal to the homoclinic orbit itself
(or, possibly, two homoclinic orbits).

In higher dimensions, on the other hand, the invariant manifolds need not meet
along a single orbit. We give examples below where the invariant manifolds in T4 meet
along an entire family of homoclinic orbits. Another way of describing this situation
is in terms of the dimension of intersection of the stable and unstable manifolds. In
2 or 3 this dimension of intersection is always one. In general, the dimension of
intersection in Tn can be as much as n/2.

We consider a dynamical system in 7 with the dimension of intersection of the
stable and unstable manifolds arbitrary and use the method of Lyapunov-Schmidt to
obtain a function, H, between two finite-dimensional spaces where the zeros of H rep-
resent homoclinic solutions. The independent variables for H include the parameters
from the dynamical system along with some additional variables. These additional
variables represent excess tangent directions for the intersection of the stable and un-
stable manifolds; that is, directions tangent to both manifolds other than the tangent
direction provided by the homoclinic orbit itself.

When the invariant manifolds meet in dimension one the extra variables drop out.
We can then apply the implicit function theorem to H and obtain, when n 2, an
autonomous version of Melnikov’s result [20] or, when n > 2, a result of Palmer [23].
These results are illustrated in the first three examples below.

When the invarient manifolds meet in dimension greater than one the function H
has a singularity at the origin which can result in multiple curves through the origin
along which H is zero. The latter three examples below have, respectively, two, three,
and five such curves.

Theory. We shall consider dynamical systems of the form

(1) (t) f(x(t),

where x E :Rn, # E T2. We could just as easily consider # restricted to some connected
open set containing the origin.

We make the following assumptions about (1):
(i) f is 3 in all its arguments.
(ii) x 0 is a hyperbolic equilibrium. That is, f(0, #) 0 for all # and the

eigenvalues of Dlf(0, 0) lie off the imaginary axis.
(iii) The system has a homoclinic solution when tt 0. That is, there exists

a differentiable function t -+ -y(t) such that -(t) f(-y(t), 0) and limt++o "/(t)
limt-+-oo -y(t) 0.

We shall adopt the standard notation of W8, Wu for the stable and unstable
manifolds, respectively, of the origin and 48 dim(Ws), du dim(W). Since x 0
is a hyperbolic equilibrium, - must approach the origin along W8 as t - +oo and
along W as t --+ -cx). Thus, -y lies on W8 C W. Letting P "y(0) we shall denote
db dim(TpW N TpW).

Our approach in locating homoclinic solutions for nonzero values of # will be to
define two Banach spaces, Z and Z, consisting of homoclinic paths in ’n and try
to use the usual function F Z x :R2 -+ Z0 defined as F(z, #) /+- f(9/+ z, #).
The idea will be to solve the equation F(z, #) 0 for z as a function of #. Actually,
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modifications of this idea will be necessary, but we introduce the basic concept here
to motivate our preliminary results.

Let {A1,... An} denote the eigenvalues of Oil(O, 0). Since x 0 is a hyperbolic
equilibrium we can choose M > 0 such that I())1 > 4M for all i. For sufficiently
small I#1 any homoclinic solution which exists must decay at least as fast as e-Mr as
t - +cx and eMt as t -- --cx3. Accordingly, we define

Z= {z C(,T) "suPlz(t)’eMltl<t x},
Z z E el(T,Tn)" sup[z(t)[eM[t[ < CK), 8up[(*)[eM[t[ <

We take as a norm on each space the maximum of the sups in the respective
definition. With these norms each Zr is a Banach space.

Once the function F above has been properly defined we will need to look at
the derivative, DIF(0, 0). To determine the Kernel of this map we must solve the
variational equation it Dlf(7, O)u. Note that is one solution in Z to this equation.
There may be others.

THEOREM 1. Let 5c f(x, #) be as in (1). Let {A1,... An} denote the eigen-
values of Dlf(0, 0). Then there exists a fundamental solution, U, for the variational
equation it(t) Dlf(’(t), O)u(t) nonnegative integers ks; real, continuous, bounded

functions vi+, v:(; and a permutation, a, on n symbols such that, if uj denotes the jth
column of U,

lim (uj(t)t-k exp(-(Aj)t) vJ-(t)) 0
t--*+cx)

lim (uj(t)t-k exp(--(())t) vf (t)) O.
t--*

Proof. Let {A1, A2,... ,/n} denote the eigenvalues of Dlf(0, 0) repeated accord-
ing to algebraic multiplicity and numbered so that N(Aj) >_ N(Aj+I) and so that
kj > kj+l when N(Aj) N(Aj+I). By standard asymptotic theory we have the
existence of two real fundamental solutions, {al,... ,an} and {/1,... ,/n}, to the
variational equation such that, for j 1,... n, we have

lim o,

wn-j+l(t)) 0

for some set of nonnegative integers kj and nonzero, continuous, periodic functions

Wj.
We denote by A(t) and B(t) the matrices with, respectively, cj(t) and fly(t) as

column j. Since these are both fundamental solutions we can write A BP for some
constant matrix P. We now operate on P by means of elementary column operations.
The objective is to obtain AQ B[9 with Q lower-triangular and/5 such that the
first nonzero entry in each column is one with each column-leading one in a different
row.

Suppose we have reached the point where the transformed P has the following
property: there exist distinct integers jl,j2,"" ,jr-1 such that

pj =0 ifi<k,

Pkj 1,

Pik --0 for 1 _< < r- 1, k {jl,j2,""
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In row r pick the maximum jr {jl,"" jr-l} such that prj 7 0. Such a jr must
exist as P is nonsingular. Now divide column jr by Prj SO now Prj 1. Next, use
column operations to get p 0 for k {jl, j2,-’", jr}. Notice we need operate only
on columns to the left of column

Continuing this process through r n yields a non-singular, lower triangular
constant matrix Q such that A(t)Q B(t)P where P has the property that given
j, 1 <_ j <_ n, there exists a(j) defined by J(i) such that a(i) 7 a(j) for j,
/Sij 0 for < a(j), and a(j),j 1.

Let uj denote column j of the matrix U A(t)Q B(t)[. Then

n n

r=

so that
lim 0

where vf qrjwr, the sum taken over

j < < n,

Also,

where v-
lim (uj(t)t-a(J)exp(-N(A(j)t) v-(t)) 0

t----cx)

prjWr, the sum taken over

We shall refer to U as a dichotomous variational solution along 3’- We classify
the solutions into four types and introduce notation useful for solution of the non-
homogeneous variational equation.

DEFINITION 2. Let ? f(x,#) be as in (1). Let U denote a dichotomous
variational solution along " with uj the jth column of U.

(i) We shall say that uj connects ,kj to A(j).
(ii) We write the index set, I {1,2,... ,n}, as the disjoint union of four sets

according to the behavior of the uj’s at +oc and

j E Iab, a s

j EIab, a=u

j e Iab, b= s

j Iab, b= u

iff lim uj(t)=O,

iff lim uj(t)

iff lim uj(t)=O,

iff lim uj(t)=

(iii) We let nab denote the order of lab and use "uj is of type ab" to mean j [ab.
(iv) For each i= 1,..., n we define u(t) by (u(t), uj(t)} 5ij.
It may occur that - Uk for some k. The actual numbering of the uj’s is

unimportant. The essential thing is that each uj connects a distinct pair of eigenvalues.
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The vectors u- can be computed from the formula U+/-t U-1, where U+/- denotes

the matrix with u- as column j. Differentiating UU+/-t I we obtain ]U+/-t +U(]+/-t 0

so that [+/- -(V-U+/-t) -Df(’, O)tV+/-. Thus, U+/- is the adjoint of U.
We also have

(/o )det(U(t)) det(V(0))exp (V. f)(/(s), O) ds

and, for w E Cr(T, n), the formula

(u(t), w(t)) det (u(t), ui-(t), w(t), ui+(t), un(t)) det(U(t)) -1.

We shall construct a solution to the nonhomogeneous variational equation 2
Dlf(’, O)x --w in the form

n

j=l

For breaking up this formula over the various Iab we define, for each a s, u,
b s,u, an n n matrix, Pab, defined as (Pb)i 1 if Ib and (Pb)ij 0,
otherwise. We have then

(4)
jEIab

LEMMA 3. There exists a constant Ko such that for every z Z we have:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

I(u(t),z(t))l <_ Kol[zlle-Mr

for t > 0 when 18 U I.

[(,(t), z(t))] <_ KollllM,
for t 0 when 1 1.

g(t)(P + p)g-l()()d gollll-M

U(t)(P ds

]ort O.

V(t)(P + P)U-(s)z(s) Kollzll eMtds

fort O.

g(t)(P + p)g-l()() d gollllM

fort NO.
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Proof. Choose K0 > 0 such that

lui(t)l < -o exp ((N(Ai) + M/(n 1))t)

for all t > 0 and

(/o )det (U-l(t)) det(U(0))exp (V. f)(7(s), 0)ds <_ K v,-A+M)t

where A (A1) +"" + (An). Since E/ U f, (Ai) >_ 4M, so, using (2),

(u(t),z(t)} <_ Kollzll exp((-(A))t)< Kollzlle-M’.

This proves (i). Part (ii) follows similarly. Note that (i) and (ii) imply the
convergence of the improper integrals in (iv) and (vi) when these are viewed via (4).

We now turn to (iii). Assume the eigenvalues are numbered so that Iss U I8,
IO{1, 2,..., ds}. Then Ps + Psu (o o) where I is the d d8 identity matrix. Let

A Dlf(0, 0) and let Q be a real, n x n matrix such that the matrix B Q-AQ has
the form B (B01 o with B1 a d x d matrix whose eigenvalues all have negativeB2
real parts. We can choose KB > 0 such that

etB1 0 I0 0
<__ letB1 I<__ KBe-2Mr.

Since
Q-I (Q-1Dlf(9/’ O)Q) Q-1u

and
lim Q-1Dlf(/, O)Q B
t---+oo

we can choose K1 > 0 such that IQ-1U- etBI <_ Kle-2Mr, and using the adjoint
equation we obtain IU-1Q- e-tBI <_ g2e-2Mr, both for all t k 0.

Now write

From this we obtain

IU(t)(Pss -}- Psu)U-l(8)z(8)l

_
K311zlle-2Mte-3Ms -}- KBIIZlle--2MteMs,
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where K3 K1 IPss + Psul K2 + KIKB + KBK2.
Integration of the preceding estimate yields (iii) with Ko K_z_ + g, This proves3M M"

(iii). Parts (iv)-(vi) follow similarly.
One consequence of the preceding result is that the integrals f_ (u, z} dt are

convergent for z E Z, Iu.
Furthermore, since

z)
d

it follows that

(5) (u,- Dlf(/, O)z) dt 0 for z e Z1, e I.

THEOREM 4. Let f(x,#) be as in (1) and consider the nonhomogeneous
variational equation

(6) h(t) Df(7(t), O)h(t) + w(t)

with w Z. Then (6) has a solution in z if and only if

for all e I. In this case (6) has a unique solution in Z satisfying <u (0), h(O)) 0

for all Iss.
Proof. If (6) has a solution h 2: then f_ (u, w} dt 0 for all I by (5).

Now suppose f_ (u, w} dt 0 for all Iuu. Then using variation of parameters
we get a particular solution, hp, to (6) given by

where the first and second forms are intended for t >_ 0 and t <_ 0, respectively.
Now hp Z by Lemma 3. The general solution in Z to (6) is h hv+

-]58 cu for constants c. But (u(0),h(0)} c for E I88 so hp is the unique
solution in Z to (6), satisfying (u(0), h(0)} 0 for all Is. [3
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The preceding result has two consequences. First, it characterizes the image of
D1F(0,0) as {w E Z" f_ (u,z} dt 0, Iu}. Further, we see that we can

make D1F(0, 0) injective by restricting the domain of F to the subspace

.,1 {Z e ,1 (t/+/-(0),Z(0)} O, e Iss}.

As the Kernel of a continuous linear map ,1 is closed and hence a Banach space.
We can proceed to our main result once we settle the question of the domain

for F. On the one hand, F cannot be defined on all Z1 since this would distinguish
solutions in 1 which are time-translates of each other. There is a way to handle this
problem. Let U be a dichotomous variational solution along / and choose k I88
so that (u-(0),(0)} : 0. We then require z to satisfy (u-(0),z(0)} 0 so that

(u-(0), "),(0)+ z(0)} is independent of z. This construction has a geometric meaning.
Since (u(0),’(0)} is the coordinate of (0) along ui(0), the vectors ui(0), k span
an affine linear subspace, II, in Tn through P /(0) and transverse to @(0). We
are requiring that y(0)+ z(0) remain in II. In each example below we have uk /
for some k so then (u-(0), (0)} (uk (0), uk(0)} 1. This situation can always be
assumed for db 1 but not necessarily when db > 1.

On the other hand, for D1F(O, 0) to be injective we need to have z 2. Now,
when db= 1 these two requirements agree but, for db> 1, requiring z to be in ,1 is
unnecessarily restrictive. We reconcile this by taking z E Z but then adding extra
variables to take into account the tangent directions uj(0), j I8, j k.

THEOREM 5. Let f(x,#) be as in (1). Let U be a dichotomous varia-
tional solution along / numbered so that I {1,... ,db} along with a bijection

/u+/- (0) (0)} = 0. Then there exists ac" {1,...,db} -- Iss and such that a(db)
connected open set V C Tdb- T2 with (0,0) V and a differentiable function
H" V Ttd denoted (/, #) H(, #) with the following properties:

(i)

(ii) H(0, 0) 0.

If H(/*, #*) 0 then 5c f (x, #*) has a homoclinic solution

(iii) OHo#j (0, 0) u, -pj (,, 0) dt.

(iv) 0H (0, 0)-0.

(0, 0)(v) aZ aZ (u-, Dif(/, 0)u(j)u(k)) dt.

Proof. We define a differentiable function F" 1 x 7d- x 72 Z as follows:

F(z,/, #)(t) @(t)+ (t)+ dl://t(i)(t)- f( db--1

+ z(t) +
i----1

A sufficient condition for a homoclinic solution is F(z, , #) O. We use the method
of Lyapunov-Schmidt to eliminate z from this equation.
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Let 7 ---, 7 be a continuous function satisfying supt I(t)leMItl < oc and
f_ (t)dt 1. Then define a projection P" Z Z by

It is easy to check that for any z E Z we have

(7) (u, (I P)z} dt 0 for e Iu.

So now F resolves into two parts:

(I- P)F" 1 X 7db -1 X T2 - Im(I- P),
PF" Z x Tdb -1 x T2 - Im(P).

The idea is to solve the equation (I- P)F 0 for z and substitute the result into
PF O. Using (5) we find that the equation

DI[(I- P)F](O)h w

is
h Df(,.,/, O)h + w.

Combining (7) and Theorem 4 we see that this last equation has a unique solution
in 1 since w Im(I-P). We can now apply the implicit function theorem to obtain
a connected open set V C 7d- 72 and a differentiable function V 2 such
that (0, 0) 0 and

(8) ((I P)F)((, it), , it) 0

for all (fl, it) V.
The conditions for a homoclinic solution now become

(PF)((, it), , it) 0.

These conditions can be stated in the form H(, #) 0 by defining the differentiable
function H" V - ’db aS follows:

Result (ii) follows from the fact that (0, 0) 0. Differentiation of H combined with
(5) yields (iii) and (iv).
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To show (v) we first differentiate (8) with respect to and use (5) to obtain

and this result combined with Theorem 4 yields

0 o)=o.

We now obtain (v) by differentiation of H twice with respect to , combined with
this last result and (5).

Let us look at some special cases of the preceding theorem. If x E ’2 we must
have db 1, I== {1}, I {2}, and u2 ". Denoting - (")’1, ")’2) we can take

(/o’ )u(t) (-’2(t),’h(t))exp (V. f)(/(s),O)ds

and knowledge of u is not required. There is no and the condition for a homoclinic
solution is the scalar equation H(#I, #2) 0. With the appropriate hypothesis the
implicit function theorem can be used to solve this last equation for #1 in terms of #2.
This yields the following result which is an autonomous version of Melnikov’s theorem
[20]. See also [5] and [6]. This next result is illustrated in Example 1 below.

COROLLARY 6. Let c f(x, #) be as in (1) with x 2. Let

ai det (t), --(7(t), 0) exp (V. f)(7(s), O)ds dt

for 1, 2 and suppose al O. Then there exists an open interval W containing zero
and a differentiable function W --, T such that (0) 0, ’(0) -a2/al and
such that (1) has a homoclinic solution for #1 (#2), tt2 W.

The preceding result generalizes with little difficulty to higher n as long as we
have db 1. The difference is that for n > 2 it is necessary to utilize a dichotomous
variational solution. This leads to the following result obtained by Palmer [23]. This
next result is illustrated in Examples 2 and 3 below.

COROLLARY 7. Let f(x, #) be as in (1) with db 1. Let U be a dichotomous
variational solution along / with Iuu {1}. Let

a, -p (O, O) u,

for 1, 2 and suppose al O. Then there exists an open interval W containing zero
and a differentiable function W -- n such that (0) 0, ’(0) -a2/al and
such that (1) has a homoclinic solution for #1 (#2), #2 W.

We now wish to consider db > 1. A special case occurs for db 2 for then we
have 7, # 72, and the conditions for a homoclinic solution are Hi(, #1, #2)
0; 1, 2. With the appropriate assumption these equations can be solved for # in
terms of to yield the following result.
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COROLLARY 8. Let f(x, #) be as in (1) with db 2. Let U be a dichotomous
variational solution along " with Iuu {1, 2}, I88 {3, 4}, (u(0), ;y(0)} = 0. Define
a 2 2 matrix A [aij] by

OH (0, 0) u?, Uj(, 0) dr,aij
O#j c

1,2, j=l,2

and a 2-vector b [bi] by

02Hi (0, O) (u Dllf(y, 0)u3u3) dtbi O2
i= 1,2.

If det(A) - 0 then there exists an open interval W containing zero and a differentiable
function W - T2 such that (0) 0, ’(0) 0, "(0) -A-lb and such that
(1) has a homoclinic solution for # (fl), / E W.

When this result is interpreted in terms of the #’s we obtain a curve in the #l-p2

plane passing through the origin with slope

rn lim
#2() -a21bl + allb2

---0 #1() a22bl a12b2

This is illustrated in Example 4 below.
The case of db

_
3 is a bit harder. Our approach is, first, to set to zero the terms

of lowest degree in H(, #).
DEFINITION 9. Let 5c f(x, #) be as in (1). Let U be a dichotomous variational

solution along , numbered in such a way that Iu {1,... ,rib} together with a

bijection a- {1,... ,db} I such that (ab)(0),(0) 0. Let V C 7ab-1 x

and H V "Ra be as in Theorem 5.
(i) We define

o1 -SU, o) et

for i=l,...,db, j=1,2.

(0,0) (ui-,Dllf(’)’, O)ua(j)Ua(k)) dt

for i=l,-..,db, j,k=l,...,db-1.

(ii) We define a second degree map M Td-I T2 Tdb by

2
1 db--1 db--1

Mi(, #)- E aij#j + - E E bijkjk.
j--1 j=l

(iii) We shall say that (0, #0) E Td-I 72 is a characteristic vector for (1) if
M(flo, #0) 0.

If (0, #0) is a characteristic vector for (1) then (s/, s2#) is a characteristic
vector for (1) for all scalars s. We can specify a choice for s by requiring 1[ll2+llttll
1. We now use the implicit function theorem to find a solution to the exact equation
H(, #) 0.
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THEOREM 10. Let 5c f(x, #) be as in (1). Let aij, bijk, and M(,#) be as in

Definition 9. Let (o, #o) be a characteristic vector for (1) and define a db (db + 1)
matrix C [cj] by

db --1

b o i--1.., db j--1.., db 1Cij ijkk,
k----1

cij ai,j_db+l, --1,... ,db, j db, db / l.

If C has maximal rank there exists an open interval W containing zero and a differ-
eutiable function : W - n2 with (0) 0 such that c f(x, #) has a homoclinic
solution for # sg(# + (s)), s E W.

Proof. Let V C Tdb-1 72 and H V -- ")db be as in Theorem 5. Let
V C d- x 2 x be a sufficiently small open neighborhood of (0, 0) and define a
differentiable function F: V db by

1
H(so+s,s2p+s2) fors#0

M(0 + , p0 + ) for s 0.

Observe that F(0) 0 and F(0) C, where denotes differentiation with respect
to (, ). By hypothesis, C has maximal rank which means that it has an invertible
db x db submatrix. One of the columns of this submatrix must correspond to one of
the components ,2 of . Assume the component is . Then from the implicit
function theorem we can solve the equation F(,..., Cd-,,0, s) 0 for and

1 in terms of s. The result now follows from Theorem 5. H
Note that Theorem 10 can yield multiple curves in the pl-p2 plane along which

we have a homoclinic solution. For each (0, p0) we get a curve passing through the
origin with slope m /p. This is illustrated in Example 5.

Case of a manifold of homoclinic orbits. The preceding results utilize the
second derivatives of H with respect to ; when these derivatives are zero we need
an alternate approach. One situation worth considering occurs when all or part of
W W is a manifold which we can term the bistable manifold, Wb. This case arises
in certain integrable Hamiltonian systems [19].

Suppose Ws Wu has a branch which is a manifold, denoted Wb, of dimension
db; let P d- Wb be differentiable; and let 70 denote a homoclinic solution for

f(x, 0) satisfying 70(0) P(O). Assume P is constructed so that (O,t) 7o(t)
establishes local coordinates on Wb. Since

a/o(t) f(’o(t), 0),
differentiation with respect to 0 yields

00
(t) Df(7o(t), O) (t).

Thus, the functions O’)’O/OOj, along with "0 provide a natural set of solutions of type
ss to the variational equation along 7o.

Let Uo denote a dichotomous variational solution along 70 with uoj the jth column
of Uo, and define Uoi

Also, let A(O)= [aij(O)] denote the db x 2 matrix defined as

a(O) Uoi, dr.
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THEOREM 11. Let c f(x, #) be as in (1). Suppose Ws fq Wu has a branch, Wb,
which is a manifold and let A(O) be as above. Suppose there exist 0 E Tdb-1 and a
nonzero #o T2 such that A(O)# O. Define a db (db+ 1) matrix C [cij] by

2 Oaik
k -O- OO #Ok .for --1, db j --1, db --1

ij

ai,j-db+l (0) for 1,... rib, j rib, db + 1.

If C has maximal rank there exists an open interval W containing zero and a differ-
entiable function W -, T with (0) 0 such that (1) has a homocliuic solution

for # s(# + (s)), s W.
Proof. We begin by modifying the proof of Theorem 5. We define a map F

2lxTd-lxR2Z0by

F(z, O, #)(t) 5/o(t) + k(t) f (/o(t) + z(t), #).
In other words, we replace the / coordinates in Theorem 5 with the local manifold
coordinates . Proceeding as before we obtain a connected open set V C d-I 2
with (0, 0) Y and a differentiable function H: Y Td denoted (, #) - H(0, #)
with the following properties:

(i) If H(O*, #*) 0, then & f(x, #*) has a homoclinic solution;

(ii) H(O, 0) 0;

(iii)
OHi (O, O) uoi, -p (7o, O) dt aiy(O).

The next step is to modify the proof of Theorem 10. For a sufficiently small
neighborhood V1 C d-I T2 7 we define a differentiable map G V1 --* ’db by

1H(00+,s#o+s) fors0,

A(OO + )(#0 + ) for s 0.

We have G(0) A(O)# 0 and G(0) C, where/) denotes differentiation
with respect to (, ). As in the proof of Theorem 10 we can, after renumbering if nec-
essary, use the implicit function theorem to solve the equation G(1, d-1, 1, 0, s)

0 for and 1 in terms of s. U
This result is very similar to Theorem 10 and generalizes Theorem 1 of [19]. In

terms of parameter space we have, for each (0, #0), a curve in the #1-#2 plane passing
through the origin with slope m tt2/#0. Note that here there is no restriction on
the number of resulting curves. Theorem 11 is illustrated in Examples 6 and 7 below
with, respectively, three and five curves.

Examples. We now proceed to illustrate the above theory with a number of
examples. We begin with a well-known example in 72 and consider various general-
izations to higher dimensions. In all the following calculations we adopt the notation
r(t) secht. Note that we have ? r- 2r3. The following numerical values and
defined functions will be needed.

4
r22 dt

15’
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? ( )I1 (O) i"(t)r(t ) dt 2
fl cosh sinh 0

sinh2 0

I2(0) /(t)/(t O) dt 2
2 sinh 0 cosh 0 20 0 sinh2 0

sinh3 0

Ia(O) r(t)/(t)r(t O)dt

2 (2 sinha 0 g sinhO cosh2 0 + gO coshO)sinh 0

Example 1. Consider the equation

(9) : X 2X3 + .1:(1 X2) .2:

which we regard as a first-order system in phase space (x, 2). This equation has been
studied by Holmes and Rand [14]. Similar equations appear in [1], [2, p. 280], and [4].
In meteorology this equation is sometimes referred to as the Saltzman oscillator [24].

Equation (9) has a hyperbolic fixed point at (0, 0) for all sufficiently small I,I.
When, 0 we get the familiar Duffing’s equation with negative stiffness, which has
two homoclinic solutions. We will consider the one given by x r.

2 and a2
2 Thus, theIn the notation of Corollary 6 we compute a - .

corollary applies so there exists a function with (0) 0 and ’(0) - such that
(9) has a homoclinic solution when ,1 (,2).

Example 2. We now wish to generalize to 3 the equation of the preceding
example. We do this by using the ,2 term to couple the equation to an additional
first-order equation which maintains the hyperbolic equilibrium. Thus consider

: X 2X3 -- ,lk(1 X2) + "2(- ),
--2y -+- ,2(k ).

Letting x x, x2 , X3 y we get

X3-- (.2) X2

The eigenvalues of DI/(0, 0) are A1 -2, A2 -1, A3 1. When , 0 this
system has a homoclinic solution given by " (r, /, 0). For a dichotomous variational
solution along y we first take u2 (,/, 0). Using variation of parameter we
obtain a second solution of the form ul (P, (P/)’, 0), where P is a differentiable
function which satisfies (P)’- P/ =/5/2 1, an arbitrary constant.

For a third solution we have u3 (0, 0, e-2t).
Notice that u connects A3 to A2 (type uu), u2 connects A2 to A3 (type ss), and

u3 connects A1 to A1 (type su). Thus, we have a dichotomous variational solution,
necessarily, with n88 db 1.
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2 and a2
2Using Ul

-k (-/, /, 0) we compute al -g 5 so Corollary 7 applies.
5 and such that the dynamicalThere exists a function such that (0) 0, ’(0) g

system has a homoclinic solution for #1 (#2).
Example 3. The preceding example can easily be generalized to higher dimension.

For example, consider the equations

x x + ,( x:) + ,:(- ),
/) u+:(- ).

The phase space for this system is 7E4 with coordinates (x, , y, )). The eigenvalues
of Dlf(0,0) are ,1 -1, A2 -1, A3 1, A4 1 and, when # 0, a homoclinic
solution is given by (r, /, 0, 0). A dichotomous variational solution is given by

Ul (P+, (P/)’, 0, 0),
: (/, , 0, 0),
u (0, 0, e-t,-e-),
U4 (0, O, et, et),

connects ,3 to A2,
connects A2 to A3,
connects

connects A2 to

type uu,

type ss,

type su,

type us,

where P is as in the preceding example. Things are numbered so that I {1},
Is8 {2}, and u2 . Since ns 1, db 1, and Corollary 7 still applies. A
straightforward calculation with u (-i, P, 0, 0) yields the same values for each a
as in the previous examples.

Example 4. We now turn to some examples with db 2. The most natural way to
achieve this is to replace the second equation in Example 3 with a Duffing’s equation.
The problem with this is that then W C W is a manifold which is a higher degree
of degeneracy. Such a system is considered in Example 7 below. For now we consider

4 (x+a)ii x- -5 sY +#1
4y3 + #2(Y + b)),=- -]x

where a, b are constants.
A homoclinic solution, when # 0, is given by x y r. We work in the phase

space (x, ?, y, )) and find the eigenvalues of Dl/(0, 0) to be A1 -1, A2 -1, A3 1,
A4 1. Letting u (v, ), w, h) denote a typical solution to the variational equation
we get

) v- 4r2v 2r2w,
w- 4r2w- 2r2v.

One variational solution is given by v w /, and variation of parameter leads
to a second of the form v w P, where P is as in Example 2. A third solution
is given by v -w r and, once again turning to variation of parameter, a solution
v -w Qr, where Q satisfies (Qr)’r- Qr/ (r 1, an arbitrary constant.

We now have a dichotomous variational solution:

tl (Qr, (Qr)’,-Qr,-(Qr)’),
u2 (P/, (P)’, P/, (P/)’),
ua (r, ,-r,-/),
tt4 (?, ,/, ),

connects ,3 to A2,
connects A4 to

connects A2 to A3,
connects

type uu,

type uu,

type ss,

type ss.
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The ui’s have been numbered so that I {1, 2}, Iss {3, 4}, and u4 . We
see that ns 2 which implies that db 2. In the notation of Corollary 8 we compute

--r)u (-/,r,:,
(-, , -, /)

and all -1, a2 1, a2 -a/3, a22 -b/3, b 2, b2 0.
Since det(A) (a + b)/3 and

(u(O), (o)} ((o), 4(o)} 1,

Corollary 8 applies as long as a + b 0. In this case, there exists an interval, W,
containing zero and a function W 2 with (0) 0, ’(0) 0, "(0)
2 (b,-a) such that the dynamical system has a homoclinic solution whena+b
We have a curve in the p-2 plane passing through the origin with slope m
(o)/7(o) -a/.

Example 5. To obtain a value of db= 3 requires minimum of n 6 and, hence,
the possibility of extensive calculations. We present a model problem which illustrates
the principle. Consider the system:

x 2xz2 -- 22 -- lZ,1 Y- 2YZ2 + 21,
z 2z3 A- y + #2.

We work in the phase space (x,2, y, , z, ) and easily compute the eigenvalues of
Dlf(0, 0) to be A1 A2 A3 -1, h4 A5 A6 1. A homoclinic solution when

# 0 is given by x-y- 0, z r, i.e., /- (0, 0, 0, 0, r, ). The variational equation
along - uncouples so that it is easy to compute the following dichotomous variational
solution:

(Q, (Q)., o, o, o, o),
u2 (0, 0, Qr, (Qr)’, 0, 0),
U3 (0, 0, 0, 0, P#, (P/)’),
u4 (r, /, 0, 0, 0, 0),
u (0, 0, r, /, 0, 0),
u (0, 0, 0, 0, /,),

connects 4 to ,
connects 5 to ,
connects 6 to 3,
connects to 4,
connects 2 to 5,
connects ,’3 to

type uu,

type uu,

type uu,

type ss,

type ss,

type ss.

The functions P and Q are as in earlier examples. Since U4, U5, and u6 are each
of type ss we have db= n 3. Things are numbered so that I {1, 2,3}, I8
{4, 5, 6}, and u6 . We take a(1) 4, a(2) 5, a(3) 6 so then (u(3)(0),.(0))_L
(u(O), u6(O)) 1.

Using

(-, , o, o, o, o),
(o, o,-, , o, o),
(o, o, o, o,-, /),
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the equations aij#j / bijkjk 0 in Definition 9 become:

We see that these equations yield two characteristic vectors which, in the notation
of Theorem 10, are summarized below.

(ii) 0=(0) tt=() C=

)- 0 -2 0
0 -- 0 08

20 0 0 -0 0 0
0 0 2- -5

In each case rank(C) 3 so there are two curves through the origin in the #1-#2
plane along which the perturbed system has a homoclinic solution. The curves have
slopes 0 and cx; that is, each curve is tangent to one of the axes.

Example 6. Example 4 used reflective symmetry to obtain db 2. We now use
rotational symmetry. Consider:

: X -- 2X(X2 - y2)
__

#I(X -- 3),
/ v + 2v(x + ) + u.(v ).

A similar example is given in [19]. When # 0 the eigenvalues of the origin are
,1 --1, 2 --1, ,3 1, 4 1 and the system has a homoclinic solution given
by x(t) r(t)cos 0, y(t) r(t)sin0 for all 0. We have a 2-manifold of homoclinic
solutions so, necessarily, db 2.

The necessary calculations are simplified by introduction of the rotated coordi-
nates 2 x cos 0 + y sin 0, -x sin 0 + y cos 0. In the phase space (, , ), ) we
have ’0 (r, /, 0, 0) and 0//00 (0, 0, r, ). A dichotomous variational solution is
given by

(0, 0, Q, (Q).),
u2=(P/,(P/)’,O,O),
u (0, 0, r, /),

(/, , 0, 0),

connects 3 to 2,
connects /4 to

connects ,2 to

connects 1 to 4,

In the notation preceding Theorem 11 we use

type uu,

type uu,

type ss,

type ss.
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9. 2 sine 0. We findand compute all sin20, a12 -sin20, 321 - cos2 0, 322
that the equation A(O)tto 0 has a nontrivial solution for tt0 when det(A(0))
_2 sin 20 cos 20 0. We get three distinct results for -r < 0 < 7r, summarized as3
follows:

(i) 0=+/- #0 (1) (-2 0 0)29.; 0
C=

0 0

(ii) O 0,; #o (0) (-200)__2 01
C=

0

(0(iii) 0 =t=Z’q:-; 1
C- +/-4 _!

3 3 3

In eachcase rank(C) 2 so Theorem 11 can be applied three times. The result
is three curves in the #l-tt2 plane along which the system has a homoclinic solution.
There is a curve tangent to each axis and one with a slope of one.

Example 7. When a system in 74 is such that the unperturbed system uncouples
into a pair of equations, each with a homoclinic solution, there is always a 2-manifold
of homoclinic solutions. For example, consider

J x 2x3 -4-/.tly 4- #2(3 ),
} y- 2y3 + #ix + #2( +

The phase space for this system is (x,2, y, ). When # 0 the eigenvalues are
,1 --1, 2 --1, 3 1, 4 1, and a 2-manifold of homoclinic solutions is
given by x(t) r(t), y(t) r(t- 0). Using the function P from Example 2 we get a
dichotomous variational solution:

uol(t) ((P/)(t), (P/)’(t), O, 0),
uo2(t) (0, O, (P/)(t t9), (P/)’(t 0)),
,o(t) (/(t), (t), o, 0),
uo(t) (o, o, /(t o), (t o)),

)k3 to A2, type uu,

4 to 1, type uu,

2 to 3, type ss,

1 to 4, type ss.

From this we get

4-(t) (-(t), /(t), o, o),,. (t) (o, o, -e(t o), /(t o)).

For the purposes of Theorem 11 we compute

2 312(0) )m4A(O) -I1 (0) - 12(0)
dZ (11(/9) -3(I1(/9) 613(0))
d-- (0) -I2(0) -11(0) + 61a(O)

We have introduced the definitions preceding Example 1 and have used the re-
lationships dI1/dO I2, dI2/dO I1- 613. Application of Theorem 11 requires the
solution of the equation det(A(0)) -I1(0)(612(0) + 1) 0. It is easy to check that
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I1(0) 0 has the solution 0 0 and a little computer work shows that this is the only
solution. The equation 612() + 1 0 can be shown by computer calculation to have
four solutions. The resulting five solutions to A(O)# 0 are:

(i) 0-0 #-(1)0
(ii) 0 +/-2.199071 #o-( .9005686

.4947199

00 +/-3.741983, #0_ / .9759556
(iii) q=.2179694

In each case a computer calculation determines that rank(C) = 2 so Theorem 12
can be applied five times. In the #1-#2 plane we have five curves through the origin
along which the system has a homoclinic solution. One curve is tangent to the #l-axis,
the others have slopes +/-.4827105 and +/-.2233395.
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Abstract. In 1940, all fourth-order differential equations which have a sequence of orthogonal poly-
nomial eigenfunctions were classified by H. L. Krall, up to a linear change of variable. One ofthese equations
was subsequently named the Laguerre type equation and various properties of the orthogonal polynomial
solutions and the right-definite boundary value problem were studied by A. M. Krall in 1981. In this paper,
the Laguerre type expression is further studied in the right-definite setting and the appropriate left-definite
problem associated with the fourth-order Laguerre type differential expression is discussed in detail.

Key words, orthogonal polynomials, differential equations, right-definite boundary value problems,
left-definite boundary value problems, self-adjoint operators
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1. Introduction. The existence of the Laguerre type differential equation and the
corresponding orthogonal polynomial solutions was first observed by H. L. Krall in
1940; see [15] and [16] for the methods used by Krall to discover this and other
differential equations having orthogonal polynomial solutions. Of course, these poly-
nomials may be constructed by using the standard definition given in Szeg/5 [23, 2.1
and 2.2] with respect to the nondecreasing function t where, for some given positive
number A,

-1/A if x (-oo, 0],
(1.1) t(x)=

1-e

Let tr denote the regular, nonnegative measure generated by & on the Borel sets
of the real line [. Further, let L[O, oo) denote the Hilbert function space derived from
this measure tr, i.e., if C represents the complex field,

L[O, oo):= / f: [0, oo)- C If is Borel measurable on [0, oo) and

(.2)

[o,)

with inner product given by

(1.3) (f, g) ._f(0)g(0) - f(x)g(x) e dx.’m A

Note that in (1.3), the integral is Lebesgue in view of the fact that & is locally absolutely
continuous with respect to Lebesgue measure on the open interval (0, oo); i.e., the
functions f and g belong to the weighted Hilbert space L2(0, cx3; e -x) defined by

L(O, o; e-) f: (0, oo) - C If is Lebesgue measurable and If(x)l e dx < oe

Since the monomials xn L2[0, oo) (n=0, 1,2,...), the Laguerre type poly-
nomials, denoted in this paper by {R,(x; A)lx [0, ); n =0, 1, 2, }, may be defined
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through the Gram-Schmidt orthogonalization process; see [23, 2.1]. For convenience,
when the parameter A>0 is fixed, we shall write {Rn(x)} or {Rn} for this system of
orthogonal polynomials. Alternatively, the Laguerre type polynomials may be found
readily from the differential equation that they satisfy. Indeed, the Laguerre type
polynomials are solutions of:

(1.4)
x2y(4) + (--2X2 + 4x)y(3) + (x2 (2A + 6)x)y"

+ ((2A + 2)x-2A)y’+ ky (An + k)y,

where x e (0, m), k is a fixed, nonnegative constant and

(1.5) An n(n+2A+ 1), n =0, 1, 2, ..
We note that (1.4) may be put into formally symmetric form when multiplied by e-X:

Mk[y] (An + k) e-Xy,

where, for x

(1.6) Mk[y](x):=(x e-Xy"(x))"-(((2A+2)x+2) e-Xy’(x))’+ke-Xy(x).

By using elementary power series techniques in (1.4), we can easily find an explicit
formula for the Laguerre type polynomials. Indeed, we see that

(1.7) Rn(x):=
(-1)s (n)s=o(j+l) J

((A+n+l)j+A)xs, n=0,1,2,...,

normalized so that Rn(0)= A for all n =0, 1,2,.... These polynomials satisfy the
orthogonality relation

(Rn, Rm) R,(x)Rm(x) do-(x)=(A+n+l)(A+n)nm,
[o,)

(1.8) n, m=0, 1,2,. ,
where nm is the Kronecker delta function.

For general information concerning orthogonal polynomial solutions to differential
equations of the form

(1.9) ak(x)y(k)(x) Ay(x),
k=l

the reader is referred to the review articles [13] and [14]. Observe that, in (1.4) and
(1.6), the spectral parameter A and the degree of the polynomial solution do not appear
in the coefficients on the left-hand side of the equations, a feature which is necessary
for the study of the spectral properties of the differential expression (1.6). Furthermore,
we note that it is a remarkable property that the Laguerre type polynomials satisfy a
linear, fourth-order differential equation with this property. Certainly, it is not uncom-
mon for orthogonal polynomials to satisfy differential equations (see, for example,
[14]), but it is rare indeed that orthogonal polynomials satisfy a differential equation
of the form (1.9), where the coefficients ak(X) are functions of x only. For example,
only the classical orthogonal polynomials of Jacobi, Laguerre, and Hermite and the
Bessel polynomials satisfy second-order differential equations of this type. In the
fourth-order case, Krall [16] showed that the only differential equations of the form
(1.9) with orthogonal polynomial solutions, apart from the formal squares of the known
second-order equations, are the Legendre type, Laguerre type, and Jacobi type
equations.
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In the paper by A. M. Krall 12], the properties of the Laguerre type polynomials
{Rn(x)} are developed in detail. In particular, information is given on the three-term
recurrence relation, the Rodrigues type formula, and the generating function for the
polynomials. The paper [12] is also concerned with studying some of the properties
of a certain self-adjoint operator generated by Mk[’] in the Hilbert space
L2(0, oo; e-X)(C, which is isometrically isomorphic to L[0, oe), having the Laguerre
type polynomials as eigenfunctions.

The purpose of this present paper is to extend the ideas and methods in the earlier
papers of Everitt, Krall, and Littlejohn [6], [7], and 12], to a study of the right-definite
and left-definite spectral problems associated with the differential equation

Mk[y](x) A e-Xy(x) (x (0, oo)).

The right-definite problem is studied in the Hilbert space L[0, oo) and the left-definite
problem in the Sobolev space H2[0, oe), where

2H,[0, oo):= {f: [0, oo) C If AC,oc[0, oo); f’ AC,oc(O,
(1.10)

f, (x + 1)1/2f’, xf" e L2(O, oo, e-X)}

and the inner product is defined, for f, g e H2[0, oe), by

(1.11) (f, g) := {xe-f"(x)"(x)+((2A+)x+2)e-Xf’(x)’(x)}dx+k(f,g).

We are able to show that there is a self-adjoint representation of both the right-definite
and left-definite problems for which, respectively, the Laguerre type polynomials
{R,(x)} are determined as a complete set of eigenfunctions in the spaces L[0, ) and
H[0, oo).

Earlier work on the spectral representation of some of the classical orthogonal
polynomials is given in Titchmarsh [24, Chap. IV], together with results which connect
the Titchmarsh-Weyl m-coefficient theory with self-adjoint differential operators as

given by Chaudhuri and Everitt [2]. The ideas and methods of Titchmarsh were
extended to cover the right-definite and left-definite problems for the classical Laguerre
orthogonal polynomials by Onyango-Otieno [19] and [20].

The contents of the paper are as follows. In 2, we develop the properties of the
maximal domain Ak in L2(0, oo; e -x) associated with the differential expression Mk[. ].
In 3 and 4, we establish the self-adjointness of the right-definite operator T[. in
the right-definite space L[0, co) and determine explicitly the spectrum o-(Tk) of T[. ].
By taking advantage of the spectral properties of T[. in L[0,
that all self-adjoint operators generated by M[.] in L2(0, oo; e -x) have discrete

spectrums that are bounded below. Section 6 contains a proof of the density of the
Laguerre type polynomials in the left-definite space H[0, oe). Finally, in 7, we
present the left-definite theory for the Laguerre type orthogonal polynomials, including
the definition and various properties of the self-adjoint operator Sk[. in the Sobolev
space H[0,

2. The differential expression Mk. In this section, we shall study properties of the
differential expression M[. defined in (1.6); i.e., for x

(2.1) Mt,[f](x):=(x e-Xf"(x))"-(((2A+2)x+2) e-Xf’(x))’+ke-Xf(x).

Let A denote the maximal domain of M[. in L(0, oo; e-X); i.e.,

(2.2) A:= {/: (0, ee)- C ]f(r) e aC,oc(0, oo), r=0, 1, 2, 3;f, eXM,[f]e L2(0, oo; e-X)}.
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Standard techniques show that Ak is dense in L2(0, o0; e-X); see [18, Chap. 5]. The
maximal operator Tmax[" generated by Mk[" in L2(0, oo; e-x) is defined to be:

Tmax[f](x) eXMk[f](x) (x (0, oo)),

(Tmax) mk.
For f, g Ak, and [a,/3] (0, oo), we have Green’s formula"

(2.3) {eXMk[f](x)(x) eXMk[g](x)f(x)} e dx [f,

where, for x e (0,

[f, g](x):= {(x2 e-Xf"(x))’-((2A+ 2)x + 2) e-Xf’(x)},(x)-x2 e-Xf"(x),’(x)

(2.4) -{(x2 e-X"(x))’-((za+Z)x+2)e-X’(x)}f(x)

+ x e-Xf’(x)g"(x),

and Dirichlet’ s formula"

{x2 e-’f"(x)g"(x)+ ((2A + 2)x + 2) e-’f’(x)g’(x) + e-f(x)g(x)}k dx

(2.5) {-(x2 e-Xf"(x))’g(x) + ((2A + 2)x + 2) e-f’(x)g(x))}l

e-Xf"(x)"(x)l + I[ Mk[f](x)(x) dx.+x

By Green’s formula and the definition of Ak, note that the limits If, g](oo):-
limx_oo If, g](x) and If, g](0):= lim_0+ [f, g](x) exist and are finite, for all f, g

The minimal operator Tmi,[ ], generated by Mk[" in L2(0, oo; e-X), may be defined
to be

Train[f](x)= eXMk[f](x) (x (0, oo)),

@(Tmi,) {f @( Tmax)l[f, g](oo) If, g](0) for all g @( Tm)}.

There is a strong similarity between the behavior of Mk[" near the singular
endpoint x-0 and that of the Legendre type expression (see [6] and [7]) near the
singular endpoints x +1. In fact, Mk[" is limit-3 at the point x--0 with the same
form of Frobenius solutions as that of the Legendre type expression at x--+1; the
reader is referred to [11, pp. 396-403] for details on the Frobenius method. We shall
therefore simply quote, without proof, appropriate results corresponding to Theorem
2.1 in [6], and Theorem 1.1 and Corollary 2.1 of [7-1, which continue to hold for f,
g hk at x 0. We state these results as follows.

THEOREM 2.1. Let f, g A k and a (0, oo). Then
(i) limx_o {(x e-Xf"(x))’- ((2A + 2)x + 2) e-Xf’(x)} exists and is finite;
(ii) f" L2(0, a];
(iii) f, f’ AC[O, a]; i.e., f, f’ ACoc[0, oo);
(iv) limx_,o (x e-Xf"(x))’- 0;
(v) x e-Xf" L2(O, a];
(vi) limx_,o+ x2 e-Xf"(x)g’(x) 0;
(vii) limx_o+ [f, 1](x)= -2f’(0); limx_o+ [f, x](x)= 2f(0); limx_,o+ [f, x](x)= 0;
(viii) limx_o+ [f, g](x)= 2(f(0)g’(0)-f’(0)(0)).
Unfortunately, the methods used to establish the analogue of Theorem 2.1 for the

Legendre type expression at x + 1 do not seem to carry over in analyzing the Laguerre



726 EVERITT, KRALL, LITTLEJOHN, AND ONYANGO-OTIENO

type expression at x . Recently, however, Race [21] has developed some sufficient
conditions, based on ideas from [4], in order for a fourth-order differential expression
to be strong limit-2 and Dirichlet at x c. The Laguerre type differential expression
satisfies Race’s criteria, as he shows in [21]; we are grateful to David Race for allowing
us to publish from his manuscript before publication. We can state the following
theorem.

THEOREM 2.2. Let f g A k. Then
(i) The differential expression Mk[" is strong limit-2 at x ; i.e.,

lim {x2 e-Xf"(x),’(x)+((2A+2)x+2) e-Xf’(x),(x)-(x2 e-Xf"(x))’(x)}=O.

(ii) Mk[" is Dirichlet at x c; i.e., xf", xl/2f’6 L2(1,
As a consequence of Theorems 2.1 and 2.2, we obtain the following simplified

limiting forms of, respectively, Green’s formula and Dirichlet’s formula: for f, g Ak,

(2.6) {eXM[f](x)(x)-eXM[g](x)f(x)} e dx= 2(O)f’(O) 2f(O)’(O),

and

(2.7)
{X

2 e-f"(x),"(x) + ((2A + 2)x + 2) e-7’(x),’(x) + k e-7(x), (x)} dx

=-2f’(0)(0) + eXMk[f](x),(x) e dx.

3. A certain self-adjoint operator in L2(0, oo e-X). In this section, we find a certain
self-adjoint extension of the minimal operator Tmi,[’] generated by Mk[’] in
L2(0, c; e-X). As the reader will see, this particular self-adjoint operator plays a key
role in establishing the self-adjointness of the right-definite operator defined and
discussed below in 4. A characterization of all self-adjoint extensions of Tmn[" in
L-(0, c; e-x) will be given in 5. The reader is encouraged to consult [18, Chap. 5]
for details on the general theory of self-adjoint extensions of formally symmetric
differential expressions.

Since Mk[" is limit-2 at x in L(0, c; e-X), we note that the domain of the
minimal operator Tmi,[" generated by Mk[" in L(0, ; e-x) is given by (see [18,

18.3]):

(3.1) (Tmin) {f (Trnax) If g](0) 0 for all g (Tmax)}.

In fact, from (3.1) and (viii) of Theorem 2.1, we see that

(3.2) f (Tmin) if and only if f(0)=f’(0)=0.

From [18, 18.1], we see that all self-adjoint extensions of Tmin[" can be determined
by imposing on Ak one boundary condition at x 0 of the form

[f, g](0)=0, f Ak,

where g is any function in mk\(Tmin) satisfying [g, g](0) =0. In particular, we can
take as a boundary condition If, 1 ](0)= 0, or equivalently f’(0)= 0, by using Theorem
2.1 (vii). From the theory of Naimark, we then have that the following operator in
L2(0, o; e-x) is self-adjoint:

(3.3)
Ak[f](x) eXMk[f](x) (X (0, o)),

(A) {f A {if(O) 0}.
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Since (Ak)c Ak it follows, from (2.7) and the fact that the functions X
2 e and

((2A + 2)x + 2) e are positive on (0, oo), that

(Ak[f], f Mk[f](x)f(x) dx

(3.4) {x e If"(x)l + ((2A+ 2)x + 2) e If’(x)[2 + k e If(x)l2} dx

>=k(f,f), f(Ak),

where (.,.) denotes the inner product in L2(0, o; e-X). Thus Ak[" is bounded below
by kI, where ! is the identity operator in L2(0, ; e-X). Hence, if k > 0, we see that
O p(Ak), the resolvent set of Ak[" ]. Consequently, when k > 0, the resolvent operator
Ro(Ak) A- exists and is a bounded operator from L:(0, ; e-x) onto @(Ak). We
shall assume, for the remainder of this paper, that k > 0.

4. The right-definite self-adjoint operator in L2[0, oo). In this section we shall
discuss the appropriate self-adjoint operator Tk[" in L[0, ) generated by Mk["
that has the Laguerre type polynomials as eigenfunctions and whose spectrum is given
by {An+kin=0 1,2,’’ "}.

Let Tk" 9(Tk)- L[0, ) be the operator defined by

-2Af’(0) + kf(O) if x 0,
Tk[f](x) :=

eXMk[f](x) if x e (o,
(4.1)

@(T) A.
From Theorem 2.1 (iii), we see that c L2[0, oo) so that T[. does indeed map
(T) into L2[0, oo). Observe, from (1.4), that if fC4[0, oo), then T[f](x)=
eXM[f](x) for all x [0, oo). It is precisely this property that prompts the definition
of T[.] in (4.1). Furthermore, it is easy to check that RnA and T[Rn](x)=
(An + k)Rn(x), x [0, c) and n =0, 1, 2,. ., where Rn is the nth Laguerre type poly-
nomial defined in (1.7). That is to say, the Laguerre type polynomials are eigenfunctions
of Tk[" ]. We first prove the following theorem.

THEOREM 4.1.
(i) Tk[" in L2[0, oo) is a symmetric operator.
(ii) Tk[ is bounded below by kI, where I denotes the identity operator in L2[0, oo).
Proof. Let f, g Ak. Then

Tk[f] g) eXMk[f](x)(X) e dx + Tk[f](O)(O)
A

(4.2)

-2af’(o) + kf(o)) , (0)2(0)f’(0) 2’(0)f(0) +
A

+ eXMk[g](x)f(x) e dx,

kf(O)g(O) fo-2’(O)f(O) +
A

t- eXMk[g](x)f(x) e dx

( )Io-2Ag’(O) + kg(O)
f(O) + eXM[g](x)f(x) e dx

A

(f, Tk[g])o.,
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by (2.6) and the definition of Tk[’]. Hence Tk[.] in L2[0, o0) is hermitian. Since
C[0, o0) = A and C[0, oo) is dense in L2[0, oe), it follows that T[. is symmetric
in L2[0, o0).

Moreover, it follows from Dirichlet’s formula (2.7) that

eXM[g](x)f(x) e-’ dx

=2g’(0)f(0)

+ {x2 e-Xf"(x)g"(x) + ((2A + 2)x + 2) e-f’(x)g’(x) + k e-f(x)g(x)} dx.

Combining this last equality with (4.2) yields for all f, g A.
Tt,[f ], g),

kf(0)g(0)
t- {x2 e-Xf"(x)"(x)+((2A+2)x+2) e-f’(x)’(x)

A

+ k e-Xf(x)(x)} dx.

{x e-Xf"(x)"(x) + ((2A + 2)x + 2) e-f’(x)’(x)} dx + k(f, g).

(4.3)

In particular, as in (3.4), we see that

T[f],f)(, >= k(f,f).
Hence T[. is bounded below by kI in L2[0, o0). This completes the proof.

Remarks.
(1) We shall discuss, in detail, the left-definite problem associated with Mg[. in

7. However, we point out now that the left-definite inner product (-,.)q defined in
(1.11) coincides with the right-hand side of (4.3) above. Indeed, it is precisely this
identity in (4.3) which prompts the definition of (f, g)H in (1.11).

(2) Since T,[R,,]=(h,,+k)R,,, n=O, 1,2,..., we see from (1.5), (1.8), (1.11),
and (4.3) that

(R,,R).

(4.4) {x2 e-XR",(x)R,,(x)+((za+2)x+2) e- R,(x)R’m(X)} dx+k(R,,R,,)

n(n+2A+ 1)(A+n+ 1)(A+

i.e., the Laguerre type polynomials {Rn(x)} form an orthogonal set in the weighted
Sobolev space H defined by (1.10) and (1.11). We shall show that they, in fact, form
a complete orthogonal set in H2[0, o0) in 6.

To show that Tk[ is self-adjoint in 2L,[O, o0), we shall first establish the self-
adjointness of two operators T, and T which form a decomposition of T; i.e.,
Tg T, + T. This requires us to consider the solutions of the equation

(4.5) Mt,[y](x) 0 (x (0, 00))

which are in L2(0, o0; e-X). First, we note that the deficiency index of the minimal
operator Tmin[" generated by M[. in L2(O, o0; e -)) is (1, 1); i.e., for any , C with
nonzero imaginary part, the equation

M,[y](x) , e-’y(x) (x (0, o0))
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has only one linearly independent solution in L2(0, co; e-X). This follows from the
limit classification in L2(0, co; e-x) of the singular endpoints x 0 and x ce discussed
in 3; see [18, 17.5]. Secondly, from (2.7) and (3.2), we see that

(4.6) (Tmi,[f],f)>=k(f,f), (/ @(Tmin)),

where (.,.) denotes the inner product in L2(0, oe; e-X). That is to say, Tmin[" is
bounded below by k/, where I is the identity operator on L2(0, oo; e-X). Using the
Cauchy-Schwarz inequality together with (4.6), we have for any c E, with e < k:

(k- c) ]If]] :-< (Ymin[f]- elf)--< Tmin[f] cf]] ]]f]],

where I1" (’,’)’/.
Hence,

IITm[f]-cfll>-(k-c)llfll (fE (rmn)).

For k> 0, it follows then that c 0 is in the domain of regularity of the minimal
operator Tmn[" (see [18, 14.9]). Furthermore, from [18, 14.10, Cor. 2], we can
conclude that there is only one linearly independent solution O(x) of (4.5) which
belongs to L2(0, oo; e-X). Clearly, 0 A. We claim that 0’(0) 0. For if 0’(0) 0, then
0 e @(A), where A[. is the operator defined in (3.3). However, this means that 0
is an eigenfunction of A[. corresponding to the eigenvalue A 0. This contradicts
the fact that 0 p(A), the resolvent set of A[.]. Consequently, 0’(0)0. Without
loss of generality, we may assume that 0’(0)= 1.

Define the operator T in L[0, c) by"

-2Af’(0) if x 0,
T[f](x)

eXMk[f](x) if x
(4.7)

@(T,) A.
Similar to the proof of Theorem 4.1, we find that T,[. is a symmetric operator in
L[0, oo). It remains to show that T,[. is self-adjoint in L2[0, oo). We do this by
following the analysis given in [6, 4] which requires the following theorem (see [1,
46]).

THEOREM 4.2. Let A be a symmetric operator in a Hilbert space H. If the range of
A is all of H, then A is self-adjoint in H.

THEOREM 4.3. The operator T’[. in L2[0, oe) is self-adjoint.
Proof Letf L2[0, oe) and define g" [0, co)-, C by

-f(0)
g(x)- O(x)+[Ro(ak)f](x), x[0,

2A

where Ro(Ak) A- is the resolvent operator ofA at the regular point A 0. We claim
that g @(T) and T[g](x) =f(x), x e [0, oe). Since 0 A @(T,) and Ro(a)f
@(Ak) c @(T,), we see that g @(T,). Also, from the definition of 0 and the fact that
Ro(a)f @(a), we see that g’(O)=-f(O)/2a. Hence T,[g](0)=f(0). Since 0 is a
solution of the homogeneous equation (4.5) and Ro(A) is the inverse of eXM[ on
(0, oe), it follows that, for all x

T’[g](x) eXMk[(-f(O)/2a)O(x)+[Ro(a)f](x)] =/(x);

i.e., T’[g](x)=f(x), x[0, oe). Hence by Theorem 4.2, T,[.] is self-adjoint in
L[O, oo).
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Consider now the operator T in L2[0, oo) defined by

T[f](x)={f(O) if 1=0,
if x (0,

(T) L[0, oo).

It is easy to check that T[. is symmetric in L[0, oo) and since its domain is all of
L[0, oo), we have, in fact, that T[. is self-adjoint in L[0, c). By following similar
arguments in [6, 5], we have that Tg T, + T is self-adjoint in L[0,

As Theorem 4.5 below states, the spectrum r(T) of Tk[" consists of only the
point spectrum {h, + k[ n 0, 1, 2, }. To see this, it suffices to know that the Laguerre
type polynomials are complete in L[0, oo) or, equivalently, that the set of polynomials
P[0, oo), where

(4.8) P[0, eo):=/ akxklak eC,n=O,1,2,’’’,x6[O,)l
k=0

is dense in L2[0, oe). For, if P[0, ec) is dense in L2[0, oe), then a simple argument
shows that the point spectrum of Tk[" is given by"

,,(r)={;t,+kln=0,1,2,. .}.

Indeed, suppose . O-p (Tk) and . A, + k for any n 0, 1, 2, . Letf.be an eigenfunc-
tion of Tk[" associated with the eigenvalue ; in particular, note that f
Since the eigenfunctions of a self-adjoint operator are necessarily orthogonal, we have
that (f, R,)=0, n=0, 1,2,.... However, from the completeness of {R,(x)} in
L2[0, oe), this forces f---0 in L2[0, ee) which is a contradiction. By appealing to a
well-known result (see [22, p. 361]), we conclude that the spectrum tr(Tk) of Tk[" is
the closure in C of the point spectrum. Since lim,_.oo (A, + k)=co, we have

o(Tk)={h,+k[n=O, 1,2, .}.

There are many routes to take in showing that P[0, oe) is dense in L2[0, oe). For
example, this fact follows from theorems of M. Riesz and H. Hamburger, which we
state below in Theorem 4.4 (see [10, Thm. 4.2, Prob. 19, Thm. 5.2, and the remark on
p. 87]). To introduce this theorem, we use the same notation that Freud [10] uses.

Suppose/2"R- R is a distribution; i.e.,/2 is a monotonic, nondecreasing function
with infinitely many points of increase in R. Let /x be the regular, positive, Borel
measure generated by/2 on the Borel subsets of . The nth moment of d/x is defined
to be

tx,,:=I_ox"dtz(x), n =0, 1, 2,

we shall assume that these numbers exist and are finite. Of course, this implies that
P[0, oe)c L,[0, oe)f’l L[0, oe). In this case, we say that the moment sequence {,} is
generated or determined by/2(x). We say that the moment sequence is determinate if,
whenever it is also generated by a distribution (x), we have /2(x)= (x)+ c at all
common points of continuity, where c is a fixed constant. If {x,} is determinate, we
write d g’ and say that/2 is substantially unique. We state the following theorem.

THEOREM 4.4. With the notation as above.
(a) (M. Riesz, 1923) P[0, oo) is dense in L[0,2 oo) if and only if dtx/(1 + x-) .
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(b) (Hamburger, 1919): If there exists a > 0 such that

et31xl dl(x) <

then dtz .
In the case of the Laguerre type polynomials, it is easy to check that do’(x)/(1 + x2)

satisfies Hamburger’s condition (b) for any 0 </3 < 1. Hence, by Riesz’ condition (a),
we have that P[0, oo) is dense in L[0,

We summarize the main results of this section.
THEOREM 4.5. The operator Tk[" ], defined in (4.1), is self-adjoint in L[[0, oo). The

Laguerre type polynomials {R,(x)} are eigenfunctions of Tk[" and theyform a complete
orthogonal set in L[0, oo). Furthermore, the spectrum of Tk[" is given by

tr(Tk)={n(n+2A+l)+kln =0, 1,2,...}.

Note. Since Tk[R.](O)= (A. + k)R.(O), we see, from the definition of Tk[" ], that

(4.9) -2AR’.(O)= A.R.(O).

This is the A-dependent boundary condition discussed in [12] and [13]. Notice that it
is satisfied by the eigenfunctions of Tk[" and not, in general, by each element of
9(Tk). Hence, (4.9) is seen as a property of the Laguerre type polynomials and not
as an essential element in the definition of Tk[" ]; see also [6; 5].

5. The spectrum of self-adjoint extensions of the minimal operator generated by Mk
in L2(0, oo;e-X). The main result in this section is concerned with the form and the
spectrum of all self-adjoint operators generated by the minimal operator Tmin[" of
Mk[" in L2(0, oo; e-X). We prove the following theorem.

THEOREM 5.1. Let T[ be any self-adjoint extension ofthe minimal operator Tmin[
generated by Mk[" in L2(0, c; e-X).

(i) Then there exists a nonzero vector (a, fl) R2 such that T[. is given by

(5.1)
T[f](x) eXMk[f](x) (x (0, oo),

9(T) {fe 9(Trnax) o/(0) -- ft(O) 0}.

Conversely, each operator T[.] in L2(0, oo; e -x) of the form (5.1), where (a, fl)
R2\{ (0, 0}, is self-adjoint.

(ii) The spectrum of T is discrete and bounded below in L2(0, oo; e-X).
Proof
(i) Define {hi, h2} C Ak 9(Tmax) such that

for x near 0,
for x sufficiently large,

for x near O,
for x sufficiently large.

Note that [h,, h,](0)= [ha, h2](0)= 0, [h,, h_](0) -1/2, and [h, hl](0)=1/2. From (3.2),
it is clear that {h, h2} is linearly independent modulo 9(Tmi,). In fact, since the
deficiency index of Tmin in L(0, oo; e-x) is (1, 1), the set {hi, h} forms a basis for the
quotient space 9(Tmax)/9(Tmin). Consequently, from [18, 18.1], every self-adjoint
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extension T of the minimal operator Tmin[" generated by Mk[" in L2(O, c; e-x) has
the form

Till(x) eM[f](x), x (0, ),

@(T) {f @(rmax) If, w](x)l 0},

where w(x) ah,(x) + bhz(x) satisfies

(5.2) [w, w](x)] 0,

and (a, b) ([2 is a nonzero vector. However, since Mk[" is strong limit-2 at x c

(actually, limit-2 at x is sufficient), we see that If, w]() limx_ If, w](x) 0 for

allf @(Tmax). Hence the boundary condition in the definition above for @(T) reduces
to requiring that

(.3) If, w](0) 0,

while the symmetry condition (5.2) reduces to

(5.4) [w, w](0) 0.

Written out in full, (5.4) yields the requirement

0-- [w, w](0) [ahl + bh:z, ah + bh2](0)

t/b[ h2, h](0) + ab[ h,, h2](0

1/2(ab arT).
This last requirement implies, without loss of generality, that both a and b can be
taken as real numbers. For the boundary condition (5.3) is homogeneous in w, and so
if a 0 we can take a 1, and it then follows that b b and so b is real; similarly if
b 0 then take b 1, and we obtain a t/, and so a is real. We now define ce b and

13 a. Returning to the boundary condition (5.3) and using (vii) of Theorem 2.1 above,
we see that

If, w](0) ti[f, hi](0) + b[f, h2](0) af(0) +/3f’(0),

and we obtain the given form of the boundary condition at the endpoint 0, as required
in the statement above of Theorem 5.1. This completes the proof of (i).

(ii) We shall prove that the operator T[. in Le(0, oe; e -x) has a discrete spectrum
by relating T[. to the operator Tk[" in the space L[0, oe). This argument is identical
to the one given in [7, 4]. Recall, from (4.6), that the minimal operator Tmi[" is
bounded below by k! in L(0, oe; e-X). Now, if a semibounded operator has equal,
finite deficiency indices, then every self-adjoint extension of this operator is also
semibounded (see [18, 14]). Hence every self-adjoint extension T[. of Tmi[" is
bounded below in L2(0, oe; e-X).

To show that the spectrum of T[. in L2(0, oe; e -x) is discrete, we need only show
that the essential spectrum O’e (T) 0, the empty set. Since T[. is a finite-dimensional
extension of Tmin[-], we have that O-e(T)=o’e(Tmin) (see [18, 14.9, Thm. 9]. Suppose
then, for some real number A, we have A tre(T)= re(Tm,). Then there must be some
bounded, noncompact sequence {L In- 1, 2,... } in L(0, oe; e -’) such that

(5.5) L (Tmin), IIL[I 1 and lim Tmn[f,]-Af, I[--0

(see [25; Thm. 7.24]); here refers to the norm of an element in the space
L2(0, oe; e-X). Since Zrnin is the closure of the operator restricted to those elements
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of the maximal domain Ak having compact support in the open interval (0, oo) (see,
18, 17]), there is no loss of generality in supposing that each fn above has compact
support in (0,

Embed each f, in L[0, oo) by setting fn (0) 0 for all n 1, 2,. by doing this
we have a sequence {fn}c @(Tk). Moreover, we see that

(5.6) Ilfnl[ [If, ll n 1, 2, 3...,

(5.7) Tk[f, hUn Tmin[L hi, II.
It follows from (5.5), (5.6), and (5.7) that {fn} is bounded and noncompact in L[0,
and

lim T [L 0.

Thus we must have A O’e(T,). However, as we showed in Theorem 4.5, the spectrum
of Tk[" is discrete and thus re(Tk)= O.

Hence ere(T) -J and therefore the spectrum of every self-adjoint extension of the
minimal operator Tmin[" generated by Mk[" in L2(0, oo; e -’) is discrete.

6. The density of polynomials in the Sobolev space H[0, oo). In this section, we
prove that P[0, oe), the space of polynomials defined in (4.8), is dense in the Hilbert
space H2[0, o), defined in (1.10). We refer the reader to [7, 5] and [9] where different
proofs are given for the completeness of polynomials in the Legendre type left-definite
spaces. The proof that H2[0, o) is complete in the topology generated from the inner
product (.,.)H, defined in (1.11), follows from standard results in the theory of
Lebesgue integration. The reader is referred to [17] for the proof of the completeness
of the left-definite Sobolev spaces associated with the Legendre type expressions.

Notice that P[0, oo) and Ak are all linear manifolds of the Hilbert space H2[0, oo).
In fact, from Theorem 2.1, these spaces satisfy the following inclusion

(6.1) P[0, oo) c Ak n[0, c).
Before establishing the density of P[0, oo) in HI[0, oo), we note that (4.3) simplifies

to

Tk[f], g),, (f, g)n (f, g e Ak).
From Theorems 2.1 and 2.2, it is not too difficult to generalize this identity and establish
the following (see also [21]):
(6.2) T,[f], g) (f, g)H, (fe Ak, g

(6.3) (f T[g]) (f g),, (f H[0, ), g ).
From (4.4), we see that the Laguerre type polynomials {R,(x)} are orthogonal in

H[0, ). Consequently, to prove the density of P[0, ) in H[0, ) it suffices to
show, equivalently, that {R,(x)} forms a complete orthogonal set in H[0, ).

Let g H[0, ) and suppose that

(6.4) (R,, g), 0 (n=0, 1,...).
We shall show that g 0 in the space H[0, ). From (6.2), we see that (6.4) yields

(6.5) (A, + k)(R,, g) =0 (n =0, 1,...),
where we have used the fact that

Tk[Rn](X)=(An+k)Rn(x) (x6 [0, oo), n =0, 1,... ).
Since An + k > 0 (n 0, 1,...), we see that (6.5) simplifies to

(6.6) (Rn, g) 0 (n=0, 1,...).
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However, from Theorem 4.5, the Laguerre type polynomials {R,(x)} form a complete
orthogonal set in L2[0, az). Thus it follows, from (6.6), that g 0 in the space L][0, );
that is to say, g(0) 0 and g(x) 0 for almost all x (0, ). But since g 6 ACloo[0, ),
we must have g(x) 0 on [0, o) and hence g 0 in the space H[0, ). This completes
the proof of the completeness of {R,(x)} in H[0, c).

We summarize by the following.
TIJEOREM 6.1. The Laguerre type polynomials, defined in (1.7), form a complete set

of orthogonal polynomials in the weighted Sobolev space H[0, c). Equivalently, the set

P[0, ) ofpolynomials, defined in (4.8), is dense in H2[0, ).
7. The Laguerre type left-definite theory. In this section, we shall discuss the

left-definite theory associated with the Laguerre type differential expression Mk[" ],
defined in (1.6). The reader is referred to the contributions [5], [6], [7], [8], [9], [17],
19], and [20] for further studies of left-definite theory with applications in the theory
of orthogonal polynomials.

Recall, from 4, that the self-adjoint operator Tk[" is bounded below by kI,
where 1 is the identity operator on L[0, ). Hence, if k>0, then Op(Tk), the
resolvent set of Tk[" ]. Consequently, in this case, we see that Ro(Tk) T- is a bounded
operator from L2[0, o) onto Ak. Furthermore, note the following inclusion between
the spaces Ak, H2[0, o0) and L2[0,

(7.1) Ak H2[0, oo) L2[0, oo).

Define the operator Bk" H2[0, oo)-> H2[0, co) by

Bk[f](x) Ro(Tk)[f](x) (X (0, )),

fe @(Bk)= H[O, ).

Note, from (7.1), that Bk[" does indeed map H2[0, ) into H2[0, ). Furthermore
from (6.2) and the fact that Bk[f] Ak for all f H[0, c), we see that:

(Bk[f], g)H (Tk(Sk[f]), g) (f g), f g e H2[0, ).

Similarly, from (6.3), it follows that

(f Sk[g])H (f, g), f g e H2[0, ).
Consequently, Bk[" is a symmetric operator in H[0, c) and, since @(Bg) H[0, ),
it follows that Bk[’] is self-adjoint in H2[0, o). Moreover, if Bk[f]=O for some

fe H2[0, ), then f= Tk(Bk[f])=O in H2[0, ); i.e., Bk[" is an injective map and
hence Sk := B{ exists. Furthermore, from [1, I, 41], we see that Sk[" is a self-adjoint
operator in H[0, c).

Now, from the equality

R, Bk( Tk[R,]) (An + k)Sk[R,],

we see that

Sk[R,]=(A,+k)R,, n=0,1,2,. ..
That is to say, the nth Laguerre type polynomial R,(x) is an eigenfunction of Sk[" ].
Since lim,_. (A, + k) oe, we see that Ski" is an unbounded self-adjoint operator in
H[0, co). Of course, the general theory of self-adjoint operators in a Hilbert space
says that these eigenfunctions are orthogonal in H2[0, oo); we remind the reader that
the explicit orthogonality relation of the Laguerre type polynomials in H2[0, co) is
given in (4.4). From 6, we know that the Laguerre type polynomials are complete in
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H2[0, c). Following the argument mutatis mutandis that is given in 4, we deduce
that the spectrum of Sk[" is given by

cr(Sk)={An+kln=O, 1,2, .}.

Is there an identification of Sk[" as a differential operator in terms of the differential
expression Mk[" ]? The answer is yes; recently, it has been shown that Sk[f](x)--
eXMk[f](x) for all f(Sk)CAk and x(0, c). The details of this result will be
reported in a future paper by Everitt and Littlejohn.

We summarize the results of this section.
THEOREM 7.1. The operator Sk[ defined above is a self-adjoint differential operator

in the weighted Sobolev space H[0, ) generated by the differential expression Mk[" ].
The Laguerre type polynomials {Rn(x)} form a complete set of eigenfunctions of Sk["
in H[0, o). The spectrum of Sk[" is given by:

tr(Sk)= {An + k[n=O, 1,2, "}.
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ALGEBRAIC PROPERTIES AND ZEROS*
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Abstract. In this paper the inner product (f, g) I fg dtz + Mf(c)g(c) + Nf’(c)g’(c) is considered, where

z is a positive measure on the interval/, c R and M, N >= 0. General algebraic properties of the orthogonal
polynomials associated with (.,.) as well as the zeros and their location are studied. In particular, the case

of a symmetric measure/z is analyzed. Finally, a second-order linear differential equation and two applications
are given.

Key words, orthogonal polynomials, inner product, kernels, zeros, differential equations
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1. Introduction. Problems concerning the approximation of C (k) functions by
polynomials, using the method of least squares, had been considered by Lewis [16],
GrSbner [8], and Lesky [15]. In these papers, orthogonal polynomials associated to
inner products involving derivatives appear in a natural way.

On the other hand, the study of the families of orthogonal polynomials related
to inner products defined by

(f g)= f fga+z f f’g’ dtx

and the properties of their zeros was begun by Althammer 1 ], Cohen [6], and Schifke
[22] in the case of Lebesgue measure with I =(-1, 1), by Brenner [4] in the case

dtx e-Xdx with I (0, +), and by Schifke and Wolf [23] for the classical weights
in the corresponding intervals I.

More recently, a group of Dutch mathematicians have considered similar problems
for inner products

(f, g)= f fg d+ ht,f(’)(O)g(’)(O)
3 k=0

when I (0, +) and/x is the Laguerre measure 11] or a q-discrete measure [12], as
well as when/x is the Gegenbauer measure and (.,.) is given by

{f, g} fgdx+M[f(-1)g(-1)+f(1)g(1)]+N[f’(-1)g’(-1)+f’(1)g’(1)]
--1

with I= (-1, 1), (see [2], [3]).
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Besides, Marcellfin and Ronveaux [17] have studied the most general situation
when the inner product is

where A R+ and c R.

(f, g)= f, fg dJul,-- Af(r)( )g(r)( C),

Finally, results relative to zeros have been the object of a very recent work by
Meijer [20] and asymptotic properties have been obtained by Marcellfin and van Assche
[8].

The aim of this paper is to present the most general possible treatment of the
families of orthogonal polynomials associated to an inner product of type

(f g)= f fg dtx + Mf(c)g(c)+ Nf’(c)g’(c)

with c R and M, N _-> 0.
In 2, we study the algebraic properties of these orthogonal polynomials. An

explicit representation in terms of the orthogonal polynomials associated to/x is given,
as well as a five term recurrence relation, which is based on the self-adjoint character
of a certain multiplication operator in the space of the polynomials. Moreover, a
relation between the corresponding kernels and an analog of the Christoffel-Darboux
formula is presented.

In 3, we obtain results related to the distribution of the zeros, showing the
dependence of this distribution from the position of the point c with respect to the
support of the measure/z. Estimations about the position of the greatest zero are given.

In 4, we consider a particularly simple situation corresponding to symmetric
measures. In this case we can improve the results related to the zeros.

In 5, we expose an application for semiclassical measures, deriving a second-
order linear differential equation satisfied by the new orthogonal polynomials. Finally,
two particularly interesting cases are considered: one of them deals with the case of
Poisson’s distribution, as an example of a discrete measure, and the other one corres-
ponds to the case of Gegenbauer measure with c 0. In the latter, the mass is placed
in an interior point of the support, unlike the usual location of masses in the ends of
the support. This simplifies the calculations very much.

2. Algebraic properties.
2.1. Representation formulas. Let /z be a positive Borel measure on an interval

(finite or infinite) ! c R with infinite support such that all the moments x d/x exist.
We define the following real inner product in the linear space of real polynomials :

(f, g) f fgd+Mf(c)g(c)+ Nf’(c)g’(c),

where c R and M, N >-0. This inner product cannot be associated to any positive
measure on I in the standard sense [7], whenever N> 0.

Let (P,(x))=(Pn) and (Q,(x))=(Q,) be the sequences of monic orthogonal
polynomials (SMOP) with respect to/z and with the inner product (.,.), respectively.
If we consider the representation of Q, in terms of P,

n--1

Q,,(x) P,,(x)+ Y a,,P(x)
j=O
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from the orthogonality of Q, with respect to P, j 0, 1, , n- 1, it follows that

I Q,,Pjdp. MQ,,(c)Pj(c)+ NQ’,,(c)P(c)
O<=j<_n-1.a,j Ii P} d/x IIPll =

Then

(2.1) Q,(x) P,(x)-MQ,(c)K,_I(X, c)- NQ’,(c)K’_I) (x, c),

where (K.(x, y)) is the sequence of kernels associated to (P,), and K’S)(x, y) denotes
the generalized kernel

K(.’S)(x, y)= PJ")(x)PJ)(y)
-_o Ilell

If we derive in (2.1) with respect to x and evaluating at x= c, the values Q.(c)
and Q’,,(c) can be expressed as the solutions of the system,

P.(c) .(c)[ + MK._,(c, c)]+ ’.(c),/ o.,, (c, c),
(2.2)

P’.(c) O.(c)MK")(c, c)+ O’.(c)[ + NK.(c, c)],

whose determinant"

(1 l)D= 1 + MK,,_(c, c)+ mh.’ (c, c)

+ MN[K,,_(c, c)K’) c) -o )._,,c, -.",(c,c)]
is positive from the Cauchy-Schwartz inequality. Therefore,

(1,1)/P(c[ + /c_,c, c] P(cK(,-(c, cQ,,(c)
D

(.3
-P(c)MK(’_,, c)+ P’.(c[ + MK_(c, c)]

Q’,,(c)
U

Then (2.1) becomes

(2.4)

Q,(x)=P,(x)-M
(1,1)P,(c)[1 + NKn_ (C, C)]-- P,,(c)NK’)(c, c)

D
Kn-l(X,c)

-P,,(c) MK(’l)(n-1 C, C)’JI P’n (C)[1 + MK._I(C, c)]
,-1,r"(’l)x,N C).

D

We need establish some auxiliary results.
LEMMA 2.1. Let (P](x)) and (PCdC(x)) be the SMOP with respect to the measures

(x c)2 dtx and (x c)4 dlz, respectively. Then"

P.(c)
(2.5) (x c)P_l(x) P,(x) Kn_l(X C),

Kn-l(C,C)

(2.6) P_l(C)--- P’.(c)-
P.(c) K(O.1) \c, c),

Kn-l(C,C)

P_I(C)C,(2.7) (x- c)P,_z(X) Pn_l(X) K,_2(x, c),
K_2(c,c)

(2.8) (X- c)(y c)KC_l(X, y) K,,(x, y)-
K,,(x,c)K,,(c,y)

K.(c,c)
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(2.9) (x-)KCn_l(X, )= K(:’I)(x, c)
K?’I)(c, c)

Kn(x c)
K.(c,c)

(2.9’) KC,_l(C, c)= K(,’")(c, c) -[K("’’)(c’ c)],
K(c,c)

where K x, y denotes the sequence of kernels associated to P).
Proo Let us consider the representation of (x-c)P_(x) in terms of (x):

n--1

(x-c)P_,(x)= P,(x)+ E _,j(x).
j=0

By using the orthogonality ofthe sequence (P_) with respect to the measure (x c)2 d
we get:

Po(c) fn--,,O--[ (X--)P:_I(X)d

and

_1[1 [f[12,P-’(x)(x)-(C)(x-c)2d"+(c)f (x-c)pC ,(x)d]x_c
5(c) j" (x-c)P (x) d

ifj=l,...,n-1.
Then

(x-c)P:_I(X)=P.(x)+Kn_,(X, c) [ (t-c)P:_,(t) d#(t).
d

Evaluating at x c, it follows the value of the last integral and, therefore, (2.5).
In order to prove (2.7) it suces to consider the representation of (x- c)P’2(x)

in terms of P(x) and to repeat the above argument.
If we derive (2.5) with respect to x and evaluating at x c, we deduce (2.6).
Formula (2.8) can be obtained from the representation

(x c)(y c)K_,(x, y) n-,,(y)(X).
j=O

By using the reproducing property of the kernels and the ohogonality of P we have:

-,,o(y) -(y-c) Po(c) f (x-c)K_,(x, y) d(x)

and

[n--l,j(Y)
IIPtl

(x- c)KC._,(x, y)P(x) dtx(x)

(y-c)[f (x)-(c)
IIPll

KC"-l(X’ Y)
x- c

(x-c) dtx(x)

+ Pj(c) f (x-c)K:_,(x, y) dtx(x)]
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-iiP ll = Pj(y)-Pj(c)+(y-c)Pj(c) (x-c)KCn_l(x, y) dtx(x)

for every j= 1,. ., n.
Then,

(x- c)(y c)gCn_l(X, y) gn(X y)- K,(x, c)

+ (y c)Kn(x, c) f (t- c)K_,(x, t) dtz(t).
d

Now, formula (2.8) can be derived directly from the last one.
By derivation in (2.8) with respect to y and evaluating at y c we get (2.9). In a

similar way, we deduce (2.9’) from (2.9).
The above lemma allows us to represent the kernels Kn_l(x, c) and -/"(’1)(x,n-1 c) in

terms of the polynomials Pn(x), PC_l(x), and Pd52(x). By substitution of these values
in (2.4) we obtain the following.

PROPOSITION 2.2. Let c be such that the condition Pn(c)P-l(c) 0 is satisfied for
every n N. Then, the formula

Q,(x) (1 Cen)Pn(x) + (an n)(X c)pCn-l(X)
(2.10)

where

+ fln(X- c)2p’ (X)n--2

Qn(c) [1 4- NK(1"1)(
n--1 \C, c)]P,(c) NK(n’?(c, c)P(c)

ce,=l-=l-
e,(c) Den(c)

NQ’(c)K_2(c, c)
P_(c)

holds.
Remarks. (1) Since all the zeros of the polynomials Pn(x) and P-l(x) are in the

interior of the interval /, we conclude that if c is not an interior point of/, then the
formula (2.10) is true.

(2) The polynomials P have been identified by Kautsky and Golub (see [10]).
By using methods of linear algebra they prove the fact that, if J is the Jacobi matrix
associated with (Pn), a single step of the QR algorithm with the (Wilkinson) shift c

corresponds to finding the Jacobi matrix associated with (P). A proof of this result
by an analytic technique can be found in [5].

Let us consider the Christoffel-Darboux formula for the kernel Kn_l(x, y) ([7,
Thm. 4.5, p. 23] or [24, Thm. 3.2.2, p. 43]). For the first consequence below we evaluate
at y--c, and for the second we derive with respect to y and evaluate at y c.

1
(x c)Kn_l(x, c) p._,ii-- [Pn(x)Pn-l(c) Pn-l(x)Pn(c)],

1
(2.11) (x-c)2K’(x, c)=[Pn(x){Pn_ (e)+(x-c)Pn-l(c)}

Pn_l(X){Pn(c) + (x c)P(c)}].

Multiplying the formula (2.4) by (x-c)2 and substituting (2.11) we obtain

(2.2) (x-c)p.(x)= q(x, n)P.(x) + q,(x, n)P._(x),
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where

MQ c P(k-_ lq2(x, n) (x- c)2- lip._-]7 =o (c)(x- c) k

NQ’,,(c)
k--O

MQ(c) p(f_,)(c)(x_c)q,(x, )= iipo_,ll_

NQ’(c) p)(c)(x_c)+ oPn- k=

(We denote P-I)(c) =0.)
From (2.12), it follows that the sequence (Q) is strictly quasi ohogonal of order

2 with respect to the measure (x-c) d [19] and, therefore,
n+l

(.3) (x c)(x e+(x + a(x),
j=n--2

where the numbers a can be expressed in terms of the coecients of the polynomials
q(x, n), q(x, n), and the coecients of the three term recurrence relation satisfied by
the SMOP (P).

Now, we can obtain a recurrence relation for the ohogonal polynomials Q.
PROPOSITION 2.3. e polynomials Q satisfy a five term recurrence relation:

n+l

(.4 (x c(x +(xl + Q(xl n e o,
j=n-2

where ,_> 0 (n 2) and the convention Q_ Q_ =0.
Proo Let

(x c(x 2 (xl
j=0

be the expansion of the polynomial (x-c)Q(x) with respect to the sequence (Q).
Obviously, 7,+= 1 because Q. is monic. On the other hand, if 0Nj < n-2,, =0 from the orthogonality of the sequence (Q).
The remaining coecients , can be found as follows: from the definition of

the inner product, if n 2 Nj N n + 1

((x-c(x,G(x

[ (x-c(x(x .(x.

But from (2.13),

(2.15)
j+2

(x-c)Qi(x) E a2hPh(X)
h =j-2

with aj.j+2-----1, and from (2.1)

Q.(x)= .hPh(X),
h=O
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where/3.. 1, and if h < n

-1
3nh --,, ,,2 [MQ.(c)Ph(C)+ NQ’,,(c)P’h(C)],

II
then,

Also, from (2.15)

(x- c)O.(x)O2(x) clu(x)

n--1

a.llPll=+
h =j--2

n--1

h =j--2

fl,ha2h Ph 2

a2h[MQ,,(C)Ph(C)+ NQ’,,(c)P’h(C)].

j+2 j+2

E a2hPh(C)= E a2hP’h(C)=O,
h =j-2 h =j-2

and hence

[ j+2 j+2

(2.16) %j =(Q2, Q2)-’ aJ.llP.II =/MQ.(c) E a2hPh(C)+ NQ;(c) E ajhP’h(C)
h=n h=n

holds. Finally, from the definition of the inner product (,)

(Q., Q.)= liP. I1/ MQ.(c)P.(c)+ NQ’.(c)P’,,(c).

So, if j n- 2 we get

(Q., Q.)
>0.y.,._:

Q.-:, Q.-)

Remark. In the above proposition we have pointed out that

(Q., Q.)= liP. 112+ MQ.(c)P.(c)+ NQ;(c)P;(c).

An explicit expression of (Q., Q.) in terms of M, N, and the polynomials P. can be
derived by using (2.3). We find, by straightforward calculations,

v(o,1) c) Dn--1(2.17) (Q. Q.)= iiPoll=
n-,. /. -,-2MNK(.")(c, c) (c,

n
where y, 1 + MK,(c, c) and h, 1 + NK(nl’I)(c, c).

2.2. Kernels. We are going to derive a formula relating the kernel associated to
(O’l)/x C)the new polynomials Q, with the kernels K,,(x, c) and K,,_I

Let

L,,(x, y)=
Qh(X)Qh(y)

h=o (Qh, Qh)

If we consider its expansion in terms of the polynomials P(x),

L,,(x, y)= cr,o(y)P(x),
j=O
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we have:

(x)a.(y) L.(x, y)i]pll 2

Pj(c)Pj(x)\ P(c) NL,O)(c, y)

1

-[1 [1 [(y-M.( y)()- ,0(,y(].

This proves that the kernels L(x, y) and K,(x, y) satisfy the following formula:

.(x, y) .(x, y)- M.(c, y).(x, c)
(2.S

U?’(c, y)?’(x, ).

Explicit expressions for L,(c, y) and L’)(c, y) can be obtained as solutions of
the system

.(c, y)= .(c, y)[ + M.(c, c)]+ ’.(c, y)U’(c, c),

(2.19) K?’)(c, y)= L(c, y)MK(’)(c, c)

+ (.(c, y)[1 + (.(c, c)].

Now, we obtain an analog of the Christoffel-Darboux formula for the new
polynomials.

Pgoposwoy 2.4. e relation

(x + y-2c)(x- y)L,,(x, y)

(Q., Q.)
Q.+2(x)Q.(y) Q.+z(y)Q.(x)]

(2.20) + Y""+’ [Q.+l(x)Qn(y)- Q.+,(y)Qn(x)]

and its confluent form

Q.+I(X)Q._,(y) Q.+I(y)Q._I(x)]

2(x-c)L.(x,x)= Q’.+2(x)Q.(x) Q.+z(x)Q’.(x)]

(2.21) + y.,.+l [Q’+l(x)Q.(x)-Q.+(x)Q’(x)]
(Q.,

1
+ Q’+(x)Q._l(x) Q.+l(x)Q’_l(x)]
(Q.-,, Q,-,)

hold.
Proof. Multiplying in the relation (2.14) by Q(y) and multiplying the same relation

evaluated at x--y by Qn(x), we obtain after subtraction:

2

(2.22) (x+ y-2c)(x-y)Qn(x)Q,(y)- y,/k[Qn/k(X)Qn(y)-Q+k(y)Q(x)],
Ok---2

where y.,n+2 1.
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On the other hand, the inner product (,) is such that

((x- c)Qn(x). Q.(x))= (Qn(x). (x- c)Q..(x))
for all n, m N. Hence, as

i+2

(x- c)Q_,(x) /_,_Q_(x)
k=i-2

we get

(2.23) Y,,-i,,-k(Q.-k, Q,,-k) Y,,-k,,,-i(Q,-i, k-2<_i<_k+2.

From (2.22) and (2.23), by straightforward calculations, we get (2.20).
The result in (2.21) follows immediately from (2.20).

3. Zeros of Q,. In this section, we always consider N > 0. It is well known that
the zeros of Pn are real, simple, and belong to [ (/ denotes the interior of the true
interval of orthogonality I). But this result may be false for polynomials Qn. In fact,
the general result we can prove is the following.

PROPOSITION 3.1. If n >--3, the polynomial Qn has at least n-2 different zeros with
odd multiplicity in .

Proof. Let :nl,"" ", nk denote all the distinct zeros of Qn of odd multiplicity
which are in . Define p(x)= (x-nl)""" (x-nk). The polynomial (x-c)2p(x)Qn(x)
does not change sign in the interval I; hence,

((x- c)2p(x)Qn(x), 1)= I (x c)2p(x)Q,,(x) dtz(x) O.

Since (Qn) is a quasi-orthogonal sequence of order 2 with respect to (x-c)2 d/./,, it
follows that deg p(x) >- n -2. U

PROPOSITION 3.2. The zeros of the polynomial Qn are real, simple, and at least n 1
of them belong to , whenever either c inf I or c sup L

Proof Suppose c sup L Let sen1, SCnk denote all the zeros of Qn in/. From
Proposition 3.1, it follows that k_-> n-2. Set p(x)=(x-n)’" (X--SCnk); then, the
polynomials p(x)Q,(x) and (x-c)p(x)Qn(x) have constant but opposite signs in [.

If Q’, (c) 0, we have

((x c)p(x), Qn(x))= f (x- c)p(x)Q,,(x) dtz(x) O,

and hence, deg p (x) >= n 1.
Let Q’,(c) O. If we suppose k n-2, the following formulas hold:

O=((x-c)p(x), On(x))= f (x-c)p(x)Qn(x) dtx+Np(c)(Q’,,(c)

0 ((p(x), Qn(x))= fl p(x)Qn(x) dl + Mp(c)Q,,(c)+ Np’(c)Q’n(C).

Hence, p(c)Q’(c) and p’(c)Q’,(c) have opposite signs, which is a contradiction. Thus
k >-n- 1. As a consequence, all the zeros of Qn(x) are real and simple.

If c inf/, the proof is similar. U
Remark. We want to note that if we consider the inner product

(f. g)= f f(x)g(x) dlx(x)+ Mf(c)g(c)+ Nf(r)(c)g(r)(c)
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with r N, by using the above arguments, we can deduce that the polynomial Qn
associated to the new inner product has at least n -(r + 1) different zeros in L Whenever
either c--sup I or c inf/, then Qn has at least n- 1 zeros in and, therefore, all the
zeros are real and simple (see [11]).

Note that if c=sup I and all the roots of Q,(x) are located in the interior of/,
then both conditions

(3.1) Q,(c)>0 and Q’(c)>0

hold. In the similar way, if c inf I and all the roots of Q,(x) belong to [, then
(3.2) sgn Q,(c)=(-1)" and sgn Q’(c)=(-1)"-

hold.
This remark allows us to easily deduce sufficient conditions to assure a zero of

Q,(x) is not in f, and besides we can give some results about its location.
From now on, if c sup I or c- inf I, we shall denote the zeros of Qn (x) being

ordered by increasing size: ,1 <"" <
PROPOSrrION 3.3. The following statements hold:
(a) Let c=sup L If the property (3.1) is not true then the greatest zero of Qn(x)

satisfies

C--nc<=,, <c-4- and
n-1

Moreover, ifM # O, ,, c < 1/2x/N/M.
(b) Let c inf L Iftheproperty (3.2) is not true then the lowest zero ofQ,(x) satisfies

nn C
c --<<=c and In--cll=--cl.n-1

Moreover, ifM # 0, c : < 1/2/N/M.
Proof. It suffices to prove (a). It is easy to deduce that if (3.1) is not true, we have

Assume c < ,,, then Q(c) (c Cn (C-- ,) < 0. In this situation,

K (’’) c)
P(c)P(c) >o,

from (2.2) it follows Q(c)> O. Since

Q(c) "-’ 1 1

Q.(c) =, C- nj nn C

we get

Hence,

C--n:n <c-- and
n-1

Now, let us set Qn(x)---(nn--X)(X). Then,

(Q,,, )= f Q.cp dtt + MQ,(c)(c)+ NQ’.(c)cp’(c)=0.



ON ORTHOGONAL POLYNOMIALS OF SOBOLEV TYPE 747

As Q,,(x)q(x)> 0 in/, in the above formula the integral is positive and so

MQ,(c)p(c) + NQ’.,,(c)p’(c) (,, c)[Mp(c)2 + Np’(c)2]
No(c)qg’(c) < O.

Whenever M > 0, taking into account that 0(c) < 0 and o’(c) < 0 and by using the
Cauchy-Schwarz inequality, we obtain

Remark. The same results for c 0 and the Laguerre weight have been obtained
in [13], and for some generalizations of the Laguerre weight see [20].

4. Analysis of the symmetric case. If I is a symmetric interval and the measure/x
is symmetric on I (i.e., /x(A)=/x(-A) for every A c I measurable), it is well known
[7, Thm. 4.3] that the SMOP (Pn) associated to /x satisfies Pn(-x)=(-1)"P,(x) for
all n N. As examples of this situation we have Hermite polynomials and Gegenbauer
polynomials. We want to emphasize that the condition P,(-x)=(-1)"Pn(x) for all
n N is equivalent to K(’I)(0, 0) -0 for all n N.

Let us consider the condition

(4.1) K(’l)(c,n c)--0 for every n N

is satisfied. Let us remark that
(i) P,(c)P’(c)-0 for every n N;
(ii) P,(c)P,_l(c)=O and P’(c)P’_l(c)=O for every n N

are separately equivalent to (4.1). From (i) or (ii), it follows that c must belong to /.
Furthermore there exists at most one c, which is determined by Pl(c)=0. Then, in
general, we have

Pzn_l(c)=0 and g,(c)=0 for everynN.

We point out that no number c satisfies (4.1) for Jacobi polynomials with a /3 or for
Laguerre polynomials.

Now, it is not difficult to prove the polynomials P, are symmetric with respect to
the point c is equivalent to the condition (4.1). Since translation of the centre of
symmetry is trivial, in the sequel, we assume (with absolutely no loss of generality)
that c 0.

Since the determinant D is

we achieve

(1 1)(0, 0)]D=[1 + MK,,_I(O, 0)][1 + llln"

P (O)
Q,(0)

1 + MK._I(0, 0)’
(4.2)

P’(0)
Q’ (0)

1 + NK("ll)(O, 0)"

(4.3)

Then (2.4) becomes

MP,,(O)
1 + MK2,,_I(O, O)

Q2,(x)= Pz,(X)-

1 + NK(1’1)(0,-*x2n 0)

K2n-l(X,O),

Q2,,+l(x)= P,,+l(x)- K(O,1) 0).2n (X,
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Some properties about the quantities Q.(0) and Q’(0) can be derived directly
from (4.1) and (4.2). For instance:

(a) Q2.(0) # 0 and Q.._,(0) 0 for every n N;
(b) Q.(0) 0 and Q._I(0) # 0 for every n N;
(c) sign Q.(0)--sign P.(0) and sign Q’(0)= sign P’(0) for every n N.
In order to obtain Proposition 2.2 we might impose P. (0)P’(0) 0 for every n N.

This restriction is not necessary now. Indeed, from (2.5)
P2n(O)K2n_l(X, 0)-- K2n_l(0 0)[P. (x)- xPn-l(X)],

and from (2.9), (2.6), (2.7), (2.5), and (2.9’)
P.+I(O) t’’(’’)-,-2,, (x, O) e(1’1)(0, O)[Pz.+l(x) -x-2"ccr’2_,(x)]2n

By substituting these values in (4.3) we obtain the following.
PROPOSITION 4.1. The decomposition:

(4.4) Q,(x) (1 a,)P. (x) + (a, .)xP._l(x) + ,x2n,’_(x)
where

MK2._I(0, 0)
c2. /32. =0

1 + MK2._,(0, 0)
(,,1)( 0)NK2. ,,.-.,

ce.+
1 + NK(’")(O,2n O) 32.+1 O/2n+l

holds.
Remark. It is interesting to point out that ce, and/3, are nonnegative and bounded

by 1. Consequently, all the coefficients in (4.4) are nonnegative and bounded.
By substituting the values of Q,(0) and Q’(0) (see (4.2)) in (2.12) and simplifying,

we obtain"

(4.5) xQ.(x) [x- a.]P.(x) + b.xP._l(X),

where

1 NP’,(O)P,_,(O)
a. IIP,,-,[[2 1 + NK (1"1)(a._1\, 0)’

1 [ MP.(0) NP’. (0) ]IIP._,ll = 1 + MK._I(O, O)
+

1 + NK?In_, O)
Note that from the above formula it follows that the polynomials Q. are also symmetric.

To deduce the recurrence relation we shall employ the expansion of x2Q.(x) in
terms of the polynomials P.. Using the three term recurrence formula verified by the
SMOP (P.),

xP.(x)-- P.+l(x)-k-
and

n+l

xZQ.(x) P.+z(X)+ E a..jP(x),

we find:

(4.6)

an,n+ O
an, Un+2 "+" Un+l an +

an,n-, 0,
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Substituting these values (2.16) we obtain the coefficients of the five term recurrence
relation verified by the SMOP (Q,). To do this, it suffices to note that if Im nl is odd,

Pm(O)P.(O) P’m(O)P’n(O)=0

holds. Thus, by using the notations /, 1 + MK,(O, 0) and A, 1 + NK(’I)(0, 0) we
can give the following.

PROPOSITION 4.2. The SMOP (Q,) satisfies the formula
n+l

X2On(X)-- On+2(X)+ y,.jQj(x),
j=n--2

where

(4.7)

l/n, an, -
Note that, in the symmetric case, the recurrence formula satisfied by the poly-

nomials Q, is

(4.8) x2O,(x) Q,+2(x)+

Moreover, the explicit expression concerning the kernels L,(0, y) and L’)(0, y)
is very simple. Then (2.18) becomes

MKn(O, y)
L,(x,y)=K,(x,y)- K,(x,O)

1 + MKn (0, O)
(4.9)

NK2,O)(o, Y)
1 + NK(I’I)(o,. O)

K’)(x’ O)

PROPOSITION 4.3. The kernel L(x, y) associated to the the polynomials Qn can be
expressed, in terms of the kernels associated to the polynomials P,, P, and p,c:
(4.10) L,(x, y)= r,K,(x, y)+ s,xyK_,(x, y)+ t,x2y2K’22(x, y),

where

1

1 + MKn (0, 0)’

MK.(O, 0) NK0")(0, 0)
s.

1 + MK.(0, 0)1 + NK(I’I)(0, 0)

NK’")(O, O)
tn

1 + NK’I)(O,. 0)"
c,c [XProof Using the formulas (2.9), the analog of (2.8) for K n-2, Y), and (2.9’) we

obtain
c,K(.")(x, 0)K(")(0, y)= g(l")(0, O)[xyg ,(x, y)-x2y2gn_2(x, y)]
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Then the decomposition (4.10) holds and the explicit expression of coefficients rn, sn,
t is obtained.

Remarks.
(a) The coefficients in (4.10) are bounded and besides r,, s, are nonnegative.
(b) If N 0 there is always a decomposition as (4.10). But, if N # 0 there is such

a decomposition if and only if K’I)c0,,0) 0 for all n N.
Next, we shall work in the symmetric case to obtain some strong results about zeros.
PROPOSXTION 4.4. All the zeros of Q, are real, simple and belong to .
Proof By Proposition 3.1, Q, has at least n-2 different zeros in [, and all of

them have odd multiplicity. As, Q,(-x) (-1)"Q,(x) for every x I and Q,_I(0) # 0
for every n N, all the zeros of Q, are simple. Suppose sc is a complex zero of Qn
then sc is also a zero of Q, and hence -sc sc. Thus sc ir with r R. Let us denote
j 1,..., n- 2, the remaining zeros of Q,. Setting p(x)= (x-)... (x- ,,-2) we
can write Q,(x) p(x)(x2 + r2). Then

(P’ O")
3f, p2(x)(x2 + r2) d(x) + Mr2p(O) + Nr2p’(O)2 > O,

which is a contradiction; hence all the zeros are real.
Finally, we are going to show that sc and -: belong to [. Indeed, as Q,(x)=

p(x)(x2- sc2), it follows that (p, Q,) 0. But if we suppose sc [, then

(P’ Q") I, Pz(x)(x2-) dtz(x) Mp(O)22- N[p’(0)]sc2 < 0.

Therefore, holds. I-]

It is possible as well to deduce a separation property of the zeros. In order to
prove it we will use the following.

LEMMA 4.5. Between two consecutive zeros of Pn(x) there is exactly one zero of
P_(x). (see [20, Lemma 6.1] or [9, Prop. 1.4.9]).

Since P, and Q have symmetric zeros it suffices to consider the positive zeros.
Let M, N be positive, real numbers.

PROPOSITION 4.6. The positive zeros ofP, and Qn mutually separate each other and
the greatest positive zero of Q, is less than the greatest positive zero of Pn. Moreover, the
positive zeros of Qe, alternate with the positive zeros of P,_ and the positive zeros of
Q,+ alternate with the positive zeros of P2n-1.

Proof. Let us consider n 2m. As in (4.4) /3Zm 0, we may write

(4.11) O2m (X) (1 O2m P2m (X + o2rnXPm_l (x).

We denote (X2m_l,j)r -1, (X2m,j)r, (2m,j) the systems of the positive zeros of poly-
nomials Pm-1, P2m, and Q2m, respectively, each system arranged by increasing order.

From (4.11) and Lemma 4.5 it follows that whenever X>=Xz,,,m, Qzm(x)>O, and
so SCm,m <X,,,,,. On the other hand, as by Lemma 4.5 P2m(Xm_l,m_l)O, we have

P2m-1Ozm(Xm-,m-) <= 0 and so X2m-,m- <- ,,,m. Since the roots of P2m and are real
and simple using, once more, Lemma 4.5 we have that the.sign of P,,_(x) changes
in every Xm. (j= 1,’’’,rn) and by (4.11) the sign of Q2m(X) changes in Xzm,.
Therefore, in each interval (x,,,_, Xmd) there exists only one root of Qm.

In a similar way, the sign of Pz,,(x) changes in the roots of Pm-(X), and,
consequently, the sign of Q,,(x). Hence the positive roots of Q2,, and P,,_ are
interlaced.
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If we suppose n 2m + 1, then fl2m+l O2m+l and P2.,+l(X) xP.,(x). Thus
2rcQ2,,+l(X) (1 a2,,+l)XP2,,(x) + a,,+lX r2,_l(X).

Using the above argument and taking into account that the positive zeros of P,,+l
coincide with the positive zeros of P,,, the result follows. [3

Remark. Note that if M 0, Q2,,(x) P2,,(x), and if N 0, Q2,,+l(x) P2,,+l(x).

5. Differential properties.
5.1. Differential equation. Let us consider the case of (P.) being a sequence of

semiclassical orthogonal polynomials (see [19]). This means that the linear functional
defined by

(5.1) [ Pdtx=(, P), P ’
is characterized by polynomials b and q such that a functional equation for w
(5.2) D(b) + 05F 0

holds with

(5.3)
(0w, P) (, q,P),

(D(th), P> -(b, P’)

for every P .
It is easy to construct a second-order linear differential equation for the SMOP

(Q,) using the representation (2.12), where the polynomials q2 and ql are known
explicitly in terms of Pn.

Let us use the structure relation (see 19]) for semiclassical orthogonal polynomials
Pn of class s (s =max {(deg b)- 1, (deg b)-2}).

n+t

(5.41 bPn+l Z O.kPk,
k=n-s

where deg b and Onk are constants. This relation can be writen

(5.5) qbP’.+I C.P. + D.P._I,

where the polynomials C.= C(x, n) and D.= D(x, n) are computed from the three
term recurrence relation for the SMOP (P.).

The usual 3 step procedure (see [21]) now give the relations

(5.6) (x- c)2Q. q2P,. + qlP,.-1,

c[(x-c)2Qn]’= ch(q’zP. + qP._l) + qz( C,.P,, +
(5.7) + ql( Cn-lPn-1 A- Dn-lPn-2)

q2,1Pn + ql,1

(5.8) b[b[(x- c)2Q.]’]’= qz.zP. + q.zP.-1.

In the computation of the polynomials qi.j (i,j= 1,2), we need again the recurrence
relation of the P. in order to eliminate P.-2 in terms of P. and

The following determinant gives the expected differential equation for the sequence
(Q.)"

(x-c)ZQ. q2 ql

(5.9) p[(x-c)2Qn] q2,1 ql,l--0.
6{([(X- C)2Qn]’} q2,2 ql,2
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This differential equation becomes particularly simple in the symmetric case with
c 0. The Hermite case was already treated in [17], so we study here the Gegenbauer
case. Bavinck and Meijer also analyze this situation (Gegenbauer case), but with two
mass points located at the endpoints of the interval (see [2]).

5.2. Applications. As a first example, we consider the inner product of Sobolev type

(5.10) (f,g)= f(x)g(x)(1-x2)x-/2 dx+Mf(O)g(O)+Nf’(O)g’(O)
-1

with A >-1/2. In this case, the point e (c 0) is in the support of the measure, and the
symmetric character is preserved.

It is well known that the monic Gegenbauer polynomials verify a three term
recurrence relation.

and

"() P(h) (x) +x.+(x)
(n- 1)(n +2A)

4(n+A)(n+A+ 1)
P?)(x) n >-O,

P(o)(x) 1 P]’)(x)=x

P()(O) (-1)" (2n)! F(n+A)
2" n! F(2n+A)’

p(A)’,--
2n tO) P(2)’"(O) 0,

n()"..+ (0) =0,

+(0) - (0),
2n+1

P"(O) -4n(n + 1)P((o),

p(.,,, 4n(2n + 1)(n + 1)(n + I + 1) pLy(O).+(0)
2n+A

nF(n+21)

Moreover, they satisfy a structure relation

(a. (n + 1)(n + 2A) P)(x)(5.11) (xZ-1)u(a’’)=(n+l)xr,+,(x)
2(n+A)

(see [24, formula 4.7.27, p. 83]). Thus (4.3) becomes
()

(.12) O.(x) P(x) + M. _._,(x,
X

(a)’P.+(0)( xP(x)
(5.13) Q.+(x) _.+(x)- N. x
where
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but,

.(x)=&(x); 2,+l(X) xSn (x2)

U.(x) &(x)+ M.S*._,(x),
n(2n-l+2A)

V,(x) S*,(x)+ N, S*,*_,(x),
2n+A

and U,, V, satisfy a three term recurrence relation in the standard sense.
Remark. In general, for a symmetric SMOP associated to a Sobolev type inner

product, we can define two SMOP in the standard sense. They satisfy a decomposition
in terms of (5.14) and (5.I5).

PROPOSITION 5.2. The SMOP Q,) verifies a second-order linear differential equation
a(x; n)Q",(x)+ B(x; n)Q;(x)+C(x; n)Q,(x)=O,

where A, B, C are polynomials ofdegree independent of n. More precisely, deg B(x; n)
degA(x;n)-l; degC(x;n)<-degA(x;n)-2; degA(x;2n)=6 and degA(x;2n+
)=8.

Proof From (5.11) and (5.12)
2n-l+A

xQ2,(x) xP(,)(x) + M,
(2n-l+2h)n

[2nxP(2)(x)-(x- 1)P(2)’(x)]

( 2n-l+h)xP()l+2M. 2n_l+2h 2.(x)

2n-l+h ()’(-M, (x2-1)P2, .x).
n(2n-l+2A)

On the other hand, from (5.11) and (5.13)

X2Q2n+I(X) (X2 N,,),(a --2,+(0)
-.(o)

(x2- N.) 0()-2.+, (x)- N.
[x(x2 1)’()’- "()r2,+,(x) (2n + 1)x (x)]-/"2n+l

(a)’([1 +(2n + 1)N,,]x2- N.)P(2)+(x) N,,x(x2- 1)rz,+,(x).

then

(5.14)

(5.15)

and

P2,(0) n(Zn 1 + 2A)K’(O’l)(x, O) xSn_1*(X2)
-2,, 2n+A

(see [7, Chap 1, 8]). Then

Q,(x) S.(x2) -1
t-

Q:.+l(X)= x[S(x2)-Jf N,
n(2n-12n+A+2h)S,,__,,(x2) ]"

The following proposition can easily be derived from the above comments and
from (4.7) and (4.8).

PROPOSITION 5.1. For the SMOP (Q,) corresponding to the inner product defined
by (5.10), Q,(-x)=(-1)’Q,(x). If

Q2n(x) Un(x2) and Qzn+I(X) xVn(x2),
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Then

(5.16)

where

Q(x) ll,(x)P)(x)+ 1Q,,(x)P)’(x),

1(/1_ (x) 1 + 2M,,
2n 1 + h

2n 1 + 2h

n(2n-l+2h) x

1 --X2

Using derivatives in (5.16),

Q’,(x) lI’,(x)P)(x)+[l,(x)+ l’,(x)]P?)’(x)
(5.17)

+ I,(x)PO"(x).
But, from the second-order linear differential equation satisfied by Gegenbauer poly-
nomials (see [24, formula 4.7.5, p. 80]),

(x- 1 )n?)"(x) + (2A + 1)xP?)’(x)- n( n + 2A)P?)(x)= 0

formula (5.17) becomes

O’,(x) ll,(x)P?(x)+ l,(x)P?)’(x),(5.18)

where

.(x) , (x)+
gt"()
X2- 1

n(n +2A),

N,,(x) M,,(x)+ N(x) (2h + 1)x x 1

From (5.16) and (5.18)

(5.19) P(,)(x)

(5.20) P?)’(x)

N.(x)
N.(x)Q’,(x)

An
M,,(x) Q,,(x)
M,(x) Q’,(x)

An
where A. lf/I,,(x)lQ.(x)-l.(x)lQ.(x)is a rational function.

From derivation in (5.19) and taking into account (5.20), the result follows. U
Remark. The above result should be compared with Proposition 6.1 in [14].
We consider, as a second example, an inner product of Sobolev type when is

a discrete positive measure. More precisely, tz is a step function whose jumps are

e-aa
dtz(x)- atx=0,1,2,.., and aR/.

x!
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This corresponds to Poisson distribution in Probability Theory. The corresponding
sequence (C,a)) of monic orthogonal polynomials is called Charlier polynomials in
the literature (see [7, p. 170]).

They can be expressed in terms of Laguerre polynomials as C’)(x) n !L’-")(a)
and satisfy a three term recurrence relation

.+l(X) (x- n a)C(."(x)- anC(,,1(x)

C(_)(x) 0 C(o’)(x) 1.

Moreover, Charlier polynomials can be characterized as the only SMOP belonging to
A-Appell class, i.e.,

where

ac(.o)(x) ,,c(.(x)

(5.21)

where

and

Ap(x)=p(x+l)-p(x).

In this case, (2.12) becomes

x2Q,,(x) q_(x; n)C’)(x)+ ql(x’, n) ’’().-1,.),

q:(x; n) x- a,,x- b.,

ql(x; n) c,,x +

MQ.(O)C(.a)I(O) + NQ;(O)C(.’I(O)
a. 6111 =

NQ(O)C(na)_I(O)
bn iic(

MQ.(O)C(f)(O) + NQ;(O)C(f)’(O)
co: [[c?),ll

NQ;(O)C(.")(O)
d. .-ll[t(’) -ab,,.

If in (5.21) we apply the A-operator and the recurrence relation for C(.), we get

(x+ 1)AQ.(x)+(2x+ 1) Q.(x)

qz(x + 1; n)nC(.")l(x)+ Aq2(x; n)C(,,O(x)
+ql(x+ 1; n)(n-1)C(,,o)_(x)+Aql(x; n)C(.")_l(X

=[Aqz(x’n)-I ]ql(x + 1; n) C(,,’)(x)

+ [nqz(x+ 1" n)+Aql(x" n)+ --1 (x+l-n-a)ql(x+ 1" n)]C(.0)_ (x)
a

(x + 1):AQ.(x) + (2x + 1)Q.(x) A(x’, n)C(,,")(x) + B(x; n)C(’)._,.)("
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with

1
A(x; n)= 2- x+l-a.--(c.+d.),

+-{d.-(n+a)c.}-na. (x+l)+c.-d..
a

Then, from (5.21) and (5.22), Cramer’s rule gives

where

c:(x) F.(x)
-Q.(X)+s.(x)AQ.(x),

C(.a)l(x G.(x) H.(x)
S.(x)

O.(x)+ S(x)

E.(x) x2B(x; n)-(2x + 1)ql(x; n),

Fn(x) -(x + 1)2q(x; n),

S.(x) q2(x; n)B(x; n)-q(x; n)a(x; n),

G.(x)=(2x+ 1)qz(x; n)-xa(x; n),

H.(x) (x + 1)2qz(x; n).

Finally, using bc(.a)(x) nC(.(x)

E.(Xs.(x+I)+ 1) _( E,,(x)AQ.(x)+ A s.(x)/Q.(x
+ F.(x+ 1)AZQ.(/) + (A F.(x))O.(x)S.(x+) S.(x)

(G.(x) H.(X) AQ.(x))n
S.(x)

O.(x) +
S.(x)

Therefore,

F.(x + 1)S.(x)AQ.(x)

+ ([E. (x + 1)+ F.(x + 1)]S. (x)-[nH.(x)+ F.(x)]S.(x + 1))AQ. (x)

+ (E.(x + 1)S. (x)- [E.(x)+ nG.(x)]S.(x + 1))Q. (x)= 0.

In conclusion, we present the following.
PROPOSITION 5.3. The SMOP Q.) satisfies a second-order linear difference equation

Un(x; n)AZQ.(x)+ Vn(x; n)AQ.(x)+ W.(x; n)Q. =0,

where U, Vand Warepolynomials with degree independent ofn. Morepreeisely, deg U 7,
degV-<_8 and degW-<_7.

Acknowledgments. The authors thank Professor Walter Van Assche (Katholieke
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MULTIDIMENSIONAL q-BETA INTEGRALS*

RONALD J. EVANS+

Abstract. A multidimensional extension of a q-beta integral of Andrews and Askey is evaluated. As an
application, a short new proof of an important q-Selberg integral formula is given.

Key words, q-integral, Selberg integral, beta integrals

AMS(MOS) subject classification. 33A15

1. Introduction. This paper has been motivated by Anderson’s wonderfully
innovative proof [2] of Selberg’s multidimensional beta integral formula [17]. In 2
(see Theorem 1), we present a new n-dimensional q-beta integral formula which
reduces to that of Andrews and Askey [4, eqn. (2.2)] when n 1 and that of Anderson
[2, "claim"] when q 1. Our proof is self-contained and in particular makes no appeal
to the results of the aforementioned papers. In 3, we apply Theorem 1 to give a
surprisingly short, self-contained proof of the q-Selberg integral formula (1.8). Finally,
we indicate in 4 the modifications that can be made in 3 to give a short proof of
Kadell’s extension of the q-Selberg integral formula containing the extra parameter m
of Aomoto [5]; see Theorem 2. It is hoped that this method will lead to a short proof
of a q-extension of the Selberg-Jack integral formula [15].

For some of the many applications and extensions of Selberg’s integral, see the
papers of Askey [6]-[8] and Kadell 14]-[ 16]. For character sum analogues of Selberg’s
integral, see the papers of Anderson [1], Evans [10] and van Wamelen [18].

Let

(1.1) O<q<l,

and define, for complex x, c,

(1.2) (a):= [I (1-aqr), (a)x:=(a)/(aqX)
r=0

Define the q-gamma function

(1.3) Fq(x):=(q)._l(1-q)1-, xC.

As q- 1, Fq(X) 1-’(x) [11, eqn. (1.10.3)]. For a, fl C and a (say) continuous function
f’C C, define the q-integral

Io(1.4) f(x) dqx := f(x) dqx- f(x) Uqx,

where

(1.5) f(x) dqx := (1 q) , f(q")flq".
0 rn----O

As q - 1, f(x) dqx - f(x) dx [11, p. 19]. For example, for m > 0,

(1.6) fx’-’dqx:(fl’-cem)(1-q) fl"-"(1-qm) m

* Received by the editors December 17, 1990; accepted for publication (in revised form) June 21, 1991.

" Department of Mathematics 0112, University of California, San Diego, La Jolla, California 92093-0112.
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as q--> 1. The following q-integral extension of Euler’s beta function integral is essen-
tially a version of the q-binomial theorem [11, pp. 18-19]"

(.7) t-(q)b-, dq=r(a)r(b)/r(a+b), Re (a), Re (b) > 0.

This is the case n 1 of the following n-dimensional q-Selberg integral formula [13,
eqn. (4.18)]"

 Io’ Io’ S,(a, b, c):=. tT-l(tiq)b-1 H I-I (ti--qktj) dqtl dqt,
i-----1 l<i<j<:n k=l-c

(1.8)
"rT Fq(a +jc)Fq(b +jC)Fq(C +jc)qaC(’)+2c2() j=o Fq(a+b+(n-l+j)C)Fq(C)’

where n, c are positive integers and Re (a), Re (b) > 0. This reduces to Selberg’s integral
formula 17] when q--> 1. Note that the integrand in (1.8) is symmetric in the variables
ti. It is not difficult to show that the nonsymmetric version of (1.8) originally conjectured
by Askey [6, Conj. 1] is equivalent to (1.8); see Kadell [13, p. 953]. Proofs of (1.8)
have been given independently by Habsieger [12] and Kadell [14].

We observe here for later use that the value of the integral in (1.8) is unchanged
if the upper limits of integration are replaced by q-U, when u and b are integers such
that 0_-< u _-< b- 1. This is because (tq)b_l vanishes for q-l, q-2,... q-U. It follows
that the integral in (1.8) changes only by a factor of a power of q when the variables
ti are replaced by tiq -u.

2. Extension of the Andrews-Askey q-integral.
THEOREM 1. Let ui, si be integers such that

(2.1) O<-ui<-_si-1, i=0,1,...,n,

and let Zi, W be complex variables with

(2.2) wi ziq- ui, i-0, 1,...,n.

Then

(2.3)

where

L: I-I (zi-qtj)
Wn_ t2=w t=w i=Oj=l k=l

H (tj- ti) dqtl dqt2...dqtn

si--1
(_l)q rq(So)Fq(.s_l)... Fq(s.) H UFq(so+ Sl+ + s) oi<, k=l-

(zi qkzj),

(2.4) o---i=l iSi’ 7"--i=1 i(i)
Remark 1. Suppose that all zi are nonzero and all ui are zero. Then the integral

formula in Theorem 1 can be written in the form

(2.5)

Si--1
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Since (2.5) is valid for all positive integers si by Theorem 1, it follows by analytic
continuation (cf. [3, p. 115]) that it holds for all complex si with

log
Re (si) > max 0, 1, 2, , n.

o_-<j_-<, [log q[

If n 1, (2.5) reduces to the Andrews-Askey q-integral [4, (2.2)].
Remark 2. From (2.5) and [9, Thm. 2.2], it may be deduced that the constant

term of the Laurent polynomial

P(z,, z,) II (qbzj/zi),-,
l<=i,j<=n

equals

II (b--tizi/ZJ) dqt dqt
l<=i<j<=n

(2.6) lI (1 q)/(1 qS,+S,+l++s.).
i=1

It would be interesting to find a proof independent of [9].
Proof of Theorem 1. Assume that each z is an integral power of q and that the

sequence w0, wl, we, , w, is monotone. It suffices to prove (2.3) under these assump-
tions, since both sides of (2.3) are polynomials in Zo,’’ ", z,.

Consider any one of the rightmost factors in (2.3), say

(2.7) z qzt,
with

(2.8) O<=a<fl<=n, 1-st3-<_ y--<_ s- 1.

We will show that z,- qzt is also a factor of L by showing that L vanishes under
the assumption

(2.9) z, qrzt.
The q-integral L is a series by definition, and it suffices to show that each summand
in this series vanishes. This will be accomplished if we can show

s
(2.10) [I (z-qkt) I-I (Zt--qmt) =0 for all tS,

k=l m=l

where S is the set of integral powers of q between w, and we including max (w,, w)
but not min (w, w). Define

(2.11) A={z,q-k" l<=k<-s-l}, B={zq-m" 1=< m=<st3-1}.
Since z, q/z/3 by (2.9), there is no integral power of q lying strictly between the sets
A and B on the real axis. It is thus seen that A U B = S, and (2.10) follows. We have
now proved that L is divisible by each of the linear factors in (2.7), and hence by the
polynomial

si--1
(2.12) I-[ H (zi qkz)

O<i<.j<n k=l-sj

By definition of L, if we view L as a polynomial in Zo with leading term C,,z (with
C, independent of Zo), then

(2.13) ,= n(So- 1) + (s, +...+
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Viewing (2.12) as a polynomial in Zo, we see that it also has degree u. Thus it remains
to prove that

si--1
(2.14) C,=(-1)q

Fq(s)" Fq(s")
1-[ [I (z,-qz)

First consider the case n 1. Then C1 is the coefficient of z/s’-I in

S0--1 Sl--1
(2.15) y (Zo- qgt) I-I (Zl- qmt) dqt,

t=w -----1 m----1

so C1 is the coefficient of z+’-1 in

(2.16) l-I1 (-q .l
t,-zo-(qt/zo)o_ dqt.

Replace by Zot to see that C is the constant term in the expansion in Zo of

(2.7) (-)q t’-(qt)o_ dt.
W1/ ZO

The constant term in (2.17) is unchanged if the lower limit of q-integration is replaced
by 0. It is further unchanged if the upper limit of q-integration is replaced by 1, since

(2.18) (qt)so_=0 for t=q- (i=l,2,...,So-1).

It now follows from (1.7) that (2.14) holds for n 1, so the proof of Theorem 1 is
complete in the case n 1.

Suppose now that n > 1 and that Theorem 1 holds with (n-1) in place of n.
Directly from (2.3), we see that C, is the coefficient of Z(o++--1 in

1-I (z,- qkt)" [I (tj-- t,)
Wn_ t2----W i=1 j=2 k=l 2<=i<j<--n

(2.19) (1):,++ q
(s21)+’’’+(") f w t(s,+’"+s.)-

t--

So--1
1] (Zo- qkt) dqt dqt2" dqt.
k=l

The inner integral on in (2.19) may be replaced by
q-U

(2.20) zo++--1 t++.-l(qt)o_l dqt,
W1/ ZO

and just as with (2.17), the desired coefficient is unchanged if we further replace the
lower and upper limits of q-integration in (2.20) by zero and 1, respectively. Thus by
(1.7), C is the constant term of the polynomial in Zo obtained from (2.19) by replacing
the inner integral on by

(2.21)
rq(So)rq(S, +’’ "+
Fq(so+ s, -t-" "-I- sn)

By induction on n, the proof of Theorem 1 is complete.

3. Proof of the q-Selberg integral formula. In this section we apply Theorem 1 to
give a short proof of the q-Selberg integral formula (1.8). The result is true for n- 1
by (1.7), so let n > 1. We may assume that a and b are positive integers, as the result
can be extended by analytic continuation to hold whenever Re (a), Re (b)> 0.
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Given polynomials

(3.1) E(t)= (t-e,), H(t)= I-I (t-hi)
i=1 i=1

with

(3.2)

use for brevity the symbolic notation

I1{}Ge: {}
(3.3)

D,, en=O e2=O 1:0

I] (ei e;) dqel dqe2" dqe,

and

(3.4)

Note that

fH D,,-1 (E)

(3.5)

where

I en Ie3 I e2

{ } doll: { }
hn-l=en_l h2=e hl:e

1-I (h,- h;) dqhl dqh2""dqhn_.

HDn_ EDn(V)’

(3.6) V(t)= II (t-v,)
i=0

with Vo=0, vn=l, v,=qh, (l<-i<-_n-1).

Define

(3.7)
ei (qei)b-,

D HDn_I(E i=l

n--1 c--1

I-[ 1-I I-[ (qC-1 ei_ qkhj) dqH dqE.
i=1 j=l k=l

If we replace n by n- 1 in Theorem 1 and then further take t, h,, si c, u, c- 1,
c-1

Wi ei+ 1, Zi q ei+l, then Theorem 1 yields

I nI’l(qC-lei-qkhj) dqH
HDn_I(E) i=1 j--1 k=l

(3.8) =(-1)
(nl)+c(.) ()() rq(C)

q
rq(cn)

c--1

I-I [I (qC-’ei--qk+C-lej).
l<i<jn k:l-c

Thus, by definition of S,(a, b, c) and/(a, b, c),

(3.9) )(n;1)+c() ()()+()(271) Fq(c)n
I,(a,b,c)=(-1 q

rq(cn)
S,(a,b,c).
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By (3.5) and (3.6), interchange of integration in (3.7) yields

(3.10)

I(a, b, c)= In (- 1)"(’-’)q (O-qe)
j= k=

b-1

II II (-qe)
j=l k=l

2()(cl) nll c--1

q I [[ (v qke) dqE dqH.
i=1 j=l k=l

Apply Theorem 1 with ti=ei, so=a, s,=b, si=c (l _-< i_-< n -1), ui=0, wi=vi, and
zi vi to see that the inner integral on E equals

)(’) /(7) ()(9 /(7)(’)
(-1 q

(3.11)
Fq(a)Fq(b)Fo(c).-1.-1 ,-, b-,

a+c--1v I-I l-I (1-qv)
Fq(a+b+(n-1)c) = = =l-c

c--1

H H (v,--qkvj).
lNi<j<n--1 k=l-c

Before integrating (3.11) on H, make the change of variables hi qC-hi (so vi- qCv).
As a result,

(nl) +c()
I(a,b,c)=(-1)

(3.12)
()() +2 ()(c’ +(c--l) () + (n-l)(c) +c(a+c--1)(n--1)

.q

Fq(a)Fq(b)Fq(c)"-’
S_l(a+c,b+c,c).

Fq(a+b+(n-1)c)
Comparison of (3.9) and (3.12) yields

ac(-)+c2("1) Fq(a)Fq(b)Fq(cn)
S,(a,b,c)=q

(3.13) Fq(a + b + (n 1)c)Fq(c)
Sn-l(a+c, b+c, c)

and the result follows by induction on n.

4. Extension of the q-Selberg integral. Let Sn,m(a, b, c) denote the extension of
the q-Selberg integral S,(a, b, c) obtained by inserting the factor tlt2""t, in the
integrand in (1.8), where 0 <= m <-n. In Theorem 2 below, we evaluate S,.,(a, b, c). It
is not difficult to show that Theorem 2 is equivalent to the case =0 of [14, Thm. 2];
see [14, eqns. (4.17), (4.19)].

THEOREM 2. For positive integers n, c and Re (a), Re (b) > 0,

S.(a,b,c)T,,.,(a,b,c)(4.1) S,.,(a,b,c)=

m

where

(4.2) Tn,m(a b, c):= q
c(7) n--1 (l__q’+ci)(l__qC+C’)

i___.H_,.. (1 qa+b+c(n-,+i))(1 qCn-Ci)
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Proof. We proceed as in the proof in 3, with the following modifications Let u
be an indeterminate and let Sn(a, b, c, u) be the extension of the q-Selberg integral
Sn (a, b, c) obtained by inserting the factor I]7=1 (u- ti) in the integrand of (1.8). We
must show that

(4.3)
Sn(a, b, c, u)__ (__l)mTnm(a b, c)u n-m.
Sn(a, b, c) ,,=o

Let In(a, b, c, u) be the extension of In(a, b, c) obtained by inserting the factor
qC(n-H(u/q) in the integrand in (3.7). By Lagrange interpolation,

(4.4) qC(n-H() q(n-lH(e)l-I u-e
r=l ir er ei

for distinct ei. Thus, from (3.7),

’n(a,b,c,u) f i] u-el i ei (qei)b-1
ED r=l ir er- ei i=1

(4.5)
(qC- ei- qkhj) dqH dqE,

HDn_I(E i=1 j=l k=l

where 6(i, r) 1 if r and 6(i, r) 0 if # r. If for each fixed r we replace n by n- 1
in Theorem 1, and then further take t hi, si-- c d- 6(i, r), ui-- c- 1, wi-- ei+l, and

z qC-lei+, then Theorem 1 shows that the inner integral on H in (4.5) equals

(1
(4.6) RHS (3.8) q(n-)(2c-) I-I(1 qCn)

(q-G-- e),

where RHS (3.8) denotes the right-hand side of (3.8). Thus

(4.7)
in(a, b, c, u)__ q(n_l)(2c_l) (1..-._q) f(1-q EDn

RHS (3.8)

a--1e (qei) b-1 I-I
U ei (q er ei) dqE.

i=1 r=l ir er- ei

Given a polynomial F(u), let F*(u) denote its q-C-derivative [11, p. 22], namely

E*(er) I-[ (q-Cer-- ei),
ir

the inner sum on r in (4.7) equals E*(u). Thus

(4.10) In(a, b, c, u)= RHS (3.9) q(n-,2c-, (1 _qC) S*(a, b, c, u).
(1-qCn) Sn(a, b, c)

After interchanging the order of integration, we obtain

(4.11) In(a,b,c,u)=RHS(3.12) q
(n-)(2c-1)sn-l(a+c’b+c’c’uq-c)

Sn_l(a+c,b+c,c)

Comparing (4.10) and (4.11), we arrive at the "differential equation"

(4.12)
S*(a, b, c, u) 1-q Sn_(a+c, b+c, c, uq-c)
Sn(a, b, c) 1-q Sn_l(a+c, b+c, c)

Since

(4.9)

u-q-Cu(4.8) F*(u)
F(u)-F(q-Cu)
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By induction on n, (4.3) furnishes a solution to (4.12). Moreover, (4.3) is valid for
u 0, by (1.8) with a + 1 in place of a. Hence (4.3) is proved.

Acknowledgments. The author is grateful to Professors G. Anderson, G. Andrews,
R. Askey, D. Bressoud, and K. Kadell for helpful correspondence.
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Abstract. The refinement equation

oh(x) E aidp(2x- i), x R

for a given sequence a aj 7/} has found important application in the study ofboth Stationary Subdivision
Schemes for the generation of curves and surfaces as well as the construction of orthonormal wavelets by
means of multiresolution analysis. The main goal here is to study properties of the solution of this equation
when the sequence a is a P61ya frequency sequence. In the case that supp a := {k: ak 0, k 7/} is finite the
refinement equation is also considered when

a(z)= ajz
j=o

is a Hurwitz polynomial (has all zeros in the left-half plane).

Key words, subdivision, wavelets, refinement equation, total positivity, P61ya frequency sequences
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1. Introduction. The refinement equation

(1.1) ,p(x) Y’. aiqv(2x i), x

for a given sequence a {ai:i E 7/} has found important application in the study of
both Stationary Subdivision Schemes for the generation of curves and surfaces [3] as
well as the construction of orthonormal wavelets by means of multiresolution analysis
[5], [llJ.

Our main goal here is to study properties of the solution (1.1) when the sequence
a is a P61ya frequency sequence. Recall that this requires all the minors of the bi-infinite
matrix A

(1.2) Ai aj_i i, j E 7/

to be nonnegative, that is,

, ie) := det Aikj, >: 0(1.3) A
jl, ,jp k,l=l,...,p

for all integers il <. < ip, jl <" "<je.
P61ya frequency sequences have been studied by numerous authors [1], [7], [8],

and a complete characterization of such sequences is available in terms of the symbol

(1.4) a(z) Z aiZi z
iz
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We will describe this later as it will be important to our analysis. Recall that the symbol
of every P61ya frequency sequence (other than the trivial sequence {3’n: n 7/} for some
3,> 0) converges in some annulus [9, p. 418]. We assume throughout that a is not a
trivial P61ya frequency sequence.

A basic example of a solution to (1.1) comes from the theory of spline functions.
We let X denote the characteristic function of the interval [0, 1] and define

(1.5) Mn=X,...,X, nfactors, n_->2,

where signifies convolution. It is known 14] that Mn is a polynomial of degree -< n 1
on each interval (j, j + 1), j 7, has n 2 continuous derivatives on R, is zero outside
of (0, n), and is positive otherwise. Clearly, the Fourier transform of M, is

(1.6) M,(t) := e"XM(x) dx
it

and so b := M satisfies (1.1) with

(1.7) m(z)= mzJ=2-"+l(l+z) ", zC,
jZ

that is,

(1.8) Mn(x)= mjM,(2x-j), x6.
j7

This equation is central in the development of the line average algorithm for the fast
computation of curves, cf. [4].

The function M, also has a remarkable variation diminishing property. Specifically,
if S-(f)=the number of sign changes of f on E and similarly for a sequence c=
{c:j 7/}, S-(c)= the number of (strict) sign changes in c we have

(1.9) S-( cM,(*-j)) -< S-(c).
j7

It is known that variation diminishing is a consequence of determinental inequalities
cf. [9]. In fact, given a function q such that

[ Xp]\ := det ( Xl- ij(.o) "
\ 11, ip / l,j=l,..’,p

is nonnegative for all x <. < Xp and integers i <. < ip, q is variation diminishing
in the sense that for any sequence c of finite support

(1.11) S-( c.q(*-j)) =< S-(c).
jTZ

We will call any function, such that the determinants in (1.10) are nonnegative, a
rippler. Ripplets arise in various contexts, for instance, the B-spline with integer knots
determined by a constant coefficient differential operator, whose characteristic poly-
nomial only has real zeros is a ripplet, cf. [13]. Also, the B-spline for geometrically
continuous splines studied in [6] is a ripplet.

Functions 4 satisfying the stronger requirement

(1.12) (x,..., xp)>_ 0
\Y, Yp

for all x < < Xp and y <. < yp are called P61ya frequency functions and have
been studied extensively, cf. [9].
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One useful consequence of (1.11) is the following, which has applications in
computer-aided design. Given a ripplet q with jz q(x-j) 1, x , and a sequence
{ V:j 7/} in s, s => 2, we may define a curve in ’ by

(1.13) R(t)-- Vq(t-j), t.
j=7/

The variation diminishing property (1.11) then implies that the curve R cuts any
given straight line no more than the polygonal arc P, with consecutive vertices { V: j 7/}.
This ensures that in a sense the shape of the curve R mimics that of the polygonal
arc P and so the points { V:j 7/} can be used to predict or control the shape of the
curve R. (For further details see Goodman, "Shape preserving representatives," in
Mathematical Methods in Computer Aided Geometric Design.)

Among other things, we will show here that any P61ya frequency sequence whose
symbol can be factored as

(1.14) a(z) (1 + z)q(z), q(1) 1, z C,

where q(z) zk for any k 7/determines a ripplet solution to (1.1).
Returning to the B-spline M,, it is known, cf. [9], that the determinants

..,x det M(x-i)(1.15) M,
il, ip i,l=l,...,p

are strictly positive if and onlyif

(1.16) il < Xl < it + n, 1, , p.

It was recently conjectured in [12] that the same result holds for the ripplet satisfying
(1.1) when a is a finite P61ya frequency sequence ..., 0, a0,"’, a,, 0,.... We will
prove this is in fact the case even when a(z) is left-half plane stable as well as delineate
when the determinants appearing in (1.10) are strictly positive for the solution of (1.1)
corresponding to any P61ya frequency sequence.

2. Existence of refinable tipplers. In this section we prove the existence of a unique
ripplet solution to the refinement equation when a is a P61ya frequency sequence.
Specifically, we have the following.

THEOREM 2.1. Let a {aj: j 7/} be a sequence whose symbol satisfies:

(2.1) a(z) (1 + z)q(z), q(1) 1,

where q(z) , q2z satisfies q2 >- O, j 7/, and

(2.2) p:=max( q2,,i7/i q2,+1)<1.
Then there exists a continuous function ck such that

(2.3) q(x) X a2q(2x-j), x ,
and

(2.4) q(x -j) 1, x 6 .
Moreover, if a is a P61ya frequency sequence satisfying (2.1) with q(z) z for any 7/,
then there is a continuous ripplet q satisfying (2.3) and (2.4), and p(x)=0 if x1
where I := the smallest closed interval containing supp a := {k: k 7/, ak > 0}.
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Remark 2.1. Our condition (2.1) means that a(1)= 2 and a(-1)=0. It is important
to realize that the factor q(z) is also the symbol of a P61ya frequency sequence. This
follows from the factorization theorem for the symbol of a P61ya frequency sequence
which we now describe.

We shall write 7/ {j 7/: j => 0} and R/ { R: => 0} in what follows. Moreover,
for any sequence t {a/j 7/+}

_
+, which is summable Yq+ a < oo, i.e., et 11(7/+)

we set

(2.5) f(z; t) II (1 + az), z C.
j=l

For later use we let

(2.6) + I{J: cj > 0, j 6 7/+}1

so that t+ 0 means f(o; t) 1 and t+ < oo meansf(o; t) is a polynomial with negative
zeros.

The fundamental fact about P61ya frequency sequences is the following result, cf.
[9, Thm. 9.5, p. 427].

THEOREM A. A necessary and sufficient condition for a {a:j 7} to be a P61ya
frequency sequence is that

(2.7) a(z) rz
f(z; -[)f(z-1; -/)’

for some nonnegative o, [, l, Be 11(7/+) as above and scalars r> O, s, >-_0 where k is
some integer.

Therefore, if a(-1) 0, 1 + z must be a factor and the remaining function still has
the form (2.7).

Now that we know that q(z) is also the symbol of a P61ya frequency sequence q
we are assured by our hypothesis q(1)= 1 that (2.2) is satisfied. This will be important
in the proof of Theorem 2.1.

Let us now proceed to the proof which uses ideas from [3], where the result is
proved for the case that a is of the finite support.

Proof of Theorem 2.1. We introduce the operator

(2.8) (Fh)(x):= akh(2x-k), x.
ke_

The linear map F takes C(N) into itself and has norm two; specifically, we have

(2.9) IlF.hll<=21lhll, h c(),

where [Ihll= sup
A basic formula from [3] states that for any A 11(7/), h C()

(2.10) E Ak(F,h)(x-k)= E (S,A)h(2x-k), xR,
kel

where

(2.11) (Sa/)k: Z a-2A, k7/.
jeT]

Therefore, inductively, for any j 7/+

(2.12) E Ak(Fh)(x-k)= E (SA)kh(2x-k), xN.
k7/ kZ
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We choose any integer shift of the B-spline N, M,(o-r), re 7/ (of degree n >_-2),
and consider the sequence of functions

(2.13) g F,N,, j 7/+.

We will explain later how we choose r and n.
According to (2.12), gj has a B-spline expansion given by

(2.14) gj(x) E (S,6)kN,(2Jx- k), x ,
where

1, k =0
k :=

0, k\{0}.

Let us show that gm converges to a solution to the refinement equation (1.1). Following
arguments in [3] we can show there exists a positive constant k > 0 such that

(2.15)

The next step is to realize that the equation (2.1) implies that

(2.16) S,= S,,
so that

(2.17) IIsll IIs.II I111
where p is defined by (2.2); consequently we obtain

(2.18)

Since p < 1, there is a C(E) such that

(2.19) lim g(x)= (x)
jo

uniformly on
satisfies the refinement equation (1.1).

Let us now show that the sum of integer translates of is one. For this purpose
we return to (2.10) and note that when h is of compact suppoa, the right-hand side
of (2.10) is finite for all xE even when l(Z). As for the left-hand side, we note
that the mapping F is nonexpansive relative to the norm

,h[:=max {, {h(x-l){" 1[0,1]},
that is,

sincet ak-2l 1, k 7/. Obviously then, the lehand side of (2.10) is also finite for
all x when A l(’). Thus (2.10), as well as (2.12), remain valid for A I(7/) and h
of compact support. Thus, choosing for A, h in (2.12) and Nn, respectively, where
e 1, k 7/, we get

Y g(x- k) Y (Se)N,(Ux- k)= E N,(2x- k) 1,
kZ kZ

This confirms the claim (2.4).
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Henceforward, we assume a is a P61ya frequency sequence. It remains to verify
that q is a ripplet. As we already pointed out go N, is a ripplet. Therefore, we can
see inductively, in the following way, that each gj, j 6 77 is a ripplet. We write

(2.20) gj+l(X--i) Y akgj(2x--2i--k)= ak_2,gj(2x--k), X.
kZ kZ

Therefore, by the Cauchy-Binet formula (cf. [9, p.1])

:= det gj+l(Xl- ir)Gj+I
il, is l,r=l,".,s

(2.21)
y A(2il,""", 2is] {2Xl,’’’, 2xs]

kl<...<ks k,, ks /Cij kl, ks 1"
Since a {aj’j e 77} is a P61ya frequency sequence, it follows inductively that each gj
is a ripplet and hence so is q.

For the last claim we recall that for a P61ya frequency sequence the set supp a :--
{k: k 77, ak > 0} consists of a set of consecutive integers, cf. [9, p. 418]. Thus supp a
I["177 and I =[k_, k+] where k_, k+ are integers, either of which may be infinite.
Moreover, because of our hypothesis that q(z) z for any we conclude that k+- k_->
2. Referring back to the iterative relation (2.20) we see that if gj(x)- 0, for x I, then
also gj+l(X) 0 for x I. Now, we may choose the degree of the B-spline N, and the
shift r77 so that for j=0, go(x)= N,(x)=M(x-r) is zero for x_I, that is, r=k_
and n- k+-k_. Consequently, we conclude that q(x)-0, for x I as well. This
completes the proof of Theorem 2.1.

3. Strict positivity of minors. In this section we develop criteria for the deter-
minants (1.10) of the ripplet q to be strictly positive. The proof is long and is
distinguished by several cases. A basic ingredient is a theorem of Karlin [9, p. 428]
which describes, in terms of the parameters of the factorization (2.6), when the minors
of the matrix A defined by (1.2), (1.3) are strictly positive. Because we will refer to
this fact several times during the course of our analysis, we begin by describing it
below. For simplicity, we assume the integer k appearing in (2.6) is zero. This can
always be arranged by an integer shift of a and q.

THEOREM B. Let a= {aj’j 77} be a P61ya frequency sequence whose symbol has
the factorization (2.6) with k O. Then

(a) If s>O and t>0 then the determinant (1.3) is always positive;
(b) If s>O and t=0 then the determinant (1.3) is positive if and only if

(3.1) ik <jk+,+q" 8+, k 1,. , p,

where equality is allowed for any k if // 0;
(c) If s 0 and t> 0 then the determinant (1.3) is positive if and only if

(3.2) Jk-O+ oz+ < ik k 1, ", p,

where equality is allowed for any k, if I+ 0;
(d) If s 0 then the determinant (1.3) is positive if and only if

(3.3) jk_t+--Ot+ < ik <jk+t++ +, k 1," ", p,

if [+ =0 equality is allowed on the left-hand side of (3.3); if 1+ =0 equality is allowed
on the right-hand side of (3.3).

In the equalities (3.1)-(3.3) we interpret ik, jk for k < 1 as -oo, and as oo if k > p.
We use this theorem to examine when the powers of the submatrix D of A defined

by

(3.4) Do :-- aj_2i i,j 77
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are positive. It will become clear why we need this later. At this point we might note
that D already appeared in the proof of Theorem 2.1, see (2.25).

Obviously,

., .,
(3.5) D\j,, ,L/ jl, ,L /’
and so we can easily decide from Theorem B which minors of D are positive. For any
j 7+ the symbol for the matrix Aj is (a(z)), and so Theorem B easily tells us which
minors of A are positive. However, generally the minors of D are not minors of Aj.

Specifically, if we define the sequences ar-- {aT"i Z} by

rzi(3.6) a(z)a(z2) a(z2-’) E ai

then it is straightforward to verify by induction on r that

D ij aj-zri, r 1, 2, .
Therefore, minors of D correspond to minors of the Toeplitz matrix determined by
the sequence ar. It is apparent that the generating function of ar, r => 2 does not have
an expansion in the form (2.6) and so is not a P61ya frequency sequence. Nevertheless
we have the following, employing the notation of Theorem A.

THEOREM 3.1. Let a be a Pdlyafrequency sequence, and ifs 0 and [+ +1+ > O,
then either p <= + + l+ or p <= o+ + 8+ + max (1+ 1, 0) + max (/+ 1, 0). Then given
r 7+\(0}

(il,’’’,ip_>O(3.7) Drkjl, ,./

for il <" < ip, jl <. <L. Strict inequality holds in (3.7) if and only if
(a) s>0 and t>0;

or

(b) s>0, t=0 and

(3.8) il<2-rj + (1 2-r)(i+ min (/+, 1)), l= 1," ,p;l+r’y+

or

(c) s=0, t>0 and

(3.9) 2-il-r++(1--2-r)(min ([+, 1)--a+) -< il, l= 1,’’’,p;

or

(d) s=t=0 and

2-/,_r++ (1- 2-r)(min ([+, 1)-+)
(3.10) < it <- 2-rj,+r.+ + (1 2-r)(8+ min (/+, 1)), 1--1,...,p.

To prove Theorem 3.1 we shall need the following.
LEMMA 3.1. Take , y, ix, u 7/+, r, p 7+\{0}, m, n 7 and ai, bi 7 (_J {+o} with

ai+ >= a + 1, b+ >= b + 1, for 7/. Suppose that m + n >= 0 and if + 3’ + ix + u > O, then
m+n>=p. Iffor l= l,. ,p,

(3.11) at-r- n =< 2-r-(bt+ n),

(3.12) 2-r-(bt_, + m) =< at+ + m,

then there exist k <. < kp in 7 such that for 1, , p,

(3.13) at_r- n <-2-’(kt- n)<= 2-r-(bt+- n),

(3.14) 2-r-’(bt_,+rn)<=2-(kt+m)<=at++m.
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Proof. This is by induction on p. We take p as in Lemma 3.1 and suppose that
the result is true for all smaller values of p (a vacuous assumption if p--1). If
a_v bl-, =-m, then the inductive hypothesis ensures the existence of k2,’’’, kp,
satisfying (3.13) and (3.14), and kl can be chosen with kl < k2 to satisfy the upper
bounds in (3.13), (3.14). So we may assume al-v>-c or bl->-.

Now for 1, define kl to be the smallest integer satisfying

(3.15) al_r- n -<_ 2-1(kl n),

(3.16) 2-r-(bl_, + m)--<_ 2-(kl + m),

and for 2,. , p, define kl to be the minimum integer satisfying (3.15), (3.16), and
kl > kl-1. By our inductive hypothesis, (3.13), (3.14) are satisfied for l-- 1,..., p-1,
and so it remains only to prove

(3.17) kp<=2-r(bp+,- n)+ n,

(3.18) kp <= 2ap/t3 + m.

Now suppose that for some i, 1 _-< -<_ p 1, ki/l >= ki + 2. Then k/l is the minimum
integer satisfying (3.15), (3.16) with l-i+ 1 and so, by our inductive hypothesis, kl
satisfies (3.13), (3.14) for l= i+ 1,..., p, which gives (3.17) and (3.18). Thus, we may
assume

(3.19) kl+ kl + 1, l= 1,. p 1.

Suppose that (3.18) does not hold, i.e.,

(3.20) kp >- 2ap+t3 + m + 1.

If p => 2, then

kp kp_ -+ 1 <--_ 2ap_+3 d- m + 1 <--_ 2ap+t3 + m 1,

which contradicts (3.20). Suppose p 1, then (3.20) gives

kl- 1- n_->2a+t + m- n >=2al_-2n

since m + n ->_ 0. Also (3.20) gives

k 1 + m _-> 2al+t3 + 2m _--> 2-r(bl_ q- m)

by (3.12). This contradicts the definition of k. Thus we have proved (3.18) and it
remains to prove (3.17). Suppose that (3.17) is not true, which by (3.19) gives

k>2-r(bp+,,-n)+n+l-p.(3.21)

Then by (3.11),

and so

which gives

k > 2ap_/- n + 1 -p >- 2a_v +p 1 n,

kl -> 2a_v n + 1,

2-1(k-l-n)>_al_v-n.
By definition, k is the smallest integer satisfying (3.16) and so

(3.22) k < 2-r(bl_ + m)+ 1 m.
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Then

kl<-2-r(bl_+m-1)+l-m

<-2-r(bp+-p+m)+l-m

2-r(bp+, n)+ rt nt- 1 --p’k-(p-- m-- n)(1 2--r).

If p_-< rn + n, then this contradicts (3.21). So we may assume /3 =3’ =/z u--0 and
m + n <= p 1. Note that by (3.19) and (3.15),

kl +p 1 kp >= 2ap n

>- 2al + 2p 2 n

>_2-r(b+m)+2p-2-n-2m

> k+2p-3-n-m

by (3.12) and (3.22). Thus, m + n => p-1 and it remains to consider the case m + n
p-1. Let

b+ m- 1 =2+a+

for some s, 7/, such that 0 =< < 2+1.
By (3.12),

a+ m =>2-r-l(bl+ m)= S+2-r-(t+ 1)> S

and so

Also by (3.11),

(3.23)

Now by (3.22),

and so

al+m>=s+l.

2--l(bp- n)>= ap- n >= al +p- l n al nt- m >-- s+ 1.

k < 2s +2-(t + 1)+ 1-m<-2s+3-m

kl <=2s + 2- m <_ 2-r(bp n)- m

by (3.23), which contradicts (3.21) and completes the proof of the Lemma.
Proof of Theorem 3.1. The proof of (a)-(d) is by induction on r. The case r 1

follows from Theorem B and (3.5). The induction step is based on the formula

D
kl, kp jl,

which is a consequence of the Cauchy-Binet formula. This formula immediately
establishes the nonnegativity of the minors of D as stated by (3.7). The proof of
(a)-(d) is more involved.

To advance the induction hypothesis we must show that there is a choice of
integers k <. < kp, such that the corresponding summand in the right-hand side of
(3.24) is positive. This is an easy matter for case (a) as there are no constraints on

i <. < ip andj <. .<jp. Let’s look now at (b). There are some cases we may easily
handle. For instance, when 8+ oe or ,+ oe there are again no conditions on il < <
ip and jl <’"<jp, and so the induction follows immediately from (3.8). Thus, we
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consider only the case when 8+ < oe and /+ < oe. We suppose that (3.8) is valid for r
replaced by r+ 1. Our goal is to find k <... < k, such that

(3.25) il<--2-k+3"/+2-1(8+-min (/+, 1)), l= 1,. ,p

and

(3.26) k<2-/ +(1-2-r)(8+-min (+, 1)), l= 1 .,p.l+ r3"+

The inequalities (3.25) and (3.26) insure the summand on the right-hand side of (3.11),
corresponding to ki k, 1, , p, is nonzero by the induction hypothesis. As for
(3.25) and (3.26) we choose

(3.27) k 2it_3"+- (8+-min (3’+, 1)), 1>/+

and any k <. < k+ so that

(3.28) k < 2i (8+-min (/+, 1))3’+ 1--3’+

For this choice, note that (3.25) is automatically satisfied. As for (3.26) we observe
that the induction hypothesis implies that

2it_3"/- (8+-min (3’+, 1))-< 2-tit+r3"/+ (1 --2-)(8+ -min (+, 1)),
(3.29)

l=l,’’’,p,

and hence (3.26) follows for l> //. For <-// we use (3.29) for 1 to obtain

kz< k <2il (8/-min (/+, 1))3"+ --3"+

_-< 2-/,+r++ (1 --2-)(8+--min (,+, 1))

because obviously j1+3"/ <-jl+3"/. Thus, our choice of k, k satisfies (3.25) and
(3.26). Therefore, the induction has been advanced and sufficiency of (b) has been
established. For the necessity of (3.8) we note that according to (3.24) and the induction
hypotheses the determinant on the left-hand side of (3.24) is positive if and only if
there exists k <... < k satisfying the inequalities of (3.25) and (3.26). These clearly
imply (3.8) for r replaced by r+ 1. The proof of (c) follows analogously and we omit
the details.

The final case (d) introduces further difficulties which need some explanation.
First we observe that all the quantities +, [+, /+, and 8+ can be assumed to be finite,
otherwise (d) reduces to a previously considered case. Now, by induction, we assume

2-r-ljt_(r+l)[++(1-2-r-1)(min (1+, 1)-a+)

(3.30)

(8+-min (//, 1)), l= 1,..., p,

and seek integers k <. < k, such that

2-1kOt_0++ 2- (min (1+, 1)-a+)
(3.31)

and

(3.32)

< il < 2-lk -11+3"++2 (8+-min (+, 1), l=l,. .,p,

2-/t_,.l++ (1 -2-")(min (1+, 1)-o+)
--< k_-< 2-/t+,.3"+ + (1 2

(8+-min (/+, 1)), l= 1,...,p.
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It will be convenient to write in the remaining part of the proof

m o+ min (I]+, 1), n 8+ min (/+, 1)

and to rewrite (3.30) as

(3.33) il_v+--n2-r-l(jl+rv+--n), 2-r-l(jl_rl3+-km)<=il+.l++m l= 1,’’’,p,

and rewrite (3.31), (3.32) as

(3.34) il_v+- n <-- 2-1(k- n) <--_2-r-(jl+rv+- n), l-- 1, p,

(3.35) 2-r-l(jt_rl++m)<-2-(k+m)<=it+l++m l=l,. .,p.

If p >_- I]+ + /+ + 1, then by assumption p <- m + n + I]+ + /+, if 13+ + /+ > 0, and
clearly m + n > 0 if 13+ ,+--0. So we can apply Lemma 3.1 to define ka+/ < <
kp_v+, satisfying (3.34), (3.35) for l-- I]/ + 1,. ., p -//.

If /+ < I]+, we define

k 2it_v+- n, /+ + 1, , 13+.
For 1, , min (I]/, /+), we define k as any strictly increasing sequence, satisfying
the upper bounds in (3.34), (3.35) and k<k+l for /=min (I]+, /+)-Now for l--
y++ 1, ,/3+,

2-’(k- n)= it-v+- n <= 2--’(jt+v+ n)

by (3.33), and

2-’(k+ m) it_v++ 2-’(m n)

<_- it++-I+-/+ + m-2-(m + n)

-< il+l] + m,

since m + n + 21]+ + 2/+ >_-- 0. Thus k, , k+ satisfy (3.34) and (3.35). Similarly we
define k to satisfy (3.34), (3.35) for l> max (p-/+, 13+). For 1--/+ + 1,..., 13+, (3.34)
gives

k+ _-> 2it+l-v+- n -> 2i_v+ + 2- n k+ 2.

Thus k <. < k and similarly we have kI++, 13++1%’’" % kp. This advances the
induction and establishes the sufficiency of (3.10). The necessity of (3.10) follows easily
as in case (b), and so the proof of Theorem 3.1 is complete.

Remark 3.1. Note that, in general, part (d) of Theorem 3.1 is not true without a
restriction on p. For example, take a+=+=l+=0, /+= 1, p=2, (il, i2)--(0, 1),
(jl,j) (-1, 0). It is easily checked that for r= 1, (3.30) is satisfied, but (3.32) implies
k-- , which is impossible. Thus

D(_1

but for r= 2 (3.10) is satisfied.
Before we formulate the main result of this section, we need some further facts

about the function
LEMMA 3.2. Let q be as in Theorem 2.1. Then

(3.36) lim q(x) 0
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and

(3.37) q(x) > 0, x e I,
where I is the smallest closed interval containing supp a {k: k 7/, ak > 0}.

Proof. We first prove (3.36). According to (2.3),

(3.38) lim q (j) 0,

and since q is a ripplet we also have

0=< q(x) =< 1, x.
Suppose, also, that k is an integer such that q(k) O. Then for x >j + k, j Z+ we have

k 0 j] p(x-O) (x-j)

and hence

q(x) <= o(j + k) q(j + k)
q(k--- q(x-j) (k)

Thus from (3.38) we conclude that lim (x)=0. Similarly, by considering the
determinant

X

we conclude that limx_ (x)=0.
As for (3.37) we will recall that the integers for which a >0 are consecutive.

Therefore, io= (k_, k+) and a > 0 if and only if k k_, , k+ for some integers k_,
k+, either of which may be infinite.

The proof of (3.37) is conveniently described by several cases. When I is a finite
interval, the result appears in [12]. Here we modify the argument. First we show is
positive on some closed interval of length one. For instance, when I is finite

k+

2 (x-j) 2 (x-j), x [k_+ k+- 1, k_+ k++ 1],
k_ j

and so the refinement equations (1.1) and (2.3) give

() min {a" k_jk+}>O,

for x [k_ + k+-1, k_+ k+ + 1]. When I is doubly infinite, we consider the sequence
of functions

N

(x) := (x-j).
-N

Clearly, is a nondecreasing sequence of nonnegative functions which converge
pointwise to one, in view of (2.3). Hence, by Dini’s theorem the convergence is uniform
on any compact interval. Consequently, there is an integer p such that p(x)> 0 for
x [-1, 1]. Again the refinement equation gives

2 a(x -j) min {a" IJ p}p(X) > O.
-p
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Thus, in both cases we have established the existence of a closed interval Jo of length
one on which q is positive. Now inductively we suppose q is positive on a closed
interval Jr of length at least one. Choose any y in the interval

Jr+l :-" [,-J (j + J)/2=1/2Jr +1/2(k_, k+)
jsuppa

so that y (x + k)/2 for some x Jr and k supp a. Then according to the refinement
equation

q(y) ajq(2y -j) >= a,q(2y- k) akq(x) > O,

that is, o is positive on J/l. When io= (_, c) we see that J1 (-, ), while in
the case that io= (k_, k/) is finite, we observe that limr_ Jr (k-, k/), and so again
in both cases we conclude q is positive on L

For the cases when k_>-, k+ or k_---, k+<- we argue differently.
In the first instance (the argument in the other case is the same and we omit it) we
pick any Xo> k_ such that q (x0) > 0. Then, as above, p(yt) > 0, k_, k_ + 1, k_ + 2, ,
where Yt := 1/2(Xo4-l) because by the refinement equation

qg(yl) atq(2yt- l) alcp(Xo) > O.

Similarly, we see that q is positive on the sequence Xl:=2-1Xo+(1-2-1)k_, l=
0, 1,2,..., since Xl+ =1/2(xt+ k_). Now, choose any x e (k_, ). There exists an
such that

X < X < Yi.

Pick any k, j such that k < 0 <j, then

q(x -O) qg(x -j)
(3.39) 0 -<

q(y, 0) q(Yi-j)

and

(3.40) 0=<

We want to show q(x)> 0. Suppose to the contrary q(x)= 0, then from (3.39) we get
q(x-j)=O,j=O, 1,2,. ., while (3.40) gives us q(x-k)=0, k=-l,-2,. .. Butthis
contradicts (2.3), which says that

E q(x-j)= 1.
j7

This establishes that q(x)> 0 and proves the lemma.
We are now ready to state and prove the main result in this section.
THEOREM 3.2. Let a {aj: j el’} be a P61ya sequence whose symbol satisfies the

hypothesis of Theorem 2.1 and has the factorization (2.6). Suppose that if s 0 and

1+ + /+ > 0, then either p <= [+ ++ or p <= oz+ +++max (1+ 1, 0) + max (/+ 1, 0).
Then the determinant (1.10) is positive ifand only ifx it I, 1,. , p. Equivalently,
the determinant (1.10) is positive if and only if the diagonal elements of the matrix are
all positive.

Proof We begin the proof of this theorem by relating the parameters of the
factorization (2.6) to the smallest closed interval I containing {k: k67, ak >0}. As
before we let

supp a { k: k 6 Z, k_ -< k =< k+},
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where k_, k+ are integers which may be -c, , respectively. It follows directly from
(2.6) that

and

x+, s=B+=03.42 k+ c otherwise.

Next we use the refinement equation (1.1) to get

q(x-i)= E aj(2x-2i-j)= E Di.q(2x-j)
7/ 7/

Do(Zx-j), .
j

Therefore, we obtain by the Cauchy-Binet formula

(3.43) @(Xl,’’’,xp)= D(i,,’’’,ip)@(2x,, ’’’,2rxp).
ip ,<...<+ j ,Jr/ k j jp /

First, we consider the sufficiency of the conditions x- i I, 1, , p. The idea
of the proof is to choose r sufficiently large as to approximate each x by a dyadic
rational 2-rj,, in such a way that the summand on the right-hand side of (3.43)
corresponding to j,, <. <j,r is nonzero.

It is impoant to first note that if 2-, approximates x as r then the off
diagonal terms of the determinant

tend to zero because of (3.36) of Lemma 3.2. To insure that the diagonal terms appearing
in the determinant (3.44) are positive, we pick any integer p such that [O, O + 1] I
and choose j, :=-0 + [2rX/] Then we see that

(3.45) lim 2-j, x, 1,. p

as well as 2x--j,r [0, 0 + 1 I, and so the diagonal terms of the determinant (3.44)
are positive by (3.37) of Lemma 3.2.

To confirm that the determinant

((.4 Orkjl ,jp,

is positive, we will use Theorem 3.1. It is best to verify the inequalities in four distinct
cases.

Case A. The first case we consider is k_=- and k+ =. According to (3.41)
and (3.42) this occurs if one of the following four situations hold"

(i)l g+=, =0, +=0, S>0 or +>0.
(ii) g+=, t=0, +=0, s=0, +=0, and +=.
(iii) t>0or+>0ands=0,+=0, and+=m.
(iv) t>0 or +>0 and s>0 or +>0.

In each of these cases we claim that for r suciently large the determinant (3.46) is
positive. In the case (i) we see if s > 0 then (3.8) implies (3.46) is positive for all r

-+ ift=/+=0(3.41 k_
[-o otherwise
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while s 0 (3.10) requires only a lower bound for il which for r large ceases to constrain
il as well. The other cases follow similarly.

Case B. Now, for k_>-oe and k/ oe we must have one of the following:
(i)2 8+<oe, t=0, /+ =0, t+=oo, s=0, and 13+=0.
(ii)2 8+ < oe, 0, /+ 0, and s > 0 or I+ > 0.

When (i)2 holds, (3.10) reduces to

(3.47) il <-- 2-jt, + (1 2-r)8+.

However, by hypothesis, O<Xl-it+8+ and so (3.47) is valid for r sufficiently large.
Case (ii) follows similarly.

Case C. When k_ -oe and k/ < ee, which occurs if one of the following holds:
(i)3 8+=o0, t=0, "/+=0, +<(X3, S=0, and I+=0.
(ii)3 > 0 or /+ > 0 and a+ < oe, s 0, and I+ 0.

The proof is the same.
Case D. The final case k_ < oo and k+ < oe can occur if and only if
(i)4 8+ < oo, a+ < oe, 0, s 0, /+ 0 and I+ 0.

In this case inequalities (d) of Theorem 3.1 become

2-rjl, (1 2-r)t+ <- it <- 2-rjt, + (1 2-r)8+, 1," ", r,

which is valid for r sufficiently large, since -8+ < xt- it < t+, 1, 2, , p by
hypothesis. This establishes the sufficiency of the condition that xt- it c !, 1, , p
for the positivity of lower determinants (3.43).

For the necessity, we again consider the four cases above. In Case A there is
nothing to prove. In Case B ifx,- v _-< k_= -8+ for some/x, 1 <-/x _-< p. Hence q(xi- ij)
0 for i--1,...,/x, j--/x,..., p and so the first rows of the determinant are linearly
dependent. Case C is similar and we omit the details. For the last, Case D, we know
q(x) 0 if either x-< k_ or x_-> k/. Thus the proof here uses both the argument used
in Case B and in Case C. Thus we have established the theorem.

The next result proves the conjecture made in [12].
COROLLARY 3.1. Given a {aj 0 <--_j <--_ n} such that the polynomial

a(z)= az
j=0

only has negative zeros, vanishes at z =-1, and has the value 2 at z 1, then there exists
a unique solution of the refinement equation

j=O

such that

Moreover, the determinants

Z q(x-j)= 1.

XPI:= det q(xt-i)
\

(3.48)
x,...,
il, ip ,I l,j=l,...,p

are nonnegativefor all xl <. < Xp and integers il <" < ip with strict positivity holding
if and only if
(3.49) it < Xl - it + n, 1, , p.
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4. Symbols which are left-half plane stable. The previous result actually holds
under a much weaker hypothesis. Recall that a polynomial is called left-half plane
stable if all its zeros are in the (open) left-half plane (Hurwitz polynomial).

THEOREM 4.1. Suppose that the polynomial

a(z)= az,
j=0

with real coefficients a, if left-half plane stable, vanishes at z =-1, and has the value
two at z 1. Then all the conclusions of Corollary 3.1 are valid.

Proof The proof of this result follows the pattern of Corollary 3.1 with some
important differences. The existence of the function q follows from Theorem 2.1 on
noting that a > 0, j =0, 1,..., n since a(z) can be factored as a product of linear and
quadratic factors which have positive coefficients. Hence, when we write a(z)=
(l+z)q(z), the polynomial q(z) is also left-half plane stable and so has positive
coefficients. Thus (2.2) is satisfied and Theorem 2.1 can be applied.

The main fact needed to complete the proof is a result of Kemperman [10]. We
write a(z) in the form

a(z) doz" + dz"- +" + d,, d
to conform with the notation of [10]. Asner [2] and Kemperman [10] proved that the
Hurwitz matrix

H (H" i,j Z), Hi := d22-i
is totally positive. In addition, Kemperman proved the following.
TOgM C. Let a(z) be left-halfplane stable. en

H
J,

for any integers i <... < ip and j <...<jp, and equality holds if and only if all the
diagonal elements d2_, r 1, , p are positive, equivalently, that

O 2j i n, l= 1, p.

In our notation,

Dq oj-2i dn+2i-j d2(n+i)-(n+j) Hn+j,n+i.

Thus, Kemperman’s result is equivalent to saying that

D
J, ,Jp/ n+i, ,n+ip/

with equality if and only if

ONj-2in, l=l,. .,p.

From the total positivity of D it follows, by the arguments in Theorem 2.1, that

(4.1)
x,
il,

for x <. < Xp, i <. < ip. The methods used in the proof of Theorem 3.1, especially
the case s =0, g+ + + 0, and + n implies

Dr( i"’"iv]> 0
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if and only if O<--2-rjl--il<--(1--2-r)n, l= 1," ",p, whenever a(z) is left-half plane
stable. Therefore formula (3.43) can be used just as before to conclude that the
determinants (3.48) are positive if and only if (3.49) holds.

As a final result we derive a fact which has applications for the study of the planar
curve:

(4.2) S(x) E cq(x -j), x e [,
j7/

where each cj, j e 7/is a vector in 2,
THEOREM 4.2. Suppose

a(z)= az
j=0

is left-half plane stable. Then the function q of Theorem 4.1 is ck(), O<-k<=n-1, if
and only if a(z) can be factored as

(4.3) a(z)=(l+z)k+q(z), q(1) =2-k

Moreover, in this case

(4.4) S-( z cjqg(l)(*-j)) S-(Alc), O<= <- k,

where c {cj;j 7/} is a sequence in and V is the lth orderforward difference operator
defined inductively as

(4.5) (A/c)2 (A/-1 C)j+ --(AI-lc)j, j 72.

Proof The necessity of the factorization (4.3) is a consequence of two results from
[3, Cor. 6.3, 8.2] concerning a sequence a of finite support, which we state here for
the convenience of the reader.

PROPOSITION A. There exists a polynomial p of degree <-k such that

(4.6) a,_2jk p(i), Z
j

if and only if a(l)(-1) 0, 0, 1,. , k.
PROPOSITION B. Let q satisfy the refinement equation

p(x)= aq(2x-j).

If q Ck() and the functions {q(o-j):j 7/} are linearly independent on then (4.6)
holds for some polynomial p of degree <= k.

To use Propositions A and B we note that Theorem 4.1 implies that the functions
{q(o-j): j 7/} are linearly independent, and hence it follows that a(z) can be factored
as (4.3).

The converse also follows from a result from [3, Cor. 8.1]. However, let us point
out that we already have enough information available in Theorem 4.1 to prove it
directly.

Pick any l, 1 =<l_-< k. Then we may express a(z) as

(4.7) a(z) 2-1(1 + z)lb(z),
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where b(z) is left-half plane stable, b(-1)=0 and b(1)=2. Hence, by Theorem 4.1
there is a C(), of support in (0, n-l) such that

n-l

(4.8) (x)= bj(2x-j),
j=0

(4.9) q(x -j) 1, x ,
jeZ

and

(4.10) S-( z djq(.-j)) <=S-(d),

where d {dj: j 7/}. From (4.9) we conclude, by integrating both sides of (4.9) from
zero to one, that

(4.11) Iu *(x) dx l.

Using the refinement equation (4.8) for q and the refinement equations (1.7), (1.8)
(when n l) for M, and the factorization (4.7), we conclude that the convolution
Ml * satisfies the refinement equation (1.1). This can be seen by substituting into
the integral

(MI * )(x)= Ia Ml(X- t)(t) at,

the refinement equations for MI, , and then by simplifying. By (4.11) we also have

E (MI * )(x-j) 1, x

and we conclude (by uniqueness) that q M q is the function of Theorem 4.1.
By construction the B-spline satisfies the recurrence relation

ioMr(x) MI_I(x- t) at

or equivalently M(x) M_l(X) M_l(x 1). Consequently,

q’ M,_I ((o) (o 1))

and therefore inductively we obtain

’(x) (v’v(x- "))o,

where V is the difference operator, (Vc)j :=
Hence it follows that

Cjqg(1)(x--J) Z (Alc)jaI)’(x-J), X,
7/ TZ

and so from (4.10) we get

S-( , cqg( -j)) <-- S-(Ac),
jzz

which proves the theorem.
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DECREASING FUNCTIONS*
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Abstract. Weighted norm inequalities are established for the Fourier transform of certain radially
decreasing functions. For large classes of weights and indices, the involved conditions are proved to be
necessary. Similar characterizations are also given for the Hankel- and K-transform of functions satisfying
monotonicity conditions.

Key words, radially decreasing functions, Fourier transform, Bp-weights, Hankel transform, K-trans-
formation
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1. Introduction. Let f be the Fourier transform off defined by

f(x) e-2ix" Yf(y) dy, x

provided the integral converges. Weighted LP-estimates of the form

(1.1) Ilfllq,u<-cllfll,,, 0<p, q<,

where u and v are positive weight functions, have been studied in recent years with
a view to characterize the weights for which (1.1) is satisfied. While much progress
has been made in this direction, the complete solution is still elusive. (For a discussion
of these and related questions we refer to [2], [3] and the recent work of Str6mberg
and Wheeden [13].)

The object of this note is to consider the Fourier transform of certain radially
decreasing functions and prove weighted norm inequalities of the form (1.1). For
n >_- 1, u v, and q p >_- 1, a complete characterization of the weight is given for which
the inequality holds. Similar characterizations are given in the case of the Hankel
transform which may be viewed as a generalization of the n-dimensional Fourier
transform result (cf. Remark 4.2). We also consider generalizations of the Laplace
transform (the K-transform) of functions satisfying certain monotonicity conditions,
and characterize the weights u and v for which similar (LP, Lq) norm estimates hold,
1 < p _-< q <. This result extends work given in [8].

Our result contrasts with previous studies, where typically monotonicity conditions
on the weights are imposed to provide the characterizations (cf. [2], [5], [9]).

The plan of the paper is as follows. The next section contains the one weight
characterizations involving the Fourier transform, while 3 considers the two weighted
Fourier inequalities in the index ranges 1 < p _-< q < c, 0 < q < p < with p > 1 and
0 < p < 1 < q. If 1 < p <= q <, then under an auxiliary condition on the range weight
(which is satisfied by power weights), the results are also necessary. The final section
contains the characterizations involving the Hankel- and K-transformations.

* Received by the editors October 17, 1990; accepted for publication (in revised form) September 16,
1991. This research was supported by FNRS of Belgium and Natural Sciences and Engineering Research
Council of Canada.
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The notation and conventions used here are as follows: If x, y n, then x.y
2i=l xiyi and Ixl=(2=l x2) 1/2 If x#0, we write x=lxlx’ the unit
sph r in w aso Iso- l with the convention ISol 2. For 0 < p <,
the conjugate index p’ is defined by 1/p + 1/p’= 1 with p’= c if p 1, and similarly
for other indices. Of course p’< 0 if 0 < p < 1. XE denotes the characteristic function
of the set E and inequalities are interpreted in the sense that if the right side is finite,
so is the left side and the inequality holds. A, B, C denote constants (sometimes with
subscripts) which may be different at different places. Finally, we adhere to the
convention that positive means nonnegative and decreasing means nonincreasing.

2. One weight characterizations. We begin with the weight characterization for
the Fourier transform of positive even functions decreasing to zero on (0, ).

THEOREM 2.1. Let v be a positive weight function and 1 < p < c. Then

(2.1) v(1/x)x-lf(x)l dx<= C v(x)f(x)v dx

holds for all positive even functions f decreasing to zero on (0, c), if and only if v Bp,
i.e., for each r > O,

I Iv(2.2) x-v(x) dx <- Ar- v(x) dx.

Proof Since f is even, positive, and decreasing on (0, ),

f(x) 2 cos (27rxt)f(t) dt

=2 cos (2rxt)f(t) dt+f(1/x) cos (2wxt) dt
1/x

Here we applied the second mean value theorem. But since

fo’Ixx-If(I/x) <- f(t) at,

it follows that

and therefore

l/x

If(x)[ <= (2 + 1/7r) f( t) dt,

v(x)lx-lf(1/x)[ p dx<= C v(x) x-1 f(t) dt dx.

A result of Arifio and Muckenhoupt [1, Thm. 1.7] shows that the integral on the right
is dominated by the right side of (2.1) provided v 6 Bp. This proves the sufficiency.

To prove necessity, let f(x)- X(o,r)(ixl) r > 0, fixed in (2.1). Then

c v(x) dx >- v(1/x)x-
=2 v(x)x-

>=2 p O(X)X-p

2 cos (2rxt) dt

cos (2rt/x) dt

cos (2eft dt

p

p
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But since (27rt/x)<= 1, it follows that cos (2rt/x) >- cos 1 and hence

C v(x) dx >= (2 cos 1)p v(x)" (r/x)p dx.

This implies (2.2).
The condition v eB, (i.e., (2.2)) of Theorem 2.1 is equivalent to the

LP-boundedness of the averaging operator of positive decreasing functions
[1, Thm. 1.7]. It should be noted that this LP-boundedness property was shown by
Boyd [4] (see also [10, Chap. 2, Thm. 6.6]) to be equivalent with the weight condition

V(rs)
(2.3) sup--o(rp) as roc,

o V(s)

where V(s)= o v(x) dx. Therefore, we obtain the following.
COROLLARY 2.2. Inequality (2.1) holds for all positive even functions decreasing to

zero on (0, o) if and only if (2.3) holds.
Observe that with v(x)= x-, p > 1, Theorem 2.1 and Corollary 2.2 reduce to

Theorem 82 of 14].
We now give a weighted n-dimensional characterization for the Fourier transform

of certain radially decreasing functions on , n > 1.
THEOREM 2.3. Let 1 <= p < and v be a positive weight function on . Then

(2.4) I," v(x’/[xl)lxl"(P-2’[f(x)lP dx<= c I,. V(X)II(x)lPdx

holdsfor all positive radialfunctionsf(x) -fo(Ixl), x with g(t) t"-lfo(t) decreasing
to zero on (0,), if and only if ve B*p(n), i.e.,for each r>0,

[xl-"Pv(x) dx <-Br-p [xl-P("-l)v(x) dx.(2.5)
Ixl >-r x[<-

Proof (Sufficiency). Clearly

f fo(ltl) e-2X, dt

P’*-’ fo(P) e-2’’lxl("’)do" do

-21s _=l g(p) cos(Nrplxlt)(-t2) ("-3)/2dtdp

2ls.-l + g(o) cos (2zrplx[t)( t2) (n-3)/2 dt dp
/1’1

2]S,-2[(A(Ix [) + A2([x[)), respectively.

To estimate A(s),s>O, let q,(t)=o (l-u2) ("-3)/2 du. Then

ot
cos (2zrpst)(1 t) ("-3)/2 dt

=cos (2ros)(1)+2ros sin (2’Os)(t) dr.
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Therefore

f/s Iot/SIAl(s)[= q,(1) g(p) cos (27rps) dp+27rs

<-_c g(o) ao.

pg p sin (27rpst din dt dp

On the other hand,

where

A2(s) g(p)rpn(sp) dp,
1/s

q(sp) cos (27rpst) (1- t2) (n-3)/2 dt.

By the second mean value theorem,

A(s) g(1/s) .(sp) do
1/s

for some > 1/s. Therefore,

Io/(2.6) IA2(s)l_-< Cs-’ g(1/s) <- C g(t) dt

provided we show that

(2.7) p,(sp) dp
/s

for all s > 0 and C independent of and s.
To prove (2.7), note that, for n-> 2,

<=C/s

1Is
qg,(sp) dp (1-tz) ("-3/2 cos (27rpst) dp dt

1/s

(1/2rs) (1-t)(-/[(sin2-st)/t-(sin2-t)/t] dt

(1 / 27rs)[ T T2], respectively.

Clearly, IT2I _-< C.
Now, for n >_- 3, a change of variable and an application of the second mean value

theorem show that for any :s > 1, there exists an r/ (0, 27rCs) such that

2-rrs I0T [l-(u/(27rs))2] (n-3)/2" [(sin u)/u] du [(sin u)/u] du.
dO

But since ’ (sin uu)= 7r/2, it follows that T =< C.
If n 2, then

’/ sin (2rst)
t(1 )/

dt
sin (27rsCst)

/2 t(1 2) 1/2 dt
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Here, where the second term is clearly bounded and for the first integral, we apply
the second mean value, theorem to the increasing function (1 t2) -1/2 on (0, 1/2). Thus
there exists some (0, 1/2) such that

1/2 sin (27rst,) fl/ sin (2rst)
t(1-t2)1/2dt (2/v/)j dt

Ioes sin u
(2/) du (4/) du=C.

2wffs

Therefore, (2.7) holds for all n->_ 2.
From the expression of f(x) in terms of A(Ixl), i- 1, 2, we deduce, for 3’ to be

determined later,

I](x)l" (x’/Ixl)lxl dx

<_- (2lS,_l) s"-l+ylnl(s)+ A(s)lV(1/s) ds,

where V(1/s)=s,_ v(x’/s) do., s>0.
By the estimates of Ai(s), i= 1, 2, this yields

J C s"-+ g(p) dp Y(1/s) ds= C s- g(p) dp v(s) ds,

where v,(s) s-’-- Y(s).
Applying [1, Thm. 1.7] to g and v, we obtain

(2.8) J C1 g(p)Pv(p) dp

provided that for each r > 0,

(2.9) s-Pl)I(S) ds<= C2r-p vl(s) ds.

A simple calculation shows that the integral in (2.8) is equal to Ien v(x)lf(x)l dx
provided 3’ n(p-2). With this % (2.9) is clearly equivalent to (2.5). The sufficiency
part of the theorem is thus proved.

Necessity. Let f(x)= Ixl-"X<o,r>(lxl)in (2.4); then we obtain

for all 0 Sn_l, where

](pO) e --2"rcipt(og. O) do’(w )) dt.
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But, 0<t<r and O<p<l/(27rr) imply 0<27rtp < 1 so that

e-2=io,(o, o) dcr(w) 21s-21 cos (2pts)(1 s2)"-3/2 ds

s_l(cos (-s(-3/sc>o.

Hence for r > 0

fl Iot/(2r)Ixl-(’-’)v(x) dx >-_ CPrp pnp-n-1V(1/p) dp
xl<-_r

CPrp Ixl-"Pv(x) dx
Ixl->2rr

which implies (2.5). This completes the proof of the theorem. 13

3. The two weighted case. In this section we discuss two weighted Fourier
inequalities in the index ranges

l<p<_-q<00, 0<q<p<00, p>l and 0<p<l<q.

PROPOSITION 3.1. Supposef is a positive even function decreasing to zero on (0, 00).
Let u and v the weight functions and V(x)= o v( t) dt, x > O.

(i) If 1< p <- q < 00 and

(3.1) Ao := sup u(x) dx v(x) dx < 00,
r>O

(3.2) A1 := sup x-qu(x) dx xP’V(x)-P’v(x) dx < 00,
r>O

then

(3.3) u(I/x)xq-Zlf(x))q dx <- C v(x)f(x) dx
lip

(ii) If 0 < q < p < 0o, p > 1 and 1/r 1/q 1/p, then

Io [(Io )"’(Io’ )-"’]"u(x) dx v(x) dx u( t) dt < 00

and

x-qu(x) dx xe’V(x)-e’v(x) dx tP’V( t)-P’v( t) dt < 00

imply (3.3).
(iii) If 0 < p <= q < 0o, 0 < p < 1 then Ao < 00 and

(f )I/q(IO" )--lipCo := sup r x-qu(x) dx v(x) dx
r>O

imply (3.3).
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Proof The proof of Theorem 2.1 shows that

If(l/x) x-ll <-- C x-1 f(t) dt

so that

;o ( ;o }u(x)lf(1/x x--ll q dx <- C u(x) X
-1 f(t) dt dx

The result then follows if there are corresponding results for the two weighted averaging
operator of decreasing functions. If 1 < p _-< q < oo and 1 < q < p < 0o, p > 1: this was
given in 11, Thm. 2], and the case 0 < p <- q < 0o, 0 < p < 1 was given in 12, Thm. 3(b)].

Our next result shows that for power weights in the range space of the operator,
Proposition 3.1(i) and (iii) is sharp. In fact, with Ao, A1 and Co defined as in Proposition
3.1, we have the following.

PROPOSITION 3.2. Suppose (3.3) is satisfiedfor all positive even fdecreasing to zero
on (0, 00).

(i) If 1 <p<--q<0o, then A1 <0o. If, in addition, xq-2u(1/x)EBq i.e.,

(3.4) x-qu(x) dx >= Cr-q u(x) dx

then Ao < 0o.

(ii) If 0 < p <-_ q < 0o, 0 < p < 1, then Co < 0o. If, in addition, (3.4) holds, then Ao < 0o.

Proof Take f(x) X(0.r)(]X]) in (3.3), then for 0 < p, q <

C v(x) dx fO /(27rr)

>= u(1/x)xq- cos (27rxy) dy

f 1/(2rrr) ) 1/q

_-->(cos 1)r U(1/X)Xq-2 dx
dO

(cos 1)r u(x)x-q dx

q

dx) l/q

which implies Co < 0o. If (3.4) also holds, this yields at once Ao <
It remains to show that A1 < 0o if 1 < p =< q < 0o. Arguing as in 12, Thm. 2], let

fr(ISl)
lsl

YP’V(Y)-P’-I v(y) dy X(o. r)(27rlsl),

r > 0, in (3.3). Then an interchange of order of integration shows that

C yP’V(y)-P’v(y) dy

>- C yP’Y(y)-P’-v(y) v(x) dx dy

c v(xg(Ixl) dx

{o 0 q}l/qu(x 

_-> 2 cos 1 x-qu(x) dx tP’V(t)-p’-lv(t) dt
d 2Try
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Here we used the fact that (2ry)/x<= 1 implies cos (2rry/x) >- cos 1. On making the
change of variable 2ry to y, we see that the integral on the right dominates"

yP’/P V(t) -p’-I v(t) dt dy

(l/p) yP’/P V-p’-lv d V(s)-p’-lv(s) as dy

fo (;o )[I;(l/p) V(S)-P’-lv(s) yP’/P dy V-’-’vda ds

(pp’)- V(s)-P’-v(s) V-P’-v d s p’ ds

(1/p)(p’) -’/p V(s)-P’v(s)s p’ ds.

The last equality was obtained under the assumption that V(oe)=ce. Thus on sub-
stituting we have shown that

C yP’V(y)-P’v(y) dy

=> (2 cos 1)p-l(p’) -’/p x-qu(x) dx V(s)-P’v(s)s p’ ds
7rr

and this implies A < o.
Now if V(oe) < co, replace v by v v + e, e > 0. Then V(o) o v dt o and

the above argument shows that (3.2) holds with A1 independent of e. Let e- 0; then
the result follows from Fatou’s lemma. [3

Since u(x) Ixl, -1 < a < q- 1 satisfies (3.4) we single out the following.
COROLLARY 3.3. The inequality (3.3) holdsfor all positive evenfunctions, decreasing

to zero on (0, oe) if and only if

(i) For O<p<l, O<p<q<oe,

(3.5) r(a+)/q <--_ C v(x) dx r > O, -1 < a < q-

holds.
(ii) For 1 < p <_- q < oe, (3.5) and

xP’V(x)-P’v(x) dx < Cr1/q’-a/q r > O,

hold.

4. The Hankel- and K-transformations. In this section we characterize weights for
which the Hankel- and K-transformation of certain monotone functions is bounded
on weighted Lebesgue spaces.

The Hankel transformation is defined by

(H,f)(x)= (xt)l/2j(xt)f(t) dt, -1/2,
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where Ja is the Bessel function [6, p. 81 (8)],

IoJ(z)=Cz (1- t2) -1/2 cos (zt) dt,

and CA 21-;Trl/2/l(A + 1/2). Our first result in this section is the following.
THEOREM 4.1. Let A>-1/2, 1--<p<, and w be a positive weight function on

(0, ). Then

(4.1) w(1/s)s-2[(Hh)(27rs)[ p as<-_ C w(s)[sh(s)l p as

holds for all positive h with s+I/h(s) decreasing to zero on (0, ) if and only if
w s-P-l/w B’p, i.e., for each r > 0

I Io"(4.2) w(s)s-p+/2) ds <- Cr-p w(s). s-p-l/ ds.

_Proof Suppose g(s) s;+l/2h(s) is positive and decreasing to zero on (0, c), then

io(H;,h)(27rs) C;(2s)’x+’/2 + g(p) (1 t2) ’x-l/2 COS (27rstp) dt do
1/s

+/2(A=c (s)+a(s))
For A=(n-2)/2 with n,n2, the above functions Ai (i= 1,2) are of the same
type as the A functions in the proof of Theorem 2.3. From the latter proof, it results
that

to/S

(4.3) Ai(s <- C g(p) dp, i= 1, 2.

Noting now that all the arguments used to prove these estimates also apply if n
2A + 2 > is not an integer, we can conclude that (4.3) holds for any A >-1/2.

Therefore, by [1, Thm. 1.7],

Io [ Iow(s)l(H;,h)(27r/s)l p as <- c wa(s) (l/s) t+I/Zh(t) dt as

c’ w(s)lsh(s)l ds

provided (4.2) is satisfied.
To prove necessity, set h(s)= S-(A+I/2))((O,r)(S), r>0, in (4.1). Then

ioC w(s)sp-+l/2 ds

w(s)l(Hh)(2/s)l p ds

C w(s)s--/2 (1 _y2)-1/2 COS (27rty/s) dy dt

C w(s)s-P(’X+l/2)rP(cos 1) p (1-y)X-/2 dy ds

p

Crp w(s)s-p(’+l/2) ds,

and this implies (4.2).
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Remark 4.2. Theorem 2.3 can be viewed as a corollary of Theorem 4.1. Indeed,
if v is a positive weight on n, n > 1, and if w is defined by

W(S) S
n-l-(n+l)p/2 f )(Os) dr, s > O,

Sn-1

then v satisfies (2.5) if and only if w satisfies (4.2) with , (n-2)/2 (i.e., v B*p(n)
if and only if wa=s-P(+l/2)wBp, A=(n-2)/2). Note also that (2.4) holds for
f(x)=fo(IX]),x", if and only if (4.1) holds with w as above, for h(t)=
t("-)/2fo(t), A (n -2)/2.

Next, we consider the K-transform defined by

(K,f)(x)= (xy)/k,(xy)f(y) dy, x>0, ,->_ -1/2,

where k is the modified Bessel function of the third kind [6, Chap. X]. If , + 1/2,
the K-transform reduces to the Laplace transform: (K+/-/2f)(x)= o e-Xtf(t) dt
and if , > -1/2 the kernel has the representations

k,(x) Gxa e-X’(t- 1)a-’/2 dt= Gxaqa(x),

x>O, Ca=2-F(1/2) F(a+I/2)-’,

[7, p. 958(3)], and

kh(x Clx-A (1 + t2)--’/ cos (xt) dt= C-’x-Xbx(x),

[7, p. 959(5)].
Hence we can define the K-transform for h >-1/2 by

(4.4) (Kf)(x)--Cxx+/2 ya+l/2f(y) (xy) dy

and

x>O

and

A := sup xq(IAl-3/2)u(x) dx xP’Ig,(x) V,k(x) -p’ dx
r>O

where v(x)= xP(lXl-I/-v(x) and Vx(x) =Io v.

(4.5) (Kxf)(x) C;lx-+1/2 y-a+,/2f(y) Ox(xy) dy.

We shall need both these representations in the next result.
THZOREM 4.3. Let )t >-- -1/2, )t # 0, 1 < p <_-- q < o0, and u, v positive weightfunctions

on (0, o0). Then

(4.6) u(1/x)xq-2l(Kf)(x)l dx <= C v(x)f(x)P dx

kolds for all positive f, with f(x) x-I1+/ decreasing to zero on (0, oo), if and only if

A := sup xq(IAI-1/2)U(X) dx vx(x) dx < 00
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Proof For h =-1/2: this result is Theorem 1.12 of [8]. We assume therefore that
A>-l/2.

(i) Sufficiency. If-1/2 < A <0, then by (4.4),
1/x

y+l/2f((K,f)(x) CAXA+l/2 "l
t- y)cp(xy) dy

dO 1/x

C,x’+I/2[Al(X) + A2(x)], respectively.

Since (s)N C, then with g(y)= y-l+l/2f(y), we obtain

l/x

(xC
dO

To estimate A, the second mean value theorem shows that for some > 1Ix

(xl g(/x .(x
1/x

x-lg(1/X) e dds

x-g(1/x) (t- 1)"-/(e--e-e’)t- dt

Cx-g(/x)

c

Therefore, if 1 / 2 < I < 0,

(4.7 (.f(x Cx-+/ g( .
If 0 < I <, then, by (4.5),

(.fl(xl c2’x-+/ + g(yl.(xyl
0 1/x

Clx-a+l/[A3(x) + A4(x)] respectively.

Since 0(s)N C, A3(x C lo/X g(y) dy, again the second mean value theorem shows
that for some > l/x,

lg(1/X) .(s) ds.A4(x) g(/x) (xy) dy x-
1/x

But
x
I(S) ds -<_ (1 + t2)-a-/2[(sin xt)/t] dt + (1 + t2)-a-’/2[(sin t)/t] dt

The integral on the right is clearly convergent, while the first integral is seen to be
convergent if we apply the second mean value theorem to (1 + t)--/. Therefore

l/x

A(x) <= Cx-g(1/x) <= C g(y) dy,
dO
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and this implies that (4.7) holds also for 0< h < o. Now with ua(x)- xq(I;’l-/2)u(x),
(4.7) implies that

(foX )l/q (fOX) I ffo,C ]q )l/qu(x)[x-’(Khf)(1/x)lq dx <-- C h(x) x-1 g(y) dy dx

and by [11, Thm. 2] the last integral expression is dominated by

va(x)g(x)p dx v(x)f(x) p dx

provided A < and A <. This proves the first pa of the theorem.
(ii) Necessity. For -1/2 < Z <, 0, substitute f(x) xlal-/Xo.)(x), r > 0, in

(4.6). Then from the representation (4.4) we obtain

(Io" {io ]qc v.(x) dx C. u(x). x-q("+/) y"+".(y/x) ay dx

{f0" If0 ]q }l/qc. u(x) x-(+3/ y"+".() dy dx

{0 }l/qC u(x)xq(l"l-/ dx

Hence A < m. To prove that A <, let

g(x) y"’V.(y)-"’-v.(y) dy

and substitute f(x):=f)(x) xlal-a/g)(x)X(o.)(x), r > 0, in (4.6). Then for -1/2 < h <, h 0, the right side of (4.6) is

C va(x) yV’V(y)-V’-’v(y) dy dx C vh(y)yV’Vh(y)-V’dy
0

If -1/2 < h < 0, we use the representation (4.4) of the K-transform. The left side
of (4.6) then has the form

c. u(x) x-q("+/) g(y) (y/x) dy dx

{r 0" q}l/qCi u(x), x-q(h+3/2) g)(y) dy dx

As seen in the proof of Proposition 3.2, the inner integral dominates

o
V.(s)-"’v(s)s’ ds

whenever Va(@)= and this on substituting implies A <.
If 0 < <, we substitute (4.5) in the left side of (4.6) so that it has the form

{f0 f0 q}l/q(4.8) C2’ u(x) x"("-3/2) g(y)O.(y/x) dy dx

But since @a is strictly positive on [0, ) for 0 < <, there exists , 0 < 6 < /2, such
that

;o(4.9) .(y/x) (1+ t)--/ cos (yt/x) at e ( + t)--/ cos (yt/x) dt
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for all (y/x) [0, 1] with 6 independent of (y/x). To see this, note first that for each
:* [0, 1] there exists 6., 0< 6. < r/2 such that . (1 + t2) --1/2 cos (:*t) dt > O.

Then, for * [0, 1] fixed, there exists a neighborhood V. of * such that

(1

+ t2) -a-l/2 (cos t) dt > 0

for all V.. From the covering family { V. * [0, 1 ]} of [0, 1 ], we can then extract
a finite covering subfamily and define 6 as the minimum of the corresponding 6,j
1, 2,. ., N, N finite. This 3 satisfies 0 < 6 < /2, which implies

7
(1 + t)--/ (cos t) dt 0

for each j and every V. This shows that (4.9) holds for all (y/x) [0, 1] and, as
a consequence, we can minorize (4.8) as follows:

;0U(X) X
q(-3/2) (1 + t2) --/2 COS (yt/x) g)(y) dy dt dx

(;o(cos 6) (1 + t)--1/ at u(x)" xq(h-3/2) g(y) + dx

C’ u(x). xq("-/ & V.(s)-’v.(s)s’ s
where the last inequality is again obtained as in the proof of Proposition 3.2, provided
V() . Thus again under this condition, A <.

Finally, if V()<, replace v, by v[=v,+e,e>O. Then
and the above arguments show that the result holds in this case with A independent
of e. As before, Fatou’s lemma then implies the result.

Remark 4.4. Since (4.7) holds for all I (-1/2, ), I 0, the suciency pa of
the theorem holds also in the index ranges 0 < q < p <, p > 1, and 0 < p N q <, 0 <
p<l, under suitably modified weight conditions, by applying [ll, Thm. 2] and
[12, Thm. 3], respectively (cK Proposition 3.1). We leave the details.
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SOME TRACE THEOREMS IN ANISOTROPIC SOBOLEV SPACES*
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Abstract. Anisotropic Sobolev spaces are functional spaces of Sobolev’s type in which different space
directions have different roles. In the case of dimension 2, some new trace theorems in such spaces for very
general open sets are proved. A sense is also given of the corresponding Green’s formula via a generalized
concept of Cauchy principal value.
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Introduction. In the usual Sobolev spaces such as Hm(12) or W"P(12), all deriva-
tives in all space directions play the same role. This explains why only the regularity
properties of the boundary (F) of the domain f play a role for trace theorems and
extension properties (see the classical references [1], [8], [10]). In some domains of
physics, we encounter partial differential equations leading us to work in functional
spaces in which only partial derivatives with respect to some space directions have a
privileged role. This is in particular the case for paraxial approximations of the wave
equation [2], [3], [5] or of the Stokes equations [9]. The simplest example is the
parabolic approximation of the wave equation in two dimensions, which is written

(0.1)
l OZu 02u 10 ( O_x)c Ot2 Ox20t 20Xl

c =0.

The energy associated to (0.1) is

(0.2) E(t) :- OU 2

which leads us naturally to work in the anisotropic Sobolev space

(0.3) H’(12) {vG L2(12)/ O?x G L2(12)

Trace theorems in anisotropic Sobolev spaces of type (0.3) are well known in the case
where 12 is a product set [8]. The case where 12 is an arbitrary open set appears to be
more delicate.

In this article, we intend to treat completely the case of the space H’(f) in two
dimensions (see also [7]). The outline of the paper is as follows. In 1 we state our
two main results (Theorems 1 and 2). The first is the trace theorem for H1’(12); the
second one concerns the corresponding Green’s formula. Section 2 is devoted to the
detailed proof of these two theorems. In 3 we give the extension of the previous
results to the spaces H’(12) and W’(l)). The interest of this paper lies rather in the
results themselves, which may appear surprising compared to more classical results,
than in the techniques, which remain very elementary (we use mainly some variations
around Poincar6’s inequality in dimension 1). In particular, the orientation of the
boundary (F) with respect to the direction x2 and the relative position of 12 with respect

* Received by the editors November 20, 1989; accepted for publication (in revised form) August 5, 1991.
? Institut National de Recherche en Informatique et en Automatique, Domaine de Voluceafi-Rocquen-

court, BP 105, 78153 Le Chesnay C6dex, France.
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to (F) have an influence on the result, and not the regularity of (F). So, even if F is
smooth, the space HI’() does not in general satisfy the extension property.

A complete study of density, compactness, and embedding theorems is presented
in the book by Besov, II’jin, and Nicolskii [4]. An application of our results to the
study of the regularity of the solutions of paraxial approximations of the wave equation
can be found in [6].

1. The two main theorems in the space Hl’(l).
1.1. Notation and definition. In what follows, f will denote an open set of 2

whose boundary (F)=(0[I) is supposed to satisfy the following assumptions
(see Fig. 1):
(H1) f is locally the epigraph of a Lipschitz function (i.e., (F) is locally the

graph of a Lipschitz function, and 1" is locally "above" F);
F is the reunion of a finite number of:(H2)

parts Gl in the form

GI {(Xl, x2)’xl =f(x:), a < x2 < bl, f is Lipschitz continuous},
their summits AI (al,fl(al)), BI (bl,fl(bl)),
horizontal parts Hk"

Hk {(Xl, X2) "X2 Xk, Ck < X < dk}.
We shall note"

FI= LJ GI, Fo= LJHk,
k

F=FoLJF.

We can define the unit normal vector to F, outgoing with respect to ll, almost everywhere
on F, and we shall denote by n(M)= (n(M), n2(M)), M belonging to F, the corres-
ponding vector field. Fo and F differ by the value of the first component nl since

a.e.MFo, n(M) O,
a.e. M F, n(M)O.

E E

E E E
4

(r)

(N1 N ,N ,N4) nonstrict extremal point ofq

O (El ES2’ Es3’Es4’ Es5’ E): strict x2-extremal outgoing points

(E Ei) strict x-extremal incoming points

FIG. 1. Illustration of Hypotheses (H1) and (H2).
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As we shall see later, the traces will be defined only on F1. We shall use in the sequel
the notion of x2-extremal point.

DEFINITION 1. A point M of F is a (strict) x2-extremal point if and only if the
coordinate x2 realizes a (strict) local extremum on F. Such a point is said to be outgoing
with respect to 12 (otherwise it is said to be incoming) if x2 realizes at this point a
local extremum in 12, i.e., if there exists a ball B(M, e) such that

x2(M) > x2(M’) VM’ B(M, e.),

or

x2(M) < x2(M’) VM’ B(M, e).

As an example, consider the case where (F) locally coincides with the graph of a
Lipschitzian map, x =f(xl), f admitting an extremum at Xl 0.

Note that the notion of x2-extremal point makes use of the orientation of (F) with
respect to the direction Ox2, while the notion of an outgoing (or incoming) x-extremal
point involves the relative position of 12 with respect to (F). Because of (H2), the
number of strict x2-extremal points is finite and each of them is one of the summits
(A, B). We shall denote by {My, 1 <-j =< N} the set of these points.
Finally, we are led to introduce a weight function l(M) on F as follows.

We shall say that a point M of F belongs to F* if it exists a point M* (which is
unique if it exists) of F such that the open segment MM* is horizontal and included
i.n 12 (see Fig. 3). Note that M* may not exist if 12 is unbounded, as illustrated in
Fig. 2, but that F* F as soon as 12 is bounded. Then we introduce

A(M)=length of MM*=IXl(M*)-x(M) for M inF,*

and then define the weight function l(M) on F1 by

l(M)=inf(A(M), 1) if M belongs to F*,

(M) 1 if not.

DEFINITION 2. A function (M) defined on F1 is said to be (F, x)-even if and
only if

(M) (M*) if M belongs to F*,
and (F, x)-odd if and only if

(M)+(M*)-0 if M belongs to FI*,

(M) =0 if not.

Of course, any function defined on F can be uniquely decomposed as Ce -- owhere Ce is (F, x)-even and o is (F, xl)-odd.
Denoting by o- a curvilinear abcissa along F and by do- the corresponding superficial

measure, we introduce the following two Hilbert spaces:

Leven(F12 llnll {- f 14,l:Zllnl do-), is (F, x)-even}
(1.1)

Lodd(F, 1-Inll)= I I1/11 do-), is (F, x1)-odd

and the space of traces T(f, F1):

(1.2) T(rl,f) /Inll)(R) 2 l-1Leven(F, Load(F1, Inll)
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FIG. 2. A case where F*I F.

equipped with the norm

T(),F1)- [Chel21[n[ do-+ [(o[21-11nl[ do.

Remarks. (1) The weight function l(M) is strictly positive almost everywhere on

F and vanishes only at the strict outgoing x2-extremal points of F. In some sense, the
singularity of the function /(M)-1 measures the sharpness of the open set f in the
neighborhood of such an extremal point.

(2) If F has no strict outgoing x2-extremal point, the space simply coincides with
the space L(F, In,I). More generally, if we exclude the neighborhoods of the points
of F whose tangent is horizontal (where the function In[ degenerates) and the
neighborhoods of the strict outgoing xz-extremal points ofF (where l(M) degenerates)
the space T(F, ) simply coincides with the space LZ(F1).

(3) The space T(F, 1)) is intrinsically linked not to the curve F but to the pair
(F, 1), since the function l(M) depends on the outgoing xz-extremal points of F
which themselves depend on the relative position of F with respect to [l.

1.2. The two main results.
THEOREM 1. The trace mapping Yo" D()--> LZ(F) defined by (y0u)(M)= u(M)

extends in a unique way to a linear and continuous map, which we still denote by y0,

from H’([I) onto T(F, 1). Moreover, the application Yo is surjectivefrom H’((I) onto
T(F1, a).

As a direct consequence of Theorem 1, we have the following corollary.
COROLLARY 1. The space H’(f) has the extension property if and only if f has

no strict xa-extremal point.
Indeed if ff =R-f, it is clear that any strict x-extremal of F that is outgoing

with respect to f is incoming with respect to if, and conversely. So the space T(F,
and T(F, ) coincide if and only if F has no strict x-extremal point. As an example,
note that the boundary of the unit square has no strict x.-extremal point while the
unit circle has two extremal points.

It is interesting to make the following comments"
The trace of a function of HI’(-) is defined only on the part (F) of the

boundary (F).
The trace can have singularities which can be stronger than L2-singularities the

x2-extremal points of (F1). Moreover, such a singularity can be stronger at the neighbor-
hood of a strict outgoing xZ-extremal point. However, this singularity only affects the
(F, x)-odd part of the function, while the (F, Xl)oeven part must be more regular
because of the presence of the weight function -. In some sense, this condition
traduces a sort of continuity of the trace at the extremal point, due to the effect of the
regularity of the original function in the x direction.
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Our second result will express how the classical Green’s formula

(1.4) u+v dx uvn do" t(u, V) D(=)2

Ox Ox

can be extended to functions in H’(’)2. For this we are led to define the notion of
principal value in the direction x of a curvilinear integral along (F). Let us denote
by {Mj,j Jo} the strict outgoing xz-extremal points of F and by {,j Z} the strict
incoming xz-extremal points of F (which will not play any role in what follows).

For 6 > 0 small enough and j in Jo we denote by F(6) the connected component
of the set

{M r/[x(M-x()l < },

which contains (see Fig. 3), and we set

Jo

The essential propey of F(6) is the fact that it is "x-symmetry with respect to "in the sense that it is made of two arcs of curve whose common extremity is the point
and which are of equal size in the xz-direction.
TzogzM 2. (i) For any (, ) in T(F, )2, the limit

(1.5) limf, nd aed v.p. x2 yo "Xc()

exists and the bilinear form (, )v.p. X2 F,n de is continuous on T(F, fl)2.
(ii) We have in H’(fl) the following Green’s formula"

(1.6) V(u, v)eH,(a), u+v x=v.p.x oUoVn d.
OX OX

.1. Proof fTere . Rather than give a direct proof, we have chosen to break
down our presentation into several lemmas. This has the advantage of being expository
and of illustrating the impoance of the notions given in 1.1. As a preliminary result
we can give a first simple result, which can be found, for instance, in [13].
Pooso 1. e map ," D(fi) L(F) defined by lU(M)= n(M)u(M) can

be extended in a unique way to a linear and continuous mappingfrom H’() in H-/(F)
and we have the Green’s formula

(2.1) V(u, v) H,.O(O) x H() f. ( ou
v + u dx (.lU, oU)v,

Ox

where (.,.)v denotes the duality H-/Z(F)- H/Z(F).
Proof Just note that u H’(O) implies that (u, 0) H(div; ) and apply the

standard trace theorem in H(div; ) (see [12]).

1-’1(8
Mj

FIG. 3. The set F(6).
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Such a result is not completely satisfactory. Indeed, in (2.1), (u, v) have a symmetric
role on the right-hand side and not on the left-hand side. Moreover, this result concerns
the product n u and not u itself. In particular, as n 0 on Fo, it is clear that nothing
can be said about the trace of u along Fo. This is not surprising since a function in
H’(O) can be discontinuous through a line x cste.

Our purpose now is to show precisely that the trace of u can be defined as a
function almost everywhere (for the Lebesgue measure on F) defined on F and, in
order to get an optimal result, to characterize the image of this trace operator. For the
sake of clarity, we shall distinguish several steps. Moreover, for the proofs, we shall
use the curvilinear abcissa o. along F and the corresponding parametric representation

and suppose that the curve F is oriented in such a way that, if n(o.) denotes n(M(o.)),

nl(o.) dX2 dX
d----- o.)’ nz(o.) (o.).

2.1.1. The case where nl(r) has a constant sign along
LEMMA 1. If n(o.) has a constant sign along (F1) (see Fig. 4), the trace mapping

3’0" D()--> L2(F) can be uniquely extended to a linear continuous mappingfrom H’(D)
onto Lz(F ;In[ do.) and we have

(i) V(u, v) H’()2, u+v dx yoU" yovn do’,
Ox Ox l

(ii)

Proof of Lemma 1. When we take v u in the usual Green’s formula, we get

Vu e D(), [ul=n, do" 2 u dx.
"1 OXl

Then it suffices to remark that the absolute value of the left-hand side is,if n has a
constant sign, the square ofthe norm of you in Lz(F In[ do’); we also use the Schwar z’s
inequality to estimate the right-hand side to obtain

(2.2) ,F1 HI,O(I))

Formula (ii) follows then by density and continuity. It is then easy to deduce the
unique extension result and the Green’s formula (i) for the same reasons.

AcM(J)

FIG. 4. The case where n has a constant sign.



SOME TRACE THEOREMS IN ANISOTROPIC SOBOLEV SPACES 805

It remains to prove the surjectivity result. For this we note that, thanks to the
assumption about n(o-), can be seen as the reunion of half lines. For instance, if
n(o’) =< 0,

’ _J io- Act {(Xl X2(o’)), Xl Xl(o-)}.
M()I’

Let us consider 4) in L2(F, ;In,I do-). As In(o-) IclX2/do-(o-) I, we can write

dX2(2.3) i/,lll,i.12
"1 - (o-) do-.

If I2 {x2---X2(o-)/M(o-)F}, as n(o-)>=0, the map o-- X2(o-) is a bijection
between 12 and El, the set of the values of o- when M(o-) describes F. Let ,(x) be
the function defined in Fig. 5.

We construct the following extension of b(o-)"

(2.4) u(x,x2)=ch(o-),(x-X(o-)) if x2 X2(o-).

We evaluate the integral a lul2dx with the help of the change of variable (x, o-)-+
(x, x2 X)_(o-)), whose Jacobian is equal to [n(r)l. By Fubini’s theorem, we have

lu(xl, x2)[2 dx la)(x,-X,(r))l2 dx, do-
1(O’)

(2.5)

By the same approach, we obtain for Ou/Ox

(2.6)
OX1 L

Equations (2.5) and (2.6) show that the map u is a continuous linear extension
operator from L(F1;In,I d) in

Remark 1. Playing with the parameter , we can localize the extension of in
an arbitrary neighborhood of (F).

Figure 6 illustrates the optimality of Lemma 1.

n(x)

n/2 rl

FIG. 5. The cut-offfunction .
(z)

(q) (A) (c)

(c) being parametrized by

FIG. 6. A first example.
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If (C) is parametrized by 0 we easily check that n1(0)= sin 0 and that

L2(C; [nll &r)=- g(0)" 0, N [g(0)[2sin 0d0< +c

Consider the function, for a > 0,

1
Ua(Xl, X2) (I)(Xl X2)

X2

where is a smooth function with compact support, identically equal to 1 in a
neighborhood of (C). The trace of u can be identified to the function

g(0) (sin 0)-,
and we verify immediately that

g L2(C, Inll dcr) a < 1/2.
2.1.2. An intermediate result: Application to the case where F has no strict x2-

extremal point. Let us establish a general result that will be useful in the sequel. For
any 1 =<j-< N, we denote by B;(p) the ball of center M and radius p (see Fig. 7) and
we set

(2.7) ’l,o F [2 (_J B;(p)].
j=l

We can state the following lemma.
LEMMA 2. For any p > 0 small enough, the trace operator 3’o extends uniquely in a

linear, continuous, and surjective map from HI’(I)) in L2(’,o; [n[ &r).

B1(9)

FIG. 7. The cut-offfunction .
Proof We can decompose Pl,p in N + 1 connected components {(’lP,o), 1 -<_ p =< N +

1}; along each of them nl(G) has a constant, sign. We now introduce smooth cut-off
functions:

P<I 1 <G D(2), 0 <p p < N+ 1,
~p1 on(F,o)(2.8) (I)p

of’qsupp-b forpCm.supp p
On :PI,o, EjN_--: Po 1, and we can write

N+I

(2.9) Vu E D(,Q), Ilullp.,
p=l
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We apply the Green’s formula to each of the functions u"

=2

After summing on p, we get

1,o p=

So, if we introduce the constant

OX P

OX OX

OU

OXl

OX
(2.10) C(p)= max (maxl<_p<N+l [j2

it is easy to derive, using Young’s and Cauchy-Schwarz’s inequalities, the following
estimate:

(2.11) [ul2lnl[ do. <-(l + C(p))/2llullH,,o,
1,p

from which the first part ofthe lemma follows immediately. To prove that yo is surjective
it is sufficient to extend locally in f each of the restrictions to (FP,o) of a function

~pin the space L2(FI,o; [tll[ do). This is possible thanks to Remark 1.
As a direct consequence of Lemma 2, we have the following corollary.
COROLLARY 2. When F has no strict x2-extremal point, the trace mapping yo is

linear, continuous, and surjective from H1’(12) on to L2(F1 ;In1] do-).
Of course, the constant C(p) appearing in the estimate (2.11) blows up when

p -> 0 as soon as N 0; indeed, we have to keep the supports of the cut-off functions
disjoint. This remark suggests that the result of Corollary 2 cannot be extended to the
general case. This is confirmed by the counterexample in Fig. 8.

Consider:

1
/,/c (X1 X2) -’"X2

we see immediately that

tt HI’(’): ce < 1,

yoU L2(F1 ;Inll do.)=> a < 1/2.
|For = a < 1 u. belongs to gl’(-), whose trace on F1 is not in L(F1, In[ do-)

2.1.3. Study of the traces in a neighborhood of strict x2-extremal points. Clearly it
remains to treat the neighborhoods of the strict x-extremal points of (F). We shall

x

x

FIG. 8. A second example.
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need some preliminary notation. Let Mj M(o-) be a strict x2-extremal point of (F).
As such a point is isolated, the function r--> X2(o’) has a unique relative extremum
(strict) at r= crj. So there exists, for any e >0 small enough, a pair {tr-(e),
such that, if for instance X2(rj) is minimum of X2(o-),

Xz(tr)" [tr)- (e), crj - [X2(r), X2(o3) + e is decreasing and surjective,

X(o-)" [o-, o..(e)]->[X(oj),X(o))+e] is increasing and surjective.

see Fig. 9.
Therefore, for any x in [X2(rj), X2(o3) + e ], there exists a unique pair

[r-(e), o3][o), trf(e)], such that Xz(tr-)=Xz(tr+)=x2. In this way we define a
bijection r -> tr

+ between the intervals [r-(e), er and o3, r-(e)], and we can associate
to o3 the open set

(2.12) 12(o-, e)= { ]M(r-), M(o’+)[/x= X2(cr-) ]X(o’j), X2(trj)+ e[}.

According to the notation of 1.1, if M(cr-)= M, M(tr+) M*, and conversely. It is
clear that:

Mj. is outgoing12(crj, e) ),

M is incoming)(o), e) .
Let us note that, up to a local change the orientation of (F), we can assume that

X(o-+) > X(cr-) as soon as r- and cr+ are related by the bijection shown in Fig. 10.
By definition, F(e) is the part of (F) described by M(tr) when o- varies in the interval
[trf(e), tr-(e)]. F(e) coincides with the "F part" of the boundary of (tr, e).

First of all, let us note that the incoming strict x-extremal points do not play any
role. This is due to the fact that we can move inside a "horizontal" segment (i.e.,
parallel to the line x2 =0) of fixed length 7, one of the extremities of the segment
describing F(e) as illustrated in Fig. 11.

In this way, we have defined two disjoint open sets, namely, l)f (e, 7 and 12f (e, 7 ),
included in , to which we can apply the techniques of Lemmas 1 and 2. Let us define
the cut-off functions b and 4, respectively, on f(e, 7) and f(e, 7) by

(2.13) (X,(r) +/- , Xz(r)) ,(), , [0,

M(tyj)

FIG. 9. The curvilinear abcissa o’.

FIG. 10. The bijection or- r+.
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oj(e,q) f(
FIG. 11. Case of an incoming x2-extremal point.

where , has been defined in the proof of Lemma 1. To show that the trace of a
function H1’(12) belongs to L2(F(e), Inl d), we apply the Green’s formula (1.12)
to the functions b, u and b/

n u when u is smooth. To get the surjectivity result, we
construct an extension of b(r) in L2(F(e), [nl &r) by constructing independently
two extensions, respectively in 12f(e, q) and f)-(e, r/), of the restrictions of b(r) to

F(e) fq Otlf (e, q) and F(e) VI OfIf(e, rl). Therefore the results stated in Lemma 2 and
Corollary 2 remain valid if we replace the strict x:-extremal points of (F) by the only
outgoing strict xz-extremal points of (F), as described in the following corollary.

COROLLARY 3. When F1 has no strict outgoing xz-extremal point, the trace mapping
Yo is linear, continuous, and surjective from Hl’(tl) on to LZ(F1; ]nil do-).

It remains to examine what happens in a neighborhood of strict outgoing Xz-
extremal points, which means to make precise the trace theorem for Hl’(t2(o-, e)).
For this, we shall use the function l(cr) defined in 1.1. Restricting ourselves to F(e),
we have

(2.14) l(tr-) l(tr+) IX(o+) X(o’-)] for X(o-) X(o-+) x2

We have set here l(r)= l(M(r)) and assumed that e is small enough to ensure that

Ix,(+)-x,(-)[<l Vr-[j-(e), r].
The example in Fig. 8 suggests that the subspace of H’(I)) of functions independent
of x

(2.15) V {v Hl’(gl(r, e))/ OV =o}/Ox

has a particular role. Indeed, let us use the following decomposition of H’(t)(o-, e)):

H,(n(, )): V, + V,
where Vi is nothing but the space of functions in H’ whose mean value along each
segment [M(cr), M(r+)] is equal to zero

-+)

v V- Cr>a.e. x= Xz(r-)= Xz(r+) u(x,x2) dx=O.
a x(c-)

For technical reasons, we shall use another decomposition (nonorthogonal) of
H"(a(, e)):

(2.16) H"(Q(o’j, e))-- V, if- V2,

where V2 is defined by

(2.17) v V2,p.p. x2=X2(o-)=X2(o+)v(M(o-))+v(M(o+))=O.
Note that the trace of a function in V is necessarily (F, x)-even while the trace of a
function in V2 is by construction (F, xl)-odd.
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LEMMA 3. The trace mapping Yo" D(f(trj, e)) -> L2(F(e)) can be uniquely extended
to a linear, continuous, and surjective map from Hl’(f(o), e)) onto T(F(e), f(crj, e)).

2More precisely, To is linear, continuous, and surjectivefrom V1 onto Leve(Fl(e), llnll d)
2 ,/-1and from Va onto Lodd(F(e) In1[ d).

Proo
(i) Traces offunctions in V. Let v be a function in V; its trace on F(e) is given

by

(2.18) (-) (+)= v(x, x2) for x2= X(-)= X(+).

The norm of v in H’((, e)) coincides with its L2-norm:

(2.19) V]II,O fX2()+E (f xl(+)
Iv(x,, x)l dx, dx.

a X2(j) aXl(-)

On the other hand, we have

(.o) Iv(x,, x:) ax, t(-)16(-)[=/(+)16(+)1.
X(-)

With the help of the two following changes of variables:

x= x(-), -[;(), ],

x= x(+), + [,
we obtain the two equalities

()
(2.21)

which we can add to finally obtain

(2.22) ,,, 211 11’,o,

from which both the continuity and the bijectivity of To from V onto
Len(F(e), l]n] d) follow immediately.

(ii) Traces of functions in V. Let v be in Ve. For almost every x2 in

]X2(), Xe() + el, the function x v(x, x) belongs to H’(]X(-), X,(+)[) and
satisfies, if x2 Xe(-)= X2(+),

u(x(-), x)+ v(x(+), x9 0.

Therefore, as H C in dimension 1, we know that

p.p. x2 X2(-) X(+),

Xo= Xo(-) Xo(+) ]x(-), x,(+)[/v(x,, Xo) 0.

Thus, if we set 4 yoV, we can write

(2.23)

x(-) 01;
(-)

a x(o--)

x(+) OV
b(cr/)

Xo(+) Ox1

(Xl, X2(o’-)) dXl,

(Xl, X2(o"+)) dx
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By the Cauchy-Schwarz inequality, using the fact that IXo(o’-)-Xl(O’-)[ and
]Xo(tr+)-Xl(Cr+)] are bounded by/(tr-) l(r+), we deduce the inequalities

xl(+) Ot 2

x(-) OX
(2.24) f x’(+) Ov 2

i(+)12/(+) J (x,,X(+))
a X(-)

On the other hand, using successively two change of variables,

(x,, ,-)-,(x,,x:)=(x,,X(,-)), ’-e [W(), ],
(x, ,,+)-,(x,,x)=(x,,X(,+)), ,,+ e[, ,ff()],

with respective Jacobian [nl(-)I and [n(g+)[, we obtain two expressions for the
L-norm of Ov/Ox

(,) Ox () a x(-) Ox
(2.25) 5) ,+) v (x,, x(+)) dx, In,(+)l d+.

.j a Xl(-

Consequently, from (2.24) and (2.25), we deduce

(2.26)
f}() O 2

16(+) d+ dx.

Adding these two inequalities, we obtain

(2.27) -l-,I,r 2[ v ,.o,
2 --1which proves the continuity of Yo from V2 on to the space Lood(Fl(e), ln[ d) to

consider the function v defined by (see Fig. 12)

(2.28)
oZv/ox=O in 12(trj, e),
v(x,(), x()) 6()

Then a simple calculation gives

f(,,)
vl dx

(2.29)

fa Overt
which completes the proof of the lemma.

(09
V(Xl, 2)

FIG. 12. The solution of (2.28).
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Now to prove Theorem 1, the main point is to prove the estimate

for any smooth function u. For this we proceed by localization with the help of a

partition of unity. In this way we are able to write u as a finite sum of functions Uk,

each of them having compact support, to which we can apply either Corollary 2 or
Lemma 3. The difficulties are purely technical and we shall omit the details.

2.2. The proof of Theorem 2. To show that the limit of r\r,(a) dpd/nl do exists when
tends to zero, we first write, for < e,

I chqm do" f dpn do" + fr c/On do".(2.30)
"\r,(a) "\r,() JJo /()\r{()

The only difficulty consists in proving that the limit

lim f Cqnl do"(2.31)

exists when j belongs to Jo. Indeed, the integral

is not defined in the Lebesgue sense because of the possible singularities of h and q
near o" o"j. To overcome this difficulty we write"

4, 4,o+,, q,= o+,
2 2where ((o, Ce), (qO, qe)) {Lodd(F(e), 1-In] do") Leven(F{(6), ll/’ll do")}2. We have,

setting F (e, 6) F{ (e)\F (6),

(2.32)

r
./n do"-- I ((O(o")O(o") "- (e(o")e(o")) do"

(,)

+ (o()() + ()o()) d.
r(,)

To estimate the second term of the right-hand side of (2.32), we use Cauchy-Schwarz’s
inequality:

(2.33)

We can thus apply the dominated convergence theorem of Lebesgue and Cauchy-
Schwarz’s inequality to deduce

(2.34)

(2.35)

For the first term of the right-hand side of (2.32), we remark that the function
0(o") o(o")Po(o")+ Ce(o")CPe(o") is (F, xl)-even. Now suppose that for instance X(o3)
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is a local minimum of X2(o-); with a suitable orientation of (F) we can assume that
(see Fig. 13)

dX2 (r) < 0 if cre [o-7(e), %.],,() --dX2n,():()>0 if[,f(e)].

We then write

o(n(= o(n( + o(n( .
With the following changes of variable:

x2 X2(-) if - [(e), (6)],

xe= X(+) if + [(6), &(e)],

we obtain, taking into account the fact that the sign of n() changes from

o()n,() a= [0(+)- 0(-)] axe.
i(e, fi)

But, as 0 is (F, x)-even, 0(+) 0(-), so that we have:

(2.36) V6 < e, f (O()o()+()e()) d=0.

Joining this result to (2.34) shows that limit (2.31) does exist and is given by

v’p’x f,.i ()O()n,() d= f,.i (()e()+ e()O()) d"

Moreover, the inequality (2.35) shows that the bilinear form

(6, 6) v.p. x f 6()6()n,() d
)

is continuous on T(F(e), (, e)).
The general result is then a consequence of the equality (2.30). To obtain formula

(1.14), it suffices to take the limit in Green’s formula (1.12) written with a sequence

n( )n(o+)

FIG. 13.
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(u, v) in D()2 converging to (u, v) in HI’(f) when e -0, and to use the continuity
of the bilinear forms

(u, v) v+u dx,

(b, q)v.p, x f ()()n,() d
dF

in H’() and T(F, ), respectively.

3. Generalization to the spaces W’() and HS’().
3.1. The trace theorem in W’(). For any l<p <+, we define the space

,o() byWp

(3.1) W’() {u G LP()/ Ou
G LP()}/OXl

which is a Banach space equipped with the norm

(3.2) Ilull  0x,

With the notation and definitions of 1, we define

l’-Plnl) Len(r(3.3) Tp(F,, a)= Ldd(F,

where the weighted LP-spaces P (F{(e), mLodd and Lven(F(e), m) are defined as
Leven(F(eLodd(Fl(e), m) and ), m) (see 1.1) by simply replacing 2 by p.

Of course, rp(F1, a) is a Banach space for the norm ( o + e)"

(3.4) 116 [Irp(r,,a)= [to[tLP(FI,ll-PInll) + I[e[[LV(I’,,llnll)
and, for in Lp (C, m), C c F"

C

We can now state our two results in Theorems 3 and 4.
To 3. e trace mapping o" D() L(F) can be uniquely extended to a

linear, continuous and surjective map, still denoted by 7o, from W’(a) onto Tp(F,
Proof of eorem 3. The proof is very similar to that of Theorem 2 ( 2). We

simply point out the differences with the L-case.
Step 1. Case where n() has a constant sign. Take v lul - u in Green’s formula

(1.12) and use Holder’s inequality instead of the Cauchy-Schwarz inequality to get
the extension and continuity results. The surjectivity result can be obtained exactly as
in the two-dimensional case.

Step 2. An intermediae result. There is no significant difference with the L-case.
Step 3. e general case. As in the L-case, only the strict outgoing x-extremal

points have a role. We must study the space W’((, e)), which we break down as
follows"

where V, and V, are defined as V and V (see 2.1) by simply replacing 2 by p.
The specific result concerning W’() can be stated as in the following lemma.
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LEMMA 4. The trace mapping 70 extends in a unique way to a linear continuous and
surjective mapfrom Wp’(D(rj, e onto Tp(F e ), D( crj, e ). /o is bijective and continuous

from V,p onto LePven(F(e), llnl) and from V, onto LPooo(Fe), l-lnl).
Proo We only point out the differences with the proof of Lemma 3 ( 2.1).

1,0(i) Traces offunctions in V,p. The Lp and Wp norms of such functions coincide.
With the notation of the proof of Lemma 3, we have

I(x,, x=)l aN I()l()ln,()l d

j

from which we deduce the identity

1,o

from this the first pan of the lemma is a direct consequence.
(ii) Traces offunctions in V,p. Keeping the notation of the proof of Lemma 3,

we write

[o-) (x, x(-)) axe, [;(), ],
0v

6(-)
x(-) 0X1

X(+) OV +4(+)= (x,,X2(+)) x,, [;, ;()].
d Xo(+) 3X

Using Holder’s inequality we get, if 1/p+ 1/q= 1,

i(.+)1 l(+)l/q (Xl, X2) d
ax(-) OX

Following the proof of Lemma 3, we easily get the two inequalities

( (, Ox

16(+)1(+)-/. a+ ax.
(, )

As -p/q 1-p, we finally get

I()l;t()-pd<21lwll WO

Lo(,(), -ln,I). To get the surje-which proves the continuity of o from V2 in
tivity result, we take exactly the same extension (2.28) as in the L:-case.

Explicit calculations give

I1 dx I()lZ()ln()[ d,, ) p+l

dx =2- I<)lt<)ln<)l e,
(, ) OX i()
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which proves that the map 4 v defined by (2.28) is a continuous extension operator
from 2 in V2,p. This completes the proof of Lemma 4.

From steps 1, 2, and 3, it is then easy to complete the proof of Theorem 3.
THEOREM 4. Let (p, q) in [1,)2 such that l/p+ l/q= 1.
(i) For any (, ) in Tp(F, ) x Tq(F, ) the limit

(3.6) lim Ondfv.p.xl Ond60 F()

exists and the bilinear orm (,)v.p. xa v &n d is continuous.

(ii) We have the following Green’s formula:
1,0 1,0

(3.7)
V(u, ) Wp () Wq ()

u+v dx v.p. x yoUyoVn d.
OXl OXl

Proof of eorem 4. This proof is very similar to that of Theorem 2. The only
point is to check that the spaces Tp(F, ) and Tq(F, ) are each other’s dual. To
obtain this property, take for instance 6 in LP(F(e), lln,[) and in Lq(F(e), l-q]n,])
such that and are zero in a neighborhood of j. We can write

By Holder’s inequality, we have

[O()[ql()-q/Pln,()[ d

Remarking that -q/p 1- q, we get, by density,

(3.8)

Reciprocally, it is also easy to prove that

v(O, ) L"(rA(), l’-Pl,ll d) x L"(F(), llnl d),
(3.9)

i)

With the help of (3.10) and (3.11) it is easy to conclude as in the proof of
Theorem 2.

3.2. The trace theorem in H’(). We first define the spaces H’(fl), when m is
an integer:

(3.11) Ilull=
=, 0x
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and the space H’(f) for s > 0, with the help of the interpolation theory (see [8]) in
Hilbert spaces:

(3.12) 0 ]0, 1[ Hm+’([-) [Hm’([-), Hm+l’([’)] o.

We define by this way a family of Hilbert spaces. If we set

I {x /:lXl s.t. (Xl, x) },

O(x) {Xl R/(x, x2) } when x2 e ,
it is not difficult to see that the space H’() can be characterized by:

(3.13) H’(O) {v L2(a)/v( ", x2) L2(I2 H(O(x)))}

and that the norm of H’(O) (given by the interpolation theory) is equivalent to the
norm

(3.14) Ilvll [ lie(’,
I2

We now define the trace spaces T(F, ) for s > by

T.(F, ) 2 1-2Zeven(F1,/1,1) =Loaa(F, [nl) aft< s 1,
(3.15)

T(F, )= T(F, ) if s 1,

which we equip with its natural Hilbert-space norm.
Our precise result is given in the following theorem.
THEOREM 5. e trace mapping o extends uniquely to a linear, continuous mapping

from H’(O) onto T(F, ) for any real s >.
Proof of eorem 5. The case s 1 is trivial and so we shall treat only the case

<s<l.
As for Theorem 3, we shall only indicate the technical differences from the proof

of Theorem 1.
Step 1. Case where n(s) has a constant sign. We use the notation of the proof of

Theorem 1. We use the trace theorem in H’(+),

to write that, if x Xe(s) e I2,

xz( ))l=<C(s)211u( x )[I 2
H(X,(s),+)

Integrating over x in I and using the change of variable xz Xz(s), we obtain

which gives the unique extension and continuity results. The surjectivity result is
obtained exactly as in the L case, thanks to interpolation arguments.

Step 2. An intermediate result. To obtain the equivalent of Lemma 2, we apply
u (see the proof or Lemma 2) for whichthe previous result to each of the functions

we have
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We have (with the same notation as in the proof of Lemma 2)

II,;,ull,:--< c(s)llull,,

II.;.u I1...o_-< c()( +
By interpolation we easily get

I1 u II,r.o_-< C(s)(1 + C(p))/llull,r,o
It is then easy to see that the result of Lemma 2 can be generalized to HS’(l) by
simply replacing (1 + C(p))/2 by C(s)(1 + C(p))/2.

Step 3. General case. The main difference with the L2 case comes from the study
of the space H’(l(o-j, e)). The essential of the proof is contained in the following
technical lemma.

LEMMA 5. Let s>1/2 and let u in Hs(O,L) be such that u(O)+u(L)=O; then we
have the estimate

lu(O)[-<_

Proof Let us use a particular representation of H(0, L). Let us introduce the
self-adjoint operator A in L2(0, L) defined by:

D(A)= ueH(O,L) (0)=xx(L)=0
(3.16)

du
dxz"

It is well known (see [11], for instance) that the form-domain of A is given by

D(A1/2) Hi(o, L)(3.17)

and that the spectrum of A is

The corresponding basis of eigenfunctions of A is given by

COS

Of course we have, for u =o unwn in D(A),

From the interpolation theory, we know that"

But as D(A/) H(O, L) by interpolation, D(A/) H(O, L) and we can write

(3 18) Ilull
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Now, let u(x) be a smooth function such that u(0)+ u(L)=0. There exists Xo such
that U(Xo)=0, so that we can write

n=l

Therefore,

n=l n=l

By Cauchy-Schwaz’s inequality, it follows that

t2sn=l n=l

which gives the lemma with C(s) 2
Now we break down H’(O(, e)) as

n,o(o(, ))= v7 + v,

v;= {u e H(a(, e))/p.p, x= X(-)= X(+),

As the L norm and the H’ norm of a function in V coincide, it is easy to see that
Levn(F(e), llnl).o is an isomorphism between and

With the help of Lemma 5, it is easy to prove that o is continuous from V in
2 --2sLoad(F(e),l nl). Finally, the surjectivity result is obtained exactly with the

extension operator defined by (2.28).
The complete result is proved by localization with the help of a paition of

unity.
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GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR INTERFACE
EQUATIONS COUPLED WITH DIFFUSION EQUATIONS*

YOSHIKAZU GIGA, SHUN’ICHI GOTOt, AND HITOSHI ISHII

Abstract. A weak formulation for an interface dynamics coupled with a diffusion equation is introduced.
A global-in-time weak solution is constructed for an arbitrary initial data under a periodic boundary
condition. The result applies to the interface equation obtained as a certain singular limit of some reaction-
diffusion systems including the activator-inhibitor model.

Key words, interface equation with diffusion equation, global existence, viscosity solution
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1. Introduction. In this paper we are concerned with interface equations coupled
with diffusion equations. A typical example is formally obtained as a certain singular
limit of a class of reaction diffusion systems [XYC]. Our main objective is to construct
a global-in-time weak solution for the initial value problem ofthese interface equations.

Let fl+/-(t) be two disjoint open sets in n depending on time t. The complement
of the union of l/(t) and ll_(t) is called the interface and denoted by F(t). To write
down the equation we assume that the interface F(t) is a smooth hypersurface so that
F(t) is the boundary of II+/-(t). Let V= V(t, x) denote the speed of F(t) at x F(t) in
the normal direction i from ll+(t) to fl_(t). Let K(=div ) denote (n-1 times) the
mean curvature of F(t) at x F(t). We consider an interface equation for F(t):

(1.1) V=W(v)-cK onF(t)

coupled with a diffusion equation for v v(t, x):

(1.2) /)t DAy + g+/-( v), x +/-( t), > O,

where c => 0 and D > 0 are constants. Here g+/- and W are given bounded continuous
functions on . We also impose a condition that v(t) v(t, is continuous in n with
its first derivatives, i.e.,

(1.3) v(t) v(t," cl(n) for > O.

Our goal is to construct a global solution of the initial value problem for interface
equations coupled with diffusion equationsma typical example of which is (1.1)-(1.3).
It is intrinsically difficult to construct a global solution (II+/-(t), v(t))t>_o since F(t) may
have singularities in finite time. If v is a constant so that g+/-(v) =0, (1.1)-(1.3) becomes

(1.4) V= C-c,

where C is a constant. If C 0 and c > 0, (1.4) becomes

(1.5) V -cu,
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which is called the mean curvature flow equation. Even for (1.5) Grayson [Gr] gives
an example of a barbell in R with a long, thin handle that actually pinches off in
finite time. To track the whole evolution of interface we interpret F(t) as a level set
of viscosity solution of some second order evolution equations as in [CGG]. In fact
Y.-G. Chen and the first two authors [CGG] constructed a unique global weak solution
with arbitrary initial data for a class of interface equations, including (1.4) and (1.1),
where v only depends on time (see [GG1] for interface equations that the theory in
[CGG] applies to). At nearly the same time, Evans and Spruck [ES1] constructed the
same solution but only for (1.5). Another formulation closely related to [CGG] and
[ES1] is given in IS]. We refer to [ES2] and [GG2] for further development of the
theory and references. We note that the idea of using level sets of viscosity solutions
for V C is also found in an unpublished paper of Barles [B].

Although the interface equation admits a global weak solution, F(t) may develop
an interior (Remark 2.5). We introduce a generalized formulation of (1.2)-(1.3). For
technical reasons we impose a periodic boundary condition. In this paper, we construct
a global weak solution of the initial value problem for (1.1)-(1.3) with arbitrary initial
data (F(0), v(0, x)), v(0, x) C 2 under the periodic boundary condition (Theorem 4.6).
(We may assume D-- 1 without loss of generality.) For this purpose, for a given v, we
construct a unique global weak solution for (1.1). The basic idea is the same in [CGG],
but we are forced to use results in [GGIS] since v may depend on x as well as t. We
solve (1.2)-(1.3) with the above v and l)+(t) determined by (1.1) with the initial
condition. If we write the solution by w, we have a mapping v-- w. Since our weak
formulation forces us to interpret the mapping v- w as a multivalued mapping, we
use Kakutani (-Ky Fan’s) fixed point theory (see [AF]) to get a global generalized
solution as a fixed point of the mapping v - w. Our results apply to the system (1.2),
(1.3) with (1.1) replaced by more general interface equations, including anisotropic
motion (cf. [Gull, [Gu2], [C]). We do not know the uniqueness of our solutions.

Let us mention some results on (1.1)-(1.3) that are related to ours. In [XYC],
X.-Y. Chen constructed a unique local smooth solution for a smooth initial data
(F(0), v(O,x)) in Rn when c>0. When n 1, the curvature term in (1.1) disappears.
Hilhorst, Nishiura, and Mimura [HNM] constructed a global unique solution for
(1.1)-(1.3) when the interface is a point and n 1 under the Neumann boundary
condition. Their interface is C in time. After this work was completed, we learned of
the recent paper of X. Chen [XC2], which extends the local existence results [XYC]
to the case c 0. Our result seems to be a first global result even for (1.1)-(1.3) with
c>0 or c=0 when n> 1.

Interface equations and reaction-diffusion equations are closely related (see IF]).
Typical examples of the system (1.1)-(1.3) are formally provided as a singular limit
of reaction-diffusion equations (see [OMK] and [XYC]). We will explain it more
explicitly by following [XYC]. We consider a reaction-diffusion system describing the
activator-inhibitor model:

1
(1.6) u,=eAu+--f(u,v), x", t>O,

(1.7) vt= DAv+g(u, v), xE",

with

t>0,

f(u, v)=fo(U)-V, fo(U)=U(1-u)(u-a),

g( u, v) u yv,



WEAK SOLUTIONS FOR INTERFACE EQUATIONS 823

where 3’ > 0, 0 < a < 1, and e is a small positive parameter. The zero set of f consists
of three branches

u=h_(v) foru<a_,

u=h+(v) fora+<u,

u=ho(v) fora_<u<a+,

where a_ <a+ andf[(a_)=f(a+)=O. When e -0, it is expected that u tends to h+(v)
in some region l)+(t) in R" since h+(v) is a stable zero of u, =f(u, v). From (1.6), it
is also expected that the interface F(t) moves by (1.1) with c= e. Here W(b) for b,
fo(a_) < b <fo(a+) is the speed of the travelling wave of

ut Au +f(u, b)

and is given by

1
W(b) =--(h+(b) + h_(b) ho(b))

(see Aronson and Weinberger [AW]). The equation (1.7) now becomes (1.2) as e- 0
by taking g+(v)= g(h+(v), v). For more details we refer to [OMK] and [XYC] and
references therein. We note that anisotropic interface equations are also derived by a
singular limit of some reaction-diffusion equation [C].

Extensive literature exists on the behavior u as e$0 in (1.6) and its relation to
the solutions of interface equation when v is given and the space dimension n 1 (see,
e.g., [FH], [BK], [CP]). Recently, some results were extended to the case n > 1, where
the curvature effect comes in. If v is a constant and W(v)=0, (1.6) is called the
Allen-Cahn equation, whose relation to (1.5) with c> 0 is rigorously analyzed by
Bronsard and Kohn [BK] and DeMottoni and Schatzman [DS]. X. Chen [XC1]
extended results of [DS] and simplified the argument. After this work was completed,
we learned that X. Chen [XC2] derived (1.1)-(1.3) with c 0 rigorously as a singular
limit of (1.6)-(1.7). There is also an argument to interpret the case c e > 0 in [XC2].
His method is an extension of his work [XC1]. All results in [BK], [DS], [XC1],
[XC2] assume that the solution of the interface equation is smooth enough to get the
behavior of u as e $0. Very recently we learned that Evans, Soner, and Songanidis
[ESS] obtained the behavior of u even after singularities appear on the interface for
the Allen-Cahn equation.

In 2 we solve a general interface equation including (1.1) for a given function
v globally in time under a periodic boundary condition. In 3 we give a generalized
formulation of (1.2)-(1.3). In 4 we state our main existence results and prove them
by a fixed point argument. In the Appendix, we state a stability property of the viscosity
solutions used in 4.

After this work was completed, X.-Y. Chen kindly informed us that he had found
another proof for global existence for (4.1), (4.2), (4.3’) with c > 0 without using a
fixed point argument for multivalued mappings.

2. Interface equations. We consider interface equations under periodic boundary
conditions. The periodic boundary condition is important because it is often used in
numerical experiments. For ai > 0 (1 _-< -<_ n) let R be a rectangle in Rn of the form

R ={(Xl,. ", Xn)En; O<=xi<= ai, 1 <= <-_ n}.

We identify faces xi =0 and xi c(1 _-< <_-n) of R to obtain an n-dimensional flat
torus . Motion of interfaces in R under periodic boundary conditions is interpreted
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as the motion in T. We consider T rather than R for later technical convenience
because ql- is compact and has no boundary.

Let 12+(t) be an open set in ql- depending on time >- 0 such that f/(t) f-) f_(t) b.
Let F(t) denote the complement of f+(t)U f_(t) in . Physically speaking, F(t) is
called an interface bounding two phases 12+(t) of material, e.g., solid and liquid region.
Suppose that F(t) is a smooth hypersurface, and let ti denote the unit normal vector
field pointing from l)+(t) to l)_(t). Let V= V(t, x) denote the speed of F(t) at x F(t)
in the direction ti. It is convenient to extend ti to a vector field (still denoted by a) on
a tubular neighborhood of F(t) such that a is constant in the normal direction of F(t).
The equation for F(t) that we consider here is of the form

V:(t,x,,V)
(2.1)

:=n(,V)+o(t,x,) on F(t),

where 7 and to are given functions and V stands for the spatial gradient in -. A typical
example is

(2.2) V -c div ti + to( t, x),

where c is a nonnegative constant and to is independent of ti. Equation (2.2) is called
the mean curvature flow equation if c > 0 and to 0. The reason we consider general
(2.1) is to include anisotropic motion as in [Gull, [Gu2].

Next, we introduce a weak formulation for (2.1) following [CGG], [GG1]. For
7 we set

(2.3)
F,(p, X) := -Iplr(-P, -Q:(X)), :-p/lp[,

Qg(X) RXR with Rg I-/5(R)/

where p e Rn\{0} and X e N, the space of n x n real symmetric matrices. We also set

(2.4) Ft(t,x,p,X):= fn(p,X)-to(t,x,-)lp I.
For example, a calculation shows

(2.5) Fn(p, X)= -c trace ((I-p(R)p)X)

if

(2.6) r/(ti, V)=-c div ri

as in (2.2). The following definition of weak solutions for (2.1) is a variant of that in
[CGG], [GG1]. For the definition of (viscosity) sub- and supersolutions and viscosity
solutions; see, e.g., [GGIS].

DEFINITION 2.1. Let {+(t)}o<__t<T be a one parameter family of open sets in ql-

such that f+(t) f’l f_(t) th. Suppose that there is a viscosity solution u e C([0, T) x )
of

(2.7)

such that

(2.8)

ut+F#(t,x, Vu, V2u)--O in (0, T)x$

We say {+(t)}o<=t< T is a weak solution of (2.1) in (0, T) with initial data 1:(0). Here
F is defined by (2.3)-(2.4).

+(t)={x";u(t,x)0} for0--<_t<T.
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Roughly speaking, if (2.1) is parabolic (not necessarily strictly parabolic), and r/

grows linearly in V ri, then we can claim the unique global existence of weak solutions
for (2.1) with given initial data f+(0), provided that r/ and to are continuous. If to is
independent of x and ql- is replaced by ", the unique global existence is now well
known if one of (0) is bounded (of. [CGG], [GG1]). We now list our assumptions
on r/ and to:

(2.9)

(2.10)

r/ is a real valued continuous function on the vector bundle

E {(/5, Qp(X));/5 Sn-l, X n}

over a unit sphere S"-1.

q(-p, -Q(X)) >= q(-p, -Q(Y)) for x -> Y,
where $, is equipped with usual ordering.

(2.11)

(2.12)

/
lim inf p inf rt |-/5,

p,l,o I#1=1

sup p suplimo+o ipl=l

to is continuous from [0, T)x -x S"-1 to with a bound on [Vto[.
All assumptions on 7 are found in [GG1]; (2.10) means that -r/is degenerate elliptic
and (2.11) restricts the growth of 7 in VI. The only assumption for to is (2.12).

THEOREM 2.2. Assume (2.9)-(2.12) for 7 and to. Let 12+(0) be mutually disjoint
open sets in -. Then there is a unique global weak solution {:(t)}o<__,<T of (2.1) in
(0, T) with initial data f+(O). (The case T o is included.)

The basic idea of the proof is the same as [CGG, Thms. 6.8, 7.1]; see also [GG1]
for the relation between assumptions on r/ and Fn. The major technical difference is
that the comparison theorem in [CGG] does not apply to (2.7) because F depends
on x. Instead we apply [GGIS, Thm. 4.1] to get a comparison principle for (2.7). For
the reader’s convenience, we state a version of the comparison principle which follows
from [GGIS, Thm. 4.1] and give a brief proof of Theorem 2.2.

PROPOSITION 2.3. Assume (2.9)-(2.12). Let u and v be, respectively, (viscosity) sub-
and supersolutions of (2.7). Assume that u and v are, respectively, upper and lower
semicontinuous functions on [0, T)x q]-. If

u(O, x) <= v(O, x) on

then u( t, x) <= v( t, x) on [0, T) x T.
Proof To apply [GGIS, Thm. 4.1] we extend u, v, and to periodically in space

variables outside R and regard (2.7) as

u,+Fe(t,x, Vu, V2u)=O in(0, T’]xN",

where T’ is an arbitrary positive number less than T.
We first check assumptions of equation in [GGIS]. By (2.9)-(2.10) we know

satisfies all assumptions on F in [GGIS, Thm. 4.1]. Except for the boundedness of
F,(p,X) on a bounded set in (E"\{0})XSn, the proof is found in [GG1]. This
boundedness of Fn can be proved similarly to the proof of [GG1, Lemma 3.5].

By (2.12) we see to is continuous in [0, T’]xE" x S"-1 with a bound on Iv,ol so

F satisfies the uniform continuity assumption in x of [GGIS, (F8)]; there is a modulus
r (i.e., r: [0,) [0, c) is continuous, nondecreasing and o-(0)= 0) such that

IFe(t, x, p, X)- Fe(t, y, p, X)[ <-_ cr(lx- y[([p[+ 1))



826 YOSHIKAZU GIGA, SHUN’ICHI GOTO AND HITOSHI ISHII

for x, y oR", c [0, T’], peR"\{0}, X c $,. All other assumptions on F in [GGIS,
Thm. 4.1] are fulfilled since w satisfies (2.12) and Fn satisfies all assumptions on F.

Since u and v are extended periodically and R is bounded, it is not difficult to
see that u and v satisfy all the assumptions of [GGIS, Thm. 4.1].

We now apply [GGIS, Thm. 4.1] to conclude u _-< v on [0, T’] x ". Since T’ < T
is arbitrary, the proof is complete.

Proof of Theorem 2.2. (Uniqueness.) Suppose that u, v C([0, T) x T) solves
(2.7) such that

ta+/-(0) {x c qr, u(0, x) 0} {x c qr; v(0, x) <> 0}.

By [CGG, Lemma 7.2] there is a continuous nondecreasing function 0:- with
0(0) 0 such that

u(O,x)<-_o(v(O,x)).

Since Fe is geometric, i.e.,

Fe(t, x, Xp, AX + trp(R)p) AFt(t x, p, X)
(2.13)

for h>0, crc, to(0, T), xc q]-, p oR"\{0}, Xc,,

by [CGG, Thm. 5.2] we see O(v(t, x)) also solves (2.7). From Proposition 2.3, it follows
u <- 0(v) on [0, T) ql-. Thus, we observe that u > 0 implies v > 0 and v < 0 implies
u < 0. A parallel argument yields the converse implication so f+(t) is determined by
12+(0) and is independent of the choice of u. This proves the uniqueness of weak
solutions.

(Existence.) For given 12+(0), we take Uo(X) C(-) such that

+/-(o) (x c -; Uo(X) 0}.

Since (2.11) is assumed, we may apply [CGG, Prop. 6.4] to (2.7) in [0, T’] R" with
periodic initial data and find sub- and supersolutions v_, v+ of (2.7) on [0, T’]
such that

v(O, x) Uo(X) on "
v_( t, X) <= Uo(X) V+( t, X) on [0, T’]

where T’< T. The dependence of x in Fe is allowed in [CGG, Prop. 6.4]. A trivial
modification of the argument enables us to take v_, v/ as functions on [0, T’]

Existence of v: yields a viscosity solution u C([0, T’] ) of (2.7) with u(0, x)
Uo(X) by Perron’s method and Proposition 2.3. Since T’ < T is arbitrary and the solution
is unique, we now obtain a weak solution {f+(t)}o<__,<r for initial data 12+(0).

Note that the scaling property (2.13) is also used to construct v+/-.

Remark 2.4. The family {f/(t)} is determined by f/(0) and is independent of
_(0). Indeed, if u solves (2.7) with (2.8), then O(u) solves (2.7) for continuous
nondecreasing 0 :R since F is geometric. Take 0(tr)= tr+ max (or, 0) to observe
that u/ O(u) solves (2.7). By (2.8) u/ gives a weak solution {f’. (t)}0__<,<r with initial
data (1+(0), th). By the definition of u/, we see f_(t) l+(t) and f’_(t)= b. We thus
observe that fl+(t) is determined by f+(0).

Remark 2.5. The interface F(t) is defined by the complement of +(t)U _(t) in. There is a chance that F(t) develops an interior even if F(0) is a smooth hypersurface
in T. For example, consider the equation V =-1 and

R {(Xl, x2) c 2; 0 x 2, 0_-< x2<= 2}.
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Suppose that

+(0) {x -; Xl }, _(0)=
so that F(0)={xl=l}. Then +(t)={xe-;O<-x<=2,[xl<-_l]>t} and _(t)=b.
Indeed, equation (2.7) for this example is

(2.14) u,+[Vu[ =0.

By the definition of viscosity solutions, we can check that
0 for [X 11 _--< t,

(2.15) u(t,x)= xa-l-t, forxl-l>t(x2),
1-x-t forxl-l<-t

is a viscosity solution of (2.14) on (0, c)x . We now observe that fl+(t) is given by
(2.8) with u of (2.15).

For the mean curvature flow equation

V =-div ,
we do not know whether or not F(t) develops an interior if F(0) is a smooth hyper-
surface. As pointed out in [ES1], we know F(t) may develop an interior if F(0) has a
singularity.

3. Diffusion equations across interfaces. This section gives a generalized formula-
tion of

(3.1) vt=Av+g+(v) in Q= IO {t}xi)+(t),
0<t<T

v(t) := v(t," C1($) for 0 < < T,(3.2)
where

(3.3) O {(t, x) O; u(t, x) 0}, O (0, ’)
with some function u C(QT). The interpretation of the equation on the interface is
crucial.

We introduce a multivalued function associated with continuous function g+(
For (s, tr) 2, we define a closed interval (s, tr) such that

{g+(r)} if s>0,
(3.4) (s, o’)=[g(o’),g(cr)] if s=0,

({_(o’)} if s<0,

where g(tr)=min(g+(tr),g_(tr)),g=max(g+,g_). This correspondence defines a
mapping "22a. For u, v C(tT) we define a subset G(u, v) such that

(3.5) G(u, v)= {q L(QT); q(z) (u(z), v(z)) I.e. z QT},
where z= (t, x). This correspondence defines a mapping G" C((T) C(QT) 2t(0.

DEFINITION 3.1. Suppose that u C(QT) is given and the QT is defined by (3.3).
Suppose also that g+/-’ is continuous. We say v C(QT) is a generalized solution
of (3.1)-(3.2) if

v,-Av G(u, v) in QT

i.e., there is q G(u, v) such that

v,-- A v q in QT
in the distribution sense. Since G(u, v) depends on u only through its signature, this
definition depends only on Q and is independent of the choice of u.
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PROPOSITION 3.2. For u, v C(QT) the set G(u, v) is a nonempty, bounded convex
subset ofL(QT).

Proof. Since @(s, r) is convex in R,
Aql(z)+(1-h)q2(z)e(u(z), v(z)) for a.e. z

if ql, q2 a(u, v) and 0< h < 1. This implies that hql +(1 -A)q2E G(u, 1)) SO G(u, v)
is convex in L(QT).

The Borel measurable function

q,(s, ) x(-,o(S)g-() + Xo,oo(s)g+()
on R2 satisfies O(s, or) (s, r) for all s, creR, and therefore (u, v)e G(u, v).

Since g+ is locally bounded, we see G(u, v) is bounded in L(QT). U
LEMMA 3.3. Suppose that Um U in C QT) and that Vm -- V in C QT). Suppose that

qm G(um, Vm). Then there is a subsequence {mj} and q G(u, v) such that qmj-- q
*-weakly in L(QT).

Proof Since g+ is continuous, t_J= G(um, Vm) is bounded in L(QT). In par-
ticular, {qm} is bounded in L(QT). By the Banach-Alaoglu theorem, {qm} has a .-weak
convergent subsequence (still denoted {qm}), i.e.,

qm---" q *-weakly in L(QT).
In particular qm q weakly in L2(QT) since QT is bounded. Applying Mazur’s theorem
(see, e.g., [Y]), we see that there is A,..., hmm > 0 with

l,n

=1
j=m

such that

m := Y A qj - q strongly in L2(QT)
j=m

Taking a subsequence if necessary we may conclude

(3.6) m(Z)
We fix z QT such that (3.6) and

(3.7) qm(Z)

Suppose that u(z)=0. By (3.4) and (3.7)

(3.8) qm(Z) [g(Vm(Z)), g(Vm(Z))]

for a.e.z.

for all m _>- 1.

m(Z)(a-e,b+e).

q(z)6(a-e,b+e).

Since e > 0 is arbitrary, this implies

(3.9) q(z) [g(v(z)), g(v(z))].

From (3.6) it follows that

By (3.8), we now observe that

since {g+/-(Vm(Z))} lies in the interval in (3.8). Since g and are continuous and
Vm(Z)" V(Z), for each e >0 there is mo such that if m>=mo, then

[g(Vm(Z)), g(Vm(Z))]C (a--e, b+ e)

with

[a, b] := [g(v(z)), g(v(z))].
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Suppose that u(z)>0. For sufficiently large m, say m >_-mo, we may assume
Urn(Z) > 0. It follows that

(u,,(z), v,,(z))= {g+(v,(z))} for m-> mo.

By (3.7) we have

(3.10) q,,(z) g+(v,,(z)) for m--> mo.

Since tm(z) q(z) by (3.6) and g/ is continuous, (3.10) yields

(3.11) q(z)=g+(v(z)).

The proof for u (z) < 0 parallels that for u (z) > 0. By (3.9) and (3.11) we can conclude
that

q(z)(u(z), (v(z)) a.e. z

which completes the proof
COROLLARY 3.4. The set G(u, v) is weak compact in L(QT).
Proof By Lemma 3.3 we see G(u, v) is weak sequentially closed. Since G(u, v)

is bounded by Proposition 3.2 and since the predual LI(QT-) is separable, we can drop
the word "sequentially." The boundedness of G(u, v) now implies that G(u, v) is
weak compact.

Remark 3.5. The condition (3.2) is implicit in Definition 3.1. We will see that all
generalized solutions v have the regularity property (3.2).

4. Main results. We consider a system (3.1)-(3.2), coupled with an interface
equation"

(4.1) l)t--Al)-g+(1) in Q-= (_J {t}xfl+/-(t),
0<t<T

(4.2) v(t) v(t," CI(]]-) for 0 < < T,

(4.3) V=’0(, Va)+ W(v)a(a) on F( t) =-\(f+( t) t_J l)_( t)),

with given initial data

(4.4) v(0, x) Vo(X) in ql-,

(4.5) +(t)[ t=o-- K+/-(O).

Here we assume that

(4.6a) g+ "R- R is continuous and bounded,

(4.6b) satisfies (2.9)-(2.11),

(4.6c)

(4.6d)

W’ is locally Lipschitz continuous,

19l" Sn-1 .--) is continuous.

We say (f+(t), v(t)) is a weak solution of (4.1)-(4.5) if {l)+(t)}o_<_,< is a weak
solution of (4.3), (4.5) with v6 C(Qr) and v is a generalized solution of (4.1)-(4.2)
with (4.4); see Definitions 2.1 and 3.1. We now state one of our main results.
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THEOREM 4.1. Let T> O. Assume that g+/-, *l, W, a satisfy (4.6a-d). Suppose that
+(0) and f_(O) are mutually disjoint open sets in - and that Vo(X) C2(q]). Then there
exists a (global) weak solution (+/-(t), v(t)) of (4.1)-(4.5) such that vCI’(OT)=
{v C(Qr); Vv C(QT)}.

Remark 4.2. We note that (4.3) includes

(4.3’) V -c div ti + W(v), c >= 0

as a special example. If (4.3’) replaces (4.3) in (4.1)-(4.5), then it is known that there
is a unique smooth local solution. This is proved by X.-Y. Chen [XYC] for c > 0 and
by X. Chen [XC2] for c 0 where R" replaces ql-. Our result is the first global existence
result ever for this special system if the space dimension n -> 2. For n 1 see [HNM].

We shall construct a solution using Kakutani’s fixed point theory for a multivalued
mapping. We take a Banach space

X :’-" CI’0(0T).
For v X we solve (4.3), (4.5) by applying Theorem 2.2. Since v can be extended as
an element of C’ for > T, we have a unique weak solution {f+/-(t)}o__<__<r for (4.3),
(4.5) with given 1)+(0). If we set

Qr

then we have a mapping

u {t} xa (t),

where denotes the set of disjoint pair of open sets in [0, T] T.
For q L(Qr), let w E (q) be the unique solution of

w,-Aw=q in Qr
(4.7)

w(O, x) Vo(X) c (qr).

By the parabolic theory [LUS], E defines a continuous affine map from L(Qr) to
f3 p> 1W’(Qr), which is continuously embedded in X by the Sobolev inequality. Thus

E. x
is a continuous affine operator. For u, v C(Qr), we define a subset of X by

g(u, v)= {E(q); q 6 G(u, v)}.

This correspondence defines a mapping

g" C( Or) x C( Or)--> 2 x.
For given (0-, t))E if, we take u E C(Or) such that

(={(t,X) GOr;u<>0}.

Since G depends on u through its signature, we may regard the mapping as

g’Ux C(Or)- 2x.
For given o and +/-(0), we define

.X2x
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by 5e(v) (g(v), v). If has a fixed point 5X, i.e.,

we observe that (+(t), fi(t)) is a weak solution of (4.1)-(4.5), where

(e) U {t}
OtT

We shall prove that has a fixed point.
PROPOSITION 4.3. e set (u, v) is nonempty, compact and convex in C(Qr) (and

in X).
Proo Since E defined by (4.7) is ane and G(u, v) is nonempty and convex by

Proposition 3.2 we see that (u, v) is convex.
We next observe that E is continuous from a bounded set of L(Q) (equipped

with weak, topology) to X. Indeed, ifq q, weakly in L(Qr) then (E(q)} has
a weakly convergent subsequence in Wp" (Qr) for p 1. Since the inclusion

(4.8) W’(Qr) X Cl’(Or) is compact if p n + 1

(see, e.g., [LUS]), E(q) w strongly in X by taking a subsequence. Since w E(q)
satisfies

w solves

(at- A)wn qm in Q-, w.(O,x)=vo(X),

(ot--A)w=q in QT

in the distribution sense with w(0, x)= Vo(X). This implies w= E(q). Since the limit
w is independent of the choice of subsequences, we observe that

E(q,,) --> E(q) in X.

This sequential continuity implies the continuity on a bounded set of L(QT).
Since G(u, v) is weak. compact in L(Qr), the continuous image of G(u, v) is

compact. The above continuity of E implies that (u, v) is compact in C(Qr) as
well as in X. El

Since g+/- is bounded by (4.6a), we see that

U G(u, v)
u,vC(OT)

is bounded in L(QT). Therefore, by the parabolic theory for (4.7) [LUS],

2,,< M} p> 1

if M is taken sufficiently large. We fix p > n + 1 so that K is compact in X by (4.8).
The mapping .90 is now interpreted as

y: X- 2:"
The graph of Y is defined by

gr 5 {(v, w); w 5(v)} c X x K.

Since K is compact, gr 5 is closed if and only if Y is upper semicontinuous. For the
definition of upper semicontinuity see [AF].

PROPOSITION 4.4. The set gr Y is closed in X x K.
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Proof Suppose that Vm, V X, Wm ’J(/)m), We X such that Vm-* V in X and
-* w in X. Our goal is to prove w O(v). By the definition of weak solutions for

(4.3), there is a viscosity solution Um C(QT) of

with

such that

u, + Fro(t, x, Vu, V2u) =0 in QT-

Fm(t, x, p, X)- F,(p, X)- W(v(t, x))a(-P/IPl)IP[

-(v,) ({u,.(t, x) > 0}, {u,,,(t, x) < 0}).

We can arrange u.,(0, x)= Uo(X) independent of rn such that

(o) {x qr; Uo(X) x 0}.

Since v., - v in X, by the stability of viscosity solutions, there is u C(QT) such that
u.,-* u in C(QT) and u solves (in the viscosity sense)

u,+F(t,x, Tu, 72u)=O in Q

with F( t, x, p, X)= Fn(p, X)- W(v(t, x))a(-p/[p[)[p[ (see the Theorem in the Appen-
dix), where u(0, x)= Uo(X). This implies

(4.9) -(v) ({u > 0}, {u < 0}).

By the definition of there is qm G(u.,, v.,) such that

(Ot- A)Wm qm in Qr,
(4.10)

Wm(O X)= V0(X on .
Applying Lemma 3.3, we may conclude that

qm q ,-weakly in L(Q)

with some q G(u, v) by taking a subsequence if necessary. Since Wm-* W in X, (4.10)
implies that

(0t-A)w=q in

in the distribution sense, and

w(O,x)=vo(X).

This yields w oW(v) by (4.9) so that the proof is now complete.
Proof of Theorem 4.1. Since K is compact and convex, by Propositions 4.3 and

4.4 we can apply the following fixed point theorem to conclude that there is g 0(5) fq K.
By the definition of S, we see together with -() is a desired weak solution of
(4.1)-(4.5).

KAKUTANI’S FIXED POINT THEOREM [AF, THM. 3.2.3]. Let K be a convex compact
subset of a Banach space X and b X -> 2I(. If is upper semicontinuous and Sf(v) is a
nonempty convex closed set in K for v X, then ST has a fixed point K f’l 6f( 3).

Remark 4.5. The assumption Vo(X) C2(-) in Theorem 4.1 is weakened as Vo(X)
W2-2/P(), p > n + 1 because the regularity condition on Vo is only used to solve (4.7)
in Wp2’I((T).

We conclude this paper by stating an existence result of a global solution on the
time interval (0, 00).
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THEOREM 4.6. Assume the same hypotheses of Theorem 4.1 for g+, 1, W, a, 12+(0).
Suppose that Vo W2-2/P(-) for p > n + 1. Then there exists {(fl+(t), v(t))}t=>o which is
a weak solution of (4.1)-(4.5) for arbitrary T> O.

Proof For fixed T> 0 by Remark 4.5 there is VT such that VT 5(VT). This implies

with

(Ot--A)VT qT in

v-(O,x)=vo(X),

qT I,.J G( u, v).
U,DGC(OT)

Since g+ is bounded by (4.6a) we observe that

Iqlo -< M sup [g+(r)[.

By the parabolic regularity theory [LUS], {VT}T_->I is bounded in W2p’(Qto)(p > n+ 1)
for each to>0. By (4.8) and a diagonal argument, there is a subsequence {vT-,} and
v C([0, ) x) such that

(4.11 vT,-> v in Xto C 1,0(Oto)"
Since VT,(VT,)CXto and grA is closed, (4.11) implies v(v)CXto where
depends on to. Since to is arbitrary, this yields a desired global solution on [0, ).

Appendix. We shall state stability properties of viscosity solutions used in the
proof of Proposition 4.4 for the reader’s convenience. We use the following notation.
For hm L-> R, L Z we define

lim h,," L-> R U {-},

by

and

li,rn h,,)(z) lim inf{hj(y), d(z,y)<e,j>-m, yeL}
mec

lib hm -lim (-hm ),

where Z is a metric space with metric d. If h is independent of m, we write h, lim, h,,
h*= lim* h,,. We shall suppress the word "viscosity."

LEMMA. Suppose that Fm’QT xnxn is lower semicontinuous and that F
lim, F,,,. Suppose that Um is a subsolution of

utWFm(t,X, VU, V2U)--O in QT.

Then u lim* U is a subsolution of
U "4r- F( t, x, V u, V2

U 0 in QT,

provided that u does not take +o in QT.
Similar results are proved by Barles and Perthame [BP] for first-order differential

equations and formulated in Ishii [I] in the general case. Since the proof is easily
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modified for our setting, we omit the proof. The following is a simple application of
the lemma, the comparison Proposition 2.3, and construction of sub- and super-
solutions.

TIrOREM. Suppose that q, W, ce satisfy (4.6b-d). Suppose that v, v in X. We set

F,, F(p, X)- W(v(t,

F= Fn(p, X)- W(v(t, x))(-p/lpl)lpl,

where Fn is defined by (2.3). Suppose that u,, C (Q7‘) is a solution of

(1) ut+F,,(t,x, Vu, V2u)=O in Qr

with um(O,x)--Uo(X)G C(-). Then Um--U in C(QT) for some u C(QT) and u is a
solution of

(2) u, + F(t, x, Vu, V2u) =O in Q7‘

with u(O, x) Uo(X).
Proof Since v,, v in C(QT-) there are bounded sub- and supersolutions w of

(1) such that

w(O,x)=uo(X),
(3)

w_( t, x)<= Uo(X) <-_ w+( t, x) in Q7‘
Q

and that w+ is independent of m; see [CGG, Prop. 6.4] and the proof of Theorem 2.2.
By Proposition 2.3 we see that

(4) w*_ <Um < W+. in 07‘.

Since u, is a subsolution of

Ut+(Fm).(t,x, VU, 72U)=0 in 07"

by definition, applying the lemma yields that lim* U is a subsolution of

u,+F.(t,x, Vu, V2u)=O in QT‘.

(This is the definition that t7 is a subsolution of (2).) Similarly _u =lim. Um is a
supersolution of

ut + F*(t, x, V u, 72u) 0 in QT"

By (3) and (4) we observe that

a(O, x)= _u(O, x) uo(x).

Applying Proposition 2.3 implies t =_u and u t7 is a solution of (2). The property
t7 =_u implies that U "-> U in C(QT). The proof is now complete. U
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ON A NONLINEAR ELLIPTIC-PARABOLIC PARTIAL
DIFFERENTIAL EQUATION SYSTEM IN A TWO-DIMENSIONAL

GROUNDWATER FLOW PROBLEM*
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Abstract. In this paper a nonlinear elliptic-parabolic system which arises in a two-dimensional
groundwater flow problem is studied. Abstract results on evolution equations are employed to ob-
tain existence and uniqueness results. Regularity and stability properties of the solution are also
considered.
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equations
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1. Introduction. Let t E R2 be a bounded domain with smooth boundary. In
this paper we study the following nonlinear elliptic-parabolic system:

-Av Ou(E) v--O
in 12 x (0,
on O (0,

Otu + divF 0
(P) . P 0

o) u0(.)

in flx (0,
on Of x (0, oo),
in ft.

Here we have
F ’u D. grad u,

’-- curl v,
D (D),

where Dij(q, q2) are uniformly Lipschitz continuous functions on R2.
This system arises in the description of the movement of a fluid of variable den-

sity (u) through a porous medium under the influence of gravity and hydrodynamic
dispersion. In 2 we set up the model and we discuss the physical background.

In a slightly different form, Problem (E), (P) was studied by Su [16] using classical
partial differential equation (PDE) methods. In this paper we present an approach
in the spirit of abstract evolution equations in Banach spaces. This turns out to be
quite efficient because of the particular form of the problem.

We consider two cases of the model separately. In the first (approximate) case we
take Dij 5i (5i is the Kronecker symbol). Then the system can be considered as a
semilinear evolution equation. Clearly, there are many results on abstract semilinear
evolution equations, and these results can be well applied to partial differential equa-
tions of parabolic type; see, e.g., Friedman [7], Henry [9], Pazy [12], or von Wahl [19].
Here we choose one theorem from von Wahl [20], which fits precisely to the abstract
formulation of Problem (E), (P) with constant (D). By this theorem we obtain the
global existence of the solution in LP(Ft). This is done in 3. There we also study the

Received by the editors November 28, 1990; accepted for publication (in revised form) November
8, 1991.
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regularity and asymptotic properties of the solution. We show that the solution is in
fact a classical solution of (E), (P), and u converges to the mean value in sup-norm
as t cx. A first draft of 3 was made by de Roo [13].

In 4, we study the full problem, i.e., D is nonconstant and velocity dependent.
Then the abstract formulation leads to a quasilinear evolution equation. The abstract
results on such equations are not as complete as the results on semilinear equations.
Moreover the application to partial differential equations is much harder. In this
paper we use the framework of quasilinear evolution equations due to Amann [2],
see also Sobolevskii [15]. As a result, we obtain local existence of weak solutions in
wl’p(f). As for this moment, we are not able to obtain global existence. Because
the coefficients Dij are not differentiable at the origin, see (2.13), we can not expect
to have classical solutions.

2. The physical background. Let gt (-L, L) x (0, H), with L, H > 0, denote
a rectangular region in the xl, x2 plane which is occupied by a homogeneous and
isotropic porous medium. This medium is characterized by a permeability , E (0, c)
and a porosity E (0, 1). It is saturated by an incompressible fluid. The fluid
is characterized by a constant viscosity # (0, c) and a variable density p (or a
specific weight "7 Pg, where g is the accelaration of gravity). Here the coordinate
system is chosen such that the gravity is pointing in the negative x2-direction. A
typical example of this situation arises in the flow of fresh and salt groundwater in
a two-dimensional vertical aquifer. In this application it is natural to assume that y
satisfies

(2.1) 0 < ")’f <_ ’(Xl, X2, t) _< ")’s /(Xl, X2, t) @ X (0, OO).

Here yf and "8 are constants, denoting the specific weight of the fresh and the salt
groundwater, respectively.

The basic equations for flow in a porous medium are the continuity equation

(2.2) div ’- 0 in

and the momentum balance equation (Darcy’s law), see, e.g., Bear [5],

(2.3) tt,+ grad p + 7’2 0 in t x (0, cx).

Here we denote by the vector ’ the specific discharge of the fluid and by the scalar
p the fluid pressure. Finally, ’2 denotes the unit vector in the positive x2-direction
(i.e., pointing upwards).

In this paper we are interested in describing the distribution of the specific weight
y in the domain f under the action of gravity and hydrodynamic dispersion, without
any other influence from outside. Therefore, we impose on the boundary 0t the
no-flow condition

(2.4) ’.
where g is the outward normal unit vector on Oft.

For a given specific weight distribution -),, (2.2)-(2.4) determine the discharge
field ’. To obtain a single equation for this relation we can use either the pressure
or, because of (2.2), the stream function. Here we use a formulation in terms of the
stream function. It satisfies

(ql, q2) curl ):-- (--02), 01),
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where 0i denotes the partial derivative with respect to the variable xi for i 1, 2.
Note that the operator curl in (2.5) acts on a scalar function. Therefore this definition
differs from the usual one. It is introduced here only for convenience.

Substituting (2.5) into Darcy’s law (2.3) and taking the curl in the usual sense

(i.e., curl 02ql Oq2) gives

(2.6)

Combining (2.4) and (2.5) implies that is constant on the boundary 0gt. Without
loss of generality, we take the boundary condition

(2.7) --0 on 0 (0, oc).

The boundary value problem (2.6), (2.7) gives the stream function and thus the
specific discharge, in terms of the specific weight 7. Conversely, the mass balance
equation for the fluid gives the density p (and thus the specific weight) in terms of
the fluid field ’. According to Bear [5], we have

0tp + div ff 0 in gt x (0, c),

where the flux F is given by

(2.9) F ’p- D. grad p.

In (2.9), D (Dij)2x2 is the hydrodynamic dispersion matrix with Dij R2 --+ R
given by

qiqj if (q, q2) 0,
(2.10) Dij(ql, q2)

(aT I0"1 CDmol)6ij + (aL --aT) 11
TCDmolbij if (ql, q2) 0.

Here O/L, aT, Dmol and - are positive constants: O/L is the longitudinal and aT is the
the transversal dispersion length (aT < aL), Dmol is the molecular diffusion coefficient
and the constant T describes the tortuosity of the porous medium. Further, I" denotes
the Euclidean norm on R2 and 6ij the Kronecker symbol.

In order to determine p (or 7) from (2.8) we have to specify boundary and initial
conditions. We consider the no-flux condition

(2.11) ft.
and initially

(2.12) p(., O)= Po(’) on gt.

Next we rescale the equations into a dimensionless form.
Setting

Xl :-- x/H,
x2 := x2/H,

t:=t-(%-7)/(H),

:= (. .)/(% .),

gt := (-L/H,L/H) (0, 1),
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we find for u, v the elliptic-parabolic system

-Av Ou(E) v--O
in flx (0, c),
on Of] x (0,

O,u + div/ 0
(P) /. 7= 0

(., o) o(.)

in x (0, o),
on Ot x (0,
on f.

Here we have

with

0’u D. grad u,
curl v,
(Dj)

-[ if (ql, q2) -O,
(2.13) Dj(ql, q2)

mSij if (ql, q2) O,

where a aT/H, b aL/H and m CDmolT/[(% --")’j,)H].
The dispersion matrix D satisfies the following.

PROPOSITION 2.1. Let D-- (Dij) be given by (2.13). Then
(i) D is uniformly positive definite on R2, i.e., there exists # > 0 such that

2

E Dij(ql, q2)ij >_ 112
i,j=l

V-- (1,2), (ql, q2) C R2;

(ii) Dij is uniformly Lipschitz continuous.

Proof. The proof of (i) is immediate. To prove (ii) we have to show that the
functions fij R2 --. R, defined by

xixj

0

if x 7 (0, 0),
if x (0, 0),

are uniformly Lipschitz continuous. A straightforward computation shows that there
exists a constant L > 0 such that

IVfij(x)l <_ L Vx e Ru\{0}

and

II()- f,(0)l < Ix- 01 Vx e R :.
This implies the Lipschitz continuity for fij and thus for Dj.

The purpose of this paper is to study the elliptic-parabolic system (E), (P). We
do this in two steps. First, in 3 we consider the case, where

a=b=O and m=l.
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This situation describes the mixing of fresh and salt groundwater with dominant
molecular diffusion. It implies Dij 6ij which means that the problem is of semilinear
type. In 4, we consider the full problem, where

0<a<b<oc and m>0.

In this case the mixing is due to mechanical dispersion and molecular diffusion. It
implies that D is velocity dependent which means that the problem is of quasilinear
type.

3. The semilinear case.

3.1. The abstract setting. In this section we consider the case where the dis-
persion matrix D is independent of the velocity ’. This can be achieved by setting
a b 0 in (2.13). For simplicity, we also set m 1, which implies that Dj .
Noting that ’- 0 on 0f, we arrive at the problem

-Av=Olu inf(0, cx),(E) 0 (0,

Otu- Au + grad u. curly 0
Ou(P’) - =0

0)

in f x (0, (x),
on Of x (0, cx),
in f.

Throughout this section we suppose that f is a bounded domain in R2 with smooth
boundary 0f.

In order to formulate problem (E), (P’) into an abstract form, we need to intro-
duce some operators and Banach spaces.

Throughout this paper all vector spaces are over R. If we use complex quantities
(for example, in connection with spectral theory), it is always understood that we
work with the natural complexifications (of spaces and operators). Thus by p(A), the
resolvent set of a linear operator with domain D(A) and range R(A), we mean always
the resolvent set of its complexifications.

Let p e (2, oc). By inverting (E) we obtain the operator (see the appendix)

Ep" D(Ep) WI’P()---. W2’p(f)N W’P(f),
given by

Then we define

Epv-- (-A)-101v.

for u E WI’P(fl). Furthermore, we define operator An by

D(Ap)= ue W2’p(fl) =O

Ap D(Ap) LP()
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with

Apu -An + u.

Observe that in the definition of An, due to the imbedding W2,p(f) "-. C1(), the
boundary condition Ou/O 0 is satisfied in the classical sense. By using the opera-
tors introduced above, Problem (E), (P’) can be formulated as

u’ + Apu + Mp(u) 0(CP) u(O) no.
for t e (0, ),

Here u denotes the derivative of u with respect to t.
It is known that -Ap generates an analytic semigroup on LP(). We shall show

that Mp is a locally Lipschitz perturbation (in an appropriate sense) of Ap. Then we
can apply abstract results for proving existence of solutions of (CP).

We recall the following results.
Let E := {A E C" Re >_ w} for w E R. Furthermore, let X be a Banach space

with norm I1" II, and let A be a given linear operator satisfying

(A1) A is densely defined and closed;
(A2) E0 C p(-A), where p(-A) is the resolvent set of-A;
(A3) There exists a constant M > 0, such that

M

The fractional powers As of A are well defined for 0 < a _< 1, and As is a closed linear
operator whose domain D(A) D D(A). In this section we denote by Xa the Banach
space obtained by endowing D(A) with the graph norm of As. Since 0 p(A), As
is invertible and the norm ofX is equivalent to Ilulla := IIAull for u e D(A). Also,
for 0 < fl < a <_ 1, X --. X with continuous imbedding.

Concerning the solvability of semilinear evolution equations of the form

u’ + Au + M(u) 0

with initial value u(0) , under the assumptions (A1)-(A3), we recall the following
result (see von Wahl [20]).

THEOREM 3.1. Let 0 <_ fl < a < 1, and let M Xa X satisfy M(O) 0 and

IIM(u) M(v)l <_ g(llull + Ilvll)[l[u vii a + Ilu vl[([lu[l + Ilvll + 1)1

for some continuous function g" R+ --. R+ and for all u, v Xa. For X, there
exists a T T() e (0, o] such that

(i) there is one and only one mapping u: [0, T) X fulfilling

u e C([0, T), X) N C((O, T), Xa),

and

sup lit-Au(t)ll < c
o(t(_T

for all 0 < T < T;
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(ii)

u(t) e-tA- e-(t-s)AM(u(s))ds

for t e (0,T);
(iii)

(0) ;

(iv) if T < o, then

lim Ilu()ll .
tTT

Moreover, on (O,T), u fulfills (3.1) in the sense that u e CI((O,T),X), u(t) e D(A)
for t e (0, T) and Au(.) e C((0, T), X).

About the solution obtained in Theorem 3.1 we also have the following (see Henry

PROPOSITION 3.2. Under the assumptions of Theorem 3.1, the solution u satisfies

’() e x
for t e (0, T) and for any / e (0, 1).

3.2. The existence results. It follows from Agmon [1] that Ap satisfies (A1)-
(A3). Moreover, we have the imbedding properties (see Henry [9]):

PROPOSITION 3.3. (i) D(A) - WI’p(t2) for a e (1/2, 1);
1)o(ii) D(A) - Wl,c(ft) for a e ( + ,

We use Theorem 3.1 to obtain the existence for (CP). In this application we
take X LP() with norm I[" [p, X (a e (0, 1)) the Banach space induced by the
operator Ap and Z 0 with . II ]" ]p.

PROPOSITION 3.4. Let a e (} + , 1). Then there exists a constant C 1 such
that

liMp(u) Mp(v)llp < C[llu- vllllullp + II- vllp(llvll + 1)1

for all u, v E D(A).
Proof. By the definition of Mp we have

(3.2) liMp(u) Mp(v)ll, Ilu vllp + Ilgrad (u v). curl Epull,
+ Ilgrad v. curl Ep(u v)lip.

From the Appendix and Proposition 3.3, we obtain:

(3.3) Ilcurl Epull, CIlllp

and

(3.4) IIEulll, < Cllull
for all u e D(A) and for some constant C > 1. Combining (3.2), (3.3), and (3.4),
the desired estimate follows.
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Combining Theorem 3.1 and Proposition 3.4, we obtain that, for every u0 E
LP(), there exists a solution u of (CP) on some interval [0, T).

According to Theorem 3.1 (iv), the global existence of the solution follows if we
can show that

limllu(t)llp < .
tTT

By the imbedding W2,p(f) "- Cl(), we can define u(x,t) u(t)(x) pointwise
on f x (0, T). Further, we have the following.

PROPOSITION 3.5. Let uo LP(D) and u be the corresponding solution of (CP)
on [0, T) in the sense of Theorem 3.1. Let J C2 (It, R+) be a convex function; then
we have

fa J(u(x, t))dx < fa J(u(x, s))dx

for any 0 < s <_ t < T.
Proof. Note that J(u) is well defined due to the imbedding W2,p() -, C1().
Multiplying the differential equation in (P) by J’(u) and integrating the result

over D gives

d
J(u)dx f J’(u)Audx+/ J’(u)gradu curl vdx

dt

for 0 < t < T. Using Green’s formula we know that

f f + <_ o

and

J’(u)grad u. curl v dx o J(u)
Ov

a --ds O,

where is the tangential unit vector along Off. Therefore,

d fa J(u)dx < O,
dt

which implies the required inequality, v1

COROLLARY 3.6. Let uo LP(f) with p (2, oc] and u be the solution of (CP)
on [0, T) in the sense of Theorem 3.1. For any q e [2, p] we have

(3.5) I[u(t) I1 I1o I1
for t e [0, T).

Proof. This estimate follows directly from Proposition 3.5 by taking J(s) --Islq
and from the fact that u C([0, T), X) for p < oo. We obtain the estimate (3.5) for
p q oc by using a limit argument. [:]

Using Theorem 3.1, Proposition 3.4, and Corollary 3.6, we obtain the following
existence result for (CP).

1 1) and uo LP(f). Then the initial value problemTHEOREM 3.7. Let a (1/2 + -,
(CP) has a unique global solution u(.), i.e.,

e c([0. ).x) c((0. o). x.).
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sup ][tAu(t)l[ < ,
0<t<t

u(t) e-tA’uo e-(t-s)A" M(u(s))ds

for t E (0, c), and

(o) o.

Moreover, u fulfills the equation u’ + Apu + Mp(u) 0 on (0, oc) in the sense that
U e CI((0, OO), X), u(t) e D(Ap) for t e (0, oc) and Avu e C((O, oc),Z).

3.3. Regularity and asymptotic properties. In the preceding section we ob-
tained the solution of the abstract problem (CP). Here we consider the original system
(S), (P’). Let u be the solution of (CP). Then we have

(t) e w,’(a), (t) E,u(t) e W:’(a) vt e (o, o).

By the imbedding W2’p(f) C1(), we can define u(x,t) u(t)(x) and v(x,t)
Epu(t)(x) for (x, t) e f (0, oc). The pair (u, v) satisfies the following

THEOREM 3.8. Let E (0, 1 p2_), 0f C2+ and suppose uo LP(). Let u,v
be defined as above. Then (u, v) is the unique classical solution of the system (E),
(P), which satisfies

(i) u(., t) e C2+(), Otu(., t) e Ce(), Vt e (0, );
(ii) u(x, .) e C+ (0,) Vx e ;
(iii) v(., t) C2+e(), Vt (0, ).
Pro@ (i) By the imbedding W2,p() C+e(), we have

(., t), (., t) e c’+() vt e (o,

Using Propositions 3.2 and 3.3, we also have

o(., t) e c() vt e (o, 0).

Let to (0, oc) be fixed. The regularity for u and v implies that

F(.) -grad u(., to)" curl v(., to) + u(., to) Otu(., to)

satisfies

F(. e C ()

Next, consider the problem

-Aw+w=F in
Ow- 0 on 0f.

By Gilbarg and Trudinger [8] this problem has a unique solution w e C2+(). A
standard argument gives w(.) u(., to), hence u(., to) e C2+().

(ii) This is a direct result of (i) and Ladyzenskaja et al. [10, Whm. 5.3].
(iii) The regularity for v is a direct result of the Dirichlet problem (E). [:]
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Remark. If the boundary 0t is smooth, then the solution is smooth in t x (0, cx).
This follows from Theorem 3.8 together with a bootstrapping argument.

Let (u, v) be the solution of (E), (P’), a straightforward computation shows

l Ju(,)d= 1 /0()d
for all t e (0, ). Here ]D] denotes the meure of D.

LEMMA 3.9. We have

lim ]u(-, t) ]]2 0.

Proof. Taking J(s) s2 in the proof of Propositon 3.5, we obtain

d
dllu(’,t) 11 -(11011 + II011).

We estimate the right-hand side by Poincar’s inequality. This gives

I1(., )- 11 K(llOull + IlOull)
for some constant K > 0. Therefore,

d 1
d I1(’, ) 11 -g Ilu(., ) 11,

which can be integrated to yield

(3.6) I1(’, ) 1 -/K I10(’) 11,
for allt > 0.

We now consider the ymptotic behavior of the solution in the sup-norm.
THEOREM 3.10. Let uo L() for any p (2, ]. Then

i Ilu(., ) 11 0.

Proof. We put

w {V e C(t)’3{tm}, s.t. lim tm CX and lim Ilu(.,tm) V(’)ll 0}
m---,c m--,cx

F {u(.,t)’te (0,)}.

From Corollary 3.6 and Theorem 3.8, it follows that F is a uniformly bounded and
equicontinuous subset in C(f). Therefore, w is nonempty. Next we show that w
contains only one single point. Let U E w. Then there exists a sequence {tin} with

lim tm
m-o

lim Ilu(’, t) U(’)II 0.
m--oo
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This implies

U(x)

as m --, cx, uniformly in x E t.
On the other hand, we obtain from Lemma 3.9 that

as m --. oc, for almost all x E 12. Thus

U(x) = Vx e ,
which completes the proof.

4. The quasilinear case.

4.1. The abstract setting. In this section we study Problem (E), (P). As in
3, we treat this system as an abstract evolution equation in a suitably chosen Banach
space. In this part we collect some results on quasilinear evolution equations.

Let E (E0, El) be a pair of Banach spaces with E1 continuously and densely
imbedded in E0. We denote by T/(E) the set of all A (E1,Eo) such that -A,
considered as a linear operator on E0, is the infinitesimal generator of a strongly con-
tinuous analytic semigroup on E0. For (0, 1), let Ee be the complex interpolation
space [E]e, and I1" I1 be the norm on Ee. (The notation here is different from the
previous section.)

Let T > 0 be fixed. We assume (Q) / e (0,1),V c EZ is open and A
Cl-(v, 7-/(/)), i.e., A is locally Lipschitz continuous.

Under these assumptions, we consider the following quasilinear Cauchy problem

/t(t) + A(u(t))u(t) O, 0 < t <_ T,(QCP)() u(O) uo,

where u0 E V.
Let T (0, T]; u is called a solution of (QCP)(o) on [0, T] if the following condi-

tions are satisfied:
(i) u e C([O,T],V) NC((O,T],E1) NCI((O,T],Eo),
(ii) /t(t) + A(u(t))u(t) 0, Vt e (0, T],
(iii) U(0) u0.
A solution u is maximal if there does not exist a solution of (QCP)(uo) which is

a proper extension of u. In this case the interval of existence is called the maximal
interval of existence.

The following fundamental theorem can be found in Amann [2] (see also Sobolevskii
[15]).

THEOREM 4.1. Suppose that 0 < < a < 1, and Uo V Ea V. Fur-
thermore, suppose that the assumption (Q) holds. Then there exists T > O, such that
(QCP)o has a unique solution u(.) on [0, T], satisfying u C([0, T], V). Moreover,
the maximal interval of existence is open in [0, T].

4.2. Local existence. Again we put the system into an abstract form.
Let gt c R2 be a bounded domain with smooth boundary OFt. For p

and r e (-cx, ), we denote by H(12) the so-called Lebesgue spaces (see Triebel [17]
or Bergh and Lbfstrbm [6]). In this section the norm on H(gt) is denoted by
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It should be observed that H() W’,P() for integer m. Moreover, we have the
interpolation property

(4.1) [H;,o (), H;, (a)]e H;, (a)

(1 e)IPo + el’, and s (1 0)so + 8slfor So, sl E R, po,pl c:_ (1, oo) with
Let ajk D.k o Q and a -Qj for j, k 1, 2 (see Appendix). Then problem

(E), (P) can be formulated as

o,, o((u)O, + (,),) o
(QCP) //ayk(u)Oku + aj(u)//Ju 0

u(., 0) u0

in x (0, T],
on 0 x (0, T],
in .

Here T > 0 and (//1,//2). Note that in this section the summation convention is
used and the indices run from 1 to 2.

We use Theorem 4.1 to obtain the existence result for Problem (QCP). In this
application we take

and

E0 (H},(a))’

E1 Hp(),

1. It should be observed thatwhere p (1, oo) and + r
(4.2) E0 [E0, E1]0 -+ LP()

for e [1/2, 1]; see Amann [4, Whm. 3.3].
Let M() C C()4 x C()2 be the subset whose elements m(.) (bjk(.), by(.))

are chosen such that (bjk(’))2x2 is uniformly positive definite on . Assume we set

(I, g) fn f(x)g(x)dx

for f LP(), g Lp’ (). With this notation we define

()(v, ) (o,o+)

for v e H,(), u e H}(), and m e ().
rthermore, given m (), we define the operator

A(m) E Eo

such that

(A(m)u, v} a(m)(v, u) Vv e H},(12).
Then we have the following generation theorem; see Amann [3] or Lunardi and Vespri
[111.

THEOREM 4.2.

[m --+ A(m)] e el-(](’), 1()).
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2For p E (2, oc) and r > , we have

(4.3) H;(f) - C(Ft),

Therefore, the coefficients ajk(u), aj(u) are defined pointwise on Ft for each u e H(ft).
Consequently,

:=

is well defined on f. For m we also have the following.
2 Then [uLEMMA 4.3. Let p (2, oc) and 1 > r > -.

is uniformly Lipschitz continuous.

Proof. From the appendix we have

(4.4) Qi e

We combine this with imbedding (4.3) and Proposition 2.1 to obtain

,(u) e ().

On the other hand, by Proposition 2.1, (4.3), and (4.4), there exists a constant C > 0
such that

and

for any u, v H(ft) and for j, k 1, 2. This completes the proof. U
Let us put A(u) := A(m(u)(.)) We are now in a position to prove the main

existence result.
1THEOREM 4.4. Let p (2, oc) and +- < < < 1. For every uo Ea, there

exists a T > 0 such that

/t(t) + A(u(t))u(t) O,
u(0) u0,

O<t<T,

has a unique solution u(.) on [0, T], i.e.,
(i) u e C([0, T], Ea) fq C((0, T], El) fq C1((0, T], E0),
(ii) /t(t) + A(u(t))u(t) O, /t e (0, T],
(iii) U(0) U0.
Proof. For fi 1/2 + e (0, 1) we have

E,

by the reiteration theorem (see Triebel [17] or Bergh and Lhfstrhm [6]). Using (4.2),
we have

E [LP(f), Hp(f)]r H(gt)

then 1 > r > 2 and H(ft) -, C(). Fromwith r e (0, 1). Finally, if 1 > fl > 1/2 + ,
Lemma 4.3 we know [u -- re(u)] is uniformly Lipschitz continuous from E to A4(t).
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On the other hand, it follows from Theorem 4.2 that

[m --, A(m)] e Cl-(Ad(f), H()).

Hence

[u --. A(u)] e CI-(E, 7-l(-)).

The conclusion then follows directly from Theorem 4.1. [:]

4.3. Some properties of the weak solution. Up to now we have obtained a
local solution for Problem (QCP) in Hp (ft)-sense. We now come back to the original
system.

1Let " > 0, u0 E E for some c E ( / , 1) and we suppose u C ((0, T], E0) fq

C((0, T],E1) is the weak solution mentioned in Theorem 4.4. By the appendix we
know that v(t) g o Ou(t) e H2p(gt). Using the imbedding Hp(f) C(), we can
define

and

t):=

pointwise on Ft (0, T]. Obviously, we have

Otu(x,t) it(t) e LP(2).

From Theorem 4.4 we know that problem (P) is satisfied in the following sense:

ddt fa u(x, t)f(x)dx /a (x, t)grad f(x)dx 0

for all f e Hp,(t) and t e (0, T]. Moreover, u(x, O)= uo.
As in the semilinear case we can prove the following.
THEOREM 4.5. Let (u, v) be the weak solution of (E), (P) as constructed above.

Then

for all t (0, T].
Proof. Using the facts

t) e c(a)

and

LP(a) -+ Lp’

we obtain immediately that f plulp-lsgn u e Hp,(t).
Substitution into (4.5) gives

Ilu(., t)IIg (u curl v D. grad u). p(p 1)lulp-2grad u dx
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Since the matrix D is positive definite,

-/(D. grad u) p(p 1)lulp-2grad udx <_ O.

On the other hand, by using the Green’s formula we have

curl v) p(p 1)lulp-2grad dx O.U

Therefore, the conclusion follows directly from (4.6).
Final remark. In this paper we assumed to be a bounded domain of R2 with

smooth boundary. On the other hand, the domain in the motivating problem is
a rectangle. For such a domain, the same existence results will hold. This is a
consequence of the fact that the generation theorems for the operators Ap in 3 and
A in 4.2, as well as the proposition in Appendix also hold for such a domain (Vespri

Appendix. Here we state some results on the Laplace operator with Dirichlet
boundary condition, which are related to problem (E).

Let /denote the trace operator. It is known that the operator -A with Dirichlet
boundary condition zero is invertible in LP(). We denote this inverse operator by

g :--

Further we introduce operator

Q (Q1, Q2) curl K 01.

Let H() be the Lebesgue spaces, with indices -x
The operator Q satisfies the following.
PROPOSITION. Let r E [0, 1] and 1 < p < oc. Then

for i 1,2.
Proof. Let f Lp(). We define

Fv fOlV dx

for v e W’P’(12). Clearly, f e (W’P’())’. By the representation theorem in Simader
[14, p. 91], we know that there exists u e W’P() such that

Fv fn grad u. grad v dx

for v e W’P’(). Moreover, there exists a constant C independent of u and f such
that

Therefore,

Ilulll,p cIIfllp.

Qi e ,(LP()).
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On the other hand, it is well known that

Q e (H(f)).
By the interpolation property,

[H;o H;,
for E [0, 1] and so, sl, s E R with s (1 -O)so + Osl; the conclusion follows.
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Abstract. This paper considers the semilinear parabolic equation ut Au+f(u) in nx (0, co), where
f(u) e or f(u) up, p > 1. For any initial data that is a positive, radially decreasing lower solution, and
that causes the corresponding solution u(x, t) to blow up at (0, T) R x (0, o), the authors prove by using
techniques from center manifold theory that the final time blowup profiles satisfy

u(x, T)=-21nlxl+lnllnlxll+ln8+o(1) for f(u)=e",

u(x, T) (82plln lxl’)}xl2
(1+o(1)) for f(u)=up
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(1.1)

(1.2)

where

(1.3)

and b satisfies

1. Statement of problem and results. Consider the initial-value problem

ut-Au=f(u), (x, t) " x (0, o),

u(x,O)=6(x), x",

f(u) e" or f(u) up, p>l

b C2("; [0, )) is radially symmetric,

(1.4) b b(r), r= Ix[,
b’(0) 0, 4,"(0) < 0, 4"(r) < 0 for r (0, c),
Ab +f(b)_>-0 with b not a steady-state solution.

The following facts are well known for (1.1)-(1.2) [2], [9].
(i) There exists a unique nonnegative solution.
(ii) The solution u(x, t) is radially symmetric; thus (1.1)-(1.2) is equivalent to

n-1
(1.1’) Ut---Urr-+’Ur+f(u), (0, c) {t t> 0},

u(r, O)= qb(r), r (0, ),
(1.2’)

Ur(O,t)=O, t>0.

(iii) u(., t) is radially decreasing, Ur(r, t) < 0, and u,(r, t) > O.
We assume b(x)_->0 is such that u(x, t) blows up in finite time T< oo; that is,

supao [u(x, t) c as t- T- and supa-to, [u(x, t)l < o for all 0 < z < T.
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(iv) Blowup occurs only at x -0. Moreover; iff(u) e u, then for any a (0, 1),

u(x, t) <= In

and if f(u) up, then for any y (1, p),

u(x, t)<--((Y-1)elx[2)
for (x, t) BR (0, T], where BR is some ball centered at the origin and e > 0 is
sufficiently small.

(v)

(1.5)
(a) -ln T- t) u(0, t), [0, T) for f(u) eu,

flo T- t) -t _-< u(0, t), [0, T)(b) for f(u)= up

where/3 1/ (p 1).
(vi)

(1.6)

(a) u(x, t) <- -ln [8(T- t)], c [0, T), 6 > 0 for f(u) e u,

(b) u(x, t) <= T- t)-, [0, T) for f(u) up.

(vii) There exists -< T such that

(a) [Vu(x, t)[<-[2e(’t)] 1/2 for f(u)= e,
(1.7)

(b) IVu(x, )1<-_ (u(O, t)) p+I for/(u)= up
p+l

where (x, t) e N x , T).
The purpose of this paper is to give a precise description ofthe asymptotic behavior

of solutions u(x, t) of (1.1)-(1.2) as the blowup time T is approached. There has been
a considerable effort to resolve this problem in recent years (see [2], [9], [12]). Until
very recently, the best rigorous result in this direction for the problem under consider-
ation is the following theorem.

THEOREM 1.1. If u(x, t) is a solution of (1.1)-(1.2) which blows up at (0, T), then

(a) lim[ln (T-t)+u(x, t)]=0 for f(u)= e",
tT

(1.8)
(b) lim u(x, t)(r- t) fl for f(u) up

t- T

uniformly for Ixl =< c( T- t) 1/2, C > 0, as -> T-.
Since u(x, t) blows up only at x O, ut(x, t)>= O, and supEo.T U(X, t)< o for each

x O, u(x, t)--> uv(x) as --> T- for all x" -{0}. This final,time solution profile uv(x)
should be describable in a neighborhood of the blowup point x 0. This observation
led Kassoy and Poland [17],[18] and Kapila [19] to formally attempt to describe
UF(X) using singular perturbation techniques for f(u) e u. Dold [6] for f(u) e" and
Galaktionov 11] for f(u)- up extended these singular perturbation ideas to predict
the behavior of u(x, t) near the blowup time, but their analyses are nonrigorous and
formal.
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Filippas and Kohn [8] are the first to have observed that a center manifold
approach to such problems can be used to precisely describe, to higher-order terms,
the asymptotic behavior near blowup. Bressan [4] considers (1.1) with f(u) e in a
convex domain 1)c En. Given any b f, he proves the existence of solutions that blow
up in finite time exactly at b, and whose final profile satisfies

UF(X) U(X, T) -2 In Ix b[ + In [ln Ix bll / In 8 + O([ln Ix bl] -1/3)
and proves that this asymptotic behavior is stable with respect to small perturbations
of initial conditions. Herrero and Velizquez [15], [16] consider the one-dimensional
problem (1.1)-(1.2). Without using center manifold theory, they prove some results
suggested by perturbation techniques that will be described in more detail in conjunc-
tion with our results.

In this paper, we prove the following three theorems.
THEOREM 1.2. Let u(x, t) be the solution of (1.1)-(1.2); then

(1.9)

forf(u)=e,
(a) u(x, t)’" In T-t +

for f( u up,

1 Ixl= -2n +o
41n (T- t) T-t In(T-t)

4pin(T-t) T-t ln(T-t)

uniformly on Ixl <- C( T- t) 1/2, C >= O, as --> T-.
For n 1 and f(u)= up, (1.9(b)) was first obtained by Filippas and Kohn [8],

substantiating the conjecture of Galaktionov 11 ]. Herrero and Velfizquez 15] proved
both (1.9(a)) and (1.9(b)) for n 1. Our proof given in 2 is influenced by that of
Filippas and Kohn [8], where they utilize ideas related to a center manifold theory
for infinite-dimensional dynamical systems.

THEOREM 1.3. Let u(x, t) be the solution of (1.1)-(1.2); then

(1.10)

forf(u)=e,
(a) lim[u(((T-t)llnt--,T (T-t)l)l/2’ t)+ln (T- t)] =-ln (1 +I-)
for f( u up,

(b) lim (r-)u(n((r-t)lln (r-)l)/’

uniformly on compacts in
This result was conjectured and formally verified by Dold [6], [7] in the "ignition-

kernel" variable q=x/((T-t)lln(T-t)])1/2 for f(u)=e and by Galaktionov [11]
for f(u)= up. Bressan [4] proved (1.10(a)) for the Cauchy-Dirichlet problem and for
some initial conditions 4(x) whose corresponding solution blows up at the origin. He
also showed that the same holds for all initial conditions sufficiently close to b. Bressan’s
proof includes higher-order terms, and so for certain initial conditions, his result is
an improvement of Theorem 1.3 for the case f(u)= e. This allows him to obtain a
more precise estimate of the error term in the final time profile. For n 1, Herrero
and Velfizquez [15] proved (1.10(a)) and (1.10(b)). Theorem 1.3 extends their result
to the multidimensional case for any b satisfying (1.4), but is proven by using their
techniques. For this reason, we only outline the ideas of the proof in 3.
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THEOREM 1.4. Let u(x, t) be any solution of (1.1)-(1.2) with initial data 4,(x)
satisfying (1.4); then

(1.11)

for f(u)

(a) UF(X) U(X, T) -2 In Ix[ + In Iln [xl[ + In 8 + o(1)

for f(u) up,

(b) uv(x) u(x, T)= (8/3plln Ix]l)ig (1+o(1))

as Ixl-+ O.
By fact (iv) (see [2, p. 66]), we have the upper bounds

(1.12)

for f(u)= eu,
(a) u(x, t) <= -2 In Ixl + In Iln Ixl[ + C
for f(u)= up,

(b) u(x, t) <- ( klln lxl[) t
for all (x, t) BR (0, T], where k and C are constants. Theorem 1.4 gives a precise
description of UF(X) in a neighborhood of the singularity x =0. Bressan [4] has the
first rigorous result of this type provided f(u) e and 4) is sufficiently spiked. Herrero
and Velfizquez [16] proved (1.11(b)) when b6 Cb(R; [0, o)) and the corresponding
solution u(x, t) of (1.1)-(1.2) satisfies (1.10(b)). If we assume 4, satisfies (1.4) and
extend their proof to higher dimensions, we obtain (1.11(b)) provided n-<_2 or n->_3

and p<-(n+2)/(n-2).
Our proof uses ideas from 16], but avoids the spiked condition on th for f(u) e"

and the requirement p _-< (n + 2)/(n -2) when n 3 for f(u) up by making use of the
upper bounds (1.12). Furthermore, it shows that for any b satisfying (1.4), for which
the solution u(x, t) of (1.1)-(1.13) blows up in finite time, UF(X) satisfies the estimate
(1.11).

In 2, we prove Theorem 1.2 using center manifold theory. We then extend to
the ignition variable grouping to obtain Theorem 1.3 in 3. Finally, we prove Theorem
1.4 in 4.

Throughout, we will use the following function space notation. For 1 _<- p <, let

Lo {fe Lfo(R"): In-Iflp e-Ixl2/4 dx < co}, where p e-Ixl/4, Loo {f LPo’f radially
symmetric on JR"}, H’ =- {fe Loc([R")" f(J) e Loc(N"), and In" If()l e-lxl2/4 dx < oo, j 6
[0, rn]} is the weighted Sobolev space, and Ho=o =- {fe H’f radially symmetric on
N"}. We will use the standard asymptotic notation o(. ), O(. ), <<, when convenient.

2. Center-unstable manifold analysis of ignition models. Suppose that u(x, t) is a
solution of (1.1)-(1.2), which blows up at (0, T) 6 R" (0, ). To analyze the asymptotic
behavior of u(x, t), make the "hot-spot" change of variables:

X
(2.1) s=-ln (T-t), y=(T_t)l/
and let

(a)
(2.2)

(b)

w(y, s) u(x, t) + In T- t)

w(y, s) T- t)t3u(x, t)

for f(u)= eu,
for f(u) up.
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Then w(y, s) satisfies

(2.3) ws Aw -1/2y" V o) + F(w),

or, equivalently,

1
(2.4) ws=-V.(pVw)+F(w),

P

where

(So, oo), So -In (T)

-ly12/4p=e

(a) F(w)=eW-1

(b) F(w)=wp-

Then w(y, s) satisfies

1

p-1

for f(u)= e",

w for f( u up.

(2.6) V w(0, s) 0 for s _-> So,

(a) w(y, so)=b(T1/Zy)+ln(T) for f(u)=eu,
(b) w(y, So) Ttqb( T1/2y) for f(u) uv.

and

As a consequence of facts (v)-(vii),

(2.7)

(2.8)

(a) w(y,s)<-c, lw(y,s)l<=c(l+lyl) for f(u)=e",

and

(2.9)
(b) 0< w(y, s) <- c for f(u) up.

The following theorem can be found in [2] and [20].
THEOREM 2.1. The solution w(y, s) converges to S(y) uniformly on compacts lyl <-- C

as s -+ oo, where

S(y)=O for f(u)= e or S(y)= t forf(u)= up(2.10)

This theorem gives as an immediate consequence Theorem 1.1. It gives a good
description of the temporal evolution as the blowup time T is approached, but the
spatial variable is stretched too much to give any information concerning the spatial
variable. To get more information about u near blowup, we need to analyze more
precisely how u approaches S(y).

To do this, a natural first step would be to linearize about the steady-state solution
S(y). We set

v(y, s) w(y, s)- s(y).(2.11)

By Theorem 2.1, lim,_oo v(y, s) 0 uniformly on compacts in R". From (2.4) and (2.5),
v(y, s) satisfies

1
(2.12) v=-V. (pVv)+g(v),

P
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where

/)2
(a) g(v)= v+-- for f(u)= e",

2
(2.13)

P /)2(b) g(v) v+-ff for f(u)= up,

neglecting order three and higher terms.
Abstractly, we can write (2.12) as

(2.14) v’= Av + Nv,

where Av= 1/pV. (pVv)+v and Nv= g(v)-v. We observe that A generates a semi-
group, and the spectrum of A, tr(A), is the point spectrum trp(A).

We begin by determining the eigenvalues and eigenvectors of A. From Av Av,
we have

(2.15) Av-1/2y. Vv+(1-A)v =0.

It can be shown (see, for example, [8]) that the eigenvalues are

m
(2.16) A,, =---+ 1, m=O, 1,2,.

2

with the associated eigenfunctions being in dimension n 1,

where H. is the ruth Hermite polynomial. The first three eigenfunctions are

(2.18) ho(y)=l, hl(y)= y, h(y)= y-2.

In higher dimensions the eigenfunctions are formed by taking products of the poly-
nomials {h,,}m=o. It is easy to see that the products hm(Yl)"’h,.(y,,) form an
orthogonal basis for LZo.

2 2Let Z Loo be the Hilbert space of radially symmetric functions in Lo with inner
product (f, g)-- -fgp, where p e-lyl2/4.

For Z, we can ignore all odd eigenvalues and corresponding eigenfunctions due
to the radial symmetry. Let

Zc =- sp (lyl=- 2n),

(2.19) Z, sp (1),

z=-z-(z(R)z.).

Because the linearization of (2.14) has neutral as well as stable and unstable
modes, a natural tool to employ is the center manifold theory for infinite-dimensional
systems [5], [14], [22]. In Z, the Hilbert space of radially symmetric functions in L
with inner product (.,.), consider the given abstract problem

(2.14) v’= Av+ Nv,

where Nv g(v)-v and g(v) is given in (2.13). The operator A is the generator of a
strongly continuous semigroup S(s) and has the following spectral properties:
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(1) Z ZcZsZu, where Zc, Zu are finite-dimensional, Zs is closed, and all
are defined in (2.19). Associated with this splitting of Z, there exist projections
7r Z - Z, 7r,,, Z Z,,, 7rc Z -* Zc w th ker Tr Zc@ Zu Zcu, ker Trc Z@Z Z,
and ker or, Z 03Z Zcs.

(2) Zc and Z, are A-invariant. If A= AIz and A+= AIz, then Re %(A) 0 and
Re rp(A+) > O.

(3) If U(s)= S(s)[zs, then Zs is U(s)-invariant and for some a, b > 0,

(2.20) U(s)ll - a e-, s >= O.

For vceZc, veZs, veZ,, let f(Vc, v,, v)=TrcN(vc+Vs+Vu), g(Vc, v,, v)=
7rsN(vc+Vs+V,), h(vc, v, v)=Tr,N(vc+V,+Vu), and A-=Tr,A. Then (2.14) can be
written as

v’c=Avc+f(vc, v, v.),

(2.21) vs= A-v + g( Vc, v,

v’,, A+v, + h(vc, v, v,).

If the nonlinear term N maps Z into Z with N(0)=0 and N’(0)=0, where N’
is the Fr6chet derivative of N so that Nv can be considered as a small perturbation,
then the following theorem holds (see [5], [14], [22]).

THEOREM 2.2. (1) System (2.21) has the following invariant manifolds, both of
which are tangent at the origin:

the center manifold, and

Mc. {(Vc, v.): W+(vc, vu), I[vcll + IIv [[ <
the center-unstable manifold.

(2) There exists 3’ > 0 and Hcu C(Z; Mcu) such that for each v Mcu and e > O,
there exists 6 > 0 such that Vo I with ]]Vo- v=]] < 6, and ]Iv(s; Vo)]] < efor large s implies
I[v(s; Vo)-V(S; H,(Vo)[I <-- e e-s, s large.

Unfortunately, our nonlinear term does not have the required properties in any
2of the obvious function spaces L,o or Hpo as observed by Filippas and Kohn in [8].

Because of this, we are unable to apply Theorem 2.2 directly. By using the properties
of the known trajectory v(y, s), we can avoid this difficulty and still obtain the same
conclusions for v(y, s) as would be given by the existence of a center-unstable manifold.

For Z Zs Zc Zu, we will use the following notation:

(2.22)
projection onto Z. for s, c, u,

Pv=<v, 1), Pcv=<v,
Let

(2.23) v= v(y, s)= a(s)+ b(s)(lyl-2n)+ O,

where a(s), b(s) e N, 0 e Z,.
We claim that if v solves (2.14), then it does not decay exponentially fast. To see

this, assume v decays exponentially fast, i.e., Ilvll <= M e for some M, a > 0. Herrero
and Velfizquez [15] and Liu [21] for dimensions n->2 have proven that either v=0
or there exists an integer m >-3, which is even by symmetry, such that

(2.24) v C e<’-’/2)h,,.,(lYl)+ o(e(1-(m/2))s),
where h,.(lyl)=Y= hm(yi) and C is some constant. If v=0, then for f(u)=e,
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u(x, t)=-ln (T-t) and for f(u)= up, u(x, t)-/3(T t)t. But this contradicts ur <0.
For the other possibility, define =[y[; then v(,s)=Ce(1-(m/2))Sh,,,(g)+
o(e(1-(m/2)s). Since hm,. has m/2 maxima, taking R large enough, our solution should
have at least one maximum on 0< P < R for large enough s, and this is impossible
because v(, s) < 0.

The following two theorems are essentially due to Filippas and Kohn [8] and
Herrero and Velizquez [15].

THEOREM 2.3. Let v(y, s) be a solution of (2.14). Then given any e > 0, there exists

such that

d a + 1 [[-P.N(Tr.v + 7rcV) + eO(2),
(2.25)

/ lyl 2n ll-2pN(rr,v + rrv) + eO(2)

for s >-s*, where 0(2) denotes quadratic terms in a and b.
Recall that w(y, s) satisfies (2.3) on g"x (So, oo), is smooth (see [10]), Iw(y, s)l <-

c( + lyl), and I1 -< c on (So, oo). By considering the parabolic equations satisfied
by the first-order spatial derivatives of w(y, s), we can conclude all spatial derivatives
of the same order satisfy a uniform bound in (y, s) (see [12]). Since v= w-S, the
same is true for v. This implies v is in the Sobolev space Hoo for any m >_-0, where we

o 2use the convention of H,o= L,o. By the Lebesgue dominated convergence theorem,
v-+0 as s-+oo in P0"

THEOREM 2.4. Let v(y, s) be a solution of (2.14). Then given e >0, there exists
such that

(2.26) rv o --< (11 r.v H / ,v ,,
for s >= g and any m >= O.

The proofs of the theorems are easier than those found in [8] and [15] because
we only require the stable mode to be dominated by the center and unstable components
as opposed to the stable and unstable components being dominated by the center

mode, which corresponds to a center manifold.
Recalling the definition of N(rr,v + rrv), we have that

(a) N(rrv + rrcV) 1/2(rr,v + rrcV)2 for f(u) e",
(2.27)

P (Tr,v+ 7rcV)2(b) N(Tr,v+ Trey)=2--- for f(u)= up.

Equation (2.25) corresponds to the reduced equation for (2.14), which would
determine the flow on the center-unstable manifold if it existed. Discarding eO(2)
terms, using the definitions of P,, P, and (2.27), we have that (2.25) reduces to the
following theorem.

THEOREM 2.5. Let v(y, s) be a solution of (2.14). Then

d=a+1/2(a2+8nb2)
(2.28a) for f(u) e,

tJ ab + 4b2,

P a2

d=a+2--fi-ff( +8nb2)
(2.28b) for f( u blp,

l - ab + 4b2)
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Using Theorem 2.5, we can now obtain more information as to how v(y, s) tends
to zero as s - oe. By Theorem 2.1 and (2.11), we know that lims_, v(y, s) 0 uniformly
on compacts. This can be immediately extended to lims_.o v(y, s)= 0 in Z by observing
that v(y, s)-O pointwise as s oe, Iv(y, s)[_< c(1 +ly[) on R" x (So, eo), and then apply-
ing the Lebesgue dominated convergence theorem. By the Pythagorean theorem,
Ilvll=->_ Ill.vii 2- [la(s)ll=- a2(s)[ll =, which in turn implies a(s)-O as s-,oo. Similarly,
b(s)-O as s-.

We now can prove the following theorem.
THEOREM 2.6. On compacts in y,

(2.29)
(a) v(y, s)--- --4s ([Y12- 2n) + o for f(u) e u,

- nl+o

uniformly as s

Proof We only prove (2.29(b)) and observe that the proof of (2.29(a)) is similar.
We begin by solving (2.28(b)). By a simple phase-plane analysis, we observe that
a(s) <-_0 and b(s)<=0 for all s >_-So since a and b decay to zero. If a(g)=0 for some
s, then a(s) > 0 for s > unless b(s) =- 0 for s _-> by (2.28(bl)). If b(s) is identically
zero for s>-s", then from (2.28(bl)) we have d a+(p/2t)a-. By uniqueness we
conclude a(s)= 0 for s => g since a(s) decays to zero. This implies that v(y, s)=-0 for
s _-> g by Theorem 2.4, and hence v would decay exponentially fast, which cannot
happen. Thus, a(s)< 0 for s >_-So. If b has a zero, then since b-=0 solves (2.28(b2)),
we conclude by uniqueness that b must vanish identically. Thus b(s)<0 for s >_-So.

We now show that a(s) does not decay exponentially fast.
If a(s)O exponentially fast, then b(s)-O exponentially fast. To prove this, we

assume there exists a >0 such that lims_oo ela(s)l=O. We can express a(s) as

a(s)=e[a(so) P e-e-+2-- (a2() +8nb2()) d

Since a(s) 0 and in fact is exponentially fast by assumption,

lim a(so) e-S+ e-(a2(:) + 8nbZ(sc)) d:] 0,

and

0= lim eSa(s)=-
4rip Sb2

/38(1 + a) s-oolim e s)

by L’H6pital’s rule. This implies b(s) o(e-(/)). Equation (2.26) then implies Ilvll- 0
exponentially fast, which is not the case. Therefore, a(s) cannot decay exponentially.

Define m(s) b2(s)/a(s). Then m(s) < 0 for all s >_- So and satisfies

e 3 2 )a(s)--b(s)+m(2.30) rh =-... m 4np 8n n

Choose g> 16np/fl t3 such that 1(3/8n)a(s)+(2/n)b(s)l<t/16np for all s_->g. For
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s ->_ define

G(s) suP[8_ 2 ] /3t 1
a()+-b() -+-

>__ n 4np s
(2.31)

F(s) inf[8- 2 )] fit3 1
a()+-b(

>-s n 4np s

then F(s) < (3/8n)a(s) + (2/n)b(s) t/4np < G(s) < 0 with F increasing, G decreas-
ing, and both continuous for s >= s.

We now observe that m(s) has a limit at infinity. Suppose m(g)>= G(g), then m(s)
is increasing and bounded above so it has a finite limit. If m(g)<= F(g), then m(s) is
decreasing and so it has a limit, which could possibly be -. Suppose F(g)< m(g)<
G(g). Then, either m(s) remains in the funnel (F(s), G(s)) for all s => g, in which case
lims_ m(s)=-(/4np), or m(s) intersects either F(s) or G(s). If re(s) intersects
F(s) or G(s) at some s*> s, then m(s) is either decreasing or increasing, respectively,
for s => s* and so it will have a limit at infinity.

Suppose lim_ m(s)=-. Then by (2.28(bl)), lim_,(((s)/a(s))=-. This
implies that a(s) decays exponentially fast, which cannot happen. Hence, lim_, m(s)
exists and is finite.

If lims_, m(s)= 0, then by (2.28(bl)), there exists g such that (d(s)/a(s))>=1/2 for
s => g. This implies a(s) <= a(g) e1/2(-), which is a contradiction. Therefore,
lim_, m(s) < 0 and b(s)= o(la()l ’/2) with b o(lall/2).

Since lim_, (a(s)/b(s))=O, there exists such that b(s)<a(s)<O for s>=s". By
(2.28(b2)), we have that

4p b:(s < lJ(s) < 5p
(2.32) flt =- bZ(s)

for s>=s, which implies b(s)= O(s-1), and so a(s)= O(s-:). Up to order O(s-3),
(2.28(b2)) becomes 6=(4p/)b, which implies b(s)=-(t/4ps)+o(s-1).

By Theorem 2.4,

v(y, s)+-ps (lyI:- 2n)
o

(2.33)

<= 7r,v + Trcv + -ps Y
2 2n

n,o
o (s-) + (11 .v o+ =v o)

<_o(s-).
Therefore,

t i: ,)(2.34) v(y,s)--.--ps(ly -2n)+o(s- in Ho’.
This can be extended to uniform convergence on compacts in y. Given the spatial
dimension n, choose rn > n/2. Then the Sobolev imbedding theorem (see [1]) implies
that (2.34) holds in Coo= {u C’u is symmetric, sup [e(-lyl2/4)lu(y)l]< c}. On any
compact set lyl <- c:

--(C2/4) v(y, s)+ps (lyI:- 2n)sup e
lyl<-c

_-< sup e -(lyl2/4)

lyl-c

=< sup e-(lylz/4)

n
O(S-1),

v(y, s)+--ps (ly -2n)

v(y, s) +ps

which proves (2.29(b)). []
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In the original variables, we can restate Theorem 2.6 as the following corollary,
which is Theorem 1.2.

COROLLARY 2.7. Let u(x, t) be the solution of (1.1)-(1.2), then

forf(u)=e",

(a) u(x, t) In T- + 2n + o
41n(T-t) T-t In(T-t)

(2.35)
for f(u up,

(b U(X, t) -2n +o
(T-t) +4pin(T-t) T-t In(T-t)

uniformly on Ixl <= C( T- t) 1/2, C >- 0 as ---> T-.

3. Extension to the ignition variable domain. We now indicate how to extend (2.29)
from the hot-spot variable grouping to the ignition variable grouping first suggested
by Dold [6] and independently by Galaktionov [11]. By this, we mean that we can
get a spatial description of how the blowup singularity evolves not only in parabolic
domains Ixl-<- C(T- t) 1/2 with vertex at (0, T) R" x (0, o), but in the larger domains
Ixl-< C((T- t)l In T- t)l) 1/2, C > 0 arbitrary.

Our procedure for doing this in the multidimensional case is due to Herrero and
Velfizquez ([15], 6). We summarize their method for the case f(u)= eu, along with
the extension to higher dimensions. The case f(u)= up is similar.

Let u(x, t) be a solution of (1.1)-(1.2) for b satisfying (1.4) and f(u)= e u, which
blows up at (0, T). Make the change of variables:

X X
(3.1) s---In(T-t), y=(T_t)l/2 l=((T_t)lln(T_t)l)i/2,
and as before let

(3.2)

In 2, we proved that

(3.3)

v(y, s) u(x, t) + In (T- t).

1
v(y, s) -ss (lYl2- 2n)+ o

in Coo or uniformly on compacts lyl =< c as s- .
We now show that (3.3) actually holds on the ignition variable domain suggested

by Dold.
Without loss of generality, we may assume T-- 1.
LEMMA 3.1. For a solution u(x, t) of (1.1)-(1.2) that blows up at T 1,

(3.4) In (1-t)+u(rl((1-t)Jln (1- t)]) /2, t) >--ln (1 +-) + o(1)

uniformly for r/I -<- R, g > 0, as - 1-.
The proof of Lemma 3.1 for dimension n 1 given in Herrero and Velfizquez 15,

Lemma 6.1] relies on expansions in terms of the Hermite polynomials. In the following
proof, we are able to avoid the difficulties in extending their method to higher
dimensions by making use of the semigroup associated with the heat equation in
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Proof Let v(y, s) be given by (3.2) with T= 1; then v satisfies

v Av--Y. 7v+e"-I
2

=Av+eV-v-1.

From the facts of 1, we can immediately infer that v is bounded above, v(y, s) 0
as s- uniformly on compacts, and IVy(., s)[ is bounded. Therefore, Iv(y, s)l<-
c (1 / lyl), and hence v(., s)ll - 0 as s .

Let a be a parameter, 0< a < 1, and consider

qt (x, t)=ln (1-a)+ u(xx/(1-a), a+ t(1- a)).

For any a fixed, p solves (1.1). Moreover,

1q, (x, 0)= In (1- a) + u(xx/1 -a, a)=
4 In (1 a)

as a -* 1- uniformly for Ix] <= R, R > 0, by (3.3).
Now consider the function

(1)([xl:-2n)+
In(l-a)

(3.6) F(x, t)= -In (e-s(t)%(x’)- t),

where S(t) is the linear semigroup corresponding to the heat equation in the strip
n [0, 1). It is obvious that F(x, 0) q,(x, 0), and we can easily verify that

(F),-AF-eF<=O.

We immediately conclude 6,(x, t)>=F(x, t) for fixed a whenever x", 0<t <1.
Set s In (1 a); then

(1t),(x, O)-S(t) (Ixl=-2n) IIs(t)ll
C--Dbp CDbPo

1
12(Ix -2n)

as a 1-. Thus

1 [x12
-2n + o(3.7) S(t)q,(x,O)=41n(l_a)(1-t) 1-t ln(1-a)

as a - 1- uniformly for Ix[-_< R, R > 0.
We can write q,(x, t)=ln (1-a)+u(x, f), where r=x v/(lL a)’, f=a+t(1-a).

Note that 1-f=(1-a)(1-t). To get a lower bound on u(r, f) along sets where
r= r/(1- f)/211n (1- f)l /2 in terms of x and t, i.e., x= r/(1- t)l/lln (1-t)(1-a)l1/2,
we first select t(a) by

(3.8) 1 (1- t)lln (1- a)(1- t)l
so that (1-t)]ln (l-a)]-1 as a- 1-. Then by (3.7) and (3.8)

S(t)g/(x, 0) -(1 t) 1--12+ o(1 t) as 1-,

uniformly on sets It/l_-< R, R > 0.
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Using (3.6), q(x, t)>-F(x, t)=-ln (1-t)-ln (1+(112/4))+ o(1), and thus

q (x, t)=ln (1- a)+ u(/(1- t)l/lln (1- t)l/, t)

_-->-ln (1- t)-ln (1+) + o(1).

Therefore,

In (1- ’)+ u(7(1- ’)1/2]1n (1- ’)11/2, f) >--ln (1 +-) + o(1)

as f 1- uniformly on sets 1[ R, R > 0. This proves (3.4).
We now turn to the task of showing we have equality in (3.4).
LEMMA 3.2. For any R > 0 there exists C > 0 such that

C
(3.9)

uniformly for n] R and large enough s > O.
The proof given in [15, Lemma 6.2] extends immediately to higher dimensions

and so we do not include a proof of this lemma.
Now set

J e-,
which leads to the equation

: Y v+ Ivl
2 J

Since v0 as s, J 1 as s.
LEMMA 3.3. ere exists C > 0 such that

C
(3.10) IIJ(’, s)- 1][ - as s .

S

The proof given in [15, Lemma 6.3] uses the fact that the solution u(x, t) of (1.1)
is a supercaloric function. We avoid using this observation in the following proof,
which allows for an immediate extension to higher dimensions.

Proo By definition we have that

J( ", s) ill = e- 11= e-<yl/4) de.

Since le--l[e-2+2 e-+l and [vlC(l+ly)we have

e- -1ekek<I+IyI>LP for alls and some k>0.

Also, le--l{= O(1/s2) as s pointwise in y by (3.3). The Lebesgue dominated
convergence theorem gives the desired result.

Let us write

G=J-1;

then G solves

AC --y. VG+ G
2 I+G
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We set

L(y, s)- I+G’

then for s->_ So, G(y, s) can be written in the form

G(y,s)=(47r(l_e_(,_So)))n/2 .exp io ]G(,so) d

(3.11)
(4(1 e_(_))/ exp

4(1 ,]L(,)dld
(y, sl+h(y,s).

We now indicate the estimates on I1 and 12 as s-
LEMMA 3.4. Let 11 (y, s) be as in (3.11); then

(3.12) lim Ii(r/v/, s)-

uniformly on set r/l_--< C with C > O.
LEMMA 3.5. Let I2(y, s) be as in (3.11), then

(3.13) lim I2(r/x/, s)=0

uniformly on sets [ql <= C with C > O.
The proofs given in [15, Lemmas 6.4, 6.5] can easily be extended to cover the

multidimensional case and so we do not include the proofs of the above two lemmas.
THEOREM 3.6.

(3.14) lirn_ [ln (1- t) + u( qx/(1- t)lln (1- t)l, t)] -ln ( l + l)
t--*

uniformly on compact sets [r/[ <_--K, K > 0.

Proof By Lemmas 3.4 and 3.5, we have that

(3.15) lim G(Tv, s)-

uniformly on compact sets [r/I <= K. Therefore,

lim v(r/x/, s) =-ln (1 +[-)
uniformly on compacts. Since v(x/x/1 t, s) In (1 t) + u(x, t), if

x r/x/(1 t)lln (1 -t)l r/lx/]-Z- x/,

we then have the desired result. V1

This is precisely Theorem 1.3 for the case f(u) eU with the blowup time normal-
ized to one. For the case f(u)= up, the proof proceeds in an analogous manner.

4. Final time solution profiles. We now prove Theorem 1.4, which gives us a precise
description of the final time solution profile UF(X) in a neighborhood of the singularity
x 0. Our proof follows that of Herrero and Velizquez 16].
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Let u(x, t) be a solution of (1.1)-(1.3) that blows up at (0, T)" x (0, co), where
satisfies (1.14). Let r/# 0 and consider the auxiliary functions

(a) O(x,t)=ln(T-a)+u(A(ce)+xx/T-c,a+(T-t)t) for f(u)= e",
(4.1)

(b) O(x, t)-(T-o)u(A()/xx/T-, /(T-)t) for f(u)=uP,

where

(4.2) A(a)=x/T-alln(T-a)[1/zrh 0<a< T,

and

(4.3) Ixl <-- [J Iln T- a )11/2, 0 < < 1.

We first prove the following lemma, which gives a uniform bound on the auxiliary
functions (4.1) as a-* T-.

LEMMA 4.1. Let m N be fixed and a sufficiently close to T. Then there exists a
constant Mm such that

(4.4) Iq(x, t)[ <_- M,,

for Ixl <-- m/2, [0, 1] uniformly as a - T-.
Proof We point out that (4.3)implies [A(c)+xx/T" al-> I;t(a)l/2. Forf(u)= up,

since ur-<0 and ut=>0, (4.1(b)) gives

(x, t) < T a)t3u(A(.) ) (A(a)),a+(T-a)t <-(T-a)t3u 2 ’T

Using the upper bound (1.12(b)) and (4.2) we have that

O(x, t) <_- (T- ce)(KIln (],()1/2)1

+ln (T-a)
In [ln (T-a)l+ln In[-ln C

for all [x[lwl/ln(T-=)l’/,te[o,] uniformly as a T-. Since O(x, t)e0, the
result follows.

For f(u)= e", the proof of (4.4) is more difficult since O(x, t) could approach
-. Since UrNO and utO, (4.1(a)) gives

0(x, t)Nln(T-a)+u 2
Using the upper bound (1.12(a)) and (4.2) we have that

O(r,t)-<ln(T-a)-21n ’2 + In In
x(,)
2

+C

=ln(4(t-)llnlA(a)/21])[,t 12
--C

1 1 )In r a)
In Iln T- a)l + In In I- In 2 +c,
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which implies

(4.5) O(x, t) <- K

for all [xl<-[7[/211n (T-a)[ 1/2, /[0, 1] uniformly as a- T-.
By Friedman and McLeod [9],

(4.6) ]7q,,12 T- ce)lvul2<- K

for all Ixl-< 1 l/2I n (T- [0, 1] uniformly as a - T-.
Since u, _-> 0, we can use Lemma 3.1 to obtain a lower bound for 0(0, t).

0(0, t)->ln (T-a)+u(h(a),a)>=-ln(l+)+o(1)
as a- T-. Therefore, for a sufficiently close to T, (4.5) gives

(4.7) 10(0, t)l <_-- K

for all [0, 1], uniformly as a- T-.
Now let men be fixed and a sufficiently close to T. For Ixl<-m/2 and t[0, 1]

define O(v) @,((1 v)x, t), 0=< v<- 1. Then

(x, t)-(0, t)= 0(1)- 0.(0) 0(v) dr=- V((1- v)x, t). xdv.

By (4.6) and (4.7),

]q(x, t)lg(l+lxl)Mm

for some constant Mm uniformly as
Remark. The proof for f(u)--up given by Herrero and Velfizquez [16], when

extended to higher dimensions, establishes (4.4) provided n <-2 or n >= 3 and 1 < p-<_
(n + 2)/(n- 2). This restriction is coming from an application of the results of Giga
and Kohn [12] to the nonradially symmetric function q,(x, t).

We can easily check

(4.8) (), Aff +f(ff.), x 6 I", 0<t<l,

and, by (1.10),

(4.9)

(a)

(b)

1
0(x, 0)=-ln 1+ 411n (T- a)[ 2) +o(1) for f(u)= e",

x/lln T- )l ]-t+o(1) forf(u) up

as a T- uniformly in x for r/# 0 fixed.
By Schauder’s interior estimates all partial derivatives of O remain bounded in

the set Qm {(x, t)’[x[ <- m/3, 1/2 <- <- 1} uniformly as a - T-. It follows that there exists
a subsequence, also denoted by q(x, t), and a function q%(x, t) such that

q, (x, t) -> I]t (x, t) as a T- uniformly on Qm,

(@m)t AOm +f(Om) on int (Qm).
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Repeating the construction for all m and taking a diagonal subsequence, we can
conclude there exists a subsequence, again labeled @(x, t), and a function q(x, t)
such that

(4.10) q(x, t)- d/(x, t)

uniformly as t- T- on compacts of nx [1/2, 1],

(4.11)

(a)
(4.12)

(b)

0-, Aq+f(q) in " x (1/2, 1),
q(x, 0)= --ln (1 +1/4l)l) for f(u)= e’,

(x, 0) flt 1 +4-- It/12 for f(u) up.

It is easy to verify that 0 is given by

(a) (x,t)=-ln (1-t)+l/I2

(4.13)

(b) t0(x, t) flt (1 t) +4- In
From (4.10) and (4.13) we deduce that

qt(0, 1) -ln ( l712) + o(1)

q (0, 1) (4p/3)’ --’ + o(1

(a)
(4.14)

(b)

or recalling (4.1),

(4.15)

for f(u)= e"

for f(u)= up.

for f(u)= e",

for f(u)= up,

for f(u)= e

(a) In (T-a)+u(n4T-a Iln (T-a)[ ’/2, T) =-In (l712) + 0(1),
for f(u)= up,
(b) (T-a)u(nx/T-a ]ln(T-a)l1/2, T)=(4pfl2)[rl{-2+o(1)

so that

y r/x/r a In (T- a)l 1/2

and

Therefore,

Iln [Yll [ln (T- a)] + O(ln Iln (T- a)[) as a T-,

y r/x/ x/T-c x/lln lyll + 0(4T a In Iln lyll) as a - T-.

(T- a) lYI as a - T-.

Substituting this into (4.15) gives

u(y, T) -2 In lyl + In ]In lyll + In 8

211n lYI u(y, T)--(4pfl) for f(u) up

as lYl 0. Theorem 1.4 now follows immediately.

for f(u)= e",
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EXISTENCE OF TRAVELLING WAVE SOLUTIONS FOR A
BISTABLE EVOLUTIONARY ECOLOGY MODEL*

JACK D. DOCKERYt AND ROGER LUI

Abstract. The existence of travelling wave solutions for a density-dependent selection migration
model in population genetics is proven. A single locus and two alleles are assumed. It is also assumed
that the fitnesses of the heterozygotes in the population are below those of the homozygotes. The
method of proof is by constructing an isolating neighborhood and computing a connection index.

Key words, population genetics, travelling waves, wave speed, connection index, isolated
invariant set, homotopy
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1. Introduction. During the past two decades, a considerable amount of math-
ematics has been done on the following nonlinear diffusion equation,

(1) u u / h(u)

where h e C1[0, 1], h(0) 0 and h(1) 0 [1], [10]. This equation is popular because
it has numerous applications, one of which is to describe the dynamics of a certain
gene frequency in a population subject to selection pressure and random migration
[11]. In such an application, many simplifying assumptions had to be made in order
that the situation can be modeled by (1). Some of these assumptions are more serious
than others, but the most restrictive is probably the assumption that the population
density remains constant throughout space and time. We would like to develop and
analyze a model that does not have this requirement, and to compare our results to
those of (1). We shall develop such a model in this section. The rest of the paper is
devoted to proving the existence of travelling wave solutions for an important case of
the model. A complete discussion of selection-migration models and the mathematics
of (1) may be found in [9].

Consider a population of diploid individuals living in a one-dimensional homoge-
neous habitat which we assume to be the entire real line. Suppose a particular pair of
chromosomes carries at one of its loci a particular gene that occurs in two forms, called
alleles, which we denote by A and a. Then the population may be divided into three
classes or genotypes: AA, aa, and Aa. Individuals with the first two genotypes are
called homozygotes while individuals with the last genotype are called heterozygotes.

Let pl (x, t), p2(x, t), p3(x, t) be the densities of genotypes AA, Aa, and aa at point
x and time t, respectively. We assume that the population mates randomly without
regard to genotype, produces offspring at the rate r and that the population diffuses
with a constant rate 1. Let T, T2, T3 denote the death-rates of the individuals with
genotypes AA, Aa, and aa, respectively, and let n(x, t) denote the total population
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density. Then, under the above assumptions, pl, p2, P3 satisfy the following system of
partial differential equations,

(2) p2,t

P3,t

These equations hold without any assumptions on the dependence of the birth and
death rates on x, t and

In population genetics, the frequency of an allele is more interesting than the
densities of the genotypes. Let p(x, t) (pl + 1/2P2)/n be the frequency of allele A in
the population. Then a straightforward but tedious calculation yields the following
equation for p,

(3)
1

Pt Pz + 2
pxna + f(P, n)p(1 p) + ((T2 T3)p (T2 T)(1 p)}a.
n

In the above equation f(p, n) p(T2 T1) + (1 p)(T3 T2), a (p 4plp3)/n2,
and we have assumed that r and Ti depend on p and n only. We can also obtain an

equation for n by simply adding the equations in (2). Doing so, we obtain,

(4)
on

nt nxx + g(P, n)n + (T 2T2 + T3)-,
where g(p, n) r p2T1 2p(1 p)T2 (1 p)2T3. The above method of deriving (3)
and (4) from (2) is contained in the appendix of [1].

Equations (3) and (4) are insufficient to determine p and n; we need another
equation for a. The quantity a measures the deviation of the population from
Hardy-Weinberg equilibrium. For discrete-time models, the Hardy-Weinberg prin-
ciple says that with random mating, and in the absence of factors which affect the
gene frequencies, the genotype frequencies will arrive at and remain in the proportion
p2:2p(1- p) (1- p)2 after one generation. Such a proportion is called the Hardy-
Weinberg equilibrium. Note that a 0 in this case. In a continuous-time model,
Hardy-Weinberg equilibrium is attained only asymptotically [6]. In this paper we

shall make the assumption that a 0. Hence we obtain the following reaction-

diffusion system,

p pxx + 2
pzn + f(p, n)p(1- p),
n

nt nx + g(p, n)n.

It is worthwhile to see how (1) can be derived from (2) using a scaling argument.
Let v p2/n. From (2), an equation for v can be derived which we shall not display
here. Let e IT --T21 + IT2- T3[ and assume that it is sufficiently small. (This
is called weak selection in population genetic theory.) Then by rescaling time by
e and space by v/, some of the terms in the equation for v will contain an e in

front. As a first approximation we set e 0. Then the terms without e in the
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equation for v imply that a 0. In other words, Hardy-Weinberg equilibrium is
achieved. From (4), under the same scaling of space and time and setting e 0,
we obtain g(p, n) 0. Suppose the birth and death rates are functions of n only.
Then since ’1 T2 T3 =-- T, we have n K which is the root of the equation
r(n) T(n). For e > 0, we substitute a 0 and n g into (3) and obtain (1)
where h(p) p(1 --p){p(T2(K) T1 (g)) + (1 --p)(T3(K) T2(K))}. The above scaling
argument is taken from 2.3 of [9].

By relabeling the two alleles A and a, it can always be assumed that T3 _> T1 SO

that there are three cases to consider in (1), depending on whether T2 lies between,
above or below T1 and T3. These are called the heterozygote intermediate, superior
and inferior cases, respectively. In the last two cases, h has an intermediate zero
between zero and 1.

The mathematical theory of (1) is very rich and well understood. One of the most
intriguing properties is the existence of travelling waves. A travelling wave solution
of (1) with speed 8 is a nonconstant function fi(z) such that fi(x + Ot) satisfies (1)
for all x and t > 0. For example, in the heterozygote inferior case, if f0 h > 0, then
there exists O* > 0 such that a monotone travelling wave solution connecting zero to
1 exists if and only if O O*.

In this paper, we shall consider the heterozygote inferior case of (5); that is, T2(n)
lies above ri(n) for i 1, 3. We prove the existence of travelling wave solutions for
(5) under additional assumptions on f and g. We shall discuss these assumptions
in the next section. The proof of our existence theorem is based on the connection
index from the Conley index theory. For the sake of completeness, we have provided
a brief description of this index in 3. The computation of the connection index as
well as the proof of our theorem are given in 4. To compute the connection index,
we continue the original problem to a problem where the computation is much easier.
In the last section, we provide a specific example and show that we can easily follow
the above-mentioned continuation method numerically. In a forthcoming paper we
shall prove that the travelling wave shown to exist here is stable in the case of weak
selection.

2. Hypotheses and result. There are two types of hypotheses for our theorem,
those that are motivated by our model ((A1) and (A2) below) and those that are
necessary to complete our mathematical argument ((A3) and (ha) below). We begin
by listing the hypotheses for f and g.

(A1) f and g are C in p and n with fp > O, fn > 0, g, < 0 for 0

_
p _< 1 and n _> 0.

Also, the relation

f(p,

holds.

(A2) The nullclines f 0 and g 0 intersect at a point (p*, n*) in the region

Q{(p,n)10<p<landn>0} withp* < 3"
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(A3) Let the curve g 0 intersect the line p 0 at K3 and the line p 1 at K1. We
assume that 0 < K3 < K1 and

f(p, K3)p(1 p)dp < O.

(A4) There exists a > 0 such that .f(p, n*) >_ a(p- p*) for 0 <_ p <_ 1 and

(7) g(0, n*) < min (1, a) p,
2

From (A1) and (A2), one can determine the form of the nullclines .f(p, n) g(p, n)
0. They are shown in Fig. 1.

FIG. 1. The form of the nullclines f 0 and g O.

We now explain how hypotheses (A1) and (A2) can be satisfied by our model.
Suppose the functions r and Ti, i 1,2,3 depend only on n (density-dependent

selection) and that they are continuously differentiable on the interval [0, x)). It is
more convenient to write f and g in terms of the fitness functions yi where rii(n)
r(n)- Ti(n). Doing so, we obtain,

(8)
p(rh r/2) + (1 p)(r/2 r/3),

p2r/ + 2p(1 -p)r/2 + (1 -p)2r/3.

Condition (6) is therefore satisfied. The function g represents the fitness of the entire

population.
We are interested in the heterozygote inferior case of (5). A weaker condition

than heterozygote inferiority is 1 --3 > 2r]2 for n _> 0. From (8), this is equivalent
to the condition fp > 0 for n _> 0 in (A1).

In ecological models, it is frequently assumed that resources are scarce so that
the growth rate of the population decreases with increase in population size. Thus, it
is reasonable to assume that i is a decreasing function of n, positive near zero and
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negative for large n. This implies that gn < 0 and that for each p, g(p, n) 0 has a

(unique) positive root.
Finally, from (8), the condition fn > 0 for 0 <_ p <_ 1 and n >_ 0 in (A1) is

equivalent to ?/1 > ?/2 > ?/3" Such an assumption is important because it allows us to
use the comparison principle on the first equation of (5). The comparison principle
is not valid for (5). For an example where these inequalities and ?/1 4-?/’/3 > 2?/2
are satisfied let ?/i(n) ri(1 -(n/K{)), i 1, 2, 3 where r, K are positive constants
chosen so that 2r2 < rl +r3, rl/gl +r3/K3 < 2(r2/K2) and rl/K1 < r2/g2 < r3/K3.

Since fp > 0 and gn < 0, the implicit function theorem implies that there exist
functions and such that f(p, (p)) 0 and g(p, t(p)) 0 for p in the unit interva.1.
Since fn > 0, is decreasing in p. We assume that the graphs of and t intersect
at some point (p*,n*) where 0 < p* < 1/2 and n* > 0. From (6), it is easy to see
that (p*, n*) is unique and achieves a minimum at p*. From (8), the function f
can be written as f(p, n) C1 (n)(p C2 (n)), where C1 (n) ?/1 + ?/’/3 2?/2 and

C2 (n) (?/3 ?/2) / (?/1 4- ?/3 27/2). Thus p* < 1/2 if and only if ?/3 (n*) < ?/1 (n*).
Hypotheses (A1) and (A2) are not enough to prove our theorem. Two technical

assumptions, (A3) and (A4), have to be added. Assumption (A3) is used only in
the proof of Lemma 4.4 while (A4) is used only in the proof of Lemma 4.9. Recall
the definition of C2(n) from the above paragraph. From the form of f given above,
we see that the condition f(p, n*) >_ a(p- p*) is an equality and is always satisfied.
Also, (7) is satisfied for sufficiently small p* since g(0, n*) a(p*)2. To see this, solve
p* in terms of ?/(n*) by writing g(p*, n*) 0 as a quadratic equation in p*. From
the above paragraph, p* C2(n*). Setting these two quantities equal, we obtain

?/22(n*) ?/l(n*)?/3(n*) which is equivalent to g(0, n*) a(p*)2. Finally, substituting
?/2(n*) -V/?/l(n*)?/3(n*) into p* C2(n*), we obtain

V/?/3 (n
+

so that p* is small if and only if ?/3 (n*)/?/1 (n*) is small.
It is obvious that the constant solutions of (5) in el(Q) are (0, 0), (1, 0), (p*,n*),

(0, K3) and (1, K1). If we only consider solutions that are spatially homogeneous,
then (5) becomes a system of ordinary differential equations. From assumption (A1),
it is easily checked that the first three solutions are unstable and the last two are

stable. This type of system where there are exactly two stable equilibria is better
known as a bistable system.

By a travelling wave solution of (5) with speed t?, we mean a nonconstant, bounded
solution (15, ) such that (i5, )(x + t) satisfies (5) for all x and t > 0. Equivalently,
(i5, ) satisfies the system of ordinary differential equations,

(9)
p" gp’ + 2 p’n----- + f(p, n)p(1 p) 0,

n -On +9(p,n)n=O,

on R where d/dz. As in the case of a single equation, we look for a travelling
wave solution of (5) which connects the two stable equilibria (0, K3) and (1, gl); i.e.,
(15, ) satisfies the boundary conditions:
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(10)
lim (p(z), n(z)) (0, K3),

lim (p(z),n(z))- (1, K1).
z--o

Under the hypotheses (A1)-(A4) we can prove the following theorem.
THEOREM 2.1. There exists a positive wave speed 0 such that (9) has a solution

(, t) which satisfies (10). Furthermore, ’ > 0 while t has at most one local minimum
ot 1o

The proof of Theorem 2.1 is based on the connection index theory.

3. The connection index. In this section we shall provide a cursory description
of the connection index so that readers who are unfamiliar with such concepts can
understand the proof of our theorem quickly. Many technical details are therefore
omitted, but they can all be found in the papers [4], [5], [12]. The connection index
is actually based on the Conley index [3] which we now describe.

3.1. The Conley index. Consider a flow defined by an autonomous system of
differential equations on R’. Suppose N C Rn is compact. Let I(N) denote the set
of all points x E Rn whose entire orbit (solution curve) through x is contained in N.
If S I(N) is interior to N, then S is an isolated invariant set and N an isolating
neighborhood. It is clear that a compact set N is an isolating neighborhood for S
if every orbit which hits the boundary of N eventually leaves N in either forward or
backward time, and if no orbit in S gets arbitrarily close to the boundary of N.

DEFINITION 1. Let S be an isolated invariant set with isolating neighborhood N.
An index pair for S is a pair of compact sets (N1, No) with No c N C N such that:

(i) cl(N\N0) is an isolating neighborhood for S.
(ii) Ni is positively invariant relative to N for i=0,1, i.e., given x E Ni and

x. [0, t] C N, then x. [0, t]c N.
(iii) No is an exit set for N, i.e., if x N, x. [0, cx3) N1, then there is a T > 0

such that x-[0, T] c N and x. T No.
Given an index pair, the Conley (homotopy) index of S is defined to be the

homotopy type of the pointed space Ni/No obtained by collapsing No to a point.
This homotopy index is well defined and depends only on the invariant set S [3]. We
shall denote the Conley index of S by h(S).

The easiest example is when S q}. Then (q}, q}) is an index pair. On collapsing
the empty set to a point, a pointed one-point space is obtained. The homotopy type
of this space, hence h(O), is denoted by . If S is a hyperbolic rest point for the flow
with a k-dimensional unstable manifold, then h(S) Ek, the homotopy type of a

pointed k-sphere.
An important property of the index is the sum formula. The sum of two pointed

spaces (A,a) and (B,b) is defined as A U B/{a,b}, the pointed space obtained by
taking the union of A and B and identifying the distinguished points a and b. This

sum is denoted by (A, a) /(B, b). If S and $2 are two isolated invariant sets with

S 3 $2 q, then h(S1 U $2) h(S) /h(S2). Furthermore, /h(S) h(S) for any
isolated invariant set S.

The product of two pointed spaces can also be defined. If $1 and $2 are isolated
invariant sets for the two flows x’ f(x) and y’ g(y), respectively, then $1 $2
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is an isolated invariant set for the product flow. The index of $1 $2 is given by
h(S1 $2) h(S1) A h(S2) where A is the smash product. For pointed spheres, we
have pm A p.n Em+n for all m and n > 0. Furthermore, A h(S) .

Finally, the Conley index also has the continuation property. Suppose S is an
isolated invariant set with isolating neighborhood N and we continuously deform the
flow so that N remains an isolating neighborhood throughout. Then the index of S
before and after the deformation are the same.

3.2. The connection index. Suppose that a one-parameter family of flows on
is given by

(11) x’
where f depends continuously on 0 E [01,02]. By appending the equation

d =0,

we obtain a flow, denoted by (I), on X Rn [01,02]. Let S, S’, and S" be isolated
invariant sets for the flow (I) and let S(O) denote the 6 slice of S.

DEFINITION 2. The triple (S, S’, S") is called a connection triple if:

(i) S’US" c S,
(ii) S’ S"

S"(iii) S(O) S’ () U () for 1 and 2.
A homotopy invariant index, called the connection index, can be defined for the

connection triples [5]. It has many properties similar to the Conley index. We denote
the connection index by (S, S’, S") and postpone its definition together with an

example to the end of this section.
Our proof of Theorem 2.1 relies on the following result in [5].
THEOREM 3.1. Let (S,S’,S") be a connection triple .for the ]tow ( and suppose

that S S’ S" S’ S"U Then -f(S, (p,1 A h(S’)) V h(S") where h(S’) and h(S")
are the Conley indices of S’ and S" for the flow , respectively.

This theorem clearly implies that if one can prove that (1 A h(S’)) V h(S")
for some connection triple (S, S’,S"), then there exists 6 E (01,02) such that S(O)

_
Sl!S’ ()U (O) Our connection triple is constructed so that S’ () and S" (8) are the

rest points. Therefore there must be another orbit in N(O) besides S’ (6) and S" (0).
From our construction of the isolating neighborhood, this orbit in N(O) is the desired
travelling wave with wave speed 6.

To show that (pl A h(S’)) V h(S"), we compute , h(S’) and h(S") via a
continuation argument. The idea is similar to that of the Conley index described at the
end of the previous section. We parameterize the flow (I) on X by [0, 1] and call it

(I)(,) where (I)(1) (I). Let Y Z x [0, 1] with the obvious flow defined on Y and let So
and $1 be isolated invariant sets for the flows (I)(0) and (I)(1), respectively. Then So and
$1 are said to be related by continuation if there is an isolating neighborhood N for the
flow on Y such that So I(N(O)) and $1 I(g(1)). (g(,) is the , slice of N and is

an isolating neighborhood for (I)(,).) According to 3.1, h(So) h(S1). Presumably,
h(S0) is easier to compute than h(S1). Similarly, we can define a continuation of
connection triples. Suppose S’, S", S’" are isolated invariant sets for the flow on Y
such that for each ,, (S’ (,), S" (,), S’" ()) is a connection triple. Then the connection
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triples at A 0 and at A I are related by continuation and have the same connection
index.

We now give the definition of a connection triple (S, S’, S"). The following is
taken from [5].

Extend the flow (11) so that it is defined for 0 E [01 -e, 02 / e] for some e > 0.
Let U’ and U" be open neighborhoods in R [01 e, 02 + e] of S’ (01) t_J (02) and
S" (01)t2 (02) respectively, and choose them so that they have disjoint closures. Let
be a continuous real-valued function on Rn which is positive on U’ and negative
Von and zero everywhere else. Append to the above given family of equations the

equation ’ #(x)[0- (01 + 02)/2], where # is a small positive parameter. Let N
be a compact neighborhood in R (01 -e, 02 + e) such that N(O) is an isolating
neighborhood of S(O) for each 0. Then there is a #0 > 0 such that if # E (0, #0), then
N is an isolating neighborhood for the appended equation. Let h be the Conley
index of I(N) for # e (0, #0). Then h, is independent of # and in fact depends only
on the triple (S, S’, S"). We define

By way of example, consider the following system of equations,

U V
o (1- u u*

1 This is the bistable equation which has an increasingwhere 0 > 0 and u* 7.
travelling wave solution connecting (u, v) (0, 0) to (1, 0) for a positive wave speed

0 0". The points (0, 0) and (1, 0) are saddles for all values of 0 while (u*, 0) changes
from an unstable spiral to an unstable node as 0 increases, say from 01 near zero to

192 > *. The phase plane diagram for the two values of 0 are shown in Fig. 2 and

3 below. An isolating neighborhood is also shown where the exit set is marked. Let
N denote this set cross [01,02]. Then N is an isolating neighborhood for the above

flow and 0’= O. Let S I(N), S’= (0, 0) [01,02], and S"= (1, 0) [01,02]. Then

(S, S’, S") is a connection triple according to Definition 2. To calculate its index, one

can follow the recipe described in the above paragraph. An easier, though somewhat

incorrect, method is the following (see 48 of [12]).
Let No be a subset of g such that (Y(O), No(O)) forms an index pair for S(O). No

is just the exit set of N. Let 0 be No together with the closure of all orbit segments
in g(01) and N(02) which tend to S’ (01) and S’ (02) in negative time, respectively.
Then -(S,S’,S") is the homotopy type of the pointed space N/lo. The reason

why this is somewhat incorrect is because S’ (0i) : N\0, i 1, 2, so that (N, 0)
is technically not an index pair according to the definition in the previous section.

S’ S"Therefore, we have to modify the flow near (0) and (0),i 1, 2. It turns out

that the homotopy type of N/No for the modified flow is the same as the homotopy

type of N/1Qo as defined above.

Now the exit set at 0i, i 1, 2, consists of three disjoint parts and two of these
Sparts are connected to the unstable manifold at (0) (See Figs. 2 and 3.) Therefore,

0 is contractable to a point on the boundary of N, which is homotopic to the surface

of a ball. Thus N/Jo is homotopy equivalent to the one-point space, or . The

connection index is 0 for this example.
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FIG. 2. The phase planes for the bistable equation at 0 O1 and 0".

FIG. 3. The phase plane for the bistable equation at 0 02.

4. Proof of Theorem 2.1. In this section we shall use the connection index to
prove the existence of travelling waves. It is difficult to compute this index for the
original model, so we continue the model to a system for which the connection index
is easy to compute and then apply the continuation theorem in the previous section.

(i3)

4.1. The homotopy. Let A E [0, 1] and consider the system,

p" Op’ + 2A
p’n’

+ f)’(p, n)p(1 p) 0,
n

n" On’ + g)’ (p, n)n O,

where :)’(p,n) A:(p,n)+ (1 A)(p-p*) and g)’(p,n) Ag(p,n)+ (1 -/) (n* -n).
When A 1, we recover our original model and when A O, (13) decouples into the
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K

FIG. 4. Projection of the isolating neighborhood onto the p-n plane.

bistable equation,

(14) p" or,’ + p( p)(p p*) o

and the Fisher equation,

(15) n" On’ -F n(n* n) O.

It is easy to check that except for (6), conditions (A1) to (A3) of 2 hold for

f and g with Ki replaced by K, i 1, 3. We define K by g(0, K3) 0 and
g(1, K) 0. The nullclines f 0 and g 0 are similar in form to the nullclines

f 0 and g 0, respectively. In fact, f 0 lies between f 0 and p p* while
g 0 lies between g 0 and n n*. They intersect only at (p*, n*).

It is convenient to write (13) as a first order system:

p

e : (, n)( ),
(16) n

T/, "--V2

vg. Ov: g’(p, n)n.

For each 0 and A, (16) defines a flow on R4. The rest points are Y (1, 0, K, 0),
Y* (p*, 0, n*, 0), Y3 (0, 0, Ka, 0), (1, 0, 0, 0) and (0, 0, 0, 0). A travelling wave
solution of (5) corresponds to a solution of (16) which connects Y3 to yl.

4.2. The isolating neighborhood. We first find a set N in R4, independent
of 0 and A, such that it is an isolating neighborhood for the flow (16). The only rest
points in N are Y and Y3, and p is increasing along any nonconstant orbit in N.

Let K+ and K- be such that 0 < K- < K,K3 < K+ for all A E [0, 1], f 0
intersects p 0 above K+ and intersects p 1 below K-. Let A0 {(p, n) 0

_
p_ 1 andK- _n_K+} (see Fig. 4).

If Y (p, vl,u, v2) is a solution of (16) with 0 _> 00 > 0 and -1 _< p(z) <_ 2,
K-

_
n(z)

_
K+ for all z E P, then Ivil <_ L for i 1, 2. To see this, choose C such
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that IgX(p, n)n _< C for all A e [0, 1] and above values of p, n and define L C/O0.
Suppose v2(zo) > L. Then from (16), v2(zo > 0 which implies that v2(z) > L for all
z >_ zo. Hence n is unbounded which is a contradiction. Thus, Iv21 <_ L. A similar
argument can be used to show that In2Xp I, and hence IP’ I, is bounded if we observe
that p satisfies the equation,

(n2p’)’ O(n2)’p’) + f(p, n)p(1 p)n2 O.

Let No {(p, vl,n, v2)l(p,n) E Ao,0 _< vl _< L and Iv21 <_ L}. No is not an

isolating neighborhood since Y1, Y3 and Y* belong to the boundary of No. We need
to add to No neighborhoods of Y1 and Y3 and remove a neighborhood of Y* to obtain
an isolating neighborhood.

To add a neighborhood of Y3, let A3 {(p, n) llpl <_ 5, K- <_ n <_ g+} where
5 is independent of A. By assumption (A1) we can choose 5 > 0 small enough so

that g 0 intersects the boundary of A3 only in the IPl 5 faces for all A E [0, 1]
and A3 lies below the curve f 0 (see Fig. 4). Let N3 {(p, vl,n, v2) (p,n) e
A3 and Ivl <_ L for i- 1,2}. Recall that I(N) is the set of all orbits of (16) that lie
in N for all z.

LEMMA 4.1. I(No t N3) I(No).
Proof. We need to show that p >_ 0 and vl >_ 0 along any orbit in I(No U N3) so

that the orbit actually lies in I(No).
Let Y (p, Vl, n, v2) be an orbit in I(NoUN3). Suppose p has a negative minimum

at zo where Vl(Zo) 0 and v (zo) _> 0. Since f(p, n) < 0 if p < 0 and n [g-, g+],
(16) implies that Vl(ZO < 0 which is a contradiction. Therefore, p _> 0.

Now suppose Vl(Zo) < 0. IfVl(Z) < 0 for all z < Zo, then Y must tend to a
rest point in N3 as z -c. There is only one rest point in N3, namely Y3. Since
p >_ 0, we must have p(-oc) > p(0) >_ 0 which contradicts the fact that p 0
at Y3. Therefore, vl(zl) 0 for some Zl < zo and Vl(Z) < 0 on (Zl,Zo]. Hence
vl(zl <_ O. This assumption also implies that (p, n)(z) e A3 for all z e [z,zo] and
hence f(p,n) < 0 at z zl. From (16), vl(zl >_ 0 and hence v(zl) 0 and
p(zl) 0. But then Y must lie in the invariant manifold p =_ 0, vl =- 0 because of
uniqueness which then contradicts the assumption that v (zo) < 0. Therefore, vl >_ 0.
This completes the proof of the lemma. D

We add a neighborhood of Y1 in a similar manner. Let A {(p, n) liP- 11 <
51, K- _< n _< K+}. We choose 51 independent of A and sufficiently small so that
g 0 intersects the boundary of A1 only in the p 1 -til and p 1 / 51 faces (see
Fig. 4). Let N1 {(p, vl,n, v2) l(p,n) e A1 and Iv] <_ n for i= 1,2}. The proof of
the following lemma is similar to that of Lemma 4.1 and is omitted.

LEMMA 4.2. I(No t N t2 N3) I(No).
Let No N1 N3. is still not an isolating neighborhood since Y* is on its

boundary. We need to remove a neighborhood of Y*. To do this we first show that

vl > 0 along any nonconstant orbit in I().
LEMMA 4.3. For any orbit Y I(1), n >_ n* for all z R.
Proof. Suppose n has a local minimum less than n* at say z 0. Then (p, n)(0)

must lie in the region where g > 0. From (16), v’2(0 < 0 which is a contradiction.
Therefore n > n* for all z. v1

LEMMA 4.4. Let > O. Then Vl > 0 along any orbit in I(1) except when the
orbit is Y*, Y3, or Y1.
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Proof. Suppose Y is an orbit in I() I(No) with vl (z) 0 at say z 0. Then

vl (0) 0 for otherwise Y would leave No in either forward or backward time. From
(16), fX(p, n)p(1 -p) 0 at z 0. If p(0) 0 or 1, then Y lies in the invariant
manifold p _= 0, v _= 0 or p _= 1, v 0. In each case, a simple phase plane analysis
reveals that the only orbit that lies between K+ and K- for all z is the rest point Y3
or Yz, respectively. Thus we need only consider the case fX(p(O), n(0)) 0. From
Lemma 4.3, the point (p(0), n(0)) must lie on or above the curve g 0 which implies
thatp(0) <_ p*. If it lies ong 0 and v2(0) 0, thenY Y*. Otherwise, Y
must tend to Y3 as z -cx. To see this, differentiate the equation for p to obtain
p’"+ [f(p, n)]’p(1 -p) 0 at z 0. Since p’" (0) > 0, we have n’ (0) < 0. If n’ (0) 0,
then (16) implies that n has a local minimum at z 0. Otherwise, n’ (0) < 0. In
both cases, since n cannot have a local maximum at a point above gX 0 or a local
minimum below it, we conclude that (p, n)(-cx) (0, K3) and that n’ < 0 for z < 0.

Multiply the first equation in (13) by p v and integrate to obtain:

J_ [ f n’(p’)20 p(O)

f (p)))p(1 p)dp + 2) dz.(17) (p’)2dz (p,n(z-o JO cx n

p*The right side of (17) is less than fo f(P,K3)P(1 -p)dp < 0 because n < 0
for z < 0, f > 0 and assumption (A3). This contradicts the assumption that t? > 0.
Therefore vz > 0 along any nonconstant orbit in I(). D

It now follows that the only orbit of (16) in I() that hits the boundary of is
the constant solution Y*. To see this, we may assume that the orbit Y lies entirely
in No because of Lemma 4.2. By our choice of L, Ivl < L along the orbit. The
n-component of the orbit cannot hit the n K+ faces of 0. (For example, if n
has a local maximum at z 0 and n(0) g+, then the last equation of (16) is

contradicted.) If Y hits the boundary p 0 or p 1 of No, then v 0 also since
Y lies in No. According to Lemma 4.4, Y Y3 or Yz which are in the interior of

because of the added neighborhood. Finally, if Y hits the boundary v 0 of No
and p 0 or 1, then Lemma 4.4 implies that Y Y*. Hence our assertion at the
beginning of the paragraph is proved. We record it as a lemma.

LEMMA 4.5. /f (9 >_ 0 > 0, then the only orbit of (16) in I(1) which hits the
boundary of 1 is Y =_ Y*.

Finally, we must remove a neighborhood of Y*. To do this, we use a result of [5]
concerning the excision of a portion of an invariant set. Let S be a compact invariant
set of a flow and Sr c S an isolated set relative to S; that is, there is a compact
relative neighborhood Nr of Sr in S such that Sr I(Nr). Let A+ A+(S, Sr)
be the points on solutions in S\Sr that tend to Sr in forward time. Similarly, let
A- A-(S, St) be those points which tend to S in backward time. A proof of the
following lemma can be found in 4D of [5].

LEMMA 4.6. Suppose is compact and S I(). Let Sr c S be isolated
relative to S and suppose that at least one of the sets A+ and A- is empty. Then for
all sujficiently small neighborhoods W of S in 1,

(18) I(\W) N O(I\W) I() 01\(S tJ A+ J A-).

We will take to be and Sr the rest point Y*. In this case, A+(I(I), Y*) is
the component of the stable manifold at Y* that is contained in I().
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LEMMA 4.7. For all E [0, 1] and > O, A+(I(I), Y* .
Proof. First note that if Y is a nonconstant orbit in I(), then by Lemma 4.2,

p E [0, 1] and by Lemma 4.4, vl > 0 for all z. Thus the only orbit in A+ must be a
heteroclinic connection from Y3x to Y*. For 0 > 0, there can be no such connection.
The proof of this fact uses the same argument as in the second half of the proof of
Lemma 4.4 and is omitted. Thus A+ q}. [3

The set A-(I(I), Y*) is nonempty since it is possible to find a connecting orbit,
as for example when 0, from Y* to K for sufficiently large . The unstable
manifold at Y* has dimension three and connecting orbits may be found using a
shooting argument.

By Lemmas 4.6 and 4.7, for all sufficiently small neighborhoods W of Y*, we have
(18) holding. Since the A-interval is compact, we can choose a neighborhood W so
that (18) holds for all A [0, 1]. Finally, let N \W.

PROPOSITION 4.8. N is an isolating neighborhood .for the flow (16) for each
A[0,1] and > Oo > O.

Proof. We must show that I(N) is in the interior of N. From (18) and Lemma 4.7,
we have

I(N) g ON I(1) g 01\(Y* tA A-).

Suppose P belongs to I() N 0. If an orbit in I() hits P in finite time, then by
Lemma 4.5, P Y*. If P is approached by a nonconstant orbit Y in I(), then by
Lemma 4.4 and the fact that the n-component of Y cannot have a local maximum
(minimum) above (below) g 0, Y must connect two of the three rest points Y*, Y3
and Y. It cannot connect Y3 to Y* because of Lemma 4.7. It cannot connect Y3
and Y since neither points are on 0. Hence it must connect Y* to Y in which
case P Y*. Finally, we have to consider the case when there exist orbits Yn in
I() such that Yn(zn) - P as n -- oc. Let n(z) Yn(Zn Z). Then I7 belongs to
I(/) and ]Yn(0) -- P as n -- oc. By the Arzela-Ascoli theorem, a subsequence of
converges to an orbit ]7 in I(2) where 1(0) P. From above, P- Y*. Therefore,
I(N) ON 0 which completes the proof of the proposition.

4.3. The proof of Theorem 2.1. We first derive a priori bounds on the wave
speed .

LEMMA 4.9. There exist 0 < O. < 0", independent of A [0, 1], such that if (, )
is a nonconstant solution of (13) .for some with e [0,1], i5’ > 0, e [n*,g+],
lim supz--.-o (z) < p and lim infz--.o D(z) > p* then e (., *). Here, p*l is
the root of the equation f(p,K+) 0 that lies between zero and 1.

Proof. We first show how to obtain the upper bound * assuming that the lower
bound . has been found. Recall from the beginning of 4.2 that _> . implies
that [’] is bounded independently of . Since _> n*, we can choose L1 such that
[’/1-- L1 for all z.

Consider the equation wt wx + f)’(w, K+)w(1 w). Since

1

fx (w, K+)w(1 w)dw > O,

this equation has a monotone travelling wave solution W with positive wave speed
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*’ such that W(-oc)- 0 and W(c)-- 1. Furthermore,

0*’: ([Wl’)2dz f:(w,K+)w(1 w)dw.

This relation implies that *, depends continuously on A since [W] depends on A
uniformly on R. The travelling wave solution W also has strong stability properties.
Fife and McLeod showed in [10] that if the initial data w0 satisfies the conditions
lim supx__o To(x) < p and lim inf-oo To(x) > p, then w(x-O*,t, t) is essentially
bounded between two translates of W.

Let u(x,t) (x-bt) and v(x,t) a(x/t) where -2L1. From (13), i5"-
i5’ +f(i5, )I5(1 15) >_ 0 so that u satisfies the inequality ut <_ ux +f(u, v)u(1 u).
Since fn > 0 and n _< g+, we have ut <_ ux + f(u,g+)u(1- u). Let w satisfy
wt wxx-bf(w, K+)w(1-w) with initial data w0 15. From the maximum principle,
u(x, t) (x -t- t) <_ w(x, t) for all x and t > 0. From the stability properties of W
mentioned above and our hypotheses on 15, there exist positive constants C, tt, and c
such that

t) <_ w (x +
for all x and t >_ 0. Letting y x + (- t?*,)t, we have

<_ + + -.t.

If > 0*,n, then letting t -- x) in the above inequality we obtain 15(y) _< 0 for all
y R, which contradicts our hypotheses. Thus <_ *’. If we choose * to be larger
than maxe[0,1] (0*,) + 2L1, we obtain an upper bound for 0 for all A [0, 1]. We
now turn to finding ,.

Let u t’/n and let - min(-0 + 2Au(z)). From the definition of f,
assumption (A4), and the hypotheses of our lemma, we have

15" i5’ + f(i5 p*)i5(1 i5) <_ 0

where 1 A+Aa >_ min(1, a). This inequality implies that -2A minz u(z) >_
0, where 0, is the wave speed of the bistable equation wt w+(w p*)w(1 w).
This fact may be proved using the same method we used to prove the upper bound 0".

p.It is also known [2] that for the above bistable equation, t?, is given by x/( ).
We now proceed to find the minimum of u.

If n’ >_ 0, then minz u(z) >_ 0 so that >_ -(1/2 -p*) >_ v/2min(1, a)(1/2 -p*).
Suppose u is not monotone. Then u cannot have a local maximum. For if u achieves
a local maximum at, say, z 0, then (i5, t)(0) lies below g 0. Since cannot have
a local minimum below g 0, is either increasing for z < 0 or decreasing for z > 0.
But then this would imply that either (15,fi)(-cx) (0, K3) or (lh, fi)(oc) (1, K)
which is impossible. Therefore, we assume that has a unique minimum at z 0, is
decreasing on (-oc, 0), is increasing on (0, oc) and the minimum of u occurs at some
point z0 < 0.

From (13), u satisfies the equation u’ -u2 /u-g where g(z) g(, )(z).
Therefore, U(Zo) (0- V/O2 -4g(zo))/2. Substituting this into the inequality 0-
2A minz u(z) >_ 0., we obtain

(1 )) + AV/O2 4g(z0) _> - (1/2 p*).
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To estimate g’(zo), we claim that if (p,nj),i,j 1,2, are four corners of a
rectangle in the p-n plane where 0 < pl < p2 < 1 and 0 < nl < n2 < K3, then
g(Pl, nl) + g(P2, n2) >_ g(p, n2) + g(P2, n). Assuming this for the moment, let
(p2, n2) (15, fi)(z0) and (p, n) (0, n*). Then g’(zo) >_ -Ag(0, n*) which according
to (7) is greater than -(e2min(1,a))(1/2 -p*)2/2 for some 0 < e < 1. Therefore, by
completing the square and rearranging the last inequality of the last paragraph, we
have _> /min(1, )(1-e)(1/2 -p*)--..

To prove our claim, let (iS(z), fi(z)), 0 <_ z <_ 1 be a line segment joining the points
(pl,n2) to (p2,n) so that i5’ >_ 0 and ’ <_ 0. Then, since gpn 2Afn _> 0, we have,

g(P2, n) g(pl, n2) + g((z), (z))zdz

(19) g(pl, n2) + (g’ + gn )dz

(20) >_ g(pl, n2) + g((z), nl)zdz + g(p2, (z))zdz,

which is the same as our claim. The proof of the lemma is complete.
We are now ready to apply the connection index theory to prove Theorem 2.1.

Let X Ra x [.,*] and Y X x [0, 1] with the obvious flow (I) defined on Y.
Let N be the set defined near the end of 4.2 with O0 ,. Then Proposition 4.8
implies that N x [., *] [0, 1] is an isolating neighborhood for the flow ).

Let S’ Y3 x [.,*] x [0,1], S" Y x [.,*] x [0,1] and S I(). Then
S, S’, S" are isolated invariant sets for the flow (I) on Y. We claim that for each
(S(A), S’ (A), S" (A)) is a connection triple. Conditions (i) and (ii) of Definition 2 are
obvious and condition (iii) follows from Lemma 4.9 above. According to 3.2, the
connection index (A) (S(A), S’ (A),S" (A)) is independent of A. Hence, (1)
h(0). When ) 0, (16) uncouples and (n, v2) (n*, 0) is a saddle point for the two-
dimensional flow obtained by writing (15) as a first-order system. From the example
given in 3.2, (0) 1 A- . Therefore, (1)- .

To compute the Conley index h(S’ (1)), we first observe that S’ (0) and S’ (1) are
related by continuation. When A 0, Y3 (0, 0, n*, 0) and y0 (1, 0, n*, 0). If
we write (14) as a first-order system, then (p, Vl) (0, 0) and (1, 0) are both saddle
points. Each has a one-dimensional unstable manifold. Hence h(S’ (1)) h(S’ (0))
1 x 2, according to 3.1. Similarly, h(S" (1)) 2. Since (1Ah(S’)) V h(S")
3V2 (A), Theorem 3.1 implies that there exists such that I(Ne) contains

a nonconstant orbit. From Lemma 4.4, this orbit must be a travelling wave solution
connecting Y3 to Y with speed 0 E (., 0"). Furthermore, p is increasing. Using the
fact that n cannot have a maximum above the curve g 0 or a minimum below the
curve g 0, it is easy to see that n can have at most one minimum on R. The proof
of Theorem 2.1 is complete.

5. A numerical example. In the previous section we showed how the homotopy
invariance of the connection index allowed us to ascertain the existence of a travelling
wave solution for the model (5). In this section we shall show that one can follow this
heteroclinic connection for a specific example using numerical continuation techniques.

Recall from the introduction that

f(p, It) P(?I 72) -- (1 P)(I
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and

g(p, n) p2r/1 + 2p(1 p)r/2 + (1 p)2y3.

Following [13] we assume that the fitness functions have the form:

r/i(n) ri(1- nlKi) for i-- 1,2, and 3.

To obtain an example of the heterozygote inferior case we use the following values of
parameters:

1 2 3

ri 0.6 0.7 0.8

Ki 12000 7300 8000

For the numerical computations we have found it convenient to scale n by 103. It
is easily checked that this corresponds to scaling the Ki’s by 10-3 in the above table.
Since g is linear in n and quadratic in p one can write down explicit formula for p*
and n*. Furthermore, it is easy to check that assumptions (A1)-(A4) are satisfied for
this model with the parameters given above.

We seek a heteroclinic orbit for (16) connecting Y3
where Y3 (0, 0, K3, 0), Y (1, 0, g, 0), and

(1- A)n* ),r
(1

for i-- 1 and 3.

It is easy to show that for each 0 > 0, (16) has a two-dimensional unstable manifold
and a two-dimensional stable manifold at Y for i 1 and 3. One can also write down
explicit expressions for the eigenvalues as well as a set of orthonormal eigenvectors. Let
{3,3 } denote an orthonormal bases for the tangent space to the unstable manifold
at Y3 and {1, } an orthonormal bases for the tangent space of the stable manifold

atY1.
The numerical method used here is similar to the method given in [7]. The

approximation is based on the following equations:

(21) Y’ TF)’(Y, O) for 0 < z < 1,

with the boundary conditions:

(22) Y(0) Y3 + e3(rnl3 + m23) with m + m212 1,

(23) Y(1) Yl -[- 1(m211 -- m22)1) with m22 + m222 1.

Here, F)’(Y, O) is the vector field on the right-hand side of (16) and T is a large positive
constant.

Equation (21) is just the differential equation (16) with z scaled by T. The
boundary condition (22) is the requirement that the initial value Y(0) lies on the
sphere of radius e3 intersect the linear approximation to the unstable manifold at
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FIG. 5. The wave speed 0 versus the homotopy parameter

Y3. Likewise, (23) implies that Y(1) lies on the sphere of radius el intersect the
linear approximation to the stable manifold of Y. The constant T is the time of
travel between these two points for the original unscaled variable z. The mij’s are
the projections onto the unstable and stable directions. For T large and ei’s small,
each solution of (20)-(22) represents an approximate heteroclinic connection.

In [7], the parameter T is fixed and the e’s are allowed to vary. Since the translate
of a travelling wave is also a travelling wave, another constraint is needed to fix the
phase of the solution. In [7], it was required that the L2-norm of the difference
between the derivatives of two successive approximations be at a minimum. This
requirement takes the form of an integral condition. In the presence of sharp fronts,
which occur for singularly perturbed equations, this condition is derived so as to
economize the numerical calculations. For this model it is more economical to simply
set el 3 e, a fixed positive number, forego the integral constraint and allow T
to be a free parameter. Along the solution branch we need to compute for each A the
solution vector Y, the wave speed , T and the mij’s so that the boundary conditions
(21)-(22) hold.

To find a starting solution of (21) at A 0 we use Y(z) (u(z),u’ (z),n*, O)
where

exp(Tx//2(z- 1/2))
1 / exp(Tx//2(z- 1/2))’

with 0 /(1/2 -p*). This is a solution of (16) at A 0 connecting Y3 to y0. At
A 0 we fix T 50 and compute e from the exact solution, thereafter holding e fixed
and allow T to vary. The numerical continuation is computed using the continuation
program AUTO [8]. The results of this computation are shown below.

In Fig. 5 we have plotted the wave speed 0 versus the homotopy parameter A. In
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FIG. 6. The n-component of the solution for ,k 0.0, 0.5, and 1.0.
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FIG. 7. The projection onto the p-n plane of the solution for ) 0.0, 0.5, and 1.0.

Fig. 6 we have plotted the n-component of the solution as a function of z for A 0, 5,
and 1. We see that n is clearly not monotone at A 1. In Fig. 7 we have plotted the
projection of the solutions for A 0, , and 1 onto the p-n phase plane.
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ON THE ENERGY DECAY OF A LINEAR THERMOELASTIC
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Abstract. It is shown that the energy of a thermoelastic bar and plate decays exponentially fast. The
energy method, combined with a multiplier technique and compactness property, is used.
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Introduction. In this paper we shall prove exponential decay of the energy of a
one-dimensional linear thermoelastic bar and a linear thermoelastic plate. Since the
pioneering work of Dafermos [1] on linear thermoelasticity, significant progress has
been made on the mathematical aspect of thermoelasticity; see [4], [5], [8], [9], and
[10], among others. Most studies focused on the existence, regularity, and asymptotic
behavior of solutions to the equations of nonlinear thermoelasticity. Surprisingly,
nothing has been known on exponential decay of the energy for the one-dimensional
linear equations with the Dirichlet boundary condition. In the above cited works and
references therein, some results on decay rate can be found. However, these are not
in the form from which we can infer exponential decay. When the displacement and
the temperature satisfy the Dirichlet and Neumann boundary conditions, respectively,
or the other combination, Hansen [3] proved exponential decay by using nonharmonic
Fourier series. But his argument does not seem to extend to the case where both the
displacement and the temperature satisfy the Dirichlet boundary condition.

The purpose of the present work is to resolve this open question for the one-
dimensional equations. The main results are Theorems 1.6 and 1.7 below. It is known
that the energy in higher-dimensional thermoelasticity does not decay to zero under
certain circumstances. There can exist nontrivial time-periodic solutions. A precise
statement can be found in [1].

We shall also prove exponential decay of the energy of the linear thermoelastic
plate in any space dimensions. Lagnese [6] discussed stabilization of various plate
models, and showed that the energy of a linear thermoelastic plate decays exponentially
fast with a certain dissipative boundary condition. We shall show that exponential
decay can be achieved with the homogeneous Dirichlet boundary condition. The main
results are Theorems 2.6 and 2.7.

Our main tool is the energy method, combined with a multiplier technique and
compactness property. The general strategy of proof is the same for both a linear
thermoelastic bar and plate. It is quite different from that of the earlier works, which
also employed the energy method. Our approach is somewhat indirect in that the key
estimates (1.32) and (2.32) below are established by the argument of contradiction,
which fully exploits compactness property and inherent boundary regularity associated
with the wave and plate equations.

1. Linear thermoelastic bar. In this section, we let i-I (0, 1) and consider the
following initial-boundary value problem.

(1.1) Utt au + bO 0 in l’l x (0, ),

* Received by the editors November 26, 1990; accepted for publication (in revised form) November
13, 1991. This research, performed at Mathematical Sciences Research Institute, was supported in part by
National Science Foundation grant DMS-8505550.

t Department of Mathematics, Virginia Polytechnic Institute, Blacksburg, Virginia 24061.
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(1.2) Ot Ox, + butx 0 in l-I x (0, oe),

(1.3) u=0, 0=0 atx=0and 1,

(1.4) u(x, O)= Uo(X), u,(x, 0)= Ul(X), O(x, O)= Oo(x) in 1),

where a > 0 and b # 0 are constants, and u and 0 denote the displacement and the
temperature, respectively. The derivation of (1.1) and (1.2) can be found in [2].

LEMMA 1.1. For Uo H(f), u L2([,), and Oo L2([),), there is a unique solution
u, O) such that

(1.5) u e C([0, ); H(f)) cl([0, ); L(f)),
(1.6) 0 e C([0, ); L:(I)))VI L2(0, ; n(I)).

This is a known fact. A typical proof is to construct a sequence of smooth solutions
whose initial data approximate (Uo, Ul, 0o). Then, we apply the a priori estimates
derived from the identity

(1.7)
dt

(ut ux+O-) dx+2 02 dx=O

to the difference between any two smooth solutions of this sequence and conclude
that the sequence is strongly convergent in the function spaces in (1.5) and (1.6). We
shall omit the details.

LEMMA 1.2. For Uo H(f) n2(l), U H(O), and Oo H(12) fq H2(I’), there
is a unique solution such that

(1.8) u C([0, o); H(f) fq H2()) fq CI([0, 00); H(I))),

(1.9) 0 C([0, ); H(I))fqH2(12))(q C1([0, o); L2(f)),
(1.10) 0, 0, L2(0, o; H()).

Proof This can be derived from Lemma 1.1 through an equivalent problem.
Suppose that Uo H(f) fq H2(12), ua H(f), and 0o H() fq H2() are given. Let
(v, b) be a solution of (1.1)-(1.3) and

(1.11) v(x,O)=vo(x),

where Vo, Vl, and 4o are given by

(1.12)

(1.13)

(1.14)

l)t(X 0)-- I)I(X), (X, 0)-" /)0(X),

D0-- Ul

I)1 aUoxx- bOox,

dPo-- Ooxx- bUlx.
The existence and uniqueness of (v, 4)) follow from Lemma 1.1. Then, we set

(1.15) u(x, t)= Uo(X)+ v(x, s) ds,

(1.16) O(x, t)= Oo(x)+ 49(x, s) ds.

It follows from the regularity conditions (1.5) and (1.6) applied to (v, 4)) that

(1.17) u e cl([0, (30); H(a)) f’l C2([0, ); L2(f)),
(1.18) Oe C’([0, oo); L2(I))) f’l C([0, oo); H(12)),
(1.19) 0, e L:Z(0, oo; H(f).
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By virtue of (1.12)-(1.14), (u, 0) defined by (1.15) and (1.16) also satisfies (1.1) and
(1.2). By means of (1.17) and (1.18), we can infer from (1.1) and (1.2) that

(1.20) u C([0, oo); H(12) fq H:(12)),
(1.21) 0 e C([0, oe); H(f) fl H2(12)).
The property that 0 e LU(0, oo; H()) follows directly from (1.7). Now the proof is
complete.

For later use, we also need to consider the following initial-boundary value
problem.
(1.22)

(1.23)

(1.24)

(.25)

v, avxx + bO,x 0 in 12 x (0, ),

O,-Ox+bv=O in12x(0, c),

v=0, 0=0 atx=0and 1

I)(X O)= Vo(X), )t(X 0)= Vl(X), O(X O)= Oo(x) in 12.

LEMMA 1.3. For Vo H(12), Vl L2(12), and Oo H(12) f’) H2(O), there is a unique
solution (v, O) of (1.22)-(1.25) such that

(1.26)

(1.27) 0

(1.28) 0,

Proof. For given Vo e H(12), v e L2(O), and 0o e H(f) f’l H2(O), we can deter-
mine Uo e H(12) fq H-(12) uniquely from

(1.29) auo,x V 1_ bOox.
Then, let (u, 0) be a solution in Lemma 1.2 with

(.30) u(x, o)= Uo, u,(x, o)= Vo, O(x, o)= Oo,

and set v u,. Obviously, (v, 0) is a solution of (1.22)-(1.25) satisfying (1.26)-(1.28).
Uniqueness follows from the identity

(1.31) d- (vt+av+O,) dx+2 Ot2x dx--O.

LEMMA 1.4. Let (v, O) be a solution of (1.22)-(1.25) with Vo H(12), V L2(12),
and 0o H(12)f’)H2(fl), and choose any T>0. Then, it holds that

(1.32) 0, dx dt >- M(llvollm + llvlll

for some positive constant M independent of Vo, vl, and 00.
Proof. Assume that (1.32) is false. Then, there are sequences {v’}= c H(12),

{vr}:=, L(a), and {0n}:=l fi H(12)f’lH(12) such that

(1.33)

(1.34)

(.35)

(1.36)
(1.37)

11.+ 11711 =.+ 0o m.>- 1 for each m,

(Ox dxdt-O as m-,

Vo Vo weakly in

v7 - v weakly in L(O) as m--,

0’ 0 weakly in H(O)
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for some v H(), v L2(fZ), and 0 H(f) fq H2(). Here (vm, 0m) denotes a
solution of (1.22), (1.23), (1.24), and

(1.38) 1)m(x, O)= Or, I)7(X 0) I) Ore(X, O)= Or.
Similarly, (v, 0) is a solution with

(1.39) v(x, O)= Vo v, (x, O)= vT, O(x, O)= 0o.

It follows from a priori estimates that can be deduced from (1.31), (1.35)-(1.37) that

(1.40) v" v weak * in L(0, T; n(f)),

(1.41) v’ v7 weak * in L(0, T; L2(O)),

(1.42) 0 - 0 weak * in L(0, T; H(f) f’l H()),

(1.43) 0’- 07 weak * in L(0, T; L2(f)),

(1.44) 07 07 weakly in Lz(0, T; H(f)).

Since (1.34) implies that

(1.45) 0, 0 in 12 x (0, T)

and (v, 0) satisfies

(1.46) vtt-av,,+bO,,=O in f(0, T),

(1.47) 07-0+ bv7 0 in f x (0, T),

we find that v is independent of t. Since v C([0, T]; H(f)), v is also independent
of t. Consequently, (1.46) yields

(1.48) v= 0 in f x (0, T),

which, together with (1.47), implies

(1.49) 0 0 in f x (0, T).

Next, let us rewrite (1.22) and(1.23) in (v m, 0m)"

(1.50) v, avxx + bO,x 0 in lq x (0, T),

(1.51) O?-O+bv’=O infx(0, T).

Combining (1.40)-(1.43) and (1.50), we find that for any e > 0,

v’o0 strongly in C([0, T]; HI-()),

v’-*0 strongly in C([0, T]; H-(12)),

0"0 strongly in C([0, T]; H2-()).

(1.52)

(1.54)

Since it holds that

for all m, where M is a constant, we obtain

(1.56) [[vT(O, t)ll,(O,T+ 11,,7(1, t)I]L(O,T <---- M,
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where M is a constant independent of m. This is a well-known fact that can be proved
by a multiplier technique; see [7]. Next, we multiply (1.50) by 0x" and integrate over
f x (0, T) to obtain

v’(x, T)O’(x, T) dx- v’(x, O)O’(x, O) dx- v’Oxt dx dt

(1.57) -a v(1, t)0(1, t) dt + a v(O, t)O’(O, t) dt

/a , O,x dx dt / b 0Ox dx dt 0 for each m.

Finally, we set

1 I ,)2(1.63) Era(t) = {(v -- (/(vxm)2-- (0)2} dx.

Then, it follows from (1.50) and (1.51) that

(1.64) Em(s)-Em(O) (Ox)2 dxdt,

from which it follows that

(.65) TErn(O) T (O) axat E(t) at.

By virtue o (1.34), (1.61), and (1.62), we conclude that

(1.66) E(0)-0 as m-.

By virtue of (1.34), (1.53), (1.54), and (1.56), we derive from (1.57) that

I" If(1.58)

Multiplying (1.51) by 0 and integrating over f x (0, T), we get

(1.59) O’Oxdxdt- (oxm)2dxdt+b vTOdxdt=O for each m.

On account of (1.34), (1.42), and (1.58), we have

(.o) (o)xto as m,

which, combined with (1.34) and (1.51), yields

(1.61) (v)dxdtO as m.

We then multiply (1.50) by v, integrate over x (0, T) and use (1.34), (1.52), (1.53),
and (1.61) to find that

(1.62) (v dxdtO as mm.
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This contradicts (1.33) because

(1.67) O’[’(x, O)

Now the proof of (1.32) is complete.
LEMMA 1.5. Let (v, O) be a solution of (1.22)-(1.25) with Vo H(12), Vl L2(12),

and 0o H(f) fq H(f). Then, it holds that

(1.68)
_-< M exp

for some positive constants M and a independent of Vo, vl, and 0o.

ff 2(1.69) El(t) (vt + av2 + 02t) dx,

(1.70) E2(t) (v, + av2 + 0,) dx.

Then, by (1.23), there are positive constants fll and/32 independent of and (v, 0)
such that

(1.71) IEI(t) e2(t) 2El(t).

Fix any T>0. Then, (1.32) and (1.71) give

(.7 (r-(0 - 0Lxa-c(0l

for some positive constant c independent of (v, 0). Without loss of generality, we may
assume c < 1, so that

(1.73) (T) N eel(0) for 0< e < 1.

This implies (1.68) by the semigroup propey of solution.
ToM 1.6. Let (u, O) be a solution of (1.1)-(1.4) with uoe H(a)H(a),

u e H(a), and Oo e H(a) H(a). en, we have

(1.74)

for all O, with some positive constants M and a independent of Uo, ul, and 0o.
Proo It is enough to set v u, and use Lemma 1.5.
THEOREM 1.7. Let (u, O) be a solution of (1.1)-(1.4) with Uo H(O), u L2(O),

and 0o L2(O). en, it holds that

M exp (-t)(lluoll+ ulll+

for all O, with some positive constants M and a independent of Uo, u, and 0o.
Proof We determine Uo H() H2(O), U H(O), and Oo H(O) H2()

by

(1.76) U Uo,

(1.77) Oo 0o+ bU,

(1.78) aUo= ui + bOo.

Proof Let us define
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Then, we denote by(U, t9) a solution of (1.1), (1.2), (1.3), and

(1.79) U(x, 0)= Uo, U,(x, 0)= U1, O(x, 0)=19o.

Then, apply Theorem 1.6 to U, (R)). Since u U, and 0 Or, the assertion (1.75) follows.

2. Linear thermoelastic plate. Let f be a bounded open subset of R with smooth
boundary 0f. We consider the following initial-boundary value problem.

(2.1) IJttt-A2u-[-olAO--O in fx(0, ),

(2.2) O-flAO+yO-aAu,=O in fx(0, co),

Ou
(2.3) u==0, 0=0 on0fx(0, co)

(2.4) u(x, 0)- Uo(X), u(x, 0)-- ul(x), O(x, O)- Oo(x) in

where 0/0v denotes the outward normal derivative on 0I. Here a 0,/3 > 0, and y_-> 0
are constants, and u and 0 denote vertical deflection of the plate and the temperature,
respectively. The derivation of (2.1) and (2.2) can be found in [6]. Our purpose is to
establish exponential decay of the energy, and the argument is the same as in the
previous section except some minor technical details.

LEMMA 2.1. For Uo Hob(l)), Ul C L2(), and 0o L2(1), there is a unique solution
(u, 0) of (2.1)-(2.4) such that

(2.5) u C([0, Co); Ho(f)) (q cl([0, CO); L2(f)),

(2.6) 0 C([0, Co); L2(f))(q L2(0, Co; H(Y)).

This can be proven by constructing a sequence of smooth solutions whose initial
data approximate (Uo, ua, 0o). Then, this sequence can be shown to be strongly conver-
gent in the function spaces in (2.5) and (2.6) by means of the identity

dI 2(2.7) d-- (u,+(Au)-+O2) dx+2 (/3IV 012 + y02) dx=O.

Since this is a well-known procedure, we omit the details.
L.MMa 2.2. For Uo H(f) fq H4(f), u H(f), and 0o H(f) fq H(f), there

is a unique solution (u, O) of (2.1)-(2.4) such that

(2.8) u C([0, ); H(O) H4(-)) C’([0, CO); H(f)),

(2.9) 0 C([0, Co); H(f) fq H2(y)) CI CI([0, CO); L(f)),

(2.10) O, O, t2(O, Co; H(f)).

Proof. This is a well-known fact. But for our purposes later, we shall derive this
from Lemma 2.1 as in the proof of Lemma 1.2. Let us set

(2.11)

(2.12)

(2.13)

and let (v, ) be a solution of (2.1)-(2.3), and

(2.14) v(x, O)= Vo(X), v,(x, O)= v,(x),

U0--" Ul,

’/)1 --A2U0-- A0o,
qo fl A Oo 3/0o+ a AUl

q(x, O)= qo(X) in f,
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according to Lemma 2.1. Then, we set

(2.15) u(x, t) Uo(X) + v(x, s) ds,

(2.16) O(x, t)= Oo(x) + q(x, s) ds.

By means of the regularity conditions (2.5) and (2.6) applied to (v, q), we find that

(2.17) u C([0, c); Ho(O)) (q C2([0, c); L2(2)),

(2.18) 0 CI([0, oo); L2(-))(-] C([0, 0(3); H()),

(2.19) 0 L(0, ; H(I)).

By virtue of (2.11)-(2.13), it is evident that (u, 0) is also a solution of (2.1)-(2.4). Then
it follows from (2.2), (2.17)-(2.19) that

(2.20) 0 6 C([0, ); H(f) f’l H2(f)),

which, combined with (2.1) and (2.17), yields

(2.21) u G C([0, 00); H20(-) H4()).

The condition that 0e LZ(0, o; H(12)) follows directly from (2.7) and the proof is
complete.

We next consider the following initial-boundary value problem:

(2.22) v,+Av+ahO, =0 in fx(0,),

(2.23) Ot--AO-JI"’)/O--oI. hv--O in fx(0, o),

Ov
(2.24) v 0, 0 0 on 0f x (0, o),

0v

(2.25) v(x, O)= Vo(X),

LEMMA 2.3. For Vo Ho(f), v L(f), and Oo H(I)) f) H2(12), there is a unique
solution of (2.22)-(2.25) such that

(2.26) v e C([0, ); HoZ(f)) C1([0, o); L(f)),

(2.27) 0 C([0, o); H(f) f’l H2(12)) 71CI([0, ); LZ(f)),

(2.28) 0, 0, e L2(0, ; H(O)).

Proof Let us set

(2.29) Ul V0

and determine Uo H(f)fq H4(f) by

(2.30) AUo Vl oA00

We then denote by (u, 0) a solution of (2.1)-(2.4) with Uo and u determined by (2.29)
and (2.30). By setting v u,, (v, 0) is a solution of (2.22)-(2.25) satisfying (2.26)-(2.28).
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Uniqueness follows from the identity

d Ii) (V2t -(AV)2- 0t2) dx+2 I. (/3170"+ 70)(2.31) d dx O.

LEMMA 2.4. Let (v, O) be a solution of (2.22)-(2.25) with Vo H(), Vl L2(),
and OoH()H2(). Choose any T>0. en, it holds that

for some positive constant M independent of Vo, Vl, and 0o.
oo The method of proof is the same as that for Lemma 1.4. Assume that (2.32)

is false. Then, there are sequences H(O) {v }m= = L2(), and {0o}==
H(O) 0 H(O) such that

2.33 Vo g(.) + v? 2 2
L2(fl) + 0o II-. 1 for all m,

(2.34) IVO dxdtO as mm,

(2.35) vv weakly in H(a),

(2.36) v v weakly in L(a),

(2.37) 00 weakly in H(a) H(a)

for some v e Hg(a), v e L(a), and 0e H(a) H(a). Here (v, 0m) denotes a
solution of (2.22)-(2.24), and

(2.38) v(x, 0)= v2(x), v(x, 0)= v(x), O(x, 0)= O(x) in a.

Similarly, (v, u) stands for a solution satisfying

(2.39) v(x, 0)= v(x), v,(x, 0)= v(x), O(x, 0)= O(x) in a.

By viue of a priori estimates that can be derived from (2.31), (2.35)-(2.37), we find that

(2.40) v v weak * in L(0, T; H(a)),

(2.41) v v weak* in L(0, T; L(a)),

(2.42) 0 0 weak * in L(0, T; L(a)),

(2.43) 0 0 weakly in L(0, T; H(a)).

In order to obtain fuher estimates, we rewrite (2.22) and (2.23) in (v% 0)

(2.44) v +v +0 0 in a x (0, r),

(2.45) 0 0 + 70 v 0 in a x (0, T).

It follows from these equations that

(2.46) v v, weak * in L(0, T; H-(a)),

(2.47) 0 0 weak * in L(0, T; g(a) g(a)).
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Next, let h (hi,’’ ", h,) be a vector field such that h [C2(1))]" and h(x) coincide
with the outward unit normal vector on 0f. Then, multiplying (2.44) by h. V v and
integrating over f x (0, T), we can obtain the identity

(Avm dx dt (x, T)h. (x, T) dx- (x, O)h. 7v(x, O) dx
2

+ 2
r . Oh 020 aom dx dt(2.48)

,= Ox Ox

+ (Avm)(Ah), V 0 dx dt

VO. V(h. Vv) dxdt.

The proof of this can be found in [7, p. 244]. On account of (2.40)-(2.43), it is easy
to see that

(2.49) (vm) dx de M

for a constant M independent of m. In the meantime, (2.34) implies that

(2.50) V0 0 in a x (0, T).

By the same argument as in the previous section, we can conclude that

(2.51) v=0 and 0=0 inx(0, r).

Consequently, we combine (2.40)-(2.43), (2.46), and (2.47) to find that for any e > 0,

(2.52) v 0 strongly in C([0, T]; H-(a)),

(2.53) v0 strongly in C([0, T]; g-(a)),

(2.54) 0 0 strongly in C([0, T]; H-(a)).

We then multiply (2.44) by 0% integrate over a x (0, T) and use (2.49), (2.52)-(2.54)
to derive that

(2.55) (v)O dx dt 0 as m .
Next, multiplying (2.45) by 0 and integrating over x (0, T), we use (2.55) to find
that

(2.56) (0)dxdt0 as m.

By the same argument as in the proof of Lemma 1.4, we can derive from (2.34), (2.44),
(2.45), (2.56) that

(.57) {(vr)+(v)}x0 as m.
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By means of an inequality analogous to (1.65), we arrive at

(2.58) IIv"ll,o(. / IIvT’ll = -.>/ 0o I1,=-> - 0 as m ,
which contradicts (2.33). Now the proof is complete.

LEMMA 2.5. Let (v, O) be a solution of (2.22)-(2.25) with Vo H(), Vl L2(O),
and 0o H() H(). en, it holds that

Ilv(t) [[,(m + IIv,(t)11L(m + o(t) H2(m
(.59)

M exp (- at)( VoltHm+ Vl =m+ 0oll
for some positive constants M and a independent of Vo, Vl, and 0o.

As in the proof of Lemma 1.5, (2.59) follows from (2.32). We shall omit the details
of the proof. Finally, we present the main results of this section. These can be proved
exactly in the same way as Theorem 1.6 and 1.7.

THEOREM 2.6. Let (u, O) be a solution of (2.1)-(2.4) with Uo
Ul H(), and Oo H() 0 H(). en, it holds that

(e.60)

for all O, with some positive constants M and a independent of Uo, Ul, and 0o.
THEOREM 2.7. Let (u, O) be a solution of (2.1)-(2.4) with Uo H(), u L(O),

and 0o L(). en, it holds that

(e.61)

for all O, with some positive constants M and a independent of Uo, ul, and 0o.
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SOLUTIONS TO THE CUBIC SCHRDINGER EQUATION BY THE
INVERSE SCATFERING METHOD*

AMY COHENf AND THOMAS KAPPELER$

Abstract. Weak solutions to the cubic Schr6dinger equation are constructed by the inverse scattering
method for a large class of initial data u0 such that (l+lxl’)uoLl(R)fqLZ(R) and uoH’(R) for an a

with < a < 1/2. These solutions are shown to evolve in L2(R) f’) L4(). This construction is valid, in particular,
if the initial data is the characteristic function on an interval of length not an odd multiple of r/2.

Key words, cubic Schr/Sdinger equation, inverse scattering method

AMS(MOS) subject classification. 35Q20

1. Introduction and summary. We consider the initial value problem for the cubic
Schr/Sdinger equation

(1.1) iut+1/2Uxx+lUl2U--O for x ,
(1.2) u(x, O) Uo(X).

This initial value problem has been considered by many authors, for example [GV],
[HNT1, 2], [K], IT1, 2], to cite only a few. Recently in IT2], Tsutsumi proved by
functional analytic methods that for Uo L2() there exists a solution u(x, t) of (1.1),
(1.2) evolving in L([0, T], L2([) 0 L4([)). It follows from results of Kato [K] that
this solution is unique in this space.

On the other hand, Zakharov and Shabat [ZS] developed a representation theorem
for smooth solutions of (1.1), (1.2) by the Marachenko-type inverse scattering method.
Tanaka [Ta] used their method to construct solutions evolving in Schwartz class,
provided that Uo was of Schwartz class.

The purpose of this paper is to generalize Tanaka’s results in order to construct,
by the inverse scattering method, a large class of the solutions obtained by Tsutsumi
IT2]. The inverse scattering representation is important because it reveals the soliton
structure of the solutions and provides a method for the rigorous analysis of the
long-time asymptotics of the solutions. We intend in a subsequent paper to analyze,
in particular, the asymptotics of solutions evolving from box-shaped initial potentials.

In this paper a continuous map t- u(., t) from [0, T] into Loc is said to be a
weak solution of (1.1), (1.2) if for all q in C([0, T]x), with compact support in
(o, r),

(1.3) u(x, t){iqt(x, t)+1/2q(x, t)+lu(x t)[2qg(x, t)} dxdt=O,

and if

u(.,t)->Uo(.) inLoc() ast->0+.
In this paper we prove the following.

THEOREM. Suppose there is an a with 1/4 < a < 1/2 such that

(14-Ixl)uo(x) t() f3 t2(),

* Received by the editors July 30, 1990; accepted for publication (in revised form) October 10, 1991.
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.

$ Department of Mathematics, Ohio State University, Columbus, Ohio 43210. The research of this
author was partially supported by the National Science Foundation.
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Uo the Sobolev space H’, and Uo meets the technical assumption (2.12). Then the inverse
scattering method produces a weak solution of (1.1), (1.2) evolving in L2(R)fq L4(R).

Remark. It follows from the uniqueness theorem of Kato [K] that the constructed
solution is unique within the space L2(R)f3 L4(R), and coincides with the solution
constructed by Tsutsumi IT2]. In particular it follows that

is preserved in time.
The method of analysis applied by Zakharov and Shabat [ZS] to (1.1), (1.2) is

analogous to the inverse scattering analysis introduced by Gardner, Greene, Kruskal,
and Miura [GGKM] for the Korteweg-de Vries equation. Zakharov and Shabat
associate (1.1) with the scattering problem

(1.4)
0 -1 xx-i u*

They showed that if u(x, t) solves (1.1) and u(., t) is of Schwartz class for each t,
then the "scattering data" of (1.4) evolve according to certain linear first-order ordinary
differential equations in t. They showed further that for > 0, u(x, t) could be represen-
ted in terms of the scattering data at time t, and thus in terms of the initial scattering
data which came from u(x, t) at 0. In particular,

u(x,t):-B+l(X,O,t),

where B/l(X, y, t) solves the Marchenko equation

B+(x,y, t)+ *+(x+y+z, t) D.+(x+z+w, t)B+(x, w, t) dwdz

(1.5)
+fl*+(x+ y, t)=O fory>=0.

The kernel fl+(s, t) is the sum of the inverse Fourier transform of the reflection
coefficient at time t, and some linear combinations of products of the form s e-2imnJ)s,
where the Tj are the poles of the transmission coefficient.

Let us also point out that it would be possible to use the reformulation of inverse
scattering due to Beals and Coifman [BC1], [BC2] in terms of the 0-bar operator and
the Riemann-Hilbert problem. While they consider the case of simple poles in the
transmission coefficient, their formalism has been extended subsequently to higher
order poles, cf. [SZ].

In 2 we analyze the forward scattering theory of (1.4) for general u Uo
LI() f-)L2(), introducing the necessary added hypothesis as (2.12). The assumption
(2.12) is needed to guarantee that the transmission coefficient as defined in 2 has a
finite number of poles and that none of them are on the real axis. In 3 we discuss
the time evolution of "scattering data at t>0." The definitions are suggested by
Zakharov and Shabat [ZS] and by Tanaka [Ta]. In 4 we solve the Marchenko equation
(1.5) and begin to analyze u(x, t):= -Bl+(X, O, t). In 5 we treat the inverse scattering
problem on the full line, and show that, under the assumption of the theorem, u evolves
in L2f) L4. In 6 we show that this u(x, t) is a weak solution of (1.1), (1.2). In 7 we
compute the scattering data associated with a Uo in (1.4), where u0 is the characteristic
function of an interval and analyze the solution to (1.1), (1.2) in that case.
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Notational conventions. [l" denotes the norm in L2(R+); I1" [lop the operator norm
on L2(R+). Other norms are noted explicitly, e.g., Ilfll)or Ilfll(+).

LP(+c) {f:f LP([a, )) for all finite a},

C() {f: f is a bounded continuous function on },

H+ is the Hardy space; {f L2() [f] has suppo in +}.

The Fourier transform and its inverse ff- are taken in the form

[g](,) f g(x) e-’e dx and -l[g](x)= f g(,) e+:’X

2. The foard scattering problem. The scattering problem associated with the
cubic Schr6dinger equation is

(2.1) -i u* =*’
where has components , 2, and ff C. In general, we assume only that

(2.2) u L() L2().

The purpose of this section is to define the Jost functions and the scattering data of
(2.1) and to obtain the fundamental integral equation relating them.

The Jost functions for (2.1) are the solutions + and

_
of (2.1) for Im (if)>0

such that

The existence of the Jost functions for all ff with Im (if) 0 and their key propeaies
are established in the Lemmas 2.1-2.7 below.

The scattering coecients, a+() and b+(), are defined for real by

(2.3) _(x, )= a+()$(x, )+ b+()ff+(x, ),

where for any 2-vector , v denotes the transpose of [v,-v]. Similarly, the
coecients a_ and b_ are determined by the relation

+(x, )= a_()(x, )+ b_()_(x, ).

The formal reflection and transmission coecients, r+() and t+(), are defined by

r+()=b+()/a+() and t+()=l/a+().

In Theorem 2.11 we will prove that if u L() L2() and u meets (2.12), then
r+L2()ocb() and r+()0 as . This theorem will also tell how weak

regularity of u gives some decay in r+ and how decay in u gives some weak regularity
in r+. Next, the analysis of the zeros of a+ leads to the definition of the full set of
scattering data associated to u. Finally, we derive the fundamental integral equations,
or Marchenko equations, which relate the Jost functions and the scattering data.

Construction of the Jost functions. For Im (if) 0, + must satisfy the system

io.+(x, )- iu(x).+(x, )= +(x, ),
(2.4)

-i.+(x, )- iu*(x)+(x, )= C+(x, ),
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with the boundary conditions

’tI/’+l(X )’" 0 as x- +,

+2(x, ’)’" eix as x +o.

Similarly,

_
must satisfy the system

iOxaIt_l(X, )- iu(x)_2(x, ’)= ’-l(X, ’),
(2.5)

-iO,_2(x, )- iu*(x)_,(x, )= ’-2(x,

with the boundary conditions

_,(x, ).-- ei’ as x -* -,
-2(x, st) 0 as x - -c.

Now write

We get

(2.6)

(2.7)

m+j(x, ) e-’C;+j(x, ) forj 1, 2.

Similarly, putting

’ (x, ’) forj= 1 2,m_(x, )= e
__

we get

(2.8)

(2.9)

m_l(X, )= 1- u(y) u*(z)m_,(z, ) e:z’(y-z) dz dy,

m_2(x, )=- u*(y) e2ir(x-y) dy

u*(y) ei-y) u(z)m_2(z, ) dz dy.

Because (2.8) and (2.9) are similar to (2.6) and (2.7), it suffices to study (2.6) and
(2.7). Here we introduce the maps T and T2, defined by the formulas

Tl[g](x, )= u(y) e2’(y-) g(z, )u*(z) dx dy,

r[g](x, u*(y) g(, ) e(-’u(z ,
in the appropriate spaces defined below. Let

:= {" Im () > 0} and N := {: Im () e 0}.
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For each real Xo let Exo denote the space of functions f: [Xo, +oo)x H- C such that
(E.1) x>=xo,f(x, is continuous on H and analytic on H;
(E.2) The map x -->f(x,. is bounded and continuous from [Xo, +oo) into the

Hardy space H2+"

(E.3) The map x ,---’,f(x,. is bounded and continuous from [Xo, +c) into cb();
(E.4) The map " --f( , ’) is bounded and continuous from fi into Cb([Xo, +oo));
(E.5) f(x, ) 0 uniformly in x >-- Xo as real :--> +oo.

Now (2.6) and (2.7) take the form

(2.10)

(2.)

Thus, formally,

and

(1 + T1)[m+l](X, )=- e2iC(y-x)u(y) dy,

(I + T:)[m+2](x, st) 1.

m+l-- Z (-T1)n[g,],
n0

where g(x, ) :=- e2iC;(Y-X)u(y) dy,

m+2 Z (-T2)"[g], where g2(x, ):= 1.
rl=0

The next lemmas show that m+l and m+2 exist in Exo. Their proofs consist of extensive,
but straightforward, analysis using the definitions of m+ and m+2.

LEMMA 2.1. Keep Xo fixed. Assume that u LI() L2(). Then
(i) T2[g2] Eo.
(ii) If u is also in the Sobolev space H() with 0< a <, then

IlT:[gd(x, ) L2()

for all x xo, with L2-norms uniformly bounded for x Xo.
(iii) lfxu(x)L2() for 0< <, then

T2[g2](x, H()

for all x Xo, with H-norms uniformly bounded for x Xo.
LZMM 2.2. Recall that g(x, ) = e2iY-)u(y) dy. Assume that u L L.
(i) For each Xo, g E.
(ii) If also u H with 0 < < , then Il%(x, < uniformly in

XXo.
(iii) If lslu(s) L2 with 0<<, then g(x, ) H uniformly in XXo.
LZMM 2.3. Assume u L() L2(). ck Xo in .
(i) Iff E, then T2f E.
(ii) Ifalso ]Clef(x, ) L2(- < <) uniformlyforx Xo, then I1 (T=f)(x,

L2(-< <) uniformly for x Xo.
(iii) Ifalsof(x, ) H() uniformlyforxxo andxu(x) L(), and 0< a < 1,

then T2f(x, H () uniformly for x Xo.
LMM 2.4. Fix Xo in . Assume that u LI() L2().
(i) Iff E, then T(f) E.
(ii) Ifalso f(x, ) L() uniformly in x Xo and 0< < , then "T(f)(x, )

L2() uniformly in x Xo.
(iii) If also f(x, H() uniformly in x Xo and xu(x) L(), then

T(f)(x, H() uniformly in x Xo.



SOLUTIONS TO THE CUBIC SCHRDINGER EQUATION 905

PROPOSITION 2.5. Let Xo R. Assume that u LI(R) f) L2([).
(i) There is a function m+2(x, ) such that

m+2(x, )- 1 Eo, and

(I+ T2)[m+E -1] T2[1],

whence m+2 solves (2.7) and (2.11).
(ii) If, in addition, uH() with 0<a<1/2, then for all n>-l,

Co.2n-2I]:V[1](x, ) L2(I) (x)/ (2n 2) I,

where

Thus

and tr(x) lu(s)l as.

where

whence

IlCT[m+z](x, )lle(, 2 IlCr[1](x, )11 C e(x).

(iii) If u H and (l +[xl)u(x) Ll()fq L2() with 0<a<1/2, then

T[1](x,. )lln --<_ 2"Ktz2"-l(x)/(2n 1)!,

K II(1 +IYI)u(y)IIL<) and /x(x)= (l+lsl)lu(s)l as,

IIT:[m+)](x, )11. <- Z [[T[1](x, )ll.<=2/Ke).
nl

Remark 2.6. The analogous results hold for m+l and T. These lemmas yield the
following theorem.

THEOREM 2.7. Assume u LI(R)f’)L:(). Consider the functions m+(x, ) and
m+:(x, ) defined above. For any Xo in

(i) T,[m+l](X, ) E; r2[m+2](x, ) E.
(ii) If in addition, uH() and O<a <, then for each x with XXo,

"T,[m+l](X, ) L2(); T2[m+2](x, ) L2()
with L2-norms uniformly bounded for x Xo.

(iii) If in addition, u H and xu(x) LI() L2() with 0< a <, then

Tl[m+l](X )e H(); T2[m+2](x, )H()

with H-norms uniform& bounded in x Xo.
Similar arguments are used to construct the left-side Jost functions _(x, () and

_2(& ). By analogy with E we define spaces E< on left half-lines and operators

T-l[f](x,):=ffu(y)[u*(z)f(z,)e2iCY-Z)dzdy,
T-2[f](x, ) := If u*(y) e2iC(x-Y) ff u(z)f(z, ) dz dy.
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We then construct the solutions m_ and m_2 of the equations

(I+T_l)m_l(X,)=l,

(I + T_:z)m_:z(x, ):- f’ u*(y) e:zic()c-y) dy.

This finally gives the Jost function q,_(x, ’) the form

Ifi_(X, )=[ I]/-I(X’ )] =eiX[ m-l(x’
@-2(x, ’) m_2(x, )

COROLLARY 2.8. The analogue of Theorem 2.7 holds for m-1 and m-2.

The scattering data, definitions, and properties. There are three components to the
scattering data associated to a potential u in (1.4). The first is the reflection coefficient
r+, which has already been defined. The second is the set of zeros of a+(’) in , or,
equivalently, the set of poles of the transmission coefficient t+()= 1/a+(sr). The third
is the set of normalizing chains, which we will define below.

Since a+(’) is equal to the Wronskian W[_, +], it is continuous in and
analytic in . Following Tanaka in 2 of [Ta], we see that a+(’)- 1 as ]]- oo in H,
and we make the technical assumption mentioned in the Introduction, namely,

(2.12) for all real :, a+() 0.

Observe that condition (2.12) is satisfied for u 0, just as a+(:)= 1 in this case. Note
that for : fixed in R, a+() is a real analytic function of Re (u) and Im (u). Therefore,
for a given in R, the condition a+(:) 0 is satisfied generically. It is not likely that
the stronger condition (2.12) is generic.

It follows that the set of zeros of a+(’) in H is finite; enumerate them as, ,..., .
By convention, J=0 will mean that a/ has no zeros in H. Let m(j) denote the
multiplicity of the jth zero of a/ in .

The normalization chains c and cj- relate the Jost functions /(x, j) and
xlt_(x, j). To define these chains, we give a simpler version of Tanaka’s Theorem 2.3
in [Ta] and prove it by a more elementary argument.

THEOREM 2.9. Suppose that a+ has a zero ofmultiplicity m(j) at j in . Then there
are sequences

such that

-4- / /c (c.i.o, c,,..., c,,,)_),

cj (C.co, c,,. c,.,()_),

C,o # O and Cj,o # O,

and, for each k with 0 <- k <- m(j)- 1,

(2.13) k--. p_(x, ’)]

(2.14) k--. [ ,+(x, sr)]

--o
c,_ [6+(x, )]

=o. c,_ [q,_(x, )]
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Furthermore, c. is related to . by the relations

+ {1 iftr=’r,
(2.15) cj,_cj,_

= 0 ifit<z,
whenever 0 <= o" <= - <= m (j) 1.

Proof. For real : we have the relation

a+() W[,_, +].
Extend q,+, 0-, and thus a/ also, analytically to H, obtaining

a+() W[O_(x, ), d/+(x, ’)].
Since ) is a zero of order m(j) for a+(sr), we learn that for 0 <- k <- m(j)-1

0= [a+(’)]

whence

At k 0 we get, in particular,

o= w[,_(x, ), ,/(x, )],
so each of @_(x, )) and ,+(x, )) is a nonzero multiple of the other. Thus we can define

C.o by the relations

q,_ x, Co4,/ x, with cj.+o s 0,

@+(x, ) c,-o6_(x, ) with c.-o # O.

The proof now continues by induction. Assume that we have proved (2.13) and (2.14)
for all k 0, 1,. ., N, where N is less than m(j)- 1. Now

0= [a+(’)]
) k=O k

N

W[6(N+) ,t,o). y (N+ 1)v
"t’+ Jlj + (N+l-k)=ok!(N+l_k)!W[O(_k), d/+

Use the induction hypothesis to get
N (N+I)’

0: w[’/’ ]1+
=ok!(N+l-k)! /x=0 .I cj’k

Treat/x 0 separately from/x ->_ 1.

N (N+I)*o= w[,_"+’, ,]1+
=o k!(N+ l-k)!

_+ .,_(o) 1-W[k! c,,+ 4,/ ]

(N+I)!
+E

k=O k!(N/ l-k)!
W ,,,+ ,i,(/) (N+l--k)

In the middle term use the linearity and skew symmetry of W to get
N (N+ 1)!k! + .,(N+,-k) ,)]0-" W lit(N+I)- Ek=okl(N+l_k)l’J,kv’+

+E W +

_-o k!(S+l-k)! c,_6
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Suppose we could show that the second line is zero. Then there is a nonzero Yj.N+I
such that

0(+0)(X, j)-’- j,N+I{ l]t(-N+l)
N (N+I)! ..+ ..(N+I_k)/E t’j,k tF +k_-_o(N+l-k)!

Let /

Cj,N+I [(N+ 1)! T,N+I]-1. Setting n N+ 1 k, we find that

(N+I)! NI 1 +I(N+I)(x, j)-- --,Cj,N+l_nl[c(+n)(x, j),

It remains to show that

N (N+I)I [__0 SeN := Y. W
k=ok!(N+l-k)!

k!..+ .,.) i]/(+N+l_k) ]". t"j,k-p.tF +

Now, since the k 0 term is vacuous,
N k (N+ 1)!=E E
k=l =l (N+ l-k)!tz!

Set k-/ for each fixed k.

N k-1 (N + 1)! + W[ 0(+k-,N=k=lZ /=0

y"
(N+l-k)l(k-l)’c’1.
N-1 N 1q-=(N+I)! Y, cj,1 ,
!=o k=l+l (N+ 1-k)!(k-l)!

Let S1 denote the sum over k.

N 1s,= E w[q,+-’ q,++’-l
k=,+l (N+ l-k)!(k-l)! gj

Note that as k runs from + 1 to N,/x := N+ 1- k runs from N- to 1, and v := k-l
runs from 1 to N-I. Thus

N-I 1
&= Z,=1/x!(N+ 1- l-/x)!

and

s,= w[,:, q/+-’-’-’)]
=1 (N+ 1-1- v)!vt

So & =-&, whence & 0, and SeN 0.
Thus (2.13) is proved for k N+ 1 and the induction is complete. (2.14) is proved

similarly, and (2.15) follows by comparing (2.13) and (2.14).
DEFINITION. The sequences cj and c- are the normalizing chains associated to

the jth pole of T+(’). Because of (2.15), c- is determined by c.
Properties of the reflection coetlicient r+. Since W[O_(x, ), O+(x, :)] is indepen-

dent of x for real :, this independence of : persists into the upper half plane, and

a+() W[q_(x, ), q+(x, C)]lx:o

m_l(0, ’)m+2(0, r)- re+l(0, st)re_E(0, ’).
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PROPOSITION 2.10. Assume that u L2(R) f’l LI(R).
(i) a+(:)-1 Co(R), i.e., a+(:)-1 is continuous form R to C and has limit 0 as

--> +oo; a+()- 1 H2+ 71H+.
(ii) If, in addition, uH(R) for 0<a <1/2, then s(a+(s)-l) Lz(R).
(iii) If, in addition, Ixlu(x) L2(R)O LI(R) for 0< a <1/2, then a+()- 1 H(R).
Proof This can be read off from the properties of T1, T2, m+, and m_. El
Similarly, we get the expansion

b+(sr) m_l(0 ’)m+*,(0, ’)- m_2(0, sr)m+*2(0, ’),

and find the following result.
PROPOSITION 2.11. Let u L2(R) ["l LI(R). Then
(i) b+(s) L2(R) f’l Co(R);
(ii) If, in addition, u H(R) with 0<a <1/2, then b+()L2(R);
(iii) If, in addition, u H and xu(x) L2(R) f3 Ll(R) with 0<a <, then b+()

H’(R).
COROLLARY 2.12. Assume u L:() L() and u satisfies (2.12). Then
(i) r+(s) L2(R) f’) Co(R).
(ii) If, in addition, u H(R) with 0<a <1/2, then r+() L2(R).
(iii) If, in addition, u H and xu(x) L2(R) f3 LI(R) with 0<a <1/2, then r+()

H(R).
Proof Parts (i) and (ii) follow immediately from Propositions 2.11 and 2.12 since

by (2.12) a+(s) is bounded away from zero for s in .
By Theorem 10.2 of [LM, p. 58] we see that (iii) is equivalent to

r+() L2(R) and -(1+2) Ir+(:+ t)-- r+(:)l ddt <.
We already know that r+ L2. We also know that a+(s) is continuous and never zero
on R, and that a+(s)--> 1 as s-> +oo. Thus there is an M such that [a+(s)[ -1-< M for
all real s. Since b+(:) is continuous on R and goes to zero as :--> +oo, we may take M
larger if necessary to get [b+(s)] _-< M for all real s. Finally, because of Propositions
2.11 and 2.12, we know that

and

-(’+’) [a+(+t)-a+()l2 ddt<c

-(1+2) Ib+(:+ t)- b+(:)lz d# dt <.
Now

-1+2) Jr+(+t)-r+()J2 ddt

=< t_<l+. b+(+ t) b+() 2

a+(+t) a+() ddt

-(’+2)

3. The scattering data and Marchenko kernel for positive time. At 0 we have
identified the components of the scattering data associated to (1.4), where the potential
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u is the initial function Uo in the cubic Schrfdinger problem For > 0 we define
nominal scattering data, "nominal" because we do not assert that these objects really
arise as the scattering data of any potential in LI()f’l L2().

DEFINITIONS.

(3.1a) r(:, t):= r+/-(:) e +/-2i2t,
(3.1b) srj(t) := srj for 1 -<j _-< J,

(3.1c) mj)-ICj,,(t))g=o
are determined as in Tanaka’s paper [Ta] by the ordinary differential equations

d
I(Cj,+ 2jCj,g_I + Cj,g_2)dt c’"] 2

with the conventions

and the initial conditions

Tanaka remarks that

cj,_l(t)cj,_2(t)=--O

c,G(o) Cj,tx

cj,(t) e2’C,(t)
where j,(t) is a polynomial of degree /z in t. The ordinary differential equations
(3. lc) insure that the relations (2.15) for the normalizing chains persist for > 0.

Now, following Tanaka [Ta], and Zakharov and Shabat [ZS], we define

J

(3.2) a+(x, t):= F+(x, t)+ 2 fj(x, t),
j=l

where

(3.3a)

and

F+(x, t)= Tt"-1 foe r+(, t) e2i’ d

(3.3b) f+j(x, t)=-2i
,=o a+(sr)

Introduce Qj,+,(x) by the equation

Qj,+(x) e2i:j’=(-)"I(-J)m() e:2i]a+()

Similarly, we define _, F_, f_j, and Q,,.
Observe that Qj,+,(x) is a polynomial in x of degree/x, and

m(--I 1 + + e2it+2ifxQj,,(xf+j(x, t)=-2i
/x:l

,, J’m(j)-l-tx(t)

The ordinary differential equations for the normalizing chains were chosen to insure
that each f+j satisfied the partial diffeerential equation

(3.4) itot -OOxx O.

The f+j(x, t) are smooth functions of x and and decay exponentially as x
for any fixed t.



SOLUTIONS TO THE CUBIC SCHRDINGER EQUATION 911

Since r+(., t) evolves in L2([), so does F/(., t). Further, F/ satisfies the initial
value problem (3.4) with

,o(x, O)= F+(x).

Note that (3.4) differs from the linear part of the cubic Schr6dinger equation (1.1) in
the sign in front of the second space derivative.

PROPOSITION 3.1. Suppose there is an a with 0< a < 1 such that

F+(x)Ha(R) and (l+lxl)F+(x)L=().

Then for each T with 0 < T < o,

(a) F/(x, t) L([O, T], Ha(R))

and

(b) (1 +[xl’)F+(x, t) L([0, T], L2(I)).

Proof. It suffices to prove that

(i) r+(:, t) L([0, T], H’(I))

and

(ii) (1 + Ixl)r+(, t) L([0, T], L2()).

But r+(sr, t)= r+(sc) exp (2i:2t), and thus (ii) is trivial. For (i) we must show that the
Ha-norm of r/(sr, t) is bounded uniformly in 0_<- t_-< T. Following [LM, Thm. 10.2,
p. 52] the Ha-norm of f(x) is equivalent to

L( + ds s -( dx If(x + s)-f(x)l

Clearly Ilr+(:, t)l](a)is independent of and thus it remains to prove that

ds s -(’+2’) d [r+(x + s, t)- r+(sc, t)[ 2

is uniformly bounded for 0-< _--< T. Write

fo ds s-+’ d Ir+(:+ s) exp (2i(:+ s)t) r+(,) exp (2i:2t)[:

fo fo2 dss-(1/2) [r+(+s)-r+()[ d+2 dss-(1+)

f? Ir+(:)[ 2 exp (i(sc+ s)2t isc2t) exp (-i(s+ s)2t + i2t)l2 d

2CIIr+(.)ll/2 dSS-(l+2a) [r+()lZ4sinZ ((+s)zt-Zt) d

<=I1+I2.
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It remains to estimate 12. Divide the outer integral at s 1.

I3=2 ds s-(1+2) Ir+()[24 sin2 ((s-+ 2s)t) d

S
-(1+2c) ds < o.

14 8 ds s-1+2) Ir+()l2 sin2 ((s2 + 2s) t) d

-8 d, Ir+(,)l dss-(/sin((s+2s)t)=h+I,

where Is is the piece of the outer integral where I:1 <-- 1, and I6 is the rest.

h_-<8 d: Ir+(:)l dss-<+2(s+2s)2t2

8 d Ir+(,)l

since 0 < a < 1. Now

I 8 d Ir+()l ds s-(1+2 sin ((s2 + 2s)2t2) I7 +/,
1->1

where we have divided the integral at s I:1-1.

8 d Ir+()l ds s-(1+ sin2 ((s2 + 20))
11 1/l:l

=< 8 d r+(:)[ ds S
-(l+2t)

l>-I /11

<-_8 (
since we know that r+()l:l L2().

/8-8 d: Ir+(:)l 2 dss-+2) sin2 ((s:+20)t)
1>_-1 ao

fl f 1/I,I

+2a)$2(S 2=< 8 d r+(:)l = ds s-1 / 2:)z

:1_->1 a0

Since 0<-_s<= 1/[:1 and Il > 1, we see that

/8_-<8 d: r+(sc)l2 dssl-2(3j
1_->1

--<36t2(1-c)- f d1+()1=11=

This concludes the proof of Theorem 3.1.

4. Solution of the Marchenko equation for t > 0. Here we obtain a function that
will be shown in 6 to be the solution to the initial value problem (1.1), (1.2), and we
establish some of its properties.
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We consider further the kernel f+(x, t) discussed in 3. For each real x and each
nonnegative t, let F, G’j, and ftx be the operators defined by

Ft[g](y) := F+(x + y + z, t)g(z) dz,

Gj[g](y) := f+j(x + y + z, t)g(z) dz,

J

ft[g](y) := Ft[g](y) + , Gtj[g](Y).
j=l

It can be shown that for each x the map -l is continuous from [0, ) into (L2(/))
with the operator norm topology. The map x f is continuous in the strong operator
topology, but not in the uniform topology. Note that (I+ftfO’)-a exists in L2(+)
with operator norm no larger than one because f’*f is positive and self-adjoint.

It is easy to check that the Marchenko equation

(4.1) O=B+(x,y,t)+O+(x+y,t) + O+(x+y+z,t)B+(x,z,t)dz

is equivalent to the system of equations

(4.2a) B+(x, y, t)=- a(x+y+ , )B/(x, z, ) dz,

(4.2b) a*+(x+y, t)= (+a’2a2)[/l(X,., )](y).

Thus we get solutions to (4.1) by setting

(4.3a) B+(x,., (I+a’2al-[a*(x +[. ],

and

(4.3b) B+.(x, t) =-f,[B+l(x,’,t)].

It is easy to check that the map (x, t) B/(x,., t) is continuous from x [0, o) into
L().

DEFINITION. The function that we shall eventually prove to be the solution of
our initial value problem for the cubic Schr/Sdinger equation is

(4.4) u(x, t):= u/(x, t):= -f*+(x, t)+ f*f[B+(x,., t)](0).

Observe that if g L(), then f[g](y) depends continuously on x, y, and t. Thus
[B+(x,., t)](y) is continuous in x, y, and can be evaluated at y =0.

For the rest of this section we derive some elementary properties of u(x, t).
PROPOSITION 4.1. Suppose that Uo LI() f3 L-() and that Uo satisfies the generic

condition (2.12). Then the map u(x, t) is continuous from [0, ) into L2oc().
Proof We need to prove that for >=0, u(-, t) Loc(). The continuity follows

from the remarks above.
It is clear from the definition of +(x, t) that f*+(., t) L2(+). It will suffice to

show that the other term in u(x, t) is bounded on all half lines [a, ) in the x-axis. Now

If’*o’r .,..to+,(x,. t)](0)l < I+(x+w, t)llf[n+,(x, t)](w)l dw



914 AMY COHEN AND THOMAS KAPPELER

<= 1, we conclude from (4.3a) thatSince I1(I /n’*’)-’llo

To control the operator norm of

we check that

and that

J

f’= F-2i

11o < P(x, t) e

for a polynomial P and some positive c. Thus, finally, u(., t)
PROPOSXTON 4.2. Suppose that (1 +lxl)Uo L2()f-ILI() and Uo H() for

some a with < a. Then the map u(., t) is continuous from [0, ) into L2(+o).
Proof. Since we know that u(-, t) Loc for each t, it suffices to show that

u(-, t) L-([1, )). From (4.4) we have already seen that

In(x, t)[ _-< IlL(x, t)l / {lla/(" t)l]

The first term we know is in L([1, )). We also know that the operator norm is
bounded on [1, ). Now, using the propeaies of f+, we get

L2([x, + L2([x,))

{1 +4J} IIF+(. t)ll =(t,+EK(t) e-

Using Proposition 3.1, we find that liE+(. t)[I ==(t,
5. Uniqueness results. The inverse scattering method provides two candidates for

the solution to the initial value problem of this paper. One is

(5.1) u+(x, t):= -n+,(x, 0, t),

where B+ solves the right-side Marchenko equation

(5.2) B(x, y, t)+ a+(x + y, )+ a+(x +y+ z, t)B+(x, z, t) dz=O.

The other is

(5. u_(x, :=-(x, 0, ,
where B_ solves the left-side Marchenko equation
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In the KdV problem for > 0, the left-side Marchenko equation is far less tractable
than the right-side equation. In the cubic SchrSdinger equation problem, the two
Marchenko equations are both solvable for > 0, provided only that

(.5) Uo L’() fq L();

a+(’) has no zeros on the real axis.
THEOgEM 5.1. If uo satisfies (5.5), then

(5.6) u+(x, t) u_(x, t) for x I, > O.

Proof We first show that it suffices to establish the following identities:

a_l()6_(x, , t)=q+(x,, t)+r+(, t)6+(x, , t) forx>0(5.7)

and

(5.8) a-l()+(x, , t)= b_(x, , t)+ r_(, t)_(x, , t)

The proof of these identities is deferred.
By construction we know that

(5.9) Lu+[q+ ’q+,

(5.10)

From (5.10) with R and x> 0, we get

L,_[ 6-] :q-

From (5.7) and verification that Lu+[q+] +, we get

L.+[ q_] L.+[a+ff+ + b+q+]

a+L.+[q+] + b+L.+[+]
:(a+q+ + b+q+) solO_.

Thus,

for x <0.

0
O= L._[q_]- L.+[O_] -i

(u_- u+) (u_-u+)]0

and set

o(X, y, t):= 7/"-1 go(x, , t)-
0

e2u:y d.

Let go denote the right side of (5.11)"

go(x, , t):= m+(x, , t)+ r+(, t) e2i’m+(x, , t)

Now (5.7) is equivalent to

(5.11) m_(, t)/a+()= m+(x, , t)+ r+(, t) e2iXm+(x, , t).

Since

_
cannot vanish, u_ u+ for x > 0. By working with (5.8), we can show similarly

that u_ u+ for x < 0.

Proof of (5.7). Keep x > 0 and > 0 throughout. Recall that

a+(’, t)= a+(sr) and r+(sc, t)= r+(:) e2i2’.
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Thus

Co(X, y t) B+ (x, y, t) + []F+(x + y, t) +I B+(x, z t)F+(x + y + z, t)dz.

From the definitions and the Marchenko equation, we get

Co(x,y, t)=-[]G+(x+y, t)-I_oB+(x,z, t)G+(x+y+z, t)dz

2 + B+(x, z, t)f+:i(x +y+ z, t) dz
j= (x+y,t)

where
m(j)-I 1 + ()"[("- )"()e2.c*]f+j(x, t):= --2i i=oE Cm(j)_l_(t)

a+() =j

Now keep y > 0, as well as x > 0. Recall that B+(x, z, t)= 0 when z < 0. Let fj(x, t)
be the result of cutting off f+j with the characteristic function of R+. Careful analysis
of f and contour integration in the manner of Tanaka [Ta] verifies that go is
meromorphic in the upper half plane, with poles exactly at the with orders re(j).
Introduce the new functions

too(X, , t):= a+()go(X, , t),

Oo(X, ’, t):= e-Xmo(X, , t).

We will show that mo m_; hence
Since the zeros of a+ kill off the poles of go, the function mo is holomorphic in

Indeed, a detailed analysis shows that

mo(x,, t)-[1,,] 6 the Hardy space H2+, provided that x> 0.

Setting

C(x,y, t):= --l[mo(x ., t)- [10]](-y for y > 0,

we verify that

mo(X, t) [ lo] Io C(x, y, t) e-2iY dy.

To show that mo m_ it suffices to show that C B_. Since the left-hand Marchenko
equation (5.4) has a unique solution, it suffices to show that C satisfies (5.4).

Careful computation using the properties of a+, b+, and go leads to

(5.12) -m+(x, j, t)/a+(j)= rn(x, j, t)+ r_(j, t) e-2iXmo(x, , t).

Taking a Fourier transform and evaluating the integrals by contour integration, we get
J m+(x, ) e
Y 2i Res at ffj
j=l a+(sr)

C#(x, y, t)+ [;]fl_(x, z, t)+I C(x,,z, t)fl_(x + y+ z, t) dz_
{[1] I }= 0

f_(x+y, t)+ C(x, z, t)f_(x+y+z, t) dz
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We will show that the jth terms of the sums are equal in order to conclude that C
solves (5.4). It turns out that it suffices to prove that

(5.13) ..@(+)(x, ), t): E c,--al.b(oX)(x, , t) for all a
h-----O

with 0 < ce < m(j)- 1.

Here the superscripts (a) and (A) denote orders of differentiation with respect to r.
Because of the conditions

Cj, z,_A Cj,A_
x= ifr< ,,

on the normalizing chains, (5.13) is equivalent to the identity

1 (+(x, ,(5.14) ltp(oV)(x, ’j, t)= c+_ _-=-: t).
3’! 8=0

Finally, the verification of (5.14) is a straightforward argument based on (5.12).
The proof of (5.8) is similar.
POpOSTON 5.2. If Uo H() and (l+lx)Uo L() Li() for an with

< < , then the map u(., t) is continuous from [0, ) into L($) L4($).
Proo Here we use the representation (4.4) to show that the map u(., t) is

continuous from [0, ) into L($+) L4($+). The proof for the other half-line is similar
and uses Theorem 5.1.

It follows from Proposition 3.1 that the maps + F+(., t) and +(., t) are
continuous from [0, ) into H" ($+). By the Sobolev theorem, H($+) is continuously
included in L($+)L4($+), and thus tO(., t) maps [0, ) continuously into
L2(+) L4(+).

We already know from the proof of Proposition 4.2 that the map t
Ot*+Ox[B+(x,,., t)](0) is continuous from [0, ) into L2($+), and we know from the
proof of Proposition 4.1 that this map is continuous from [0, ) into L($+).

6. Verification that u solves the problem. In this section we show that the function
u(x, t):= -B+(x, O, t) constructed in 4 solves the cubic SchdSdinger equation (1.1) in
the sense that

(6.1) II u(x, t){io,+qx+lulq} dxdt--O for all p e C( x [0, oo)).

We already know that the initial condition (1.2) is satisfied in the sense that

(6.2) u(., t)--> Uo(" in Loc(R) as t--> 0/.

Return to r+(:), the reflection coefficient ofthe initial profile Uo(X). From Corollary
2.12, it follows that if Uo LI(R) f’l L2(R) f’l H"(R) for 1/4< a < 1/2, then r/ L2(R) f’l Co(R)
and It follows further that r+ L3/2(R). By cutting off and convolving
with an appropriate approximate identity, we can obtain a sequence {rn(:): n N} in
C(R) such that

and

rn --> r+ in Le (R) as n --> +oe for p , 2, and oe.
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Now set

These F, all satisfy

F,(x, t):= 7r
-1 I_ r,(k) e2ik2’+2ikx dk.

(6.3) iFt-1/2Fxx =0;
they all evolve in L2(R); and at =0,

Fn(’, 0)= -l[r,]--> -l[r+] F/(., 0) in L2(R) as n--> +.

But the initial value problem for (6.3) is well posed in L2(E), so we also have

Fn(’, t)--> F/(., t) in L2() as n--> for each -> 0.

Finally note that

and that

Fn(x, t)= :-l[rn(k) exp (4ik2t)]

Ilrn(k) exp (4ik:t)llLR <-

Define kernels fin(x, t) by
J

fin(x, t)= Fn(x, t)-2i Ef+j(x, t),

where the f+j(x, t) are the functions defined in (3.3b).
We define operators on L(+) by

F,[g](y) F(x+y+a t)g(z)

J

a,[g](y) := Fmx-2i aj,

where the G were defined in 4.
Tanaka, in [Ta], has shown that smooth solutions to (1.1) are obtained by setting

u,(x,t)=-B,(x,O,t),

where B, solves

t B(6.4) (I+,,.)[ ,(x,. t)]=(x+, t)

The remainder of this section shows how these smooth solutions u, converge to u as

LEMMA 6.1. B,(x, ", t) B+(x, ", t) in L2(+) as n +, uniformly for x X and
0 < Tfor any positive X and

oof The proof is straightforward.
PROPOSIXOy 6.2. As n +, u, u weakly; i.e.,

f u(x,t)(x,t)dxdt u(x,t)(x,t)dxdt forallC(x[O,)).

Proo This proof is also straightforward.
THEOREM 6.3. If UO LI L2 H for < a, then u is a weak solution of (1.1),

(1.2) in tO.
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Proof Consider a q from C(Rx[0, oo)). Since the u, are smooth classical
solutions of (1.1) and evolve in Schwartz class 5e, we get

0 u iu,,,t q--u,,,x, + lu.12u c dx dt

for each n and each in C(N x [0, )). In light of Proposition 6.2 we get

It remains to show that

(6.5) i ululdxd, ulu,dxdt.

Set

and

Thus,

and

t*,/I/[,,(x, t)= l),,,xD, tn,x[B,,(x,., t)](0)

J/t(x, t) ’*:,,Ox[B(x,’,t)](O).

u,,(x, t)= J//, (x, t)+ l).*(x, t)

u(x, t)= J//(X, t) +l’+*(x, t).

To prove (6.5) it suffices to prove that

ulul- ulul=-, 0 in Loc(R x [0, oo)).(6.6)

Now

ulul2- ulul2= (Un U)IUnI=+ U(IuIz- [ul=)
(U U)I UI + U(I UI- lul)(lu[ + lul)-

lulul=- ulul=l lu ul + 31un ul=lul + 31u ul lul =.
Pick any compact interval I [a, b] in the x-axis.

I 13 (Iab [3 )2/3(Ia )1/3lu.-u dx+3 lu-u dx uladx

(Ib )l/3(Ib )2/3+3 lu,-ul3dx lul3dx

It will suce to show that u, u 0 in Lo(N) uniformly on any compact time interval
[0, T]. Now
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We already know that M,-M 0 in L(R x [0, oo)). It remains to have F,- F 0 in
L3(t) uniformly in t. By the Hausdorff-Young inequality, we get

liE.(’, t)-f,(’, t)ll(m-II-’[r(’, t)-r+(.,

I]{r.(k)- r+(k)} ea’k3tllL3/(m
IIr.(k)-

We know that r,(k) r+(k) in L3/a(). Thus F,(., t)-F(., t)O in L3() uniformly
in t.

7. Examples of iitial ata satisfyi$ the Several hypotheses of the existence
iqeess theorem. In this section we consider the problem (1.1), (1.2) with initial
data of the form

otherwise,

where A is a nonzero constant and X is positive. In order to apply the general theorem
we need to compute the Jost functions for uo as potential in (1.4), determine when the
(2.12) is satisfied, and determine the regularity of uo.

The scattering problem is

0, u i,,+ u* i.
The boundary conditions determining the Jost functions + and

_
are

[+l]+j [e] asx+m’, [:::] [e] asx-m.

We now compute +. It is easy to see that

+(x, ) throughout X < x < +.
e

In 0 < x < X, the scattering ordinary differential equations become

whence

and

q,,,x + {[A[2 + .2} ,, 0.

For the moment, restrict attention to s . Let --/]A[2+ :2. We will see that it
is not necessary to resolve the sign ambiguity in the square root. Writing

I+ am eix +bm e-isx

and matching boundary conditions at x X, we find that

tp+(x, :)=a e’ex (x- X)[sin [M(x- X)]]sO(x-X)
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and

+2(x, :)= e’ex cos [M(x-X)]+eiex [sin [(x-X)]](x-X)

Note that both I//+l and q+2 are, in fact, functions of d; therefore, both are well
defined despite any sign ambiguity in .

Now in x < 0, Uo(X)= 0 and q/l, q/ must have the form

@+(x, )= eitx,

1+2(X )= O eiX.

Matching boundary conditions at x 0, we find that

a e’X[cos (MX)- i sin (MX)/M],

-A eiX sin (X)/M.

Now the scattering coefficients a+(:) and b+(:) are defined by_
a+_# + b+g,+.

It is easy to see that

if x<0.

Thus we can determine a+ and b+ from a and/3"

It also turns out to be easy to confirm that I1=/ I1=- 1 for all real :. The following
results are now immediate.

PROPOSITION 7.1.
(i) The only possible real zero of a+() is = O.
(ii) Unless AX is an odd multiple of r/2, a+() has no real zeros at all.
Observe that

Uo(X) eH(IR) foralla withO<a<1/2

and

Ixl uo e L:() CI L’() for 0 <-- a.

Thus by the existence and uniqueness results of 5 and 6, we get the following.
THEOREM 7.2. Let Uo be a function of the form

Uo(X)={oA when O < x < X,
otherwise,

where X > 0 and 0 A R. IfAX is not an odd multiple of 7r/2, then there is a solution
of (1.1), (1.2) in the sense of the theorem stated in the Introduction.
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GENERALIZED SOLUTIONS TO THE KORTEWEG-DE WRIES AND
THE REGULARIZED LONG-WAVE EQUATIONS*
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Abstract. In this article generalized solutions to two model equations describing nonlinear
dispersive waves are studied. The solutions are found in certain algebras of new generalized functions
containing spaces of distributions. On the one hand, this allows the handling of initial data with
strong singularities. On the other hand, suitable scaling allows one to introduce an infinitesimally
small coefficient; thereby the authors produce generalized solutions in the sense of Colombeau to the
inviscid Burgers equation.

Key words, nonlinear dispersive waves, algebras of generalized functions, singular initial data,
small dispersion limit

AMS(MOS) subject classifications. 35Q20, 35D05, 46F10, 35L65

1. Introduction. The purpose of this paper is to study generalized solutions to
the Korteweg-de Vries equation

as well as to the so-called regularized long-wave equation

Ut Ux -}- UUx Uxxt 0

(proposed and investigated by Benjamin, Bona, and Mahony in [2]; see also [5], [6])
in the framework of generalized functions introduced by Colombeau [9], [10].

This article is the second part of a program to obtain generalized solutions to
hyperbolic conservation laws by adding a viscous or dispersive term that is associated
with zero; see [4].

A soliton described by the KdV equation leads to an example of a nonzero solution
to (1) in the Colombeau algebra G(t x [0, oc)) whose restriction to t 0 is zero
in G(). This shows that we do not have uniqueness of solutions to the Cauchy
problem with initial data in () for the KdV equation in the algebra( [0, )).
Accordingly, we define new algebras of generalized functions, denoted by Gp,q(),
where 1 _< p, q <_ cx and is a domain in n with the cone property, whose elements
have representatives with bounds taken in terms of the LP-norms. If iT, this
algebra contains the space W-,P(KIn) and it has W’q(n) as a subalgebra, if
q <_ p. The algebra Gs,g(), defined in [4], is the particular case where p- q x), if

has the strong local Lipschitz property.
We prove that there exists a solution to (1) in G,2(/ (0, oc)), given initial data

g E 2,2(). Further, for every T > 0, there is at most one solution in 2,2( (0, T))
such that its partial x-derivative has a logarithmic dependence on the regularization
parameter.
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For equation (2)we prove existence of solutions in p,q(X (0, T))for each T > 0,
provided the initial data are in Gv,q(i) and have moderate Hi-bounds. There is at
most one solution u e Gp,q( x (0, T)) that is of "logarithmic-type" in the following

1 > 1; or 1 < <2and <o or 1 < <2and oc (incases: q>2and +_ _q_ p _q_ p---
this last case a further decay requirement has to be imposed).

We prove also existence and uniqueness of solutions to

(3) u + uu + uu 0

in Goc,2(gi x (0, oc)) with initial data in G2,2(), where u is a generalized constant. As
a consequence, if u is associated with zero and the initial data have a representative
with the L2-norm bounded independently of , then we obtain a solution to the
conservation law

(4) ut + uux .. O,

written with association, which arises in the study of shock waves in Colombeau’s
setting. In particular, the generalized solution to (3) with classical initial data and

associated with zero also satisfies (4), in spite of the fact that, according to the
results of Lax and Levermore [11] and Venakides [15] on zero dispersion limits, its
associated distribution will generally not be a weak solution to the conservation law
vt + (1/2v2) 0. Our setting also allows us to model "infinitely narrow solitons" in
the sense of Maslov et al. [12], [13], as well as some source type solutions with zero
impact at positive times.

2. The space Gv,q (2)"
2.1. Notation. In our notation concerning spaces of functions and distributions

we follow Adams [1]. Thus for 2 C gin open, m e 2, and 1 _< p _< oc, Wm’p(F) is the
usual Sobolev space, W’P(f2) NmWm’p (f2), W-’p(12) =UmW-m’p(), Hm(2)
wm,2(f). If E is a Banach space, Cj (12; E) denotes the space of j-times continuously
differentiable functions in f with values in E, C(f; E) those functions whose deriva-

tives are bounded, in addition. For E we simply use
All functions and distribution spaces are assumed to be real valued in this paper.
Let 1 <_ p, q < oc and F an open subset of in. We set

Sift] {u: (0, oc) x 2 - i such that u(, x) is C
in the variable x, for each >0};

Sp[] {u e $[] such that u(e, .) e W’P() for all > 0};
$M,p[] {u e Sp[] such that for all a e there is

N such that

0};
p,q() {u e $M,p[] Sq[] such that for all a e

and M ,
]lOa(,’)llq O(M) 0},

where I[" lip denotes the LP-norm.

Remarks 2.2. (i) If has the strong local Lipschitz property and u E Ep[2],
then u(, .) e C() for every . In particular, the sets EM,oo[f] and Afo,o(2) are,
respectively, the same as EM,8,g[] and Afs,g() defined in [4].
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(ii) If Ft in, p < O, and u e tp[f] then, for every > 0, limlxl_o u(, x) 0.
PROPOSITION 2.3. Let f have the cone property. Then

(i) if Pl <_ P2, M,pl [ft] C M,p. [ft];
(ii) t;M,p[Ft] is an algebra with partial derivatives;
(iii) Afp,q(ft) is an ideal in M,p[ft] which is invariant under partial derivatives.

Proof. (i) We have SM,p, [f] C tM,o[ft]. Indeed, by Sobolev’s imbedding theorem
[1, Chap. V], we have Wj+m,p’ (ft) c C(ft) for all m such that mpl > n. Thus, given
j E TV we have, for u SM,p [f],

ma I10(,-)11,,I-I_<jmax IlO’u(e, ")11 -< c
iZl,+

Thus u
Given p2 > pl, since Lp (ft) fq L(f) C Lp2 (t), we have, if u e M,p, [Ft] and

e", I1 <J,

Thus u e gM,p[ft]. The proofs of (ii) and (iii) follow from the fact that gM,p[f] C
eM,[a]. D

DEFINITION 2.4. We define, for 1

If f has the cone property, then it is clear from Proposition 2.3 that Gp,q(Ft) is an
algebra with partial derivatives.

PROPOSITION 2.5. For 1 < Pl < P2 < o and 1 < q < o we have that

Proof. Consider the commutative diagram

The result follows from the fact that Afp,,q(ft)N $M,pl [ft] Afp,q(ft). D
R,.. t i not tru that ,,,,, () c,() i < , ince ,,,() r

,,,[] # .’,,, () in n. W hv, though, conic m, g,,,,, ()
Gp.,p (ft), which, however, is not injective.

For example, it is simple to construct an element u SM,2[J] fq Afo,o(),
u Af2,2(q) as follows: let 2 (0, 0) -- [0, 1] be such that 2(e,x) _= 1 for

2 2 COIxl < exp(), 2(e,x) 0 for Ixl > 1 + exp(), 2(e,.) e () and all derivatives
of 2(e, .) are bounded independently of e, i.e., Ilfi(n)(e,.)llo < Cn for all e > 0. Let
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)fi(, x). We have, for p > 2u(’, x) exp(-

and, if n >_ 1,

[u(n) (, x)lPdx exp (-P
These inequalities show that u e SM,2[] NAfp,p(Kl) for every p > 2, but u Af2,2().

THEOREM 2.7. (i) There is an imbedding of W-’P(n) into Gp,q(n).
(ii) If q <_ p, this imbedding turns W,q(n) into a subalgebra of Gp,q(Kn).
Proof. (i) Fix p e S(’) such that f xip(x)dx 0 for all i e Nn, [i] > 0,

and f p(x)dx- 1. Define

by (w)(,x) (w, pe)(x). Let us prove first that e(w) e $M,p[Kln] for all w e
W-’P(KIn). There is m E such that w W-’’p, so there exist w e LP(),

0alal _< m, such that w Ylal<m wa Given rn, we have by Young’s inequality
that

111’9(w* P=)llo < IIwll.llO"+ZP=lll IIwll.i./Zl IIO+ZPlIx
lal<m lal<m

On the other hand, if (w) e Afp,q(n), then w pe 0 in T)’(n) as -- 0, so
w 0. It follows that t imbeds W-,P(") into Gp,q(’).

(ii) Let f W’q(n). We show that f pe f e Afp,q(lR) if q _< p. We have

Ill * p= fllq If * P flqdx
1/q

By Taylor’s formula up to order m applied to y, and since f yap(y)dy 0 for I[ m,
this in turn equals

E
Icl=m+l

m! (1 a)moy(x- ay)dap(y)dy dx

_C(m,q) max (f:Icl--m-I-1 f0m! p(y) (1 a)mo"f(x aey)dady
1/q

By the generalized Minkowski inequality, the last expression is estimated by
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Thus we have, for every m E r and small e that

The same holds for all partial derivatives of f. Hence f p f jfp,q(;n).
DEFINITION 2.8. Let u Gp,q(K (0,T)). We define the restriction of u to

I (0} as follows: Let fi be a representative of u. By Remark 2.2(i), fi(e,., .)
C(I [0, T]) for each e > 0. Since the restriction map W’+I,P(J (0, T))
W’,P(K) is continuous, we have that fi(,., 0) belongs to M,p[KI]. Also, fi(,., 0)
Afp,q() if fi e Afp,q(J (0, T)). Thus we may define the restriction of u to
as the class of (,., 0) in Gp,q().

DEFINITION 2.9. We say that u Gp,q(f) is associated with the distribution
w e :D’(f) if there is a representative fi of u such that fi(,-) --. w in :D’(12) as --. 0.
Notation: u w.

DEFINITION 2.10. We say that u Gp,q(f) is of r-lx-type, r >_ p,j >_ 1, if
it has a representative fi tM,p[f] such that

(s) o(q’l 0.

3. Generalized solutions to the KdV equation.
THEOREM 3.1. Let g G2,2(). Then there is a solution u of (1) in Go,2(

(0, c such that

and, for every T > O, uI(O,T e 2,2(R (0, T)).
Proof. Let e M,2[/R] be a representative of g. Since (,.)

for each > 0, according to the existence theory of Bona and Smith [7, Thm. 3,
p. 578], there is a unique solution fie of (1), with initial data (, .), which belongs

J HS-3jto 0<j<[s/3] CB([0, oo); ()) for arbitrary s. Observe that for every m
there is s N large enough such that

N cJ([O,T];HS-3J()) C gm( (0, T))
O_j_[s/3]

and

’ C([0, oc); H8-3 ()) C C( [0, x))).
O_j_[s/3]

It follows that the solution thus constructed belongs to H( x (0,T)) for every
T > 0 well to W’( x (0, )); in particular, the map : (e,x,t) (x,t)
belongs to 2[ x (0, T)] [ x (0, )]. It remains to show that e gM,[
(0, )] M,2[ X (0, T)]. For this, it suffices to prove that for all k there are
c > 0 and > 0 such that

(10) sup 1[02(e,., t)l[u < 0 < e < u.
t>0 N

In fact, if we have (10), since fi(, .) satisfies (1), we get an analogous estimate for
and then, by successive differentiations in the equation we get, for all 2,

su, 0 < < v.
t>0
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Accordingly, this implies an analogous estimate for II0afi(e,.)llLOo(x(0,o)) and
II0fi(e,-)IIL.((0,T)). Then the class of fi will be an element of o,2(/x (0, c)), a
solution to (1),(9), whose restriction to any strip belongs to 2,2(1i x (0, T)).

But inequality (10) is an immediate consequence of the following lemma, and the
proof is completed.

LEMMA 3.2. For every k E V there is a polynomial Pk such that

(11)

Proof. In order to simplify the notation we drop the and the "hat" on the
representatives of u and g. By Miura, Gardner, and Kruskal [14], the KdV equation
has a sequence of conserved quantities

(12) Ik(u) [(0ku)2 CkU(Ok-lU)2 + Qk(u, Oxu, O-2u)ldx,

k 0,1,... (here Olu O2u _= 0), and Qk is seen as a sum of monomials
ua(Oxu)al (O-2u)a-2 such that

(13) 1+ ai=k+2.
i=0

We will prove the assertion by induction over k. For k 0 it is true since Io(u)
f-o u2(x, t)dx, i.e., d/dt f_o u2(x t)dx 0 and Ilu(., t)l12 Ilgl12. Assume that (11)
holds for j <_ k- 1. Thus also

(14) IlOu(.,t)llo <_ Rj(llgll2,... Ilg(-+l)l12), 0 _< j _< k- 2.

By (12) we have

(O)u)2dx [ck(okx-lu)2 (k(U, 0, okx-2)]dx -t- C,

where, since (d/dt)Ik(u) O, Ik(u) Ik(g) C for all t >_ 0. We have, by (14) for
j --0 and the induction hypothesis,

(:x)

2

<_ Ro(llgll2, Ilg’ll2) (Pk-l(llgll2," ", Ilg(-)ll2))
2

k-2By (13) we have that, in all monomials of Qk, j=0 aj > 2. Thus in each monomial
we may take two factors and apply Hhlder’s inequality to them, while the other ones
are estimated by the L-norm. Thus

IQk(u,... O-2u)ldx <_ (k(llull," "., I[Ok-2ull, Ilull2,’..,

<- Qk(llgll2,’", Ilg(k-1)ll2)

by induction and by (14). Thus we have proved (11). rl
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Remark 3.3. Theorem 3.1 establishes the existence of a representative fi E
:M,2[ (0, T)]. Since the ideal does not enter in the proof, we might as well infer
that there exists a solution in G2,q( (0, T)) for every T > 0 and q >_ 1, if the initial
data belong to 2,q().

THEOREM 3.3. Let g G2,2(). Then, for eve T > 0 there is at most one
solution u e g2,2( (0, T)) of (1), (9) such that Ou is of -log-type (see 2.10).

Proof. Let Ul, u2 e G2,2( (0,T)) be two solutions to (1), (9) with respective
representatives fi, fi2 6 M,2[ (0, T)] such that 0fii satisfies (8) with r , j
1, i 1,2. There are N e 2,2( (0,T)) and n e 2,2() such that, setting

(15) [wt + (hw) + w](e,x,t) g(e,x,t),
(,, o) (, ).

By changing representatives, we may sume that n(, x) 0. For simplicity we drop
the in our notation. Multiplying (15) by w and inteating with respect to x, we
obtain

w wt dx + (hw)w dx + ww dx w N dx.

By Remark 2.2 (ii) we get

w dx + hw dx wNdx.
2 dt

Integrating from zero to t T we have, since w(x, O) O,

w2(x, t)dx 2 w(x, )Y(x, T)dx dT

By ronwll’s inequality, we ge

sio ,[ (0, )], ,( (0, )), i o-1o-, i o1o
ha, for every O,

For he -derivives, we ge, by differentiation of (15)"
k+3o +o+() + o O2N.

Multiplying the above equation by Ow and integrating with respect to x we get

(16) 02w 02w dz +
j=o
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k+3 k OkN Okw dx+ 0’ wOxwdx-

The third term on the left-hand side is zero and the second one equals

Then (16) becomes

Then we have, by integrating from zero to t:

The last two terms on the right-hand side can be estimated by

j=o o<t<T

Then, if we assume that supt ]lOw(., t)]12 O(eM) for any given M > 0 and 0 N j <
k, we get, since all derivatives of h and w satisfy (5),

sup [)okw( ., t))]2 <_ ceM exp[(2k + 1)llOhllT].
o<t<T

Since Oh is of oc-log-type we infer that supt I]Okw( ., t)l12 o(eM).
For the mixed derivatives the result follows from the equation, as in the proof of

Theorem 3.1. 0
Remark 3.5. If g E G2,2(//) is, together with gt and g", of 2- lx/i--type, then the

solution u e G2,2(ii x (0, T)) to (1),(9) is such that Ou is of oc-log-type. In fact,
since

0<t<T

we need a logarithmic estimate on both II0(,., t)l12 and 1102(e,., t)l]2. Using the
conserved quantities (12) for k 1, 2, we get that

IIOul)N 1/2(llgl12 + IIOull2)llgllN + IIg’l122 + gllgll23 + mllg’ll211gll22
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and

Solving the quadratic inequality for IlOul12 shows that the 2- lx/i-type of g, g’ gives
a 2- lx/i--estimate for Ou. This, together with the hypotheses on g", yields the
2-log-type of 02u, and so Oxu is of oc-log-type.

Remark 3.6. As noted in the Introduction, the solutions to the KdV equation
are not unique in the algebra 8(gi [0, oc)), as defined, e.g., in Biagioni [3]. This
algebra is constructed in the same way , but the bounds are only required to
hold locally. For example, the generalized function u with a representative given by

is a nonero solution to (1) which belongs to(x(0, )), but its restriction to t 0
is ero in (N). Indeed, (17) defines a soliton described by he NdV equation (1),

is the amplitude and the speed of the wave. At time t 0, its peak is locatedwhere
at xo -.1 Introducing the notation (x) tanh(x), (x) sech2(x) ’(x),
we check immediately that each derivative of is of the form where
m 0 and n 1. Thus the absolute value of any derivative of (s,., 0) is bounded
by -J][(x + )] for some j e and some constant c. Since

cosh[(1/2)(x + z)] cosh(/)

for x -7 + 2, we have that all derivatives of fi(e,., 0) are bounded from above by
any positive power of , uniformly for x in compact sets, s 0. Thus u(., 0) is

3zero in Gs(). On the other hand, fi(e, 0, 1) 0; thus u is not equal
to zero in G( [0, )).

Our lt result in this section relates the generalized solution to the clsical
solution, if the latter exists.

PROPOSITION 3.7. fig H2(), then the solution to (1), (9) in 2,2( x (0, T))
given in Theorem 3.1 is associated with the classical solution v e C([0, T]; g2())
given by [7], Corollary 2 of Theorem 8.

Proof. Consider the imbedding given in (7); the n2-norms of e(g)(e, .), (g’)(e, .)
and e(g")(e, .) are bounded independently of e. By Remark 3.5 and Theorem 3.4,
there is a unique solution u G2,2( x 0, T)) to (1), with initial data the class of (g)
in G2,2 ().

By Theorem 3 in [7], there is a unique clsical solution fie to (1) with initial
data (g)(s,.), which is in C([O,T];H()). Our generalized solution u h, by
construction, e a representative. Since t(g)(,.) g in g2() 0, it
follows from the cominuous dependence result in [8] for the ce s 2 that the net
(fie) converges to v in C([0, T]; g2()), hence also in ’( (0, T)).

4. Generalized solutions to the regularized long-wave equation.
THEOREM 4.1. Let g p,q(K) have a representative M,p[Kl] satisfying

(18) I1(, ")111,2 [(, x)2 + t’(,x)2]dx 0(-N)
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as -, 0 for some N E . Then, for each T > 0 there is a solution u p,q(Kl
(0,T)) to (2), (9).

Remarks 4.2. (i) Equation (18) is always satisfied if p

_
2, since then SM,p[] is

contained in $M,2[:].
(ii) The solutions constructed in Theorem 4.1 for different T are consistent, i.e.,

if UT is the solution on the strip x (0,T) and T1 < T2, then UT21(O,T:) UT:.
This will follow from the proof below.

Proof of 4.1. For small enough, .(e,.) C(i) satisfies the hypotheses of
Theorem 1 in [2]. Thus there is ue e C( x [0, T]), which solves (2) and satisfies
u(x, O) (, x) for all x i, and, for any t _> 0,

(19) II?e( ", t)111,2 I1(,
This, together with (18), implies that, for every r 6 [2,

(20) Ilu (., t)ll 
as - 0. In particular, in the case p _> 2,

(21) ]lue(., t)llp O(e-N).
We wish to show that (21) is true in the case 1 _< p < 2 also. A simple calculation [2,
p. 58] shows that u satisfies the integral equation

u(x,t) (e,x) + g(x- ) U(,T) + U2(,T) ddT,(22)

where

g(x) 1/2 sgn x exp(-Ix]).

Fixing R > 0 and integrating (22), we obtain

(/?l ’U(x, t)’Pdx)
t/p

By the generalized Minkowski inequality, this is estimated by

1/p

d: dT
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(Here we have used (20), noting that 2p _> 2, as well as the inequality la q- bl 1/p
_

lal/p + Ibl/P.) Thus

lug(x, t)l’dx < I0(,-)1 I,, / lug(x, T)lPdx dT
R

/21/PTIlulloo Ill/Plg()ld / -T-
Ct fot(f_R )lip+ lu,(x, T)lPdx dT.

R

By Gronwall’s inequality, we obtain

lu,(x, t)lPdx <_ - exp(T).

This holds uniformly in R > 0 and 0 < t < T. It follows that ue(., t) E LP(), and
(21) holds also in the case 1 _< p < 2.

In order to prove (5) for the derivatives of u, we differentiate (22). Thus

lu20(,) [g ( + (., )]()
2 HWe have that ve(., t):- (u + 5u)(.,t) belongs to (K/) and

Before going on, let us collect a few useful relations in a lemma.
LEMMA 4.2. If u HI(), then
() (g )’() (x) + (E )(), E(x) - ex,(-);
(b) (E u)’ g u;
(c) K, u e H() and ]g , u],2 ]u]2;
(d) E, u e H() and ]E , u,2 u2.
These sertions follow from the fact that E is a fundamental solution of 0 1

and 0E K, well Young’s inequality.
Proof. Going on with the proof of the theorem, we see from Lemma 4.3 (c) that

Ou(.,t) e H() and

Employing (20) with r -p and r , we see that

IIv(.,t)llp=O(-N)
as -, 0, and so also

II0(., )11; o(e-)

uniformly in 0

_
t _< T. For the ruth derivatives (m- 2, 3,..-) with respect to t, we

have

(24)
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Assuming that, for k < m, Ot u(.,t) e Hl(i) and IlOt u(.,t)lll,2 <_ cz-g, Lemma
4.3 and the fact that HI(J) is an algebra imply the same for Ou(.,t). So, if
p > 2, Onu(., t) e LP(KI) and

(25)

If 1 < p < 2, assuming that, for k _< m- 1, [[Otu( ., t)llv O(-), we have from
the inclusion WI’P(IFt) c L() that [lue(., t)l[oo 0(-N) for t _< m- 2. Then
the LP-norm of On-ve(., t) is less than or equal to

m-2

k=0

and thus we get (25) for 1 < p < 2.
For the x-derivatives of u we have, from (22) and Lemma 4.3 (a),

Ou(x,t)=dl’(e,x)+ v(x,’)dT+ (E.vs(.,T))dT,

and for m > 2, again using (22) and Lemma 4.3 (b),

(26) O’u(x, t) [I(m) (, x) + om-lvs(x, T)dT

t) x).

Since e M,p[] and ve(., t) e LP(IR), by induction as above we get IlOmue( ., t)llp
O(-N), uniformly in 0 < t < T.

n mLet us prove (5) now for the mixed derivatives 0 O, ue. For n 1, from (26), we
obtain

if m is even
if m is odd.

muSince IlOkxve( ., t)llp 0(-N) for all k, we get the same for IlOtO (., t)llp.
Noting that this implies a similar estimate for IlOtOmve( ., t)llp as well, we can now

differentiate (27) again with respect to t and obtain that

2 mlot t)ll 

and so on. This completes the proof of the estimate

for every a E F2, uniformly in 0 < t <_ T.
Since IlOuellLp((O,T)) < T/p suP0<t<T IlOus( ., t)llp, we get 2(, x, t) := ue(x, t)

in $M,p[Kt (0, T)], and its class in Gp,q(ll (0, T)) is a solution of (2), (9).
THEOREM 4.3. (a) Let 1 <_ q < 2, g Go,q(), and T > O. Then there exists

at most one solution u e Goo,q(JFt (0, T)) to (2), (9) which is of oo-log-type and has
a representative z such that

(28) lim 2(, x, t) 0
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.for every > 0 and almost all t, 0 < t < T.
(b) In particular, if 1 < q <_ 2, 1 < p < x3, and g E Gv,q(i), then there exists at

most one solution u e Gp,q(Kl (0, T)) to (2), (9) which is of oc-log-type.
1 > 1 and Gp,q(Kl), then there exists at most one solution(c) /fq>2, +_ g

u 6v,q( (0,T)) which is of oo-log-type.
Proof. We note first that (a) implies (b) since if there are two solutions to (2), (9),

ul, u2 p,q( (0, T)) which are of oc-log-type, then all representatives ill, fi2
$M,p[J (0, T)] satisfy (28). Thus, by (a), - 2 E Afo,q( (0,T)), and so

l 2 Jfp,q( X (0, T)) as well.
> 1 anduGp,q,1 -1. Indeed, if+_Also, in (c) we may assume that +

1 --1then u G,q for all/5 > p, in particular for i5-- (1 )
Let u, u2 e Gp,q(i (0, T)) be two solutions of (2),(9) with respective represen-

tatives fi, fi2 e M,p[ (0, T)] satisfying (28) and (8) with r x3 and j 1. There
are n e Afp,q(Kl (0, T)) and n2 e Afp,q() such that, if w fi 2,

(29) { + + 1/2[( + :)] } (, , ) (,, ),
(,, 0) n(, x).

By a change of representatives we can assume n2 0. Multiplying (29) by w and
integrating from -R to R, we obtain

Thus

_l -4- 1 thenIf ---- LT f_t Iwnildxd < Ilwllpllnllla;
R

if p oc and 1 <_ q <_ 2, since Afp,q c Alp,2 we have
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We have used the estimate v/-d < 1 + a in the last inequality. We end up with

Here the first line applies to the case - + - 1, while the second applies to pp q
cx, 1 _< q _< 2. In any case, Gronwall’s inequality gives that

(w2 + w2z)(x, t)dx <_ 2 wzt - -(ti + 2)w2 dT
R x=-R

This estimate holds for 0 < t < T and R > 0. In particular, we may let R --. and
obtain, since w(,-, t) --, 0 as Ixl- ,

exp(llx + =llo + 2)T.

Introducing the dependence on again, we obtain from (8) that

for every M, uniformly in 0 <_ t < T.
Thus it is clear that liT(S,., t)ll 0(M) as well. In order to go on with case

(c), we want to show that actually IT(S,., t)llq 0(M) for every M e . The
following identity is derived similar to (22):

(30) w(e,x,t) K() 1 + (fi +fi2) w(s,x-,)ddT

E(x )nl(, T)d dT.

Thus, setting A 1 +

(/?R lw(, x, t)ladx)
1/q
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We have used the generalized Minkowski inequality in both terms. Now we will use
Young’s inequality and Hhlder’s inequality in the second term. The first term has
already been calculated in the proof of Theorem 4.1 with ue instead of w(, .). Thus
the last expression is estimated by

(f_
,

)<_ A Iw(,x, T)lqdx dT/ 21/qTIIw(, ")ll II/IK()I
R

R

om Gronwall’s inequality,

(f?R ’w(’x’t)[qdx)
l/q

(Tl/p ]ln
This holds for every R > 0. Thus, since ux, u2 are of -log-type, we get

I(, ", t) ll o()
for every M .

In order to get estimates for the derivatives of w, we differentiate the integral
equation (30). The t-derivatives of w satisfy:

o2(s,,t) ( )o2- + g(l +) (,,t)a

( )o-1(, t)a.

The z-derivatives of w satisfy

o E(x ) +( +) dd + +( +) d

K(x- )nddT;

and, for m 2 (using Lemma 4.3),

O nldx.Ow O-2w + O- w +( + 2) dT m-2

We now prove that ]]Ow(, .)]]q 0(M) by induction, using the nq-estimates on w,
n, and the L-estimates on fi, fi2.

Remark 4.5. If g Gp,q() h a representative such that

I(, ")11,: O(o)
0, then the solution u to (2), (9), sured by Theorem 4.1, is of -log-type;

thus it is unique by Theorem 4.4. This follows since the representative given in the
proof of Theorem 4.1 satisfies

Remark 4.6. The question of uniqueness remains open in the ce q > 2 and
1+<1.
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5. The equation ut / uux / yux O.
PROPOSITION 5.1. Let u be a generalized constant with a representative satis-

fying: there are N E and > 0 such that

(31) cN <_ ,() c-N, 0 < < V.

Let g 2,2(). Then there is a solution u G,2( x (0, )) to the problem

(32) ( Uut=o+ uu= g+ uu O,

such that u[(O,T) G2,2( (0, T)) for eve T > O. Moreover, for eve T > 0
there is at most one solution u g2,2( (0, T)) such that Oxu is of -log-type.

Proof. Let

(,) i

where is a representative of g. By Theorem 3.1 there is a solution v G,2( x
(0, )) to (1) with initial data h e G2,2(), the cls of h, such that vx(O,T) e
G2,2(n X (0, T)). Set

(aa) (, , t) e,,t

where gM,[ X (0, )] is the representative of v which satisfies

( + +(,, t) o,
(, , o) (, ).

Then

and

(e +e + 6)(, z, t) o

e(e, x, o) (, ).

Let us prove that E $M,[ x (0, oc)] F M,2[ x (0, T)]. As we observed in the
proof of Theorem 3.1, it suffices to prove (10). But that obviously holds since

To prove uniqueness, it suffices to observe that if u solves (32) and is related to
v via (33), then v is a solution of the KdV equation. Also, if Ou is of x>log-type, so
is Ov. By Theorem 3.4, v is unique; hence u is unique.

COROLLARY 5.2. Let and g be as in Proposition 5.1, and assume further that
0 and g has a representative such that I1(, ")112 is bounded independently of .

Then the solution u E ,2( x (0, oc)) to (32) satisfies

ut+uuO,(34) Ult=O g.
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Proof. Indeed, [lfi(,., t)][2 --[1(, ")[12 is bounded independently of and t, thus
ux O.

Corollary 5.2 has two interesting aspects, the first one relating to results of Lax
and Levermore [11] and Venakides [15] on the zero dispersion limit, the second one
to the possibility of modeling what Mlov and his collaborators [12], [13] have called
infinitely narrow solitons.

To discuss the first, sume that the initial data are clsical, say, g W’2(),
and let 0. By Corollary 5.2, the solution u e G,2( x (0, )) to (32) solves (34)

well. On the other hand, if g satisfies the hypotheses required in the articles ofL
and Levermore [11] or Venakides [15], the representative fi(,., .) will converge weakly
to a function v which, however, will generally not solve the equation vt + vvz 0 in
the sense of distributions. Thus, in this situation our generalized solution u satisfies
(4), while for its sociated distribution v we will have a rule that

Vt + (V2)x 0 in 9’( x (0, )).

This is in contrt to the situation arising with zero viscosity limits, i.e., solutions
of Burgers’ equation ut + uu uu with u 0. There the generalized solution u
with clsical initial data g both solves (34) and admits an sociated distribution w
which always satisfies wt + (w2)x 0 in 9’( X (0, )); see [4]. It is clear from this
discussion that solutions to (34) are not unique, although some limited uniqueness in
the sense of sociation can be obtained in the cls of zero viscosity limits [4].

Secondly, following Mlov and Omel’yanov [12], Mlov and Tsupin [13], we
shall see that the notion of "infinitely narrow solitons" can be accommodated in our
approach well. To simplify the presentation, we shall take u in (32) the cls of
(e) e. We note that for each c 0, the function

(e, , t) acsech

is a representative of a solution u in ,( x (0, )) o (a2); actually, a soliton
for each fixed s > 0. As e 0, the width of the soliton decrees to ero, while its
amplitude remains fixed. In fac, in the sense of generalized pointvalues of elements

(,t)=0 if

 (ct, t) ac

for all and t 0, where the evaluation of the generalized function u at
(, t) is naturally defined a generalized constant and the equality is understood
in the corresponding sense [, 1.g.1]. It is not dicult o check that u 0 in

,( x (0,T)) for every T > 0, while 0, and (4) is satisfied. In addition, the
generalized function

1
t)

is sociaed with the Dirac meure along the line ct. his is a special ce of
the ympotic developments elaborated in the quoted articles [12], [la].

inally, we point ou hat it is also possible to have solutions to (a2) and (a4),
which are sociated wih the Dirac meure at t 0, but sociated wih ero on
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t > 0: the impact of the initial singularity is removed immediately after time t 0.
It is easily verified that the class u in G,2( (0, oc)) of

fi(s, x, t) 48(s)
sech2 24(e) 144(s) t)

with 0 and a may serve an example: u solves (32) and (34) with uIt=0
g 6, and u 0 on x (0, ), where 6 D’() denotes the Dirac meure at the
origin.

Acknowledgment. The authors are indebted to the referee for pointing out the
connections with the results of L, Levermore, and Venakides in 5.
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NONCONSERVATIVE PRODUCTS IN BOUNDED VARIATION
FUNCTIONS*
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Abstract. There exist two definitions of products of a bounded variation function by a derivative of
another bounded variation function. One of them follows from a concept of generalized functions in which
arbitrary products of distributions make sense: one has only one product but its understanding involves a
nonclassical concept contained in each generalized function. Another one has been recently introduced by
Dal Maso, Le Floch, and Murat as a generalization of a definition of Volpert; one has a family of different
products indexed by a "path b"; each b-product is well defined as a measure, and the scenario takes place
in the familiar framework of functions of bounded variation and measures. In spite of their apparent great
difference, these products are closely related: the purpose of this paper is to prove a clear correspondence
between the two approaches: the path b is the nonclassical ingredient inherent in the concept of generalized
functions.

Key words, products of distributions, nonconservative hyperbolic equations, shock waves, generalized
solutions

AMS(MOS) subject classifications. 35L65, 46F10

1. Introduction. Nonconservative shocks appear in some formulations of engineer-
ing problems; see [1]-[4], [8]-[10], [19], among other references. Since they may be
viewed as problems of multiplications of distributions, a first attempt is to use the
theory developed in the expository texts [3], [5]-[7], [18]. This attempt led to a
numerical and physical theory of nonconservative shocks and generalized solutions of
PDEs (see [3], [5], [11] and the references therein). This approach is based on a new
concept of generalized functions whose construction from the classical concept of C
functions is suggestive of the construction of the real number system from the rational
numbers. Therefore, the price to pay is the acceptance of new objects of pure mathe-
matics. Attempts to show how this concept of "new generalized functions" can be
handled on an intuitive level in applications to physics and engineering are given in
[2], [7]-[ 10].

Another definition of a nonconservative product was introduced in [20], [14],
[15], [13], [16], [17]. The first version [14], [15] applies a definition introduced by
Volpert [20]. The second version [13], [16], [17] is more general and allows various
different results for the product yns, according to the variant in use (note that the fact
that products yn8 appearing in equations of physics give different results according
to the context has been stressed in [3, pp. 107, 119] and [2], [5], [8], [9]). At first sight
it does not involve any concept of generalized functions since it takes place in the
familiar setting of bounded variation functions on the real line. However, a choice has
to be made concerning the variant in use for defining any nonconservative product
(this choice is called a "path" in [13], [16], [17]).

In this paper we prove that this second definition is deeply connected with the
definition using generalized functions. The choice of the path in the second definition
is the nonclassical ingredient contained in a new generalized function. This result is
interesting since the two approaches are often presented and considered as quite
different. The definition in the setting of boundary value (BV) functions and paths is

* Received by the editors July 23, 1990; accepted for publication (in revised form) October 10, 1991.
t Ecole Normale Sup6rieure de Lyon, 46, all6e d’Italie, 69364 Lyon Cedex 07, France.
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not compatible with the differential-algebraic structure of the set of generalized func-
tions, useful for calculations" it reflects the association in , not the equality. This
differential and integral calculus of generalized functions (and its novelty relative to
the differential and integral calculus of distributions) is at the origin of most of its
applications [references above]; in particular, it is at the basis of the modeling
assumptions proposed in [2], [3], [5], [8] for the resolution of ambiguities. The result
in this paper and its proof show that these assumptions amount to the choice of a
path th to define a nonconservative product according to [13], [16], [17]. Therefore,
there is a clear correspondence between the two approaches, when the theory of
generalized functions is restricted to the setting of bounded variation functions. In the
opinion of the authors, the explicit use of generalized functions is clear and simple,
and can be easily dealt with on an intuitive level. Also, the differential and integral
calculus of generalized functions contains basic ingredients not yet considered in the
path formulation that could perhaps be productively incorporated into the path formu-
lation. Note that the situation looks somewhat similar when the approach ofgeneralized
functions is compared with the concept of Di Perna’s measure valued solutions for
systems of conservation laws [12].

2. Statement of the Theorem. The notation in the setting of BV functions is that
of [13], [16], [17] (briefly recalled in this paper), and the notation in the setting of
"generalized functions" is that of [8, Chap. 1] (recalled in the Appendix). The basic
idea concerning the connection between the two approaches can be understood without
a detailed knowledge of the definitions ( 3).

Let b [0, 1 x Rp x RP ---> Rp be a fixed "family of paths" (a "path" for short)
satisfying the assumptions (Hypothesis 1-2-3) in [13], [16], [17]: essentially the map
th has to be differentiable in the variable s [0, 1] and Odp/Os has to be Lipschitz. Let
U." ]a, b[->p be a locally bounded Borel function. The nonconservative product
tz=[g(u,x)(du/dx)] is defined in [13], [16], [17] as a real valued bounded Borel
measure, for any BV function u: ]a,b[->p (g(u,x)(du/dx) has to be read as

gi il<_:i<__p (1/, x)(du dx)).
Let us look at a special case: the points of discontinuity of u. If Xo is a point of

discontinuity of u then we have by definition

"os (s; u(x-g), u(x-)) as.

-4-The path b is used inside this formula to smoothly join u(x) and U(Xo), as is made
clear in Fig. 1.

In the theory of generalized functions of [3], [5]-[7], [18], the nonconservative
product g(U, x)(dU/dx) makes sense as a generalized function, if U is a generalized
function from ]a, b[ to RP (vector valued generalized functions are of course defined
as a set of components; for arbitrary U (g(]a, b[; P) some growth property on g is
requested, but for the particular U considered here this restriction does not enter.)
Here we shall consider only that case g is a C function; this is done only to simplify
the exposition: the case of non-Cg can be handled as in [6, pp. 258-259].

The space d(]a, b[) of generalized functions from ]a, b[ into contains the space
@’(]a, b[) of (real valued) distributions. Hence the measure [g(u,x)(du/dx)]6 is a
well-defined element of d(]a, b[). Any generalized function G is a class of representa-
tives {R(e," )}O<e<l (see the Appendix), where the functions R(e,. are C functions.
If Ge (]a, hi) and if Oe N(]a, b[), the brackets (G, O)eN are defined as the limit
when it existsof I R(e, x)O(x) dx when e -0 (then it is independent on the choice



NONCONSERVATIVE PRODUCTS 943

by contraction on \
/ in the directin \

FIG. 1. Passage from (u, 49) to u or "How a pair (u, 49) gives a generalized function U (defined as the
class of the family u ))’’; the figure is drawn in the case p 1.

of a representative of G). If G ’(]a, b[), then the above (G, 0) coincides with the
classical brackets of distribution theory.

Now we are able to state our comparison theorem; note that the case of
g( u, x)( dv/ dx) can be reduced at once to the case u= v. (Since we consider vector
valued objects.)

THEOREM. Let (u, oh) be a given pair (BV function, path). Then there exists a
generalized function U (]a, b[) such that, for every C function g, the measure
[g(u, x)(du/dx)], @’(]a, b[) and the generalizedfunction g( U, x)(dU/dx) (]a, b[)
are equal in the following sense" for every test function 0 (]a, b[),

,0 g(U,’) 0

The above equality can be considered as an equality in the sense of distributions,
although g(U). (dU/dx) is not a distribution. The function u isin a sense to be
made precise laterthe "macroscopic aspect" of the generalized function U, while b
is its "microscopic aspect" on its points of discontinuity. Note that the theorem gives
only a correspondence between (u, b) and U; this seems to be so because an analogue
of the concept of (strong) equality in does not exist in the other approach: this
would require a concept more precise than the pairs (u, ).

The proof is somewhat technical because the set of discontinuities of an arbitrary
BV function can be rather complicated. In the case of step functions, if some details
are dropped the proof is quite simple and gives a clear understanding of the connection
between the two frameworks. The proof of this special case is given in the next section;
the complete proof is in 4. The x-dependence of g is always dropped to simplify the
notation.

3. Sketch of proof in a particular case. Let u (u 1, up) be a piecewise constant
function of one real variable with a discontinuity at the origin; let b (b 1, b’)
be a "path." For 1 _-< =< p, 0 < e =< 1, and 0 =< sc-< e, let

(2) ,i,e() (Di (, U(0--), U(0+))
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Define the functions u’ by

ui(x) if x<0 or x> e,
(2t) ui’e(X)=tXii,i,e(X if0<_X<=e.

From definition 13], 16], 17] of a path the functions u i, are continuous. For simplicity
(i.e., to avoid a regularization, as in the general proof), let us assume that the functions
ui’ are C functions.

Let g= (gi)l__<i__<p be a C function from Rp to Rp. By definition [13], [16], [17],
the measure [g(u)(du/dx)]6 is equal to __<i_<_p/zi({0}) 8, the Dirac measure, where

(s, a, b) ds if a u(0-) b u(0/).(1’) /x’(O) g’(6(s, a, b))
Os

By definition in the context of generalized functions, (g(U)(dU/dx), O) is the
limit when e- 0 of

Ii, l’ =f+gi(u(x))(ui)’(x)O(x)dxI= ,
l<_i<=p

if 0 (1).

d
i,Ii gi((xlti’(X))l<-i<-P) -x (x)O(x) dx

g 6 -,a,b (s,a,b)O(x)dx

(s, a, b)O(es) as.gi((s,a,b))
Os

Thus I ({0})(0) when e 0: we obtain

Note that the construction of U is not canonical because the replacement of [0, e]
by, for instance, I-e/2, e/2] would work as well (and would produce another U).
One sees very clearly that the role of the path is merely to join smoothlyby its
contraction to [0, e]-u(0-) and u(0+); this concept of path, called "microscopic
profile" of the shock in [3], [9], [10] is contained in the generalized function U, but
not contained in the BV function u. Different ’s produce different U’s; the same u
and may produce different U’s. Thus the pairs (u, ) are not generalized functions,
but rather classes of generalized functions having the same macroscopic aspect u and
giving the same products [g(u)(du/dx)]6.

4. Proof of the theorem. The construction of U class (U)o<< in (]a, b[, P)
will be done in several steps"

BV v: piecewise
function constant

Step /.e Step 4 /,/e*Ph(e) " )O<e<l

" Lipschitz regularization gives U
continuous junctions P , P its

by @i, in Fig. h(e) if class

suitably chosen

Step 1. Given the BV function u, there is a family (v)0<< of step functions,
v u in sup norm when e 0 and TV (v) < c (i.e., the total variation of v is less
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than a constant independent of e). Theorem 2.2 in [13] asserts that, for every test
function 0 (]a, hi),

du
(x)O(x) dxd’] x)O(x) dx g(,)(3) g(v)-xj

when e 0. These v do not depend continuously on e: in the Appendix we do not
state such a dependence in the definition of . Such a dependence can be useful for
other purposes (see [5]); it could be incorporated here at the price of a more complicated
construction.

Step 2. We construct the continuous function from v and as described
above in Fig. 1. Indeed, v is piecewise constant, with a discrete set of discontinuities
x;, 1 N N n, on each compact interval. In order to avoid a possible overlapping of the
junctions, the segments [x, x + e] as in Fig. 1 are replaced by [x, x +f] with
0<f N e small enough. In a neighborhood of x, we have the following"

(x)= v(x) if xx; or xxf +ff(4)
(x) (, v (xf-), v (x,)) if x x, + ff, 0 .

Now let be the measure =[g(v)(dv/dx)] defined in [18].
Then 2, ({x,})a,, where

e({Xi}) g(6(S De(X;) De(X))) O De De
os (s, (x;-), (x;+)) ds.

An obvious change of variables and (4) give (see 3)

I’)+s; d

Therefore, if 0 (]a, hi),

On the other hand,

g( (x)) (x)O(x) dx.6) ) 0) d

The difference D of the quantities in (5) and (6) is

D= .,x; g((x))-x (X)(O(x)-O(x;)) dx.

Further,

J +f; de f0’dh=

k independent of e ([13, Hypothesis 2]).
Thus

-S s, (Xi--), Ve(Xi+)) d, <- klv (x;-) v

x;+s: d (x)
Iol<-Eox: g((x))

dx
(O(x)-O(xT))

<-Ilg(Y)llll 0’11 sup (f.)k TV(v).

Since (f) -<_ e and TV(v) <= c one obtains

(7) g(v)
4,

d
(x)O(x) dx- g(O(x))-x (X)o(x) x-O as e-0.
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Step 3. The objective of this step is to regularize the continuous functions so
as to obtain C functions.

Let pc @(R), Jp(x) dx= 1; we set p(x)=(1/e)p(x/e). Let h:]0, 1] ]0, 1] be a
decreasing function such that h(e)-* 0 when e 0. We set =*Ph(e). We want to
prove that for a suitably chosen function h, then, for any 0 (]a, b[) and g
C(P,P),

(8) g(’a(x)) "d (x)O(x) dx- g((x))(x)O(x) axo as e-0.

Let us fix e and set ’ pa, A > 0. Then it is easy to prove that for fixed e, g, and 0

g(,"(xll ax (xlO(x x- g((x(xO(x xO as a0.

Equation (8) follows (nontrivially) since we are free to make a choice of the function
h (i.e., h(e)O as fast as needed when e 0); the details are left to the reader (the
above limit depends on bounds of g and 0 that have a countable character: for this
there exists a suitable h). A similar argument has been elaborated in [12].

The conjunction of (3), (7), and (8) gives

I d [ du] (x)O(x)dx ase0(9) g((x)) (x)O(x) ax . g()

for any 0 e (]a, b[).
Step 4. The family ()o<< is a family of C functions in the x variable. In the

course of the construction of this family we have lost any control on its dependence
in e. Let [ ]a, b[,p] be the requested reservoir of representatives for defining
(]a, b[; P). A family {u}0<< of C functions on ]a, b[ valued in P lies in this
reservoir if and only if (owing to the simplification due to the dependence on e only)
for every compact interval K in ]a, b[ and for every n e there are e > 0, > 0 and
N e such that

c
sup u(x) <= if0<e<,
xK dx

where is the norm in NP. The family ()o<< does not a priori satisfy these bounds.
But there is a suitable function k" ]0, 1[ ]0, 1[, k(e)O if e 0, such that u (
satisfies the above bounds (k is obtained by a diagonal process since one has a countable
set of requirements: countability of an exhaustive sequence of compact sets in ]a, b[,
and countability ofthe set of successive derivatives). Then (u)o<< lies in the requested
reservoir of representatives. Its class defines an element U of (]a, b[; NP). Of course
(9) holds with u in place of .. Cets. In the terminology of the concept of generalized functions in use,
the weak equality in the statement of the theorem is formulated by saying that the
measure [g(u,x)(du/dx)] and the generalized function g(U, x)(dU/dx) are associ-
ated; see the Appendix.

The generalized function U canas is quite apparent from Fig. lbe (noncanoni-
cally) considered as the pair (u, ), and then, of course, the product depends only on
U: the path enters into the definition of the generalized function U.

Conversely, given a generalized function U, withto fix the ideaU(x)= a if
x < 0 and U(x)= b if x > 0, is it possible to find a family of paths in the sense of
[13], [16], [17]? In various concrete circumstances this is the case, and examples from
numerical analysis and physics are shown in [3], [8]-[10], where these paths were
called the microscopic profile of the shock." In general this is impossible: U is the
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class of a family (Ue)o<e<l of C functions. For each u the junction between the left-
and right-hand side values can be assumed (at least intuitively) to take place on an
interval a (e),/3 (e) ], a (e) 0, /3 (e) 0 as e 0. By a linear change of variable we
can transform this interval into the interval [0, 1 ]: this gives some function b defined
on [0, 1 ], which, of course, stands for the path b in Fig. 1. If, when e - 0, the function

b tends to a function b, then we can say that the reverse process works: we obtain
a pair (u, &) from which the process in Fig. 1 gives a generalized function U( U u),
having b as a "microscopic profile." But it may happen that the &’s vary endlessly
when e 0, or are unbounded when e 0; even in case of a weak convergence of the

b’s to some b, b need not satisfy the assumptions in [13], [16], [17]. Examples have
been observed in numerical tests; see [3], Figs. 6, 7 in Appendix 2 of Chapter 3, [8],
[10]. Further, in [13], [16], [17] the path & depends only on the left- and right-hand
side values of the BV function u. This excludes step functions with time independent
step values and time dependent microscopic profiles that have been observed, for
example, in [1].. Also, it may happen that in the solution of a Cauchy problem (with
a BV initial condition) the solution has several shocks, two of them with same left-
and right-hand side values but different "microscopic profiles."

Therefore, the concept of generalized functions can be considered as more general
than the concept of pairs (u, 4)--at least when & has the properties in [13], [16], [17].
However, in the theorem of [17] a remarkable property of conservation of the path 4
at the limit of Glimm’s random choice method has been proven; then the consideration
of more general objects to describe the limit is avoided. Note also that the space q3

has primarily been presented as an algebra of functions: notions of topology are
exposed in [3, 1.7], but they are not significantly used. When we restrict it to the
setting of functions of bounded variation, the classical topologies in these spaces can
be used; see [1], [3], [4]. Then it appears that both approaches are closely related on
their common domain.

Appendix. The purpose of this Appendix is to offer a definition of the concept of
the "generalized functions" we use. If 12 is an open set in ", we construct the space
(f) of (real or complex valued) generalized functions on f from the space (f)
of C functions on f in a way that looks like the construction of the real numbers
from the rational numbers (each real number is an equivalence class of (Cauchy)
sequences of rational numbers). Slightly different constructions lead to slightly different
spaces c(), but at the level of the results in this paper, there is no significant difference
between them. We set

2q q @(n) such that q(h) dh 1, hq(h) dh=Oiflli[--q.
n n

If 0<e<l, we set as usual q(A) (1/e")q(A/e), and it is clear thatd if and
only if dq.

Let us define our "reservoir of representatives" (i.e., the analogue of the set of
all Cauchy sequences of rational numbers). This reservoir, denoted by [f], can be
intuitively introduced as follows: let there be given a distribution T on "; T can be
viewed as a class of regularizations T. # (), with , tending to the Dirac
measure 3 in the sense of distributions. For a canonical regularization it is necessary
to consider all possible regularizing functions q, and, therefore, all maps (#, x)
R(,x)(R(,x)=(T,)(x) in the above particular case of a distribution). [f] is
the set of all maps

R MoXlI- IR, (Gx) R(o, x),
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such that:
(1) For any q the map R x -* (% x) is a C function of the variable x 1);
(2) if D--(olkl/okl"’’x, 0,) is any partial derivation operator (D=identity is

allowed), if q Sgo and K is any compact subset of f, then there are constants c > 0,
N N, and 0 < rt <- 1 such that

supIDR( x) <
c
N

xK

if0< e < . Note that if R M[], then DR M[12] for any D. Also, if R, Q [fl],
then R + Q M[] and R. Q []: M[fl] is a differential algebra (paial deriva-
tives, addition, and multiplication).

Now let us define our "set of null elements" (i.e., the analogue of all zero sequences
of rational numbers). This set is denoted by [] and is an ideal of the algebra M[fl].
[] is the set of all maps R M[fl] such that for all D and K as above there is
N N and an increasing map y:N N, y(q)+ if q +, such that Vq N, V
q C>0 and 0< 1 such that SUpx [DR(,x)[ce(q) if 0<e < .

A generalized function G on is an element of the quotient space ()=
M[]/N[], which is a differential algebra (since the operations of paial differenti-
ation, of addition and multiplication are coherent with this quotient).
() is contained in () in the following way: to fe (fl) associate the

"representative" R(, x)=f(x). ’() is contained in () in the following way: to
T e ’(a) associate the "representative" R p, x T,, x)) T (x). We have
the inclusions (fl) ’() (fl), and () is a subalgebra.

The origin of this somewhat unexpected construction is described in [5]. Indeed
this construction relies on the classical Taylor expansion of a C function.

We state G 0 if it has a representative R (then this works for all representatives)
such that for large enough N e N, for any 0 (),

R(, x)O(x) dx0

if e 0. We state G G2 if and only if G1-G20. We say that G () admits
T ’() as "macroscopic aspect" or "associated distribution" if and only if G Z
The impoance of this concept is due to the fact that because the ideal W[] is very
small, the concept ofequality in () is a very strong relation; the concept of association
plays the role of a weaker concept of equality, however incoherent with the multipli-
cation.

Simplified formulation. Practice often shows that the formal replacement of
R(, x) by R(e, x) (whatever may be) amounts only to a simplification in notation.
Also, we can rigorously consider a subalgebra ()in which the subscript s stands
for "simplified"for which the representatives depend only on e and x. We have the
following situation [3]:

We pay the price of simplification by a loss of the canonical inclusion of 9’ into
the space s of generalized functions. In this paper we have adopted R(e,x) as a
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simplified notation for R(q, x). Furthermore, the U’s constructed in the proof can
be considered as elements of s(f). This makes no difference for the contents of this
paper. Note that the simplified concept is introduced directly in [9], [10].

Acknowledgments. The authors are very much indebted to A. Y. Le Roux, M.
Oberguggenberger, and D. Serre for their help during the preparation of this paper.
Significant improvements in the text are due to the referee.

Note added in proof. A very simplified formulation is presented in Egorov, "On
the theory of generalized functions," Russian Math. Surveys 5, (1990), pp. 1-49.
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A UNIQUENESS RESULT CONCERNING THE IDENTIFICATION
OF A COLLECTION OF CRACKS FROM FINITELY MANY

ELECTROSTATIC BOUNDARY MEASUREMENTS*

KURT BRYANt AND MICHAEL VOGELIUS$

Abstract. The problem of identification of a collection of finitely many cracks inside a planar
domain is considered. The data used for the identification consist of measurements of the electrostatic
boundary potentials induced by prescribed current fluxes. It is shown that a collection of n or fewer
cracks is uniquely identified by boundary measurements corresponding to n+ 1 specific current fluxes,
consisting entirely of electrode pairs.

Key words, cracks, nondestructive testing, electrical impedance imaging

AMS(MOS) subject classifications. 35R30, 35J25

Introduction. In a recent paper, [1], Friedman and Vogelius proved that the
presence of a single crack, and its shape and location inside a planar domain, may
be determined from measurements of the steady state boundary voltage potentials
corresponding to two specific boundary current fluxes. In the present paper we ex-
tend this result to any finite number of cracks. We show that voltage measurements
corresponding to n + 1 specific fluxes suffice to determine the location and shape of a
collection of n (or fewer) cracks. In contrast to [1] the fluxes we use here all consist
of electrode pairs--exactly the type of fluxes which were used for the computational
algorithm developed in [2].

Let be a simply connected domain in R2 with a smooth boundary. In order
to describe our result in detail we need to define the notion of a collection of cracks.
By a C2-curve, a, we understand a twice continuously differentiable map" [0, 1] -with non-vanishing derivative. A collection of cracks consists of a finite number of
mutually disjoint, nonselfintersecting C2-curves ak k-- 1, n. We use capital
Greek letters to denote collections of cracks, e.g., E {ak}=l; note that n may
possibly be zero, so that E is empty. We shall also use the notation ak and for the
image of each of the individual curves and the union of all the images, respectively
(i.e., Y Uk=lnak). Let - R be a positive function (the known reference
conductivity). Throughout this paper we assume that

f is real-analytic on .
In the following, when a function is called analytic, it shall always mean real-analytic.
Quite frequently in the literature the term crack is used synonymously with an elec-
trically insulating crack: if represents the boundary voltage, then the steady state
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voltage potential satisfies
V.(Vv)--0 in\,

Ov
/- =0 on E,

v= on 0t.

In this framework the inverse problem is to determine from knowledge of several
Ovpairs (, 7O-glon). We shall, instead of working with the potential v, opt to work with

its "-harmonic" conjugate, u. This function is related to v by

(0.1) (Vu) +/- /Vv,

where 2_ indicates counterclockwise rotation by r/2. Let T be a fixed point on 012, in
a neighborhood of which is smooth. Let Tk be a smooth curve in t \ F connecting T
to an interior point of the crack ak, and let s denote the unit tangent direction along
Tk, pointing from T towards (k. Define constants

Ovc(k) /-ds + u(T),

where denotes the normal field -s+/-. The "7-harmonic" conjugate, u, solves

(0.2)

V" ()/--lVu) 0

u c(k)

in t \ F,
Oil (k k 1,... ,n,

Ou 0-1- on OFt,O Os

where s denotes the counterclockwise tangent direction on 0.
From (0.1) it follows immediately that knowledge of ulon leads to knowledge of

Ov Ion o-(ulon) and vice versa. Therefore, knowledge of pairs (ulon ) is equiv--/0-
Ovalent to knowledge of corresponding pairs (, ’01on), where and are related by

o Physically (0.2) corresponds to a collection of perfectly conducting cracks.
One way to solve (0.2) is to minimize the energy

-llVwl2 dx- Cw ds

in the space Hl(t)N{w const on each ak e F} (such minimization gives, modulo a
single undetermined constant, exactly the values on ak, k 1,... n described above).
This method works provided E H-i/2(Ot). The fluxes we shall apply here, however,
correspond to single pairs of electrodes, i.e., we shall take of the form 5Po -P1,
where Po and P are two distinct points on 0. Such are not in H-/2(Ot)--the
solution, u, is, therefore, not in H (), and it is not obtained as a minimizer of energy.
Rather, u isa weak solution to (0.2); it is smooth everywhere except at Po and P1
and at the endpoints of the cracks. At Po and P1 the function u has singularities of
the form -7(Po)/Tr logr, r Ix- Pol, and 7(P1)/Tr logr, r Ix- PI, respectively;
at the endpoints of the cracks u has in general rl/2-type singularities, cf. [1].

For our uniqueness result it is not necessary that we have solutions which attain
exactly the constant values on the cracks described abovewany set of constants will do.
To construct the specific boundary currents, let Po," PM be M+ 1 different (fixed)
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points on 0t; we assume that these points are labeled in order of counterclockwise
appearance, starting from P0. In our first uniqueness result we utilize solutions to the
boundary value problems

(0.3)

V. (-lVuj) 0 in t \ ,
uj constant on each

/_
Ouj
0--- 5Po 5P on 0gt.

THEOREM 0.1. Let (ak}’= and F ( k}k= denote two collections of
cracks contained in the domain , with max(m, n) + 1 <_ M. Let uj, j 1,... M
denote solutions to (0.3) and let t, j 1,..., M denote solutions to (0.3) with
replaced by Then uj j on O \ M(2i=0(Pi } for j 1,... ,M implies that

Instead of prescribing fixed fluxes --I0 and measuring uilon we can

prescibe fixed boundary voltages wjlo i equally well and measure
For that purpose we utilize solutions to the following boundary value problems

V. (/-1Vwj) 0 in fl \
wj const on each

wj=l on0t,
P- Pj

where 1 denotes the characteristic function of the counterclockwise curve from
Pj- P

P_I to Pj. The function wj is a weak solution to (0.4)--it is not in H(Ft), and,
therefore, not obtained as a minimizer of energy, wj has a singularity of the form
at Pj_, arg(x-Pi_) and has a singularity of the form/ at Pj, arg(x-Pj).
At the endpoints of the cracks wj has, in general, r/2-type singularities.

mTHEOREM 0.2. Let {ak}=l and F {Sk}k= denote two collections of
cracks contained in the domain 12, with max(m, n) + 1 <_ M. Let wj, j 1,... M
denote solutions to (0.4) and let (vj, j 1,..., M denote solutions to (0.4) with
replaced by . Then -- - on O \ Mi=0{P} for j 1,... ,M implies
that .

REMARK 0.l. As was the case with the first theorem, this second theorem also
has an alternative formulation in terms of cracks that are insulating. In that case we
would prescribe normal boundary fluxes -0(1 )lOs 5p -6p_ and measure

P- Pj
the corresponding boundary voltages.

1. Preliminaries. The proof of our main results consists of a very detailed
analysis of the structure of the level curves of solutions to the equation V.(--Vu) 0.
For that purpose we shall need two auxiliary lemmas.

LEMMA 1.1. Let u satisfy V. (--lTu) 0 in t \ F with /-Ou/Op jjp
on 0, and u constant on each ak. Let p be a nonempty analytic curve in with
p F along which u is constant. Then there exists an analytic curve p with
p c p such that

(1.1a) u is constant on p,

(1.1b) has one endpoint on Ogt or ak for some k,
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(1.1C) p has the other endpoint on Of or at .for some with k.

The proof of this lemma is identical to the proof of Lemma 2.3 in [1]. We shall
not repeat the the proof here. The second lemma we need concerns the existence of
intersecting level curves. Some of the details of the proof of this result are not unlike
those found in the proof of Lemma 2.3 in [1], but for the convenience of the reader we
give a complete proof here.

LEMMA 1.2. Let u satisfy V-(’-lVu) 0 in gt \ E with /-lOu/Ov -]j jhpj
on Of, and u constant on each rk. Let be a nonempty analytic curve in with
p g E , along which u is constant, and assume that x* is an interior point of p,
where Vu(x*) O. Then there exists an analytic curve p which has x* as an interior
point such that

(1.2a) p’ N p {x*},

(1.2b) u is constant on p.

Proof. Let (r, ) e [0, e] [0, 2r] denote polar coordinates at x*. Since Vu(x*) 0
we know that u(0, ) 0, and by expanding in a Taylor series in r we get

u(x) u(x*) + rN(asinNO + bcos NO + rA(r,O))

for some a, b (not both zero) and some N >_ 2. Here we have used that u is nonconstant
and satisfies V. (/-1Vu) 0 near x*, and we have used that "- is analytic (the
case of a constant u is trivial). We may, without loss of generality, assume that the
tangent to p at x* is {(r, 0), r > 0} t2 { (r, r), r > 0}. It follows that b 0, i.e.,

u(x) u(x* + arN (sin NO + rA(r, )).

Since u is analytic near x*, it is well known that u as a function of (r, 0) is analytic on
[0, e] [0, 2r], the main point being that it is analytic at r 0 and, therefore, also has
an analytic extension to I-e, e] for a sufficiently small e (indeed the analytic extension
for negative r is given by z(r, O) u(-r, 0 T r), 0 -t- r taken modulo 27r). It follows
that A(r, ) also has an analytic extension near r 0; we denote this extension by
.(r, 0), (r, 0) E I-e, ] [0, 2r]. The function F(r, O) sin NO -t- rft(r, O) satisfies

F(O, r/N) 0 and
0--F(O, r/N) -N,

and therefore, by the implicit function theorem, it is possible to find a unique analytic
function O(r) such that (0) r/N and {(r, )" F(r, ) 0} coincides with {(r, O(r))}
in a neighborhood of (0, r/N). The curve, p’, given by

(r cos O(r), r sin O(r)) + x*,

is an analytic curve through x*, which satisfies p p x* and which by its very
definition is a level curve for u.
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2. Proof of Theorem 0.1. Let O be the open set enclosed by and 5], i.e.,
the set of points in Ft \ ( U ) from which it is only possible to reach 0t by crossing
] or ]. Since gt \ (O t2 F ]) has only one connected component, it follows from the
assumptions about the boundary data (by unique continuation) that

uj-fij inFt\(OUFU), j---l, ,M.

If O is nonempty then 00 consists of pieces of curves from F and ; on each of these
pieces either uj or fij is constant. Due to (2.1) it now follows that u is constant on
each of the pieces that make up OO. Each function uj therefore assumes finitely many
values on 00 (at most m + n). Since uj is continuous in Ft (cf. [1]) we get that u
is constant on each connected component of 00. Each connected component of O is
simply connected, and it now follows, by the maximum principle, that uj is constant
in each connected component of O. This implies that uj is constant in all of gt--a

contradiction. We thus conclude that O is empty, so that uj j in gt \ ( U ); by
continuity it follows that

(2.2) uj-j ingt, j---l, ,M.

Let us assume that F and ] are not identical. We may assume that there exists a
curve p contained in 5k for some k with p N q}. Based on (2.2) we conclude that
the functions uj are all constant on p. There must exist a point on p where Vul = 0,
since otherwise ul is constant in gt by unique continuation); the implicit function
theorem asserts that p must be analytic near this point. By shortening, if necessary,
we may assume that the entire curve p is analytic. Let be a unit normal vector field
on the curve p and let x,... ,XM- be distinct interior points on p. Let al,’" OM
denote numbers, not all zero, satisfying the underdetermined set of linear equations

M
OUj

j--1

0, i- 1,...,M-1.

Define the function

(2.3)
M

j--1

for x E . The curve p is. also a level curve for u. Applying Lemma 1.1 we obtain an
analytic curve po containing p, which satisfies (1.1a)-(1.1c), i.e.,

(2.4a) u is constant on po,

(2.4b) p0 has one endpoint on OFt or ak for some k,

p0 has the other endpoint on 02 or at for some and k.

For x e p0 we have IVu(x)l IOu/O(x)l. From (2.3) it follows that Ou/O(xi) O,
so that Vu(xi) --0 for i 1,... ,M- 1. Using Lemma 1.2 we may now, for each of
the critical points xi, construct an analytic curve pi such that

(2.5a) pi g p0 {xi},
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(2.5b) u is constant on

Lemma 1.1 permits us to extend each of the curves pi until it hits the boundary or
one of the cracks in ; this way we obtain curves pi which, in addition to (2.5a) and
(2.5b), satisfy

has one endpoint on 0 or crk for some k,

has the other endpoint on 0 or al for some and k.(2.5d)
The fact that the extended curve pi still only intersects p0 at xi is proven as follows. If

then there would be some nonempty region Opi intersected p0 at some other point x
enclosed by p0 and p with u constant on 00. By the maximum principle u would be
constant on O, and hence it would be constant on all of 12. This clearly contradicts the
fact that 7-10u/0 --101J(Po --Pj on 0, where the Pj are distinct and at least
one cU is nonzero. Since all the curves p intersect p0, the function u assumes the same

M-constant value on t.Ji=0
l
pi. Note that no two of the M- 1 curves p,... PM-1 can

intersect, for then we would have some nonempty region O enclosed by the M curves

Do, pl,"" PM-1, with u constant on 00--a contradiction. For a similar reason none of
the curves Po, pl, PM-1 can self-intersect. Between the M curves po, pl, PM-1
we have a total of 2M endpoints. Note that no two of these curves can terminate on
the same crack ak, for then we would have some region O bounded by these curves
and the crack Crk, with u constant on 00--a contradiction. There are n cracks in ,
so it follows that there must be at least 2M- n points on 0 at which the curves
Do, pl,"" PM-1 terminate. Since the curves p,... PM-1 do not intersect and each
only intersect p0 at one point, it is easy to see that any connected component of
"\ M-1ti=0 pi has a part of its boundary in common with 0f, and that the number of
connected components is exactly equal to the number of terminal points of the curves
po, pl,"" PM-1 that lie on 0 (at least 2M- n). A situation corresponding to n 2
and M 4 is schematically shown in Fig. 1.

FIG. 1

The Neumann data for u has the form
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Let M + 1 <_ M + 1 be the number of nonzero/s in the above sum, i.e., M + 1 is
the total number of sources and sinks (for u) on 0. We note that none of the curves
po, pl,"" PM-1 can terminate at a source or a sink, since lul approaches cx there.

If M+ (M M’) > n+ 1 then it follows that 2M n M+(M M’) n+M’ >
M + 1, and, therefore, we conclude that at least one of the connected components of

Ui=0 lpi is bounded by a level curve for u, and a portion of 0f on which the normal
derivative of u vanishes. This forces u to be a constant--a contradiction. Hence we
see that if M + (M- M) > n + 1, then the assumption that N and are different is
incorrect.

SinceM_> n+landM_> M we always have that M+(M-M) >_ n+l.
The only case we have not analyzed yet is M + (M- M) n + 1, or, equivalently,
M M n + 1. None of the curves po, pl,"" PM-I can now terminate at any of
the points Pj, j 0,..., M (since lu[ approaches oc there). Furthermore, each of the
connected components of f \ M-1

Ui=0 pi has at least one of the points Pj on its boundary.
If not, the argument from the case M + (M M) > n + 1 leads to a contradiction.
There cannot be one connected component, the boundary of which contains two or
more of the points Pj because then, due to the identity 2M- n M+ 1, there would
automatically have to be one connected component, the boundary of which contained
none of the points Pj--a contradiction. In summary, each connected component of

M-1f\Ui=0 pi has exactly one of the points Pj on its boundary. This means that there are
exactly M + 1 connected components and, therefore, exactly M + 1 terminal points
of the curves PO, P,"’,PM-1 on oq. This leaves 2M- (M + 1) M- 1 n
terminal points that fall on cracks--one on each crack of N. From the inequality
n+l M _> max(m,n)+lwe conclude that n _> m. Ifn 0 it would follow
that m 0, so that both P ZI 0--a contradiction. There is, therefore, at least
one crack ako in the collection N. The crack ako is contained in the closure of one
of the connected components of f \ M-Ui=0 Pi; we denote this connected component by

M-O. Furthermore, we denote by p that part of i= Pi, which connects O’ko to P0. P,
must necessarily, due to the construction of the curves pi, be an interior boundary of
O. A situation corresponding to n=2 and M=3 is illustrated in Fig. 2.

FG. 2

Let Pjo denote the point which lies on 00. We may, without loss of generality,
assume that/j0 is negative (so that Pio is a sink). Consider the maximum of u on
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O. This maximum must be achieved at a boundary point, and it cannot be near Pjo,
since u behaves like -.o",/(P.o)/r logr there. Since u is zero on 0 \ U4_0{Pj}_ it
now follows from the strong version of the maximum principle that the maximum of

/14-1u on O is attained on that part of 00 which comes from Ui=0 pi; in particular, the
maximum is attained all along p. Let x0 be an interior point on p and let B c O Up
be a ball centered at x0 which does not intersect E. The function u satisfies the elliptic
equation V. (-1Vu) 0 in B (and is not constant), and therefore, by the maximum
principle,

(2.6) infu(x) < u(xo) < sups(x).
B B

On the other hand, B c O so

u(xo) m_ax u(x) >_ sup u(x),
0 B

and this immediately leads to a contradiction with (2.6). Hence we conclude that also
in the case M + (M- M) n + 1 we cannot have that E and are different, and
this completes the proof of Theorem 0.1.

3. Proof of Theorem 0.2. The proof of Theorem 0.2 goes entirely along the
lines of the previous proof up to and including the construction of the function u and
the curves p (using the equivalent of Lemmas 1.1 and 1.2 with Dirichlet boundary
conditions of the form /j1 ). From there the proof proceeds as outlined below.

Pj- Pj
The points Po,’" PM divide the boundary 0t into M / 1 half-open curves

PoP1 U {Po},"" ,PM-1PM U {PM-1}, and PMPo U {PM}.

Here we have used the notation PQ for the counterclockwise curve from P to Q,
excluding the endpoints. We shall use the notation [P, Q) for the counterclockwise

curve from P to Q, including P: [P, Q) PQ (P}. The function u is constant on

each of the curves PoPI,"" ,PM-1PM, and PMPo (on the last curve, u is actually
zero). The curves po,"" PM-1 have at least 2M-n terminal points on the boundary
of t, and we note that in this case the curves may very well terminate at one or more of
the points Po,"" PM. If 2M-n > M/ 1 (i.e., M > n+ 1) it therefore follows that at
least one of the curves [P0, P1),"", [PM-1, PM), and [PM, Po) contains two terminal

M-1points of i=0 Pi" Consequently, there is a connected component of Ft \ M-
li=0 Pi which

as its boundary has a level curve of ua contradiction.
We now consider the remaining case: M n + 1. In this case we conclude that

any one of the curves [P0, P1),"" [PM-1, PM), and [PM, Po) contains exactly one
M-1terminal point of Ui=0 pi. This leaves 2M- (M + 1) M- 1 n terminal points of

the curves po,"" PM-1 that fall on cracks--one on each crack of E. We also see that
there are exactly M + 1 connected components of ft \ M-Ui=opi. For each connected
component, that part of the boundary which is shared with Ot consists of a single

M- (these points lie on adjacentcurve between two adjacent terminal points of Ui=0 pi
curves [5-1,5) and [5,5+), indices counted modulo g+l). As in the proof of
Theorem 0.1, we may argue that n >_ 1, so that E contains at least one crack ako.
Let 0 denote the connected component of f \ M-

Ui=0 pi, whose closure contains ako,
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M-and let p denote that part of U=0 pi which connects ako to p0. p must necessarily,
due to the construction of the curves pi, be an interior boundary of O. The (interior)
part of the boundary of O, which is shared with 0, consists of a curve PQ, with
P e [Pjo-l,Pjo) and Q e [Pjo,Pjo+l) for some j0 (mod M + 1). The rest of the
boundary of O is a level curve for u. It is now very easy to see that u takes at
most two values on cO0. Consequently, either the minimum or the maximum of u on
O is attained on p. This leads to a contradiction, just as in the proof of Theorem
0.1
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Let us consider the following problem: we are given a probability measure Ix on
the real line R all ofwhose moments x2"dix(x) are finite. Let {P, (x)} be an orthonormal
system in L2(R, dix) obtained from the sequence 1, x, x2, by the Gram-Schmidt
procedure. We assume that the support of Ix is an infinite set so that 1, x, x2,.., are
linearly independent. Clearly P, is a polynomial of degree n which is orthogonal to
all polynomials ofdegree less than n. It can be taken to have positive leading coefficients.
The product P,Pm is a polynomial of degree n + m and it can be expressed uniquely
as a linear combination of polynomials Po, P1,"" ",

n+m

P.P,,,= Y c(n, m, k)Pk
k=0

with real coefficients c(n, m, k). Actually, if k <In-m then c(n, m, k)=0. This is
because

c(n, m, k)=(P.Pm, Pk)L(d.)=(P., PPk)L=(d,)=(P,,,,

Hence if k < In ml then either k + m < n or k + n < m and one of the above scalar
products vanishes. Finally we get

n+m

(1) P,Pm= ., c(n, m, k)Pk.
k=ln-ml

We ask when the coefficients c(n, m, k) are nonnegative for all n, m, k 0, 1, 2, .
The positivity of coefficients c(n, m, k) (called also the linearization coefficients) gives
rise to a convolution structure on ll(N) and if some additional boundedness condition
is satisfied then with this new operation resembles of the circle (see [2]).

Analogously to (1), we have

(2) xP ]/nPn+l +- nPn + OlnPn_ for n O, 1, 2,..

(we apply the convention a0 y_ 0). The coefficients a, and y, are strictly positive.
If the measure tx is symmetric, i.e., dix(x)= dix(-x), then/3, 0. When P, are normal-
ized so that IIP, IIL2(,) 1 then we can check easily that a,+= y,. Hence, if we put
A. y. we get

(3) xPn=lnPn+l’+nPn’+in_lPn_l forn=0, 1,2,. ..
* Received by the editors January 1, 1990; accepted for publication August 16, 1991.
? Mathematical Institute, University of Wroctaw, pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland.
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Favard [4] proved that the converse is also true, i.e., any system of polynomials
satisfying (3) is orthonormal with respect to a probability measure/ (not necessarily
unique). In case of bounded sequences A, and/3, we can recover the measure /z in
the following way. Consider a linear operator L on 12(N) given by

(4) La, A,a,+ + fl.a. + A._a,_, n O, 1, 2, .
Then L is a self-adjoint operator on l-(N). Let dE(x) be the spectral resolution
associated with L. Then the system {P,} is orthonormal with respect to the measure
d(x) d(E(x)6o, 60).

The statement of the positivity of c(n, m, k) does not require orthonormalization
of the polynomials P,. We can as well consider another normalization, i.e., let P, tr,P.
where tr, is a sequence of positive numbers. The problem of positive coefficients in
the product of P’s is equivalent to that of P’s. Moreover, it is easy to check that the
polynomials P, satisfy the recurrence relation of the form

(5) xP. T.P.+ + fl.P. + otnPn_ for n 0, 1, 2,.

and the unique relation connecting a., y. and the coefficients A. from (3) is a.+ly. A2
the sequence of diagonal coefficients/3, remains unchanged. From this observation it
follows that if polyn.omials /3. satisfy (5) then after appropriate renormalization the
polynomials P. c.P. satisfy

(6) xP. On+lPn+ + fl.P. + "yn_lPn_l

Consider the particular case of monic normalization, i.e., assume that the leading
coefficient of any P, is 1. Then the recurrence formula is

(7) xP,, P.+, + fl.P. + h_,P._,.

In 1970 Askey proved the following theorem concerning the monic case.
THEOREM (Askey 1 ]). Let P, satisfy (6) and let the sequences A, and ft, be increasing

(A, _-> 0); then the linearization coefficients in the formula
n+m

P,P,.= Y. c(n, m, k)Pk
k=ln-ml

are nonnegative.
This theorem applies to the Hermite, Laguerre, and Jacobi polynomials with

a +/3 _-> 1 (see [7]). However, it does not cover the symmetric Jacobi polynomials with
a =/3 when -1/2_-< a -< (and, in particular, the Legendre polynomials when a =/3 0).
Recall that the problem of positive linearization for Jacobi polynomials was completely
solved by Gaspar in [5] and [6]. In particular, c(n, m, k) are positive for a->_ fl and
a+fl+l_-->0.

The aim of this paper is to give a generalization of Askey’s result so it would
cover the symmetric Jacobi polynomials for a->_-1/2. One of the results is as follows.

THEOREM 1. Ifpolynomials Pn satisfy

xP. e.P.+, + #.P. +
and

(i) a., ft., and a. + y. are increasing sequences y., a. >-0),
(ii) a.<- y. for n=O, 1,2, ...,

then c(n. rn, k) >= 0 (see (1)).
It is remarkable that the assumptions on a.’s and 3’.’s are separated from that

on
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Before giving a proof let us explain how Askey’s theorem can be derived from
Theorem 1. If polynomials /3, satisfy the assumptions of Askey’s theorem then after
orthonormalization of P.’s we get the system of polynomials P, satisfying (3), i.e.,

xP.=A.P.++.P.+A._P._ forn=0, 1,2,. -,

and if h, and/3, are increasing then putting a, h,_l and % h, we can see easily
that the assumptions of Theorem 1 are also satisfied.

Example. Consider the symmetric Jacobi polynomials R’) normalized by
R’(1)- 1. They satisfy the following recurrence formula:

xR(,) n + 2a + 1 o(,) n
an+ "t- .tn_

2n +2a + 1 2n +2a + 1

In this case

n n+2a+l
an 2n+2a+l’ % 2n+2a+l

/3.=0.

Observe that a. + % 1 and a. is increasing when a ->_ -. We have also a % when

Instead of showing Theorem 1 we will prove a more general result.
THEOREM 2. Let polynomials P. satisfy

xP. %P.+l + fl.P. + a.P.-1

and let for some sequence ofpositive numbers . polynomials P. q.P. satisfy

xP. y’ P.+, + .P. + 1"

Assume also that
(i) fl fl. for any m n,
(ii) a < a’. for any m < n,
(iii) a + y a + y for any m < n 1,
(iv) a N y for any m n.

en the linearization coefficients c(n, m, k) in the formula
+m

P.Pm c(n, m, k)Pk

are nonnegative.
Setting a a. and y y., we can easily see that Theorem 2 implies Theorem 1.

Proof First observe that we have a.+ly. a’.+y. Moreover, by the remarks
preceding (6) we may assume that P. and P. satisfy

xP. an+IPn+I + .P. +
xp. a’.+,p.+ + .P. + .-lP.-,

The rest of the proof will follow from the maximum principle for a discrete boundary
value problem.

Let L and L’ be linear operators acting on sequences {a.}.u by the rule

(8)
+,
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Let Lm and L’. denote the operators acting on complex functions u(n, m), n, m N,
as L and L’ but with respect to the m- or n-variable treating the other variable as a
parameter.

Let us consider the following problem" N x N (n, m) u(n, m) C and

(9)
(Ln-Lm)u--O’

u(n,O)>-O.

THEOREM 3. Assume that a, > 0for n >- 1 (wefollow the convention ao a O) and
(i) m -- B’ for any m -- n,
(ii) am - a’ for any m < n,
(iii) a,, + Ym <= a’, + 3" for any m < n 1,
(iv) a, <= 3", for any m <-- n.

Then u(n, m) >= 0 for m n.

Proof On the contrary, assume that u is negative at some points. Let (n, m + 1)
be the lowest point in the domain ((s, t): s t} for which u(n, m+ 1)<0. It means that
u(s, t) is nonnegative if t m. Consider the rectangular triangle with vertices A(n, m),
B(n-m, O) and C(n+ m, 0), as illustrated in Fig. 1.

m’

x)

n o

I I I o

m m c m m o

FIG.

All lattice points in AABC we divide into two subsets" ’1, consisting of the points
(k, l) such that k- n m(mod 2), and the rest 1]2. In the figure the points of
are marked by while the points of -2 are marked by U]. Let ’3 denote the lattice
points connecting (n-m-1, 0) and (n, m+ 1) (except (n, m/ 1)) and f14 denote those
which connect (n+ m+ 1, 0) with (n, m+ 1) (except (n, m+ 1)). The points of 3 and
f4 are marked by and O, respectively.

Assume that (L’-Lm)u=O. Thus (,,,y)a, (L’-Lm)u(x,y)=O. If we calculate
the terms (L’,, L,,)u(x, y) 0 and we sum them up we will obtain a sum of the values
of the function u(s, t) with some coefficients c,, where (s, t) runs throughout the sets

’1 U2U ’3 U ’4 U {(n, m + 1)}. Namely,

0= E (Ln Lm)u(x, y)
(x,y) 1"

4

i=1 (s,t)
c.,u(s, t)+ Cn,m+lU(n, m + 1).

It is not hard to compute the coefficients c,, so we just list them below.



DISCRETE BOUNDARY VALUE PROBLEM 963

(i) (s, t)fl;
(ii) (s, t)f2; cs.,=a’s+T’-(a,+T,).
(iii) (s, t) f3 c,, y’-
(iv) (s, t)’4; Cs,t-- Olts--Olt
(V) en,m+l=--am+l

By the assumptions of the theorem all coefficients c,t are nonnegative while C.,m+I is
strictly negative. Since u(s, t)>-O for (s, t)Ol .J -2 [-J 3 [,.J "4 and u(n, m+ 1) <0 then
the sum we were dealing with cannot be zero. It gives a contradiction.

Let us return to the proof of Theorem 2. Let P. and P. satisfy (8) and P. r.P.
for a strictly positive sequence tr.. If

then

n+m

P,,Pr,, E c(n, m, k)Pk,
k=ln-m

n+m

P.P,. E 6(n,m,k)Pk,
k=ln-ml

where 6(n, m, k) c(n, m, k)tr,. Therefore in order to prove c(n, m, k) => 0 it suces to
show that (n, m, k) 0 for n > m. Since

L(P.Pm)= XP.Pm Lm(P.P)

and the polynomials P. are linearly independent then for any k the function u(n, m)
5(n, m, k) is a solution of (9). Obviously,

if n k,
u(n, 0) c(n, 0, k),

0 otherwise.

In paicular, u(n, 0)0. Hence by eorem 3 we get u(n, m)= (n, m, k) O. This
completes the proof of Theorem 2.

COROLLARY. Let polynomials P, satisfy xP, T,P,+I + fl,P, + a,P,-i and let
(i) , and a, be increasing (a, > 0 for n 1, ao O);
(ii) a + Y a,+l + Y,-1 for m < n 1;
(iii) a y, for m < n.

en the linearization coecients c(n, m, k) in (1) are nonnegative.
Proo By remarks preceding (6) after appropriate renormalization of P, we obtain

polynomials P satisfying (6). Then we get the required result by applying Theorem 2.
Example. Consider Jacobi polynomials P’. They satisfy the recurrence formula

xp,)_ 2(n+l)(n+a+fl+l)
n+l(2n + a + fl + 1)(2n + a + fl + 2)

f12 2+ p",)
(2n + a + fl)(2n + a + fl + 2)

+ 2(n+a)(n+fl)
(2n+a+)(2n+a+fl+l)

Applying the corollary yields that for a fl and a + fl 0 we get positive linearization
coefficients. However, for a fl and a + fl < 0 the sequence

22

fl" (2n + a + fl )(2n + a + fl + 2)
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is decreasing and we cannot apply any of the preceding results, although we know
from [5] and [6] that the condition a +/3 + 1->0 is sufficient.

In part II of this paper we will discuss the problem of positive linearization under
assumption/3n is decreasing when starting from n 1. This is more delicate because
assumptions on cn’s and y’s cannot be separated from those on fl’s.
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Abstract. Let {P.}n=o be a system of polynomials orthogonal with respect to a measure/x on the real
line. Then Pn satisfy the three-term recurrence formula xP. YnPn+l + flnPn + anPn-. Conditions are given
on the sequence an, fin, and Yn under which any product PnP. is a linear combination of Pk with positive
coefficients. The result is applied to the measures dtx(x)- (1-xE)a[x[ 2/3+1 dx and dpt(x)--[x[E+le-X2dx,
a, /3>-1. As a corollary, a Gasper result is derived on the Jacobi polynomials P.’) with a->_/3 and

a+fl+l-->O.

Key words, orthogonal polynomials, recurrence formula
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The present paper is a continuation of our earlier work [9]. We were concerned
in part I with the following question. Given a probability measure/x on the real line
R such that all its moments are finite, let { P,},=o be a system of orthogonal polynomials
obtained from the sequence of consecutive monomials 1, x, x2, by the Gram-
Schmidt procedure. We do not impose any special normalization upon P, except that
its leading coefficient be positive. The product PP,, is a polynomial of degree n + m
and it can be expressed as

n+m

(1) P.P,= ., c(n, m, k)Pk
k=[n-m

with some real coefficients c(n, m, k). We are asking when c(n, m, k) are nonnegative
for any n, m, k N. The coefficients c(n, m, k) from (1) are called the linearization

coefficients of {P,} and if they are nonnegative we simply say that the linearization
coefficients are nonnegative.

It is well known that P, that P, obey a three-term recurrence formula of the form

(2) xe VnPn+1-3t- nPn 3
t- olnPn_l,

where a,, Y, are positive, except ao =0, and ft, are real. In [9, Thm. 1], we proved
that if {a,}, {ft,}, {a, + T,} are increasing sequences and T, ->- a,, for n 0, 1, 2, ,
then the linearization coefficients of {P,} are nonnegative.

Our aim now is to get rid in some way of the condition of the monotonicity of
the sequence {ft,}. Roughly the idea consists in reducing the problem to the case ft, 0.
This can be done in the following way. Consider first polynomials P, satisfying

(3) xp. y.p.+, + a.P._,, Po .
Then, of course, P2, are even functions while P2,,+1 are odd ones. Equivalently, this
means that the corresponding measure, which orthogonalizes {P,} (and which exists
by the Favard theorem [5]) is symmetric with respect to zero. An easy calculation gives
the following:

x2p2,(x) T2n+l TznP2n+2(X) A- (o2n+l T2n + az,,Tz,,-1)P,,(x)
(4)

+ az,,az,,-iP2,,-z(X).

* Received by the editors May 1, 1990; accepted for publication August 16, 1991.

" Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland.
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Let us define the polynomials Q, by

(5) Q.(y)= p,(c-).

Then by (4) the polynomials Q, satisfy

(6) yQ,(y)= y2,+ly2,Q,+l(X)+(a2,+ly2, + a2,y2.-1) Q,(x) + a2,c2,_lQ,-l(x).

Observe that (6) is again a three-term recurrence formula. Moreover, if the polynomials
P, have nonnegative linearization coefficients, then by (5) the polynomials Q, do as well.

We can go the other way around. Assume we are given a sequence of polynomials
Q, orthogonal with respect to a measure v supported on [0, +c). Instead of studying
the Q, we can examine the polynomials P, satisfying (3) and (5) with regard to the
question of nonnegative linearization coefficients. Those are easier to handle, because
in (3) the coefficients/3, are missing, unlike in the recurrence formula for Q..

First we will sharpen Theorem 1 from [9] in case of symmetric measures.
THEOREM 1. Let orthogonal polynomials P, satisfy

(7) xP. Y.P.+I + a.Pn-1, n 0, 1, 2, ,
where ao O, a., y. >-_ O. Assume that the sequences {c2.}, {a2.+1}, {a2. + Y2.}, {O2n+l -Y2.+1} are increasing and a. <-y. for n O, 1, 2,.... Then the linearization coefficients
of P. are nonnegative.

Proof As in [9], Remark 1, we can renormalize P. (i.e., multiply each P. by a
positive number tr.) so as to satisfy

(8) X,I. Ol.+ Pn+ -]"

Of course, it does not affect the conclusion of the theorem, so we introduce no new
symbols for the renormalized polynomials. Let be a symmetric probability measure
that orthogonalizes the polynomials P,. Then by (1)

(9) c(n, m, k) f pEk dl= ; P.P,.Pkd.

Hence the quantity c(n, m, k) P d/x is invariant under permutations of n, m, k. Since

/x is symmetric, then c(n, m, k) =0 if n, m, k are all odd numbers. Thus if c(n, m, k) 0
then one of n, m, k is an even number. By invariance, we can always assume that k
is such. Collecting all of the above it suffices to show that in the formulas

(10)
P2nP2m c(2n, 2m, 2k)Pzk,

Pz.+P2,.+l c(2n + 1, 2m + 1, 2k)P2k

the coefficients c(2n, 2m, 2k) and c(2n + 1, 2m + 1, 2k) are nonnegative. It automatically
implies that they are also nonnegative in the formula

(11) P2.+P2,. c(2n+ 1, 2m, 2k+ 1)P2k+.

Let L be the linear operator acting on the sequences {a.}.=0 by

(12) La. Ogn+lan+ qt. )tn_lan_l.

Let L, and L denote the linear operators acting on the matrices {u(n, m)}n,m=O
as the operator L does but according to the n or m variable (cf. [9]). Fix k 6N and
consider the matrix u(n, m) c(n, m, k). By (8) and (9) (cf. [9]) we have (L, Lm)u --0.
Moreover, u(n, 0)= 1 for n=2k and u(n, 0)=0 otherwise. Hence the following
maximum principle would complete the proof.
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(13)

LEMMA 1. Let the matrix u(n, m), n, m 0, 1, 2,.. satisfy

u(2n, 0) >= 0,

(L.-Lm)u =0

u(2n+ 1, 0) =0, n =0, 1, 2, .
Then (under the assumptions of Theorem 1) u (n, m) >- 0 for n >- m.

For the proof of Lemma 1 we refer the reader to [9] (the proof of Theorem 3).
It suffices to observe that (10) and (11) imply u(n, m)=0 whenever n+ m is an odd
number. Hence, scanning the proof of Theorem 3 from [9], we can observe that the
coefficients cs,,, which are computed there, have the property that s+ r is an even
number.

Combining Theorem 1, (4), (5), and (6) immediately gives the following corollary.
COROLLARY 1. Let the orthogonal polynomials Q.(y) satisfy the recurrenceformula

yQ. .Q.+, +.Q. + .Q._,.

Assume that there exist sequences a., y. of nonnegative numbers (ao=0) and a real
constant such that

(14) 9. 72.+, Y2., 8. a2.a2._,, /3. a2.+, y. + a2.y2.- +/3,

and a., y. satisfy the assumptions of Theorem 1. Then the linearization coefficients of
Q. are nonnegative.

Before giving applications of Corollary 1 let us study the relation between
orthogonal polynomials P. and Q. connected by (3) and (5). Let be a measure that
orthogonalizes the polynomials P.. Then

io0= P2.(x)P2m(X)dl(X) 2 P2.(x)P2,,,(x) dlz(x)

2 Q.(y)Q(y) dlz(rf).

Hence Q. are orthogonal with respect to the measure du(y)= 2d/x(/f), y >-0. Note
that the measure /x can be recovered back from v by dtz(x)=1/2dv(x), x>=O, and
dtx(-x) dtz(x).

It is worthwhile to look at the polynomials R. defined by

Then

1
S. y y P.+ /-f

P.+(x) P (x)
2 x2 m+ dtx(x)

X X

=2 S.(y)Sm(y)y dtx(vcf).

Hence the measure that orthogonalizes the S. is 2y d/z(V) or simply y dr(y).
THEOREM 2. Let {P.}=0 be the system ofpolynomials orthogonal with respect to

the measure dlz(x) (1-x2)lxl2+’ dx, x e (-1, 1), ,/3>-1. Ifa >= and a + + 1>=
O, then the coefficients c(n, m, k) in P.P,. , c(n, m, k)Pk are nonnegative.
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Proof It suffices to find a three-term recurrence formula for P, so as to fulfill the
assumptions of Theorem 1.

LEMMA 2. The polynomials {Pn},=o satisfying

n+a+/3+l n
15) xP2n P2n+l P2n-1,

2n+ a +fl + 1 +2n+a +/3 +1

n+a n+l(16) xP2n-1
2n+a+fl

P2n + P2n-2
2n+c+fl

for n-0,1,2,..., (P0=l) are orthogonal with respect to the measure dl(x)=
(1 x2)lx[2+1 dx.

Proof of Lemma 2. Let R’t)(y) denote the Jacobi polynomials normalized by
R,’) (1)= 1. Let

(17) ,(y)=R’)(2y-1).

Then Q, are orthogonal with respect to the measure dr(y)=(1-y)y dy. By the
recurrence formula for R’t) (see [6, (4) p. 172] or [4, (3) and (11), p. 169]), t, satisfy

(n+a++l)(n+a+l)
YQ"

(2n + + fl + l )(2n + a + fl + 2)
Qn+

+ l+(2n+a+/i[a+fl+2) (-

n(n + fl)+ t,-lo
(2n + a +/3 + 1)(2n + a + fl)

Let P, be the polynomials satisfying (13). Then by (4) and (6) the polynomials
Q,(y) P2, (x/f) satisfy the same recurrence formula as t, do. Indeed, in both recur-
rence formulas the coefficients of Q,+, Q,-1 and ,+, Qn- coincide. Then the
coefficients of Q,, Qe must also coincide because in both formulas the sum of coefficients
is equal to 1 (for Q,= R’)(1) 1 and Q,(1)= P2,(1)= 1 by (14)). Hence we have
just proved that Q, Q,. This means Q, are ohogonal with respect to the measure
dr(y) (1-y)yO dy. Thus by the reasoning of Corollary 1 the polynomials P, are
ohogonal with respect to the measure d(x)=dp(xZ)=(1-xZ)x[2+ dx, as was
required.

Let us return to the proof of Theorem 2. From Lemma 1 we can easily see that
if a and a+ + 10 then the assumptions of Theorem 1 are satisfied. This
completes the proof.

COROLLARY 2 (Gasper [6]). Let R’) be the Jacobi polynomials normalized so
that R’ (1) 1. If and a + + 1 0 then

n+m

R(.’t)R(,"= Y c(n, m, k)Rk’t)
k=ln-m

with nonnegative coefficients c(n, m, k).
Proof Let Pn be the polynomials orthogonal with respect to the measure dl(x)=

(1--xZ)lXl a+l dx and satisfying (15) and (16). Then by Theorem 2 we have PnPm
Y d(n,m,k)Pk, where d(n,m,k)>-O. From the proof of Lemma 2 we know that
P.,(v/-f)=R’)(2y-1). Hence we get R’t)R’t)=d(Zn, 2m, Zk)Rk’), where
d(2n, 2m, 2k)>-O.
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COROLLARY 3. Let a >--_ fl and a + fl + 1 >-_ O. Then

(y+l)R(n’,+l)R(m,,+l)=
n+m

c(n,m,k)Rk’t3),
k=ln-ml

n+m

R’3’R’3+’= d(n, m, k)Rk’’+’,

where c(n, m, k) and d (n, m, k) are nonnegative coefficients.
Proof. Let P, be the orthogonal polynomials corresponding to the measure dlz(x)

(1-x-)lxl=+l dx. Then, as we have seen in the proof of Lemma 2, P2,(x/-f)
R’’)(2y 1). Let the polynomials Sn(y) be defined as S(y)=(1/v) P2+l(v/-f). By
the considerations following Corollary 1 we know that S(y) are orthogonal with
respect to the measure 2y dtx(x/-f)=(1-y)y+1 dy and Sn(1)= 1. This yields S,(y)=
R’)(2y-1). Now both required formulas coincide with (10) and (11). The latter
have nonnegative coefficients if a ->_/3 and a +/3 + 1 >= 0.

Now we turn to the so called generalized Hermite polynomials.
THEOREM 3. Let P. be the polynomials orthogonal with respect to the measure

dl(X) Ix[ 2/* e -0’2 dx, a >-1. Then the P, have nonnegative linearization coefficients.
Proof First we show that P, satisfy the following recurrence formulas.

(18) xPzn --(n+ o + 1)Pzn+1 + nP2n_l,

(19)

Indeed, let P, satisfy (18) and (19). Then

x2p2, (n + a + 1)P2,+2 + (2n + a + 1)Pzn + nP2,-2.

Hence, putting Q,(y)= P2y(V/) gives

yQ,, (n + ce + 1)Q,+I +(2n + a + 1)Q, + nQ,_l.

Therefore, the polynomials Q, coincide with the Laguerre polynomials (-1)nL,’), so
they are orthogonal with respect to the measure dr(y)= y’ e-y dy. This implies that
P, are orthogonal with respect to the measure dlz(x)= 1/2dv(x) Ixl’+ e-’ dx. Com-
bining (18), (19) and Theorem 2 yields the conclusion.
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THE GROWTH OF POLYNOMIALS BOUNDED AT
EQUALLY SPACED POINTS*

DON COPPERSMITHt AND T. J. RIVLIN"

Abstract. If the absolute value of a (real) polynomial of degree d is bounded by at k equally spaced
points of the real line, it is of interest to know how large its absolute value on the interval spanned by the
points can be. This work provides a fairly definitive answer to this question.

Key words, polynomials, comparison of norms

AMS(MOS) subject classification. 26C05

Introduction. Let to < tl <" <tm be equally spaced points on the real line. Con-
sider the set P= P(d, m) of real polynomials, p(x), of degree at most d such that
Ip( ti)l <- 1, o, m. Put

IIp[I- IlPl[tto,t,] =max {Ip(x)[" to<- X<= t,,,},

and

(1) B(d, m): sup IIPII.
pP(d,m)

This paper is devoted to an investigation of the behavior of B(d, m). Since B(d, m)
is infinite for m < d we suppose, henceforth, that m-> d, and consequently the "sup"
in (1) may be replaced by "max". Moreover, since B(d, m) is invariant under linear
transformations, si a6 + b, (a 0), i=0,..., m, we shall choose convenient sets of
equally spaced points in what follows. There is a considerable literature about the
properties of B(d, m). Sch6nhage [4] showed that B(d, m) is bounded if rn > d2. Ehlich
and Zeller 1 ], in a brief and elegant paper, improved on Sch6nhage’s result by showing
that for m> d2/v/-, B(d, m) is bounded by (l-p)-1, where p=d2(d2-1)/(6m2). (In
this same paper, they also showed that when the absolute value of a polynomial of
degree d is bounded by one at the zeros or extrema of the Chebyshev polynomial,
Tin(x), its norm on [-1, 1] is bounded by (cos (Trd/(2m)))-1, hence certainly bounded
if m >= cd, c > 1, a result which will motivate our approach to the problem we shall be
considering.) Subsequently Ehlich and Zeller [2] showed that B(d, m) remains bounded
if m > (2/7r2)d 2. As counterpoint to these results, Ehlich [3], by an explicit construction
involving Zolotarev polynomials, showed that if m o(d 2) as d --> , then B(d, m)--> c
as d--> . We wish to close the gap between the boundedness results of Sch/bnhage
and Ehlich and Zeller, and Ehlich’s unboundedness result by establishing a converse
to Ehlich’s result. Namely, for fixed t > 0 and d and m growing subject to m => d:,
B(d, m) remains bounded, with the bound depending only on 3. In fact, we show that
there are positive constants a, b such that

(2) B(d,m)<aeb/,
and, conversely, there are positive constants 3’,/3 with

B(d, m) > 3’ e’/,
a=m/d2.

* Received by the editors February 4, 1991" accepted for publication (in revised form) November 8, 1991.
IBM Research Division, T. J. Watson Research Center, Mathematical Sciences Department, Yorktown

Heights, New York 10598.
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In 1 we gather a small syllabus of elementary material to be used in establishing
(2) so that the proof given in 2 will not be excessively fragmented. Section 3 contains
the construction of the polynomials that show that (2) cannot be improved upon in
its dependence on 8.

1. Some preliminary information.

(3) f(q)
1-cos "n’q / d

2

is monotonically decreasing for 0 -< q <= (d/ 2).
(ii) Suppose 0 <j < d, then

(4)
d

ij

d

Proof of (4). Put r/i cos (Tri/d), 0,. ., d, and

a x2-1
to(x) H (x- rli) 2a_, T’d(X),

where Td(X) is the Chebyshev polynomial of degree d. Then

d
?j 1)

T5
2r/j

T’d(rl)II (n-n,)=o,’(n) =(--2-d-_i "q + 2d_i=o d

d
(- 1)/2a_----i O<j < d,

since T(r/)= 0, 0<j< d, (1-x)T](x)=xT’a(x)-d2Ta(x) and Ta(r/j) (-1).
(iii)

d ’n’i d
(5) H sin2 2a-2i=1 2d

Proof of (5).

H sin2- 1 cos2

i=l i=1

But, if Uk(X) is the Chebyshev polynomial of the second kind, then

2d g2d-l(1) 22d-1 1 -cos
i--1

=2a- 1-cos2i=1

(iv) Suppose rn n, then B(d, n) <= B(d, m).
Proof

B(d, n)=max (llpllto, " Ip(i)l -<- 1, i--0, 1,..., n}

--I(x)l,Oxn.
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Let k,k+l,...,k+rn be chosen so that 0_-<k, k+rn_-<n and k_-<x-<_k+m. Then
Iff(i)l=< 1, i= k,..., k+m, and so

B(d, m) max {llpllt,/" [p(i)[-<- 1, i- k,..., k/ m}

2. The upper bound. Let p be a polynomial of degree d. If d 0, 1, the determina-
tion of B(d, m) is trivial. If d 2, Sch/Snhage [4] gives the simple result

1
B(2, 2k+ 1) 1+

2k(k+l)’

1
B(2, 2k) 1+

2k(k+l)"

With no loss of generality, we choose the m + 1 points at which IP] is bounded
by 1 to be the integers 0, 1, , m. Given d and m put e md2. Suppose d _-< m _-< 8d
so that e <-_8/d. Fix peP and x [0, m]. Select d + 1 consecutive integers, ao< al <

< ad, contained in [0, m], such that ao<= x <- ad. Then since [P(ai)l <- 1, 0, , d,
the Lagrange interpolation formula implies that Ip(x)l _-< 2a. Thus
(6) B(d,m)<-2d<=28/, d<-_m<-Sd.

So we shall assume that

m>Sd

in the remainder of this section. Furthermore, we assume that e < 1/10 (hence e > 8/d
and d > 80), tn is divisible by 4, and d is even.

Fix p P and choose any x [0, m]. Put M m/4 ed2/4. Since 2M m/2, either
the interval [[xJ, [xJ +2M] or the interval [[x]-2M, Ix]] is contained in [0, m],
where [xJ is the greatest integer _-<x, and Ix] is the least integer ->x. In either case,
by a linear transformation of the argument of p, we arrive at the following setting:
x [M- 1, M], Ip(i)l <- 1, i= -M, -M+ 1,..., M- 1, M. With this setting, we obtain
our bound on B(d, m) by bounding Ip(x)l, where x is chosen to be the point at which
Ip(x)[ attains its maximum.

Our plan is to choose d 4-1 integers in [-M, M] in such a way that the required
bound on Ip(x)l can be obtained from the Lagrange interpolation formula for p(x)
with respect to these d + 1 integers. To this end, we next define d + 1 integers, xj,j
0, 1,..., d, in the interval [-M, M]. We would like these integers to be close to the
extrema of the Chebyshev polynomial (relative to interval I-M, M]), M cos ((jr)/d),
j 0,- , d, guided by the observation made in the introduction about the efficiency
of these nodes. As the Chebyshev points are bunched closely towards the endpoints
of the interval, and we require distinct integers there, we will choose the xj to be
consecutive integers near +M. Formally, our choice is

x min {M-j, max {-M+(d-j), Round (M cos ((jr)/d))}}, O<=j<-_d,

where "Round" denotes rounding to the nearest integer. The following description is
more useful. Define K to be the largest integer such that

KTr
(7) M-K =< M cos.

d

K is well approximated by 8/(Tr2e). More precisely, we have the following.
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(8)

LEMMA 1. IfK is the largest integer such that M K <-_ M cos (Kr/d), then

Moreover,

8 8 1 0.893
i-l<K<.

67 eTr
2 1 (7T2/108) < E

d
(9) 7<K<.

9.7

Proof Note that if d>- K > d/3, then M cos ((KTr)/d)<M/2. Thus M-K <
M/2, but d <= (M/2)< K, a contradiction which implies that K <= d/3.

(i) m K -< m cos ((Kr)/d) implies

M-K -< M 1 2d-----+ 24d ],
which, by the definition of M, and the inequality K <-d/3, yields

8 7"/’2K 8 ’rr2d2K 8 ’n"2

(10) K -< --+-< + K,
er2 12d 2 er2 108d2 er2 -from which the right-hand inequality in (8) follows.

Since M-(K + 1)> M cos ((K + 1)r/d) > M-M(’2(K + 1)2/2d2), we obtain

Mr2

2d2 (K+I)>I,

and the left-hand inequality in (8) is verified.
(ii) The right-hand inequality in (9) is obtained by iteration of the first inequality

in (10), recalling that (8/e)<d and beginning with

d2

K3(K
7/-4(1 (,rr2/108))2"

The left-hand inequality in (9) follows from (8), since e < 1/10. [3

Thus

M-j, j<-_K,

-M+(d-j), (d-j)<=K,(11)
xj

Round (M cos), K<j<d-K.

The xj are clearly integers. Furthermore, they are distinct since" (i) M > 2d,
(ii) (M-K)-M cos((K+l)rr/d)> 1, bythe definition of K, and (iii) if K+I<-j <-

d/2, the mean-value theorem gives

jr (j + 1)Tr> 1M cos Mcos---
(similarly for (d/2) <j =< d).

Since the xj are integers in I-M, M] we know that Ip(x )l <-- j O, 1,..., d, and
the Lagrange interpolation formula yields

j=o xj x
d

--< E
j=0
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where
d X Xils(x) H
iej xj xi
i=0

Our task is now reduced to bounding I/(x)l, x e [M- 1, M],j O, 1,. , d. Since each
factor I(x-x,)/(Xo-x,)l <- 1, we see that I/o(x)l_-< 1.

(i) Suppose 1 <-j <= K. We break the product
d X XiII
i=o Xj Xi
i+j

into several factors. First, note that if 0,

If 1 _-< _-<j 1, then
j-1

(12) H
i=1

If j + 1 -<_ --<_ 2K, then

X Xi

Xj X

Hence

x xo] 1

x L ----<-j

X X

Xj X i=lj-i
1.

2K

(13) II
i=j+l

(14)

-1+
j j

_-<1+
(M-x,)-j i-j i-j

X X

Xj Xi

Suppose 2K <i -< d/2. Then, in view of 1 (i),

M 1-cos >_-
d2

We next show that the slack in (14) more than compensates for the rounding in the
x. Namely,

4Mi2

(15) d2M-Round(_Mcos.i)>-
To establish (15) is suffices to prove

(16)

because

M 1-cos --4 _-->

_) "rri 1
Round Mcos -Mcos d=2"

Inequality (15) holds when i= d/2. Suppose 2K < i<-(d-2)/2. Put

7ri 7ri
f(i) sin -d- 2 g(i) / sin -+2 -.

Then (16) may be written as

(17) Mf i)g( i) >- 1/2
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Note that f(t) is concave and nonnegative on 0 -< _<- d/ 2, and f(t) 0 if and only
if 0, d/ 2. Thus

2

But

(19) f(2K+l)> -2
2 48 d

the first inequality following from the truncated power series expansion of sin (((2K +
1)r)/2d) and the second from Lemma 1, and our assumption that e < 1/10, and hence
d > 80. Also,

f[d-2\)2 -rr -rr 2
cos -sin 1

> 2- 5-T.7 
0.413
d

so that, in view of (19), (18) yields

(20) f(i)>=
0.413

In a similar manner, we obtain

g(i) > (2 + x/)(2Kd+ 1) (16 )1>(2+v)-e-1 .
Hence

eg(i)>
5.19

and, finally,

ed2 1
Mf i)g( i) =---4-f i)g( i) >-

2’

thus establishing (16), and, therefore, (15).
Next we observe that

jd 2 K
_<_--< (2K)2

4M e

and so, mindful of (15), we obtain

(21)

d/2

i=2K+l

X X

Xj X

all2 M x all2 M x<= [I 1-I (M x,)-ji=2K+l Xj X i=2K+l

d/2 4Mi2/d2 d/2 2

I-I i2
< I] (4Mi2/d2)-j ,=2r+i=2K+l -(jdE/4M)

d/2 2 (4K) 24K
=2r+l(i+2K)(i-2K)- 2K



976 DON COPPERSMITH AND T. J. RIVLIN

(22)

Finally, for d/2 < -< d, we have

X X

d/2<i<_d Xj X a/2 .<_a (M/2)- K d K

where we have used M >-2d and K < d/2.
Upon putting the bounds for the various domains of together, we find

1 (2K) 24K e2/I/(x)l--<- x 1 x x X. J
I<-_j<=K.

Hence

(23) Z I/j(x)l2n’ e-K Y’, < 26 e:) t:-
j=l j=l j

(ii) Suppose K <j<-d/2. In this range of j the situation is a bit more delicate.
The terms, are bounded by an exponential in K times the corresponding terms
when the "pure" Chebyshev points are employed. The latter are bounded by c/j2 for
some constant c, so the sum is bounded by an exponential in K. We turn to the details.

Let Yi denote the Chebyshev points"

7ri
Yi M cos--7, i=O,- ., d.

a

The denominator of

d

Dx II [x,-xjl,
i=0
i#j

will be related to

(24)
d d

Dy= 1-I ly,-.,v.l=M’ 1-I
=0 =o
ij ij

the last equality following from (4).
The difference between Dx and Dy is due to two effects: namely, the rounding of

Yi to produce xi for K < < d- K, and the replacement of yi by consecutive integers
for0<_-i<-_K andd-K<=i<-_d.

If 0 _-< _-< K, then

(25)
X Xj

Yi Yj

M x M x

’i ’j ri

co 7-  os-g
But by the definition of K there exists a, K <_-a < K + 1, such that

Mcos -7 =M-a,a
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and hence, in view of 1 (i)

i 7rc
1 cos -- 1 cos --d- 1

2 a 2 aM

Thus, since a < K + 1,

7ri 2

M cs ---<M K+I

and, in view of (25)

(M-xj)-i K+l-i 1Xi Xj > 2 > 2 --(26)
Y’-YJ (M-xj)-(K + I ) Kq32 K+l-3’

the last inequality holding since (K + 1- i)/(K+(3/2)-(i2/(K+ 1))) takes its
minimum when K. Inequality (26) yields

(27) I-I =>
i=o yi yj

Similarly, if d K =< d we obtain

(28) e
i=a- Yi Y2

If K <i< d-K (i C j) we need only worry about rounding. Now

(29) xi x2 1
1

Moreover,

4
(30)

For,

Mr q___ Mr Kr
]Yi- Yj]= ]i-j] sin

d
> sin --by the mean-value theorem, i-Jl--> 1, and is between and j. Thus

MTr(rK 7r3K3) eTr2K( "rr
2 )]Yi--YJ[>Y d - > - 1--

since K < d/9. Inequality (30) now follows from the first inequality in (8).
We now get

loglYi--y < _log (1 ______1) <____2 2

Xi--XJ ]Y’-Y] -]Y’-Y]
2M sin r(i+J)sin r(li-j])’

2d 2d

where the first inequality follows from (29) and the second from (30) and the observation
that (if we put lyi-yjl-=x)f(x)=2x+log(1-x) is positive for 0<x<3/4, since
f(x) is concave on [0, 3/4], f(0)=0 and f(3/4)> 0 (as e3/4> 2).



978 DON COPPERSMITH AND T. J. RIVLIN

Since j -< d/2 we have

I’rr(i +j)l < 3"rr
2d 4’

and for Itl =<3zr/4 the inequality

sin 24

holds. Thus

log Yi --Yj

X Xj

2M\ 3r ] 2d \ 37r ] 2d

18

e(i+j)(li-jl)

Then

E
K<i<d--K

ij

Yi Yj
log

X Xj E i= +, +j)(j i)

a-K-1 1 )___+ (i+j)(i-j)

----<-- -+ E
_je 1J ,=+(i+j)(i

--<-- 1+
e -i: i-j iLj

_18 1 +-and so

(31) I] Y’- Y
K <i<d-K X Xj
j

e36/e.

Thus, for K <j -<_ d/2 we obtain

(32) I-[ x, xj[ Ox Oy Ox 2d
i=0 yy

in view of (24), (27), (28), and (31).
We turn next to the numerator,

9--(K+1) e-36/e

d

i#j

Nx is bounded by

d

Fx= 1-I (M-x,).
i=1
i#j
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Next, we relate Fx to a product resembling the numerator in the pure Chebyshev case

d 1 d

Fy= I-[ (M-y,)- [I (M-yi).
i=l M- yj i=l

Since j -< d/2, we have

(33)
sin

sin
rj
>

2d r 2d d
4

so that

d 7ri 1 (M)
d1

I-I 2M sin2< 2(2d)(34) Fy--

( ,/rj)2i=l 2d= (2j
2)2M sin

2d]
2M --where the inequality follows from (33) and (5).

If l<=i<-_K, then M-xi=i and M-yi M(1-cos ((,rri)/d)). But

M(1-cs ) M(1-csK) ed2 "a’K
2 K2 ’ sin2

2d

ed2 K2 e
>
2K2 d2 2 4K

Therefore, M-yi > i2/(4K) and

(35)
K M xi 4i 4KKc

M-yi i=1 i2/K K!
--< (4e):

If d K _-< _-< d, it is easy to see that xi->_ yi, and so

(36)
d M- xi

i=d-K M Yi

Lastly, suppose that K < < d K. Then

Yi xi 1M-xi
1+ <- I+-

M Yi M Yi M Yi
-1+

so that

M x
log_<

M-yi

1 1 2

2M(sin ’ITS)
2= 2M(i/d)2-ei2"

Thus

(37)
d -K -1

i=K+I
log

2M xi d-K-1 2 2 r
--< Z <<--.

M-yi i=K+I ei2 eK 3
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Hence, for K <j <= d/2 we obtain

d

H [x-x,I--N<=G=F, Fx
i=0 Fy
ij

(38)
-< (2d) (4e): e"/3

ejz

according to (34)-(37). Therefore, recalling (32), we get

18 { r2 36\ 2K<-- --+V)6(39) [13(x)[
eJ2

exp K +
3

But

so that

d/2 1 1

j=K+I K

d/: 18 ( "n’2 3_)62:(40) Y. Ilg(x)l < exp K+m+ < Cl ec2/
j=K+I =- 3

where cl, c are positive constants independent of d, m, e.

Finally, we note that if d/2j d, then, by symmetry,

[(x)l ll_(x),
which gives

d/2 )(41) I/(x)l--< 2 , I/(x)l + I/(x)l <= G ec4/E,
j=0 j=0 j=K+I

where C3, C4 are positive constants independent of d, m, and e. Inequality (41) was
established under the assumptions that m was divisible by 4 and d was even. But if
we drop these assumptions about d and m, then, since (41) holds for the greatest
integer not exceeding m which is divisible by 4, and the least integer not less than d
which is even, (41) is valid with appropriately chosen constants replacing Ca and C4,
say Ca and c4.

We can now present our main result.
THEOREM. If 3 > 0 and n >-3 d2 (d > O) there exist positive constants, a and b,

independent of d, n, and 6, such that

(42) B(d,n)<aeb/.

(43)

(44)

Proof If m ed2, where e < 1/10 and d > 80, then (41) gives

B(d, m)<-c3 ec4/e.

Put k= [3d2]. If 3> 1/11 and d>80, we have

B(d, k)<-B d, <-c3 e

in view of (43) and 1 (iv). However, if 3_-< 1/11 and d> 80, we have

B(d, k) <- c3 e4/ __< c e./ e %.

Thus if 3 > 0,

B( d, k) <= c5 ec4/
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for d > 80 and c5 a positive constant independent of d, k, and 6. Now when 1 <- d <- 80,
B(d, d)<-2d <-280 implies that B(d, k)<-28, since k >_-d. Since n >= k, (42) now follows.

3. Lower bounds. We have exhibited an upper bound which is exponential in
d2/m 1/e. We next obtain a matching lower bound for B(d, m) by constructing a
polynomial of degree d whose absolute value is bounded by 1 on m + 1 uniformly
spaced points, and reaches heights exponential in d2/m in the interior of the span of
the points.

Assume that e<l/10 and m>8d, so that d>80. When we put x=
(m/2)(1 cos 0),

(45) Q(x) C x- 1-cos
j=o 2d

and cos dO are polynomials of degree d in cos 0, having the same set of d zeros. We
choose C so that

m
(46) Q(x) =cos dO, x=

2
(1-cos 0).

Now put

K-1 x-j
(47) P(x) Q(x) HK j=o m( 7r(2j + 1))x- 1-cos

2d

where K [/] and/ is the smallest solution of

/ __m 1-cos
2 2d

satisfying K > 1. It is easy to see that K < d/8, and by methods similar to those used
to establish (8) (i.e., choosing appropriate bounds for cos 0 from its power series
expansion) we get the inequalities

132 1
1

480 </4 < 2’
1

768

so that

2 8
2< K <---.

Thus, for 1 <-j <= K we have

m(j_>-- 1-cos
7r(2j+ 1))2d

and the factor (K- 1)/K in (47) has been chosen so that for i> K,

K-1
K m((i-0)< i- 1-cos

Notice that P(x) is of degree d and its zeros (m/2) (1-cos (Tr(2j + 1)/2d)) are related
linearly to the zeros of the Chebyshev polynomials, except near the left endpoint where
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they have been replaced by consecutive integers. (It is not necessary to alter those near
the right endpoint.) Note the similarity to the upper bound construction.

NowP(i)=0, i=0,1,...,K. Fori=K+l,...,m we have

since for each j 1,. ., K the factor

m( rr(2j + 1))i- 1-cos
2d

is bounded by 1, as is the term for j 0. Hence

IP(i)I-<_ 1, i=0,---,m.

Let us evaluate Q and P at the point

=- -cos

corresponding to

We have

Then

2 2
88rr rr 1

5 4 2

Q(:) cos dO cos r 1,

and

IP()[-- IQ()I K-1r ,rio m( 7r(2j+ 1)):-- 1-cos
2d

K-1 : ,v j__

m(d)jl-I1 m ( rr(2j + 1))-- 1-cos - 1-cos
2d

t j K_I: jK-1
I-I ->I-[ 2

8( rr(2j+l))-- K j=, )2rrK j=lm
1-cos (2j+l

2 2d 16

K-1 r-: J
+ 1)2 1 7reK(2K = (2j-1)2

16

1 2Kj 1 (2K)/CK! 1 KK 1

>-ll (2j 1)2 > K---22K )2-- 2 2K;=1 8 (K! 8K K!

al(e/2)*v

> K5/> a2 ea3/e,



POLYNOMIALS BOUNDED AT EQUALLY SPACED POINTS 983

with a_, a positive and independent of d, m, and e, and 0< a < 1-log 2. Thus, if
e < 1/10 and ed2 rn > 8d we have

(48) B(d, m)> a_ ea3/.

Furthermore: (i) If m ed2, d > 80, and d =< m-< 8d, then

B(d,m)>=B(d, 8d+l)>a2e%/’, e’<l/10,

and since e’=e(8d+l)/m<-_e(8+(1/d))<-9e (e<l/10) we get

(49) B(d, m)> a2 ea/9.

(ii) If m ed, d < m=<8d, and d <80, then, since m=<8d, there are a finite
number of pairs d, m to consider. Let

B(d,m)
a min

d,m ea3/(m/d2)

so that

(50) B(d, m)>-a4 ea3/e.

As a consequence of (48), (49), and (50), we have, for e < 1/10, m ed2, and d -> 1,

(51) B(d, m)> a e/,
where a,/ are positive and independent of e and d.

Finally, if e _-> 1/10 put y =min (a, e-l). Then we obtain, for m ed, d >= 1,

(52) B(d, m) _-> 1 _-> e-1/3 e’/ _--> y e/.

Inequalities (51) and (52) now give, for m=td2, d >-- 1, tS>0,

B(d, m)>- 2" e/,
with % positive and independent of 8 and d, as we promised.

We may summarize our work as follows" B(d, m) is bounded as d c if and only
if

rn
(53) lim inf-7 8 > 0.

d3

Moreover, if (53) holds B(d, m) < a eb/, while for rn 8d 2 we have B(d, m) > 2’ e/,
where a, b, % 3 are positive constants.
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Abstract. In this paper the commutant lifting theorem is used to obtain simultaneously a suboptimal
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the rational Nehari case a computational procedure in terms of a minimal realization is also given.
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1. Introduction. In studying subalgebras of C*-algebras Kaftal, Larson, and Weiss
[16] discovered that given any f in L and 6 > 1, there exists a function h in H
satisfying

td2(1.1) [[f+hll <-_ 6doo and Ilf+ hl12 <

where doo is the distance from f to H in the L norm and d2 is the distance from f
to H2 in the L2 norm. In this paper, we will use the commutant lifting theorem to
generalize their H-L2 result to the two sided multidimensional Nehari setting. Both
H and L2 optimization have played an important role in control theory [5], [7], [11],
[13], [18], [19], [20]. In fact, [7], [191, [20] develop some nice relationships between
H and L optimization problems arising in control theory. For this reason, we will
also give explicit state space formulas to compute a solution h when f is rational,
which may be useful in control theory.

To establish some notation, let L(I, 2) be the set of all strongly Lebesgue
measurable functions, uniformly bounded almost everywhere on the unit circle, whose
values are linear operators from 1 to ’2. Throughout, we always assume that both ’1
and ,2 are finite-dimensional. If G is in L(I, ’), then the L norm of G is denoted
by IlGIIoo, that is, IIGIl is the essential supremum of IIG(eit)[I for 0<_- t<27r. The L2

norm of G is given by

1 I0’IIGIl- (G, G)=--j tr(G(ei’)*G(eit)) dt= tr (G,*G,),

where tr denotes the trace and G G, eint is the Fourier series expansion of G.
Obviously, the set of all strongly Lebesgue measurable G satisfying GII- < oo defines
a Hilbert space. Recall that if M is any operator from 1 to , then

(1.2) IIMII:tr(M*M)= IIM,II=tr(MM*),

where {bi}’ is any orthonormal basis for 1. The trace of M*M is independent of
the choice of the orthonormal basis {bi}. Finally, H(’I, ’2) is the subspace of
L(I, 2) identified with the set of all uniformly bounded analytic functions in the
open unit disc, whose values are operators from 1 to .
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Throughout this paper, F is a specified function in L( ’1, 2) and 01 is a specified
,-inner function in H(I, 1) and 02 is a specified inner function in H(e, 2).
Recall that a function 0 in H(, if) is inner, respectively .-inner, if 0(e i’) is almost
everywhere an isometry, respectively, a co-isometry. Now consider the following H
and, respectively, L2 optimization problems"

d= do(F)= inf{lJF+ (R)2HO111o: H H(._I, if2)},
(1.3)

d2-- de(F)=inf {llF+(R)eHOllle: H

where d is the distance from F to O2H(ff, 2)O1 in the L norm, and de is the
corresponding distance in the L2 norm. These optimization problems naturally arise
in control theory [7], [11]. For the sake of the reader we shall present in 2, the
N. J. Young formula for d in [23]. In most problems the same H does not minimize
both do and d2. However, in this note we will use the commutant lifting theorem to
establish the following relationship between d and d2.

THEOREM 1.1. Let 6> 1. Then there exists a function H in H(I, e) satisfying

d2(F)
(1.4) IIF+O2HOai[<-_6d(F) and [[F+O2HOII2<=--_.
In particular, if v/, then there exists a function H in H(I, e) satisfying

(1.5) [If +o2nOlllo<=x/do and

In the scalar case with O1--O2 1, the previous theorem reduces to the following
elegant result of Kaftal, Larson, and Weiss [ 16], which motivated much of our work.

COROLLARY 1.2. Let t > 0 andf be any scalar valued functions in L. Then there
exists a function h in H satisfying (1.1).

To prove Theorem 1.1 we will need an explicit expression for d and d. Because
the Le norm defines an inner product, we can easily compute d by relaying on an

argument used in Wiener filtering. To this end, let G] be the causal part of a function
G in L(I, 2), that is, if G

_
G, eint is the Fourier series expansion of G, then

G]c Gn eint.
n=0

We claim that

(1.6) de de(F)= IIf -O[O* FO*l ]c01ll2.

By the projection theorem, it is sufficient to show that F-O2[O2*F(R)*]O1 is
orthogonal to O2H(1, 2)O1 with respect to the L inner product (.,.)2. To verify
(1.6), notice that for any H in H(I, 2) we have

1 Io’(F-(R):[O*FO*]O, OHO1)2- -- tr ((R)*H*(O*F-[O*FO*I]6)I)) dt

tr (((R)*F- [O*F(R)*]
2r

-2r tr((O*FO* -[O*FO*])H*) dr=0.

The first and third equalities follow from the fact that Oe is inner and 1 is ,-inner,
respectively. The second equality follows from the fact that tr (BC)=tr (CB), where
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C maps gl into 0%2 and B maps 0%2 into gl" The above analysis shows that F-
O2[O2"F01"]cO1 is orthogonal to OaH(0%1, 0%a)0. Therefore, by the projection
theorem, (1.6) holds.

2. The computation of doo. In this section, following Young [23], we will use the
commutant lifting theorem to show that do equals the norm of a certain intertwining
operator A(F). As a byproduct of this computation, we will also show that the H
optimization problem in (1.3) defines a game whose value is the norm of A(F). Finally,
it is noted that do can also be computed by converting the H optimization problem
in (1.3) to a four block problem [9]. However, for our purposes this conversion is not
necessary.

Throughout, we will follow the standard notation for Hilbert spaces in [10] and
[22]. For example, L(g) is the Hilbert space of all square integrable Lebesgue
measurable functions in [0,27r) with values in g. The Hardy space Ha(g) is the
subspace of L2(g) identified with the set of all analytic functions in the open unit disc
with values in g, whose Fourier series coefficients are square summable. Now let 1
and a be the subspaces defined by

Y( La(gl)t)O*K2(..) and Y(2 LE(g2)()O2H2(o2),

where K2(o) is the orthogonal complement of Ha(o%) in L2(o). Let A(F) be the
operator from 3ga into Yga, with symbol F, defined by A(F)f= PzMFf, where f is in
Y(1 and P2 is the orthogonal projection onto 2. Here My is the multiplication operator
from LZ(gl) to La(ga) defined by (MFg)(eit) Fg(eit), where g is in La(gl). We need
the following useful observation.

LEMMA 2.1. Let W be a function in L(g, ga). Then A(W) 0 if and only if W
admits a factorization of the form W O2H1, where H is in H(0%, 0%2). In this case
W is in H( gl,

Proof. Assume that A(W) =0. Then WI_ OaHa(0%a). Since Ha(g)_ 1, this
implies that WHE(gl) O2Ha(0%a). Therefore, W=OaR, where R is a function in
H(gl, 2); see Corollary IX.2.2 in [10]. Now we have

OaR(La( gl)(-- 0*K2(0%,)) W,
___
OaHa(2).

Hence R maps La(g))Ol*Ka(0%l) into Ha(0%a), or equivalently, its adjoint R* maps
K-(0%a) into 0 *Ka(0%1), that is, R*Ka(0%a) O*lKa(0%). As before, this readily implies
that R* =O*H* for some H in H(0%, 0%2). Therefore, W=02H0. On the other
hand, notice that 01 is orthogonal to Ka(0%1), or equivalently, 0 is contained
in Ha(0%). So if W=OaHO, then using O11__. H2(0%1) it follows that A(W)=0.
This completes the proof.

The following result is a classical application of the commutant lifting theorem
(see [23]).

THEOREM 2.2. Let F be a function in L( gl, g2)" Then

(2.1) doo= IIA(F)II inf{llF+OHO, I]: H e H(I, 0%a)}.

Moreover, there exists an optimal H. in H(0%1, 0%2) satisfying

IIF+ 0aH.O,Iloo IIA(F)][
Proof Since A(09.H01)--0 for all H in H(0%, 0%2), we have

[IA(F)I[ ]IA(F + O2HO1)I[ [tP2(F + O2HO1)I t ]IF + O2HOllo.
Therefore,

(2.2)
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Now let V and V: be the bilaterial shifts (multiplication by eit) on L2(’1) and L2(2),
respectively. Clearly 1 is an invariant subspace for V1, and 2 is an invariant subspace
for V*. Let T1 on 1 be the isometry and T: on 2 be the co-isometry defined by
T Vl11 and T2 P2 Va] 2. Obviously, V: is an isometric lifting of T2, that is,
P2V= T2P. Using P2V= T2P and VMF MFV1 it is easy to verify that T2A(F
A(F)T1. By the commutant lifting theorem (see Theorem VII.1.2 in [10], [21], [22]),
there exists an operator B mapping L(gl) into L:(2) Satisfying IIBII [IA(F)II and
PBI( A(F) and VB BV1. Since B intertwines the bilateral shifts, B M, where
G is a function in L(I, 2) and IIGII-IIBII; see [10], [22]. So there exists a G in
L(, 2) satisfying Ilall --IIA(F)II and A(F)= A(G). Notice that A(G-.F)= 0. By
Lemma 2.1, we see that G-F 02H.O1, where H. is a function in H(31, 32). In
other words, there exists a function H. in H(31, 32) satisfying

IIA(F)II- IIF/O_H.Olll>=inf(llF/OHOllo" n H(31, 3)} -> IIA(F)II-

The last inequality follows from (2.2). This readily gives (2.1) and completes the proof.
Remark 2.3. Ball and Helton [3] showed that the Nevanlinna-Pick problem arising

in control theory defines a game. Our previous analysis can also be used to show that
the two-sided Nehari problem defines a game, that is,

(2.3) d=IIA(F)II sup inHfl[(F+O2nO)gll=inHf sup II(F+O2nO)gll,
Ilgll=l Ilgll=l

where the supremum is taken over all unit vectors g in H2(1) and the infimum is
taken over all H in H(31, 32). Moreover, the norm of A(F) is the value of the game.
To prove (2.3), notice that IIA(F)gll IIA(F/O=nO1)gl[ <-II(F+O=HO )gll gives

IIA(F)II- sup in,fllA(F)gll--< sup innfll(F+O:nO1)gll
Ilgll=l Ilgll=l

_-<inf sup II(f+o=nO1)gll
n ilgll

inf{llF+(R)n(R)l]l" n n(, 3.)} IIA(F)II.

The last equality follows from the previous theorem, which is essentially a corollary
of the commutant lifting theorem. Now (2.3) follows from the previous equation.

3. The central contractive intertwining lifting. In this section, we will use the central
solution in the Schur representation for the commutant lifting theorem, to construct
a contractive intertwining lifting that satisfies a special bound. In the next section we
will use this purely geometric result to give a simple proof of Theorem 1.1.

To establish some notation, if o is a subspace of some Hilbert space ’, then Pse
is the orthogonal projection onto the subspace . If C is a contraction (llcII-<-1),
from to 3, then Dc is the positive square root of I-C*C and @c is the closed
range of Dc. Throughout this paper A is a contraction from 3 into ’ satisfying
T’A--AT, where T is an isometry on , and T’ is a contraction on ’. We say that
U’ on 3’{’ is an isometric lifting of T’ if U’ is an isometry on 3’{’

_
’ and Pe’ U’= T’Pse,.

An operator B from to ff" is called a contractive intertwining lifting of A if B is a
contraction satisfying U’B BT and Pse,B A. The commutant lifting, theorem states
that there always exists a contractive intertwining lifting B of A; see [10], [21], [22].
Furthermore, references [2], 10] provide a complete characterization of all contractive
intertwining liftings B of A. This sets the stage for one of the main results of this paper.

THEOREM 3.1. Let A be a strict contraction (llmll < 1) from ? into ’ satisfying
T’A AT, where T is an isometry and T’ is a contraction. Let T ker (T*)
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be the wandering subspace determined by T. Then there exists a contractive intertwining
lifting Bo ofA satisfying

(3.1) IIBoall <- IIAall (for all a ).
/1- IIAII =

In particular, if is finite-dimensional, then this Bo satisfies

(3.2) B01 ell= 41 -Ilall ="

Proof. Since any isometric lifting U’ of T’ admits a reducing decomposition of
the form U’= UI U, where U is the minimal isometric dilation of T’ (see Remark
VI.3.3 in 10]), we can assume without loss of generality that U’ is the minimal isometric
dilation of T’. Fuhermore, because all minimal isometric dilations are unitarily
equivalent, we can also assume that U’ on if{’ is the Sch5ffer-Sz.-Nagy minimal isometric
dilation of T’, that is,

U’(h’fofxf2" T’h’ Dr,h’foflf"
where h’() is in if{’=’(,); see 3 of Chapter 6 in [10] or [22].

Now as in 4 of Chapter XIV in 10], let be the unitary operator from ff DAT
onto ’= {D,AhDAh" h }- defined by

DA D,Ah DAh h ).

Let P’ be the ohogonal projection from r,A onto r, and PA the ohogonal
projection from T,A onto A. According to equation (4.10) in Chapter XIV of
[10], one contractive intewining lifting Bo from to if{’ of A is given by

(3.3) Boh=Ah@(P’P(PP)Dh) (h),
j=O

where P is the ohogonal projection into . So using P’= I-P and h in we have

Ileohl= Ahl+ P’P(PP)DhlI
j=O

Ilmhll=+ 2 (IIP(PAP)DAhll2- IIPAP(PAP)DAhll2)
j=0

Ilahll=+ lim (II(PP)PDhll- II(PAP)+DAhiI)
nj=0

Ilah = + IIPOhll- lim II(PaP)+Dhll Ilah + [IPDahll.
Therefore, we obtain

(3.4) lnohll= Ilahll=+ IIPDAh[I2 (h ).

(Using (3.3) and (3.4) it is easy to verify that Bo is a contractive intewining lifting
of A.)

To complete the proofwe need an explicit expression for the ohogonal projection
P. To this end, let X be the operator on defined by X DAZ Since A is a strict
contraction, DA is inveible. So X is one to one. Moreover, the range of X is closed
and equals . Therefore, X*X is inveible. In fact, because T is an isometry,

X*X T*(I-A*A) T= (I- T’A’AT)= Dr.
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This, and the fact that AT is a strict contraction, clearly shows that X*X is invertible.
We claim that

(3.5) P= X(X:X)-lx:-- DATD,T*DA.

To verify this notice that the operator P defined by P-X(X*X)-Ix* is onto
Obviously, p2= p and P P*. Therefore, P-P is the orthogonal projection onto

Let a be in - ker (T*). Substituting (3.5) into (3.4) and using T*a 0 we have

< -2 2 T*IIBoall= IIAaII+(PDAa, UAa)-- IIAalI+(DAT DAa, DAa)
(3.6)

IIAalI+(DST*AAa, T*A*Aa).

Now notice that

D2AT I T’A’AT I A* T’* T’A I a*a + A*(I T’* T’)A >- DA.
Therefore, DA <--_ D2AT, or equivalently, D-<D2. (Recall that if Q and R are two
invertible positive operators satisfying Q-< R, then R-<_-Q-.) So now (3.6) becomes

[Inoall2_-< [Iaall2 + (D?2T*a*aa, T*a*aa)

<_ ilia = / T*a*aa Ilallllaa = Ilia =
1 Ilall =

--< Ilia =/
1-[IAll - 1-[IAll ="

The second inequality follows from the fact that (1-IIAll=)I-<_ D. This proves (3.1).
Finally, (3.2) follows from

IIA4ill IIA[llliB01 :ell-Y IIBoill=--< Y IIAl- 1 -IIAll’
where {b} is an orthonormal basis for . This completes the proof.

Recall that U on ’[ is a unitary extension of T on , if is an invariant subspace
for U and T U . This sets the stage for the following useful result.

COROLLARY 3.2. Let A be a strict contraction from [ to ?’ satisfying T’A AT.
Let U’ on 7’ be a unitary lifting of T’ and U on [ a unitary extension of T. Then there
exists a contraction Y mapping Y[ into Y[’ satisfying U’Y YU and A Pve, Y g(, and

Ilaall(3.7) Yal[ <= (for all a ker (T*)).
,/1- Ilall =

In particular, iff ker T* is finite-dimensional, then

(3.8) El 11=-- 41 -Ilaii="

Proof By the previous theorem, there exists a contraction Bo satisfying U’Bo BoT
and A= Pg,Bo and (3.1). Obviously, T*B*o B*oU’* and U* is an isometric lifting of
T*, that is, PgU* T*Pe. By the commutant lifting theorem, there exists a contraction
Y from 9’{ to 9’{’ satisfying U* Y* Y* U’* and PeY* B*o. The last equation implies
that Bo YI - Therefore, (3.7) follows from (3.1). Obviously, A Pg,Bo
This completes the proof.

4. Proof of Theorem 1.1. In this section we will use our previous analysis, based
on the commutant lifting theorem, to prove Theorem 1.1. We begin with the following
result, which turns out to be equivalent to Theorem 1.1.
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THEOREM 4.1. Let F be a function in L(I, ’2) and assume that A(F) is a strict
contraction. Then there exists a function H in H(I, 2) satisfying

d2(F)
(4.1) IIF+OH0111oo<= 1 and IIF+OH(R),ll<=x/l_d(F).

Proof. Let A- A(F) and T’- T2 and T- T1 and U’- V2 and U- V1, where A;
T1, T2, V1, and V2 are all defined in 2. According to Corollary 3.2, there exists a
contraction Y mapping {- L2() into ’{’- L() satisfying V2 Y YV and A(F)--
P YI W1, and (3.7) holds. Because Y commutes with the bilateral shifts, there exists
a function G in L( 1, 2) satisfying Y= Me and YI[ ll. Moreover, A(F) A=
PY[=A(G). So A(G-F)=0. By Lemma 2.1, there exists a function H in
H(I, 2) satisfying G F+OHO1. Substituting this into (3.7), along with O1"1
ker T*, we have [[YII IIG[I [IF+OHO,I[ --< 1 and

II(F + (R)2no1)O* ell 2 Y(R)* ell<-
[IA(F)O*elI2

1 -IIAII (for all e e 01).

Using A(F)O*e=(FO*-O2[O*FO*]c)e, along with the fact that Ilell- d and O*
is isometric, we have for do= doo(F) that

IIGO*ell II(F +OHO,)O* ell
(4.2)

FO1 ]o,)O,*ell
(for all e e ,).<_ II(F-O=[O* *

1-dL
Now let G2=F-O2[O*FO*]cO, and recall that d2(F)=IIGzlI2; see (1.6).

Equation (4.2), along with the definition of the trace norm, implies that

(4.3) 1-d
Let A I-(R)*(R)1- Since 0* is isometric, GA1 FA G2A1. In particular, this and
1- d=< 1 implies that

(4.4) GAIII G2alll
l_d2oo

Combining this with (4.3) gives

(4.5) o*11+ IIOA,II -< G=O*II/ G_A,II
1-d2

Notice that because (R)* is an isometry, A is an orthogonal projection. This and the
fact that the tr (M’M) tr (MM*) gives

GO *ll / Ga, -f- (tr(GO*IOIG*)+tr(GAIA*IG*)) dt=llG[l

A similar calculation shows that G=O 1" I1 + G=A, IIN- G=II N. Therefore, (4.5) becomes

1-d 1-d2
This completes the proof.
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Proofof Theorem 1.1. Let F be any function in L(I, 2) and assume that 6 > 1.
Let Fo be the function defined by Fo F3IIA(F)II. Obviously, IIA(Fo)II- 1/ < 1. By
the previous theorem there exists a function Ho in H(ol, 92) satisfying

d2(Fo)
IlFo+O2noO,[[<_-I and ilFo+O2goOll[2=/l_d2(Fo

Using the relations F=d(F)Fo, d2(F)=d(F)d2(Fo), d(Fo)= 1/6, and setting
H 6d(F)Ho we have

ada(F)
]IF+OEHOIII<6d(F) and IIF/OHOII]--/6_I

This is precisely (1.4) in Theorem 1.1. The proof is now complete.
Finally, we emphasize that Theorem 1.1 is equivalent to Theorem 4.1. The previous

proof shows that Theorem 1.1 is a consequence of Theorem 4.1. So to show that they
are equivalent it is sufficient to show that Theorem 4.1 follows from Theorem 1.1. To
this end, assume that Theorem 1.1 is true and that A A(F) is a strict contraction.
Now let 8 1/IIAII. Then, by Theorem 1.1 and d= IIAII, there exists a function H in
H(I, 2) satisfying

6d2 d2 d2[IF/O2HOIII <6d=l and IIF/O=H01II2=<--/62-1 /1-[[AI[ 2 /i-d
This readily proves Theorem 4.1. Hence Theorems 1.1 and 4.1 are equivalent.

Obviously, as t --> the quantity t/x/t2-1 -> 1. Therefore, our previous analysis
shows that as t --> our solution F + O2HOl to (1.4), provided by the central intertwin-
ing lifting (3.3) in the Schur representation for the commutant lifting theorem,
approaches the L2 optimal solution F- O[(R)*FOl*]Ol. This sort of phenomenon has
also been observed in the engineering literature, where they have noticed that certain
H controllers approach the optimal L2 controller as a certain parameter approaches
infinity [7], [18], [19].

5. A state space solution. State space techniques have played an important role
in computing all solutions to the rational Nehari interpolation problem; see [4], [5],
[10]-[14]. In this section, we will use state space techniques along with some of the
results in [10], [12], to compute our solution to the Nehari version of (1.4) when F is
rational, that is, given a rational F and a t > 1, we will give a state space procedure
to construct a function H in H($1, $2) to satisfy

(5.1) IIF+ HII< 6d and IIF+ gl12 <

Here we set 02 I and (R)1 I and $1 91 and $2 2. A computational formula for
the general two-sided Nehari problem in (1.4) is somewhat more involved, and will
be given elsewhere. In order to compute our H in (5.1), we need to compute the central
solution (3.3) in the Schur representation for the commutant lifting theorem considered
in the monograph 10], Chapters XIII, XIV, and in the paper 12]. Finally, it is noted
that our central solution will correspond to a certain maximal entropy extension. For
some nice results on maximal entropy extensions see [6], [8], and [18].

To begin, let K($1, $2) be the subspace of L($1, $2) whose Fourier series
expansion contain only negative powers (n < 0) of eint. NOW let F be a rational function
in K($1, $2), that is, zF(z) admits a representation of the form zF(z)= N(z)/q(z),
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where N(z) is an operator valued polynomial and q(z) is scalar valued polynomial
with all of its zeros inside the unit circle. Let {Ao, B, C} be a minimal realization of
F; that is, Ao is a matrix on C n, and B maps fl into C and C maps C into f2 and
{Ao, B} is controllable and {C, Ao} is observable, and

(5.2) F(z)= C(zI-Ao)-lB,

where z eit; see [5], [10], [17] for further details on realization theory. Since F is in
K(f, f2), all the eigenvalues of Ao are in the open unit disc. Notice that since O2 I
and O1 =/, the operator A(F) is now the Hankel operator mapping H(fl) into K2(2)
defined by A(F)= PM[H2(fl), where P2 is now the orthogonal projection onto
K2(f2). It is well known (see [5], [10], [11], [13], [14]) that this Hankel operator A
admits a decomposition of the form A WoW*, where Wo is the operator from C
into K2(2) defined by Wo C(zI-Ao)-1 and W is the operator from C
defined by W B*(I-zA*o)-1. The controllability grammian P and observability gram-
mian Q are defined by

(5.3) p a__ W, W=EABB,A,o and Q a__ W,o Wo=EA,oiC,CA.
o o

Because {Ao, B, C} is a minimal realization, both P and Q are strictly positive matrices.
Recall that P and Q can be computed by solving the following Lyapunov equations:

(5.4) P AoPA*o + BB* and Q- A*o QAo+ C*C.

The minimal realization {Ao, B, C}, along with its controllability and observability
grammians P and Q, will play a key role in our state space solution to (5.1). Finally,
recall that IIAII=-- d (f) equals the largest eigenvalue A2 of QP; see [5], [10], [11],
[13], [14].

For the moment, assume that A is a strict contraction, or equivalently, X do
IIA]I < 1. According to (9.9) in Chapter XIII of [10], the set of all F+ H satisfying
IIF + HII=< 1, where H is in H(fl, ff2), is given by the following transmission type
formula:

(5.5) (+zF)(.+zF)-,
where F1 is an arbitrary function in the closed unit ball ofH(1, 2) and 11,
and 2 are specified functions. By consulting 8 in Chapter XIII of [10], the central
solution Bo in (3.3) is given by (5.5), where F =0, that is, Bo=1. Equations (1)
and (8) in [12] (where our Wo is precisely their Wo) show that

(5.6) 11 Wo(I-PQ)-’B and 21 W(I-Qp)-IQB+I.

Therefore, F+ H 111 is precisely the Schur representation for the central solution
(3.3) in the commutant lifting theorem. So, according to Theorem 4.1, along with the
fact that [IAII < 1, we have for F+ H 1111 that

d2(F)
(5.7) [[F+H[[_-< 1 and F+H[[2-<_ x/l- d2(F)

Finally, it is noted that because F is in K(I, 2) the distance d_(F)=
Now let {Ao, B, C} be a minimal realization of F, and P its controllability

grammian and Q its observability grammian. Let d A2 be the largest eigenvalue of
QP. Then the function Fo F/A8 defines a Hankel operator A(Fo) satisfying IIA(Fo)II
1/& Obviously, {Ao, B, (1/Ate)C} is a minimal realization of Fo whose observability
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grammian is Q/A2t2 and controllability grammian is P. By consulting the proof of
Theorem 1.1, we see that if Ho in H(I, 2) satisfies

d2(Fo)
(5.8) IIFo+Hol[oo--< 1 and IIFo+HoJ]2 < x/1 dL(Fo)’
then F+ H h6(Fo+ Ho) is a solution to (5.1). So by replacing Q by Q/A262 and C
by (1/A6)C in (5.6) and setting 1- h811 and 2 21 the previous analysis readily
leads to the following method for computing a function H satisfying (5.1).

Procedure 5.1. Let F be a rational function in K(gl, g2) and 8 > 1. Compute a
minimal realization {Ao, B, C} of F(z) and its corresponding controllability P and
observability Q grammians. Compute d2oo h2, the largest eigenvalue of QP. Compute

(5.9) l=A2t2Wo(A2t32I-pQ)-lB and (I)2= Wc(A232I-Qp)-lQB+I.
Then F+ H satisfies (5.1).

The results in 9 of Chapter XIV in 10] can also be used to give another formula
to compute our function H in H(gl, 2) satisfying (5.1). To see this, for the moment
assume that IIA(F)[I- d< 1. Then according to equation (9.8) in Chapter XIV of
[10], the set of all F + H satisfying F + H[I_-< 1 is given by the following scattering
type formula:

(5.10) F+H=F+22+21(I-Flll)-lFl12,
where F1 is an arbitrary function in the closed unit ball ofH(1, 2) and 11, 12, 21,
and 22 are all specified functions. By the results in Chapter XIV of [10], the central
solution Bo in (3.3) is given by F1 0, that is, Bo F/22. Reference 12] shows that

(5.11) 22(z) -CP(I zA1)-l(I A*o QAoP)-I A*o QB,
where A1 is the matrix on C" defined by

(5.12) A1 (I- A*o QAoP)-lA*o (I- QP).
Reference [10] also proves that all the eigenvalues of A1 are in the open unit circle.
Therefore, the central solution Bo in (3.3) is given by Bo- F/ 22. Now, proceeding
exactly as above, we can use formulas (5.11) and (5.12) to obtain the following method
for computing our function H satisfying (5.1).

Procedure 5.2. Let F be a rational function in K(gl, g2) and 6 > 1. Compute a
minimal realization {Ao, B, C} of F(z) and its corresponding controllability P and
observability grammian Q. Compute d2 h2, the largest eigenvalue of QP. Compute

32 (AEt2I A*o QAoP)-lA*o (h2t2I QP)

and

(5.13) -CP(I za2)-l(A262I a*o QAoP)-IA*o QB.
Then F+ satisfies (5.1).

Finally, it is noted that if we let 6-oo in (5.9) or (5.13), then, as expected, our
F+ H - F the L2 optimal solution.

Acknowledgment. The authors thank Allen Tannenbaum for some clarification
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Abstract. A version of the Shannon sampling theorem for nonuniform sampling points and signals with
infinite energy is given. It is valid for signals of polynomial growth whose Fourier transform is a generalized
function with compact support. It involves the theory of nonharmonic Fourier series.
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1. Introduction. The Shannon sampling theorem for bandlimited signals is the
name given to the formula

(1.1) f(t)= E f(tn)Sn(t),

where the tn are the sampling points and the Sn(t) the sampling functions. The latter
have the properties that S.(tk)= .k, k 0, +1," ". The t. may be uniform, t. n T,
and were in Shannon’s original work [8]. In this case the S.(t) are given by

sin tr( nT)
(1.2) Sn( t) tr Tr/ T,

or( nT)

and the series (1.1) converges to f(t) for fL2(1) provided its Fourier transform
F(to) has support in [-tr, or].

The t, may also be nonuniform, i.e., not equally spaced. In this case the Sn(t)
have a more complicated form but (1.1) still converges under the same hypotheses,
provided the t, are "close" to nT [1].

The various versions of this theorem have widespread applications. They are used
whenever it is necessary to reconstitute an analog signal from sampled values or from
a digital signal. This occurs, e.g., in compact disc recordings, in multiplexed signals,
in optics, and in tomography. Several surveys of the literature of both the theory and
applications have been given [1], [4].

Most of the results refer to finite energy (i.e., L2) signals. Yet many signals of
practical importance are not finite energy. For example, a pure musical note has infinite
energy. However, it can also be recovered from its sampled values. A number of results
concerning such signals have been obtained. The earliest were due to Campbell [2]
and Pfaffelhuber [7]. These results were extended by several authors [3], [6], [9], [10],
[5]; however, in no case did they consider nonuniform sampling, which is important
for some of the applications.

In this work we shall extend the results in [9] and 10] to this case of nonuniform
sampling. Our signals will be bandlimited and of at most polynomial growth on the
real axis. Usually, we shall have to add another condition to obtain the needed
uniqueness. In 2, we introduce some notation and preliminary results. In 3 we
obtain a sampling theorem involving additional factors in the series. In 4, the form

* Received by the editors August 28, 1989" accepted for publication (in revised form) September 18,
1991. This research was done while visiting the University of South Florida, Tampa, Florida 33620.

t Department of Mathematical Sciences, University of Wisconsin at Milwaukee, Box 413, Milwaukee,
Wisconsin 53201.
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of (1.1) is retained, but a type of summability is used rather than ordinary convergence.
In 5 the series is treated from the point of view of convergence in a class of generalized
functions.

2. Background and preliminaries. An appropriate space in which to study
bandlimited functions of polynomial growth (BLPG) is the space B,(tr), r->_0. This
space consists of those functions in L2((1 + t2) -’) L2 whose Fourier transforms have
support on [-r, tr]. Each of our BLPG functions must belong to some B(tr).

In [9] it was shown that a uniform sampling theorem for f B2N(tr) could be
given. It had the form

[ t2+l ]Vsincr(t_nT(2.1) f(t)=P(t)sintrt+,=_ f(nT) (nT)2+ 1 tr(t-nT)

where P(t) is an appropriate polynomial of degree 2N 1. This added term is necessary
because of the lack of uniqueness of sampling sequences in B(tr). Two functions
which differ by P(t) sin crt will have the same sampling sequence.

2.1. Equivalence classes. In order to obtain uniqueness (and to eliminate the term
P(t) sin trt in (2.1)) we shall use equivalence classes of functions in B2(tr). We denote
these by If];

[f] := {g B2s(tr) g(nT) f(nT), n O, + 1,...},

with a norm defined as usual by

I[f]] inf Ilgll-,-N,

where ][-v denotes the norm in L2N. The set BN(tr) of all such [f] is a Hilbert
space with this norm. Its sampling expansion has partial sums given by

(2.2)

fm(t)
2 + 1 ] N sin tr(t nT)

g(nT) n2T2+ 1 tr(t- nT)

y g(nT)S’N(t),

where g If]. It was shown in [9] that the partial sums of (2.1) converge in the sense
of Ls. Hence, it follows that

[fm] -’> [f

in the norm of Bv(tr), since

Itf -rf., l=lrf
inf Ilgll- ,,,

ge[f--fm]

--< IIf(t) P(t) sin trt (t)

There is exactly one element of each If] such that f(t)/(t2+ 1)s is an entire
function, i.e., has no singularity at +i. By restricting ourselves to such f we obtain
an isometric copy BN(tr) of BN(tr), which is a subspace of B2N(tr).

2.2. The space BN(r). The sampling theorem in [9] may be interpreted in B2s(
as the following.
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PROPOSITION 2.1. The sampling sequence {S’r(t)} in (2.2) is a complete orthogonal
system in BN(tr). Parseval’s equality may be expressed as

(2.3) Ilfll- 2 If(nr)l(n-r+ 1)-2N.

This follows from the orthogonality of S’(t) sin r( nr)/(t nT) in L2(R1)
and its completeness in Bo(tr). Indeed, we have

II/ll I/(t)[2( t + 1)-N dt

-II f(t) II 2 f(nT) 2

(t2+ 1) 2T2 )No ,=- (n +1. ](f, s’N)--2NI2(n2T+ 1)-s.
As is Bo(r), the space Brq(o-) is a reproducing kernel Hilbert space with reproducing
kernel

(2.4) k(t, u)=(t+ 1)t(u2+ 1)s
sin it(t-u)
or(t-u)

which follows from the same sorts of considerations. This kernel may be used to find
the projection of fe Bs(tr) onto B2s(

(2.5) (f)(t)--Iok(t,u)f(u)(u2+l)-2Sdu.
Because of the orthogonality of the S’N and the fact that

(f, S,,N) n2T2 )-2--2N f(nT)( + 1 N,
(f)(t) is the same as f(t)-P(t) sin trt in (2.1).

The space BO2N(O") will be the setting for our nonuniform sampling.

2.3. Frames. If the sampling points t, are no longer uniform, then the sequence
{S’} is no longer orthogonal. However, if it is close to orthogonal, it may satisfy an
inequality (which is a substitute for Parseval’s equality) of the form

(2.6) 0 < Allf = <_-  l(f, s.)] =< Bllf 2.
Here f belongs to some Hilbert space H, and A and B are constant. Such sequences
{S,} are called "frames" and share many of the properties of orthogonal sequences.
In particular 11, p. 186] each fe H has an associated moment sequence a, (g, S,)
for some g e H such that

(2.7) f=

For Bo(r), it is well known that

(2.8) S,(t)
sin r( t,)
o’(t-t.)

n =0, +1, +2, ,
is a flame provided that ]t,- nl =< L <- for or= 7r. (Kadec’s Theorem, [11]). In fact
{S,} is an "exact" frame, i.e., no proper subset of {S,} is itself a frame. In this case
there is a biorthogonal sequence {g,} with {S,} such that

(2.9) f=
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[11, p. 188]. In the case of Bo(tr), we can say a little more. The series (2.7) is not the
sampling series for f. Rather, it is the other series in (2.9) which gives us a sampling
theorem of the form

(2.10) f( t) Ef( t)g( t).

This {gn} may be given [11, p. 149] by the entire functions

(2.11) gn(t)

where

g(t)
g’(t.)(t-t.)’

(2.12) g(t) 1-[ 1-
=1

Each gn Bo(Tr), but g(t)e Bo(Tr). Rather, it is an element of Bl(Tr) just as sin 7rt is.

3. Nonuniform sampling in BN(tr). We shall find a frame in Bc(tr) and then
shall try to emulate the procedure used in Bo(cr) to obtain a sampling theorem. We
consider only the case o-=r, since the general case follows by a change of scale.

LEMMA 3.1. Let {tn}_ be a sequence of complex numbers such that
(i) tn----t-n, n=0,+l,+2,’-’,
(ii) sup, [Re t nl < 1/4,
(iii) IIm t,[ =< C < o;
and let { r, } and { hn ) be given by

(3.1) r,(t)=(t2+ 1)N
sin 7r(t-t)
7r(t- tn)

n =O, +/-l, +/-2,

(3.2) h(t)=(t2+l)Cgn(t), n =0, +/-1, +/-2,..., tH,

where gn is given by (2.11). Then {rn} and {hn} are both exact frames in Bc(Tr) and

(rn, h,,>-2

Proof. For a sequence { tn} satisfying the hypothesis, the functions {ei’" } constitute
a frame in L[-r, r], [11, p. 196]. Hence, the Fourier transform of
the characteristic function of [-w, w], given by

sin 7r(t-
S(t)

"tr( t,

forms a frame in Bo(r) since the Fourier transform is an isometry from L2() into itself.
Now let f B(r). Then

f(t)
(f, rn)-2 (t2+ 1) Sn(t) at

_(f(t) Sn I(t2+ 1)’ o

and f(t)(t2+ 1)-s Bo(Tr). Hence, there are constants A and C such that

< E I<f, c(3.3) A
(t+ 1)v to +1) o

by the frame inequality (2.6), since {S} is a frame in Bo(w). But we have

(t2+l) re o=
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so that {r,} is a frame in Bzs(Tr). Similarly, since {S,} is exact in B0(Tr), {r,} is exact
in BN(

The biorthogonality of {h,} with {rn} follows similarly, as does the fact that {h,}
is also a frame.

COROLLARY 3.2. Let f BN(Tr) t. ; then

(3.4) f(t)

with convergence in the sense of L2u.
The proof follows from the fact that

f(t.)
(f, rn)-aN tzn + 1)N

However, we wish to obtain a theorem similar to (2.1) for fGBzN(Tr). The
correction term P(t)sin crt will not work in this case since it does not necessarily
vanish at the sampling points. It may be replaced by P(t)g(t), where g(t) is given by
(2.12), which does work.

COROLLARY 3.3. Let f BZN(Tr), G R’, then there is a polynomial P( t) of degree
<-2N 1 such that

(3.5) f(t) P(t)g(t) + ,=-E f(t,)g,(t) t +
where the series converges in the sense of LN and uniformly on compact subsets of the
complex plain.

The polynomial P(t) is chosen such that f(t)- P(t)g(t) belongs to BN(r). This
will occur if

d
(3.6) f<)(+i)=-7;7.,(P(t)g(t))l,:+,, j=0,1,...,N-1.

In practical cases the sampling points t, will be real and f(t) will be known only
for real values of t. In such a case P(t) may be chosen by using

N-1 2

(3.7) inf f(t)- E (aj-bjt)( t2+ 1)Jg(t) t2+ 1)-2N dt,
ao,’",aN-1 j=0
bo,...,bN_

i.e., the projection of f onto the space spanned by polynomial multiples of degree
2N-1 of g(t), which belongs to BN(Tr).

The uniform convergence of (3.5) on bounded sets follows as in 2, by using the
reproducing kernel of BN(Tr).

4. Summability of sampling series. The results of the last section (Corollary 3.3),
while generalizing the original sampling theorem, lack its elegance and simplicity. In
[9], the extra factor in the series was removed by considering (C, a) summability as
a substitute for ordinary convergence. In this section we shall see that a similar result
holds for nonuniform sampling as well.

A series ,oo=_ u, is said to be (C, a) summable to s if

K

lim C7,.u. S, C K,
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For Fourier series the (C, a) means are given by
K

tr: to E C:,. a. e

(4.1) F(x) C, e
n=-K

(xN(-xx,

where H: is the kernel of (C, a) summability for Fourier series. In [9] it was shown
that if supp F c (-zr, zr) and if the Fourier transform f(t) B2N (77"), then the sampling
series is (C, a) summable to f(t) for a > 2N. We shall attempt to do the same for
nonuniform sampling.

We shall first consider the function e i,t and show that its derivatives have uniformly
convergent nonharmonic Fourier series on -Tr+ e < to < 7r- e. Let 0(to) be a C(R)
function with support on [-r, r] such that q(to)= 1, [to] < zr-e.

LEMMA 4.1. Let Of(to) Dp eito (to)) with expansions

(4.2) Of(to)= a.(t) e it.-- b.(t) ein

with convergence of both series in L:(-r, -rr); then
K

(4.3) dP( t, to)= E (a,,(t) e".’-b,,(t) ein)C.n,

converges to zero uniformly for on bounded sets and
For a =0, the proof is similar to that in [11, p. 198]. We need only prove the

uniform convergence for in addition. Using the notation there, we find that (4.3)
may be given by

(4.4) da’P(l( t, to) Y’. (Ok(t, tO), (oa k xk)Di,:(to X))o,
k=0

where D:(to) is the Dirichlet kernel and 0 the function

(4.5) Ok(t, to) ., a,(t)
ig(t"- n)k

e into.
kt

Since It,- n[-< L<, the norm of Ok in L-(-Tr, 7r),
L:k L:k
(k!) =-ooE [a,(t)l2<-- C (k!)= J_ [0f(o)[2 do)

L2k

(k!) a2(t),

where a(t) is a continuous function of polynomial growth on N. Then each of the
terms in (4.4) is dominated by

[(0k(t, to) (tok--xk)DK(to--X))I<= Ca(t) (TrL)-k
k!

as in [11, p. 200]. From this the uniform convergence of the expression (4.3) to zero
follows easily for a 0. For other values of a we use the fact that (C, a) summability
is a regular summability method for a > 0, i.e., all convergent series are summable to
the same value. []
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We now assume thatf(t)B2N(r) and F(to) has its support on [-r/ e, r- el.
Then we may express F as

2N--1

(4.6) F(w) D2NG(w)+
j=0

where GL(-, ) with suppo on [-+e, -e] and cj, j=O, 1,..-,2N-1 are
constant [9]. It follows that f(t) may be given by

1 )NtN - (it)cj.(4.7) f(t)
2 =o

Let us denote by n,t and ,, the Kth (C, a) mean of the Fourier series and of
the nonharmonic Fourier series of et(w), respectively. For p =0 we have by (4.3),

d(t, w) ,,(w)- ,,(w),
which is C and hence

(4.8) (D2UG, d(t, w)) (G, DUd(t, )).

By the uniqueness theorems for the two types of Fourier series, we may deduce that
Dand is their difference for D (et(w)), i.e.,

dU(t, )= DUd(t, w).

Hence, (4.8) becomes, by the lemma,

(DnG, d(t, w)) (G, a(t, w))(G,

(4.9) G()D(e-()) d

(-

The terms c are treated similarly. Thus we conclude that

=(F, (t, ))0 as K.
But {F, ,} and {F, ,} are, respectively, the (C, ) means of the series (1.1) and
the standard sampling theorem
[9], it follows that the former converges as well. We have proved the following.
ToM 4.2. Let fe B() have a Fourier transform with support in [-+ e,
e and let > 2N; let { t} saisfy t t_ and t n L <; t e , n ; then

f(= 2 f((

in the sense of C,. Cergeee te sense f geerlie fefis. The results in 3 and 4 both
require additional restrictions on f(t), beyond that it be bandlimited of polynomial
growth. However, there is a sense in which (1.1) holds for all such f(). It has been
shown [7], [5] that (1.1) converges in the sense ofZ [12], the dual ofthe Paley-Wiener
space Z. This is not a contradiction since the counter example sin t is equivalent
to zero in Z. (The same is true of cos t, but its coecients are not zero.)
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In order to extend these results to nonuniform sampling points, we must first
consider the nonharmonic Fourier series of distributions F(to) D’ (Dr is the set of
p D() which vanish for Itol > r with the induced topology. It is the Fourier transform
of Z.) Since F(to) is completely arbitrary for Itol> r, we take it to be zero there.

LEMMA 5.1. Let {t,} be a sequence satisfying the conditions of Lemma 3.1; let
p Dr then the nonharmonic Fourier series of

it(5.1) (to)’--Y a,e

converges to a function #*(to) whose restriction to (-or, rr) is the same as that of (to).
This convergence is in the sense ofE. The series and all its derivatives converge uniformly.)

Proof. Since 0 L2(-w, r) the series (5.1) converges in the sense of L2(-rr, rr)
to (to) and {a,} 12. The same is true of ’(to) whose coefficients we denote by {a’,},
with a 0. Hence, we have

(ei’:
q(to)= q’= Y a,

,+/-o it.

a it irrtne ane-
.+o it. .+/-o it.

in which both series converge, the latter to a constant. By using the biorthogonality
of {G,(to)} and {e"to}, we find that

it.a., n 0,

and by iterating the procedure

(5.2) a.P}= (it.)Pa., n O.

Here ap) are the coefficients of (0
(p) and form a sequence in 12. Thus {a,} is rapidly

decreasing and the series (5.1) converges in the sense of E to some *(to). E]

We now turn to generalized functions F(to) with support in [-r, or]. We shall
require that F be strongly integrable over [-r, r] (see [10]). This requires that F be
the pth derivative of a continuous function G in some neighborhood of r (respectively,
-r) such that

G(to)
(5.3)

(to q/.)p--1
-’> 0 as to -+ rr (respectively, -rr).

Since F has compact support it belongs to E’ and

(5.4) (F, qg)--(n, qg*)--(n, n aneit"to) =n a.(F, eit"to).

The inverse Fourier transform of such F E’ is given by

1
eittf( t -- (, .

Hence, (5.4) becomes

(5.5) (F, q) Y a,2rrf(t,).
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But (F, )= 27r(f, q), where ff is the inverse Fourier transform of p. Also an is given by

and (5.5) becomes

(5.6)

1

(f, ) (E f( t,)gn, ).

Thus, except for the uniqueness, we have proved the following.
THEOREM 5.2. Let f be a 7r bandlimited function of polynomial growth; let {tn}

satisfy the conditions of Lemma 3.1; then f(t) has the sampling expansion

f(t)=Ef(tn)gn(t),

convergent in the sense of Z’. It is unique if F(to) is strongly integrable over [-Tr,
The uniqueness does not always follow since nonzero sampling series may converge

to zero in Z’. This happens for any f Z’ such that (f, )=0 for all p Z, e.g.,
f(t) cos 7rt or f(t) sin 7ft.

If F(to) is strongly integrable over [-Tr, r] and (F, @)=0 for all D, then F
has support on + 7r. Such generalized functions have the form

E b/()(oo + r) + c(J)(w ),
j=O

which are strongly integrable only if b =c =0, j=O, 1,..., m. Thus F--O, and
uniqueness follows. []
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Abstract. A discrete family of wavelets consisting of discrete functionals in a Sobolev space is studied.
It is shown that they form a complete orthonormal system in H-s, s >1/2 generated by a single "mother
functional." Closed form expressions are derived in certain cases.
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1. Introduction. A recurring problem in signal analysis is to approximate an analog
signal by a digital signal in order to use the more versatile tools of digital signal
processing. That is, a real valued function f(t) on must be approximated in some
sense by (the generalized function)

(1.1) f*(t) , akt(t-- tk).

Furthermore f(t) must be recoverable from f*(t). This is possible when f(t) is a
bandlimited function, i.e., when its Fourier transform

w) I_oo e-2iwtf(t) at

has compact suppo, say in the unit interval [-, ]. Then the sampling theorem says
that if f* is taken to be

f*(t) E f(k)(t- k),

f(t) may be recovered by taking the projection off*(t) into a subspace ofan appropriate
Sobolev space (see [6], [1]).

However, there appears to be no simple way of expanding more general functions
in sequences of ’s. This is paaicularly true since (t-a) and (t-b) are not
ohogonal for a b in the Sobolev space H-, for s > to which they belong. Indeed
the inner product in H is

(1.2) (f g)_= ff(W)(W)(W2+ 1) dw

and hence

(ta’ tb)-s f--oo e-2=iaw eZ=ibW(wa+ 1)-s dw

=h(a-b),

where h (w) w + 1 )-s.

* Received by the editors December 26, 1989; accepted for publication (in revised form) September
18, 1991.

? Department of Mathematical Sciences, P.O. Box 413, University of Wisconsin-Milwaukee, Milwaukee,
Wisconsin 53201.
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Fortunately there is a framework in which this expansion can be formulated. It
involves the theory of wavelet expansions for the affine group.

1.1. Wavelets. The "wavelets of constant shape," or simply "wavelets," were first
proposed by J. Morlet et al. [5] as a tool for analysis of seismic data. They were shown
by Grossman and Morlet [3] to involve a square integrable representation of the affine
group. A representation of an L2(E) function f was given in terms of its wavelet
expansion

f.--(h("’),f)= ck(u, v),

where hU’’)(x) 2’/2h(2’x- v) is an appropriate function in L2(). This representation
was in terms of integrals of 4’(u, v).

A discrete version was also introduced by Grossman [2], [3] which involved the
theory of frames. This was further refined by Meyer [4] who showed how to construct
discrete orthognal systems of wavelets. These, in the ease of the real line, were of the
form

q,,(x) 2m/2h(2mx- k),

where h is a "mother function" in L-(N), which is continuous and piecewise linear
except at half integers. He also succeeded in constructing systems in which h was in
C and even Co.

In this work we shall emulate some aspects of his approach, but with H spaces
and with 3’s instead of functions. The resulting theory is even simpler and will result
in a discrete "mother functional" h of the form

h(x) 2 a,6(2x- l k).

For H-, h will be shown to be given by a particularly simple formula

h(x) a6(Zx- 1)-b(6(Zx)+ 6(2x- 2)),

where a and b are constants.

2. Wavelets in H-, s >. In this section we present the general theory for any
real s. We shall defer detailed calculations to the next section in which we shall obtain
a closed form expression for the mother functional in some cases.

2.1. Continuous wavelet expansions. The continuous wavelet expansions in H--may be easily based on those for L2() [3]. Let g L2() ("l LI() such that

_
g 0.

The wavelet transform off L2 with respect to the wavelets based on g is

(2.1) th(u, v)= f 2’/2g(2"x-v)f(x) dx

and the representation of f is

(2.2) f(x)=CII2’/2g(2Ux-v)(u,v)dudv,
where C is constant depending only on g.

We illustrate the extension of H for s 1. Let h denote the conjugate Fourier
transform of the weight (w2+ 1) -1, h(x) 7r e-2lxl. Then forf H-1, we replace (2.1)
by

(2.3) (U, /9) (f, g(U’V))_
where gU’’)(x) T’/2g(2’x- v).
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But (f,g)_l=(f*h,g)o when gL2(R), and hence (2.3) becomes (2.1) with f
replaced by f*h. Then the representation theorem gives us

(2.4) (f*h)(x)=Cffg(’)(x)dp(u,v)dudv.
Since h is the Green’s function for 1-(D/27r)2, we may recover f by operating on
both sides of (2.4) with this operator.

f(x) 1- C g("’)(x)(u, v) du dr.

We shall not pursue this further since our main interest is in discrete rather than
continuous wavelets.

2.2. Some subspaces of H-s. We imitate Meyer’s [4] procedure for L2 in H and
define Bo to be the subspace

Bo {f6 H-’ suppf= Z}.

The subspace B is then defined to be the dilation

B {f H-1lf(2-J. Bo}.

We have a characterization of Bo given by the following.
PROPOSITXOy 2.1. f Bo if and only if

(2.5) f(x) E a8(x- k), {ag} e.

Proof If f has the form given, then it clearly has suppo on Z and its Fourier
transform is

f(w) 2 a e-z=iw,

which is periodic and in Loc. Hence L2[(w2+ 1)-] for all s > , and hence f
Bo H-.

If f6 Bo, then f is a tempered distribution in S’ of order 1 and hence has the
form of (2.5) with convergence in the sense of S’. The Fourier transform must be in
LZ(0, 1), and hence the Fourier coefficient sequence {a} .

It should be observed that by this argument Bo = H for all s > . Also it follows
that

and

Bo BI. "c njc. H

UBj=H

since trigonometric polynomials are dense in L2[(w+ 1)-s].
We define C;/1 to be the orthogonal complement of Bj in B;/1 in the sense of

H--. We shall then look for an element q; C;+ whose translates

q(x) q(x 2-k)
constitute an orthogonal basis of Cj+. Since

H- =Bo(R) E ,
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it follows that { qjk} will be an orthonormal system in H-s, which, together with a basis
for Bo, will be a basis of H-s.

2.3. An orthonormal basis for Bo. Let q Bo, q(x)=Yk=- ak6(X--k); we wish
to choose q such that translates of q are orthogonal. Then

(2.6) 6Ok (q, >-s I(w)l= e-2=Wg(w+ 1) dw.

Since by the Poisson summation formula

E f(w+n)= E f(n) e2=’"w,

it follows for f(w)=l(w)l(wZ+ 1)-" and f(k)= 6o (2.6) that

(2.7) E ](w+n)l((w+n)2+l)-= E 8Ok e2=’kw=l.
k

Clearly (w)=k=- ak e
-=gw

is 1-periodic and hence (2.7) becomes

I(w)12fl(w)= l,

where

s(W)= Y ((w+n)2+l)-s.

Since fls(W)> 0 for all w, it follows that one solution to (2.6) is

(2.8) q3o(W)

and the general solution is

(w)=x(W)o(W),

where I(w)l 1, Lo, and X is 1-periodic.
The paicular solution o may be characterized up to a constant ex, as the one

with minimum IIx I1 among those for which this norm is finite. It clearly is for o since

(w) =-;/(w)’(w),
both of whose factors are continuous and periodic. Then

I[xll I’(w)12(w=+ 1) dw

f;lx’(w)l=lo(w)l=(w2+ l)-S dw

Since X’ is purely imaginary, this last term is zero and hence
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We must still show that {po(X-k)} is a basis for Bo, which we do with the same
argument. Indeed, let f Bo

(f, Tkpo)_s 0, k 0, + 1, +2," ,
where T is the shift operator Tp (x) p (x 1). Then

f
0

(w2+ 1)
dw, k=O, +1,...,

and by the Poisson summation formula again,

1
(2.9) (W)o(W) ,=-Y" ((w2 + n)2+ 1)

=0,

and hence f(w) =0. This shows completeness. Hence we have proved the following.
PROPOSITION 2.2. The translates { Tktpo}, qo given by (2.8), form an orthonormal

basis of Bo.
2.4. An orthonormal basis for C. In order to find a basis for C consisting of

translates of a fixed O, we look for O B such that
(i) (q, 6)_ 0, k 0, + 1,. , which will ensure that q is orthogonal to Bo and

hence in C;
(ii) (q, q)_ o, the orthogonality conditon;
(iii) If f B1 satisfies (f, 6k_ (f k)-s O, k O, +/- 1,. , then f O, the com-

pleteness condition.
These three conditions are expressed, respectively, as

(i’) f-o(w) e’2=W(w2+l)-dw=O, k=O,+/-l,....

or by the Poisson summation formula

E q(w+n)((w+n))-+l) =0, w;

(ii’) , Iq(w+ n)[2((w+ n)2+ 1)-s= 1, w;

(iii’) Y f(w+n)((w+n)2+l)-=0, wR; and

, f(w+ n)(w+n)((w+n)2+l)-=O, wR.

Since both b and f are in B, their Fourier transforms are 2-periodic. Hence we
separate each of the series into its even and odd terms. The first one is

2 (w+2n)((w+2n)2+1)-+E q(w+Zn+ 1)((w+2n+ 1)2+ 1)

=q(w) E ((w+2n)2+1)-+q(w+l) 2 ((w+2n+1)2+ 1)-,
which, if we denote , ((w+2n))+ 1)-s A(w), becomes

(2.10) d/(w)a(w)+ d/(w+ 1)A(w + 1)=0.
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Similarly (ii’) and (iii’) become

(2.11) I(w)lZAs(w)+((w+ 1))2As(w + 1)- 1,

(2.12) f(w)As(w)+f(w+ 1)As(w + 1)=0,

and

(2.13) f(w),[,(w)A,(w)+f(w+ 1)(w + 1)As(w + 1)=0.

We can solve (2.10) and (2.11) simultaneously for I(w)l2,

(2.14) I(w)l== As(w+l)
As(w)(As(w+ 1) + As(w))

Unfortunately the positive square root of (2.14) does not satisfy (2.10). In fact, if it is
substituted in (2.10), the left side will be

A]/Z(w+ 1)A1/Z(w)
(As(w+ 1)+ As(w)) 1/2’

which is positive for all w. We can get a solution by choosing the square root to be

(2.15) l(W)- e-’=Wl(w)l,
which satisfies (2.10). However, (2.15) is not unique. We can make it unique by choosing
a solution which minimizes [l(x-1/2),(x)ll2_s, as we did in the last section for IIxll_s.

In order to prove the completeness we must show that the only solution to (2.12)
and (2.13) is the zero solution. This holds if the determinant of the system

d(w)=As(w)As(w+ 1)((w+ 1)-(w))0.
Since As(w) > 0 and

i(w)[2_l(w +1)[2 [as(w+l)
L -)

As(w) ] 1

As(w+ l) (As(w)+As(w+ l))

by (2.14), it follows that d(w) =0 only at those points where As(w) As(w+ 1), which
can easily be seen, is a set of measure zero.

Thus we have proved the following.
PROPOSITION 2.3. There exists an orthonormal basis of C1 in the topology ofH-S,

s > 1/2, given by translates { Tkd/1}, where 1 is given by (2.15).

2.5. An orthonormal basis for C,j> 1. Unfortunately in the case of H-S, the
dilation map

(D,q)(x) al/2q(ax)

is not an isometry of H into H even though it is a homeomorphism. Therefore,
the orthonormal basis of C1 is not necessarily mapped into an orthonormal set in Cj
by the dilation operator OEj and we shall have to proceed differently.

We return to C1 but modify the norm slightly to

f
(2.16) I1 11 / I (w)l (w dw, 8 > O,
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with the corresponding inner product denoted (, @)-s,. This of course will change
the definition of C1, the orthogonal complement of Bo in B1. But Bo and B1 will remain
the same sets.

The arguments in 2.4 may be repeated verbatim, requiring only that we replace
As(w) by

As(w, 6)=Y ((w+2n)Z+ 62)-s.

The corresponding solution to the replacements for (2.10) and (2.11) is

(2.17) (w, 6)=e-iW=[ As(w+!,6) ]1/2aw, aw+--dj+aw, ))

Thus, we see that we again have an orthonormal basis { Tk} of the revised space C1,
with the norm given by (2.16). We shall use it to construct an orthonormal basis of

C+ (original definition).
The conditions (i), (ii), and (iii) required for an orthonormal basis of C+ with

the norm of H may be translated into conditions on C with a modified norm. Indeed
we see that for

o 6 C1, DzJo Cj+

and

Since q, given by (2.17), has the required properties for 6 2-j, it follows that the
system of functions given by

(2.18) 2(s+1/2)q(2x- k, 2-J) q+l,k(X), j 0, 1," ", k 0, +1," ",

is an orthonormal basis of Cj. This gives us the following.
THEOREM 2.4. Let q% be given by (2.18) for j= 1,2,. -, k=0, +1,. ., and by

qO,k=qo(x--k), k=0, +1,.. then {q%}j=O,k-- is a complete orthonormal basis of
H-S for s>1/2.

The proof is immediate since H-s= Bo@)j=l )Cj.
The results for Cj, j >-1 can be extended to nonpositive values of j and lead to

the decomposition

H-s={3}(9 Y (9C

since f-I ;=-oo Bj {6}, the space spanned by the 6 function.

3. Explicit formulas for H-m, m an integer. In some cases it is possible to sum
the series arising in the last section explicitly and hence obtain closed form formulas
for As(w, 6) and ,(w, 6). We shall do so for integer values for s.

3.1. The case s 1. For s 1, we can sum this series defining Al(w, 6) easily by
using the fact that

1 7r cos 7rx
(3.1) Y x + n sin 7rx
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with symmetric partial sums being understood. This may be shown using residues or
by finding the Fourier series of e-ix’ at 7r. Then

AI(W, 3)-- (w+2n)Z+32-23 w+2n+ i6- w+2n-i

COS 7/" COS 7r
7ri 2 2

(3.2) -43

sin 7r(- 3i) r sinh 7r3

(COS 7r(i3)-cos 7rw) 23 (cosh 7r3-cos 7rw)"

In order to find $(w, 3) we use (2.17)"

(w, 3) e-i=w( Al(w+!, 3) }1/2[AI(W 3)(Al(W+ 1-)+Al(W, 3))

(3.3)
e -i’w 7r sinh 37r 1 1

+
cosh 7r3-cos 7rw cosh 7r3-cos 7rw cosh 7r3 + cos 7rw

--e iTrw 23

r sinh 37r
(cosh 7r3-cos 7rw)2 1/2

2 cosh 7r3

1
e-i=W(cosh 7r3 cos ,rrw).]

rr sinh 27r3

Hence (x, 3) may be expressed as

O(x, 3)=
23

(cosh 7r3)3 x- (x)- (x-1)
7r sinh 27r3 2 2

(3.4)

=b c3 x- -2 (x)
2

where b > 0 and c > 1 are constants depending on 3. This is the version of "mother
functional" in H-1.

The orthonormal basis of Bo in H-1 is given by

,o( W) #-i’/( w),

where

ill(W) = ((w+n)+l)-1= 7r sinh 2 7r

cosh 27r cos 27rw’

(w)=[csh2"tr-cs2"trw]1/27rsinh 27r

To find the inverse Fourier transform of 3o we use the series expansion

F(3/2)(-1)
(1-- x)l/2

k=O r(k--(-)L k)
x= y 3,x

k=O
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to express 3o as

q3o(W) b(1-c cos 2wr) 1/2

b ykck cosk 27rW.
k=0

Since

0, In I> k

cosk e-2i’w dw O, n + k odd27rw

even,

it follows that the 2nth Fourier coefficient of q3o(W) is

c2, o(W) e-2’2"w dw b E Y2kC -k=lnl n + k

while the (2n + 1)th is

Co(W) e
o

--27ri(2n+l)w dw b /2k+l c2k+1
k=lnl n + k+ 1 22k+l"

Hence the Fourier series of q3o(W) is

Co(W) e2.n-i(2n+ )w(c, e22"w + c2,+1 ).

The ,)tk < 0 for k ->_ 1, and since all the other factors in each term of the series for
c2n and c2n+1 are positive, it follows that c, < 0 for all n 0. Thus the inverse Fourier
transform of q3o(W) is

(3.5) qo(X) c,,6(x- n),

where none of the terms vanish (Co> 0).

3.2. Other H-" m > 1. We can find expansion for A,, (w, 6) rn > 1 in terms of
A(w, 6) and A2(w, 8). Indeed we note that As(w, 8) satisfies the recurrence relation

d2 d2( 1 )dw2as(w, 6)=dw---5 Y ((w+2n)2+62)s

(3.6) s(s + 1) Y ((w + 2n)2 + 62)-s-24(w + 2n)2

2s Y’, ((w + 2n)2 + 62) -s-1

2s(Zs + 1)as+(w, 6)-462s(s+ 1)as+2(w, 8).

Hence if A2(W 6), in addition to A(w, 8), is known, we can find Am(w, 8) for all
integers > 0. To find A2(w, 6) we use the formula

2

(3.7) E (x + n)=sin2
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which can be obtained by differentiating (3.1). Then we have

Az(w, 6)=E ((w+2n)2+ 62)-2

1662 (w+aiil2+n

+E

( )+ (w-6)12+ n

(n + (w/2))2 + (3/2)2

(3.8) ]--6- sin2 7r(w+ 6i)/2
+

1 ) 1
+ AI(W, 6)

sin2 r(w- 6i)/2 5
2

7r (1 cosh 7r6 cos 0rw)
432 (cosh cr6-cos 7rw)2

1 7r sinh 7r6

262 23 (cosh r6- cos 7rw)

a21 a22
cosh 7r6- cos 7rw (cosh 7r6- cos 7’W)2"

The second derivative of A(w, 6) is easily calculated to be

d2

dwZAl(W, 3)=
77.3 sinh 7r6 [ cos 7rw 2(1 cos2 7rw) ]

23 (cosh 7r6 -cos 7rw)2-(co- -d---o- -w)3J

Hence by (3.6)

C1 C2 C3t- -cosh 7r6-cos rw (cosh r6-cos ’w)2 (cosh r6-cos ’w)3"

2s+ 1 1 d 2

A3(w, 6)=262(s+ 1)
A2(w, 6)-462s(s + 1) dw2Al(w’

3)

a31 a32 a33+ +
c- z (c z) (c- z)’

where

(3.9) c z (cosh or6 cos 0rw ).

The induction step is obvious, so we are able to conclude that

(3.10) A,,(w, 3) E amk(C-- Z) -k,
k=l

where c-z is given by (3.9). Clearly, we also have

Am(w+ 1, 3)= E a,,k(C+Z)-k,
k=l

and hence

]q(w, 6)12= Ek’=, am,(c+ z) -k

E=I a,,,,(c-z)-’{E,=l a,,,,[(c-z)-’+(c+z)-’]}
The mother functional for H will, therefore, again be as in (2.17), where now
I(w, 6)12 is a rational function in cos wTr. However, the Fourier series of q(w, 3) will
have an infinite number of terms except in the case of m 1. This Fourier series will,
nevertheless, be rapidly converging. This follows from the fact that Am(w, 3)> 0 on
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the real axis and is a holomorphic function in some neighborhood of R (in fact for

IIm wl < 8). The reciprocal Al(w, i) will also be holomorphic in some such strip and
hence,

Am(wW l, t)
Am(w t){Am(w-k 1)+Am(w)}

will be holomorphic as well. Since this is also positive in R, its square root will be
holomorphic in a strip also, as will (w, 8)). The Fourier coefficients c, of , therefore,
will behave as

c. =O(e-1"1)
for some e > O, which will depend on 8.
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Abstract. This work studies the smoothness of the solutions of dilation equations, which are
encountered in the multiresolution analysis and iterative interpolation processes. Sharp limit of the
Sobolev exponent of the solution is given as a function of the spectral radius of an associated finite-
dimensional positive operator. In addition, tools are given to get good explicit upper and lower
bounds for the exponent.
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1. Introduction. In this paper we study the smoothness of the solutions of the
dilation equation

(1.1) (x) E hk(2x k),
k

where hk are given real coefficients such that k hk 2. Such equations arise in
iterative interpolation processes for producing continuous curves from discrete data
(see [1], [2], [5], [6]) and in multiresolution analysis and in the theory of wavelets [3],
[8]. In this work we restrict ourselves to the case where only finitely many of the hk’s
are nonzero (say those with Ikl <_ N). Then [4] the condition on {hk} implies that
(1.1) has (up to normalisation) at most one L solution and if it exists it has compact
support (C [-N,N]).

We use the Fourier transform:

x/
e-f(x)dx

and spaces

{ ]f(n)(:r’)--f(n)(Y)] < ( },Ca:= fECn In--a-hEN, 0_<a<l, sup ix_yl

:= { f e L (R) I]II1,, := + I 1:) <
where a s >_ 0. For the case p-- 2, which is mostly considered here, set T/8 7-/.

Assume (1.1) has a solution L1. Then for the Fourier transform we have

(1.2)

where

1
(1.3) p(w) := E hke-i"

k
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Instead of (1.1) we will mainly study (1.2), which is somewhat simpler in form and
has in any case a meaning since p(0) 1 and p is smooth.

In iterative interpolation equation (1.2) (and (1.1)) comes from the following
process (see [5], [6]).

Let initial data u0 12 be given and h 1. Take an interpolation scheme P
which produces new values in the middle points by linear combinations:

(1.4) Pu ( (j A- ) h) k ku((j k)h).

In pure interpolation P leaves the old values u(jh) unchanged, but we may consider
a more general operator that also replaces the old values of u by another set of linear
combinations:

(1.5) Pu(jh) aku((j k)h).
k

Thus P maps l -- 1/2, where

l ( u" hZ tL ]1 11 2
h := h lu(jh)l

interpolating new values in the middle of the intervals according to (1.4) and replacing
the old values by the linear combinations (1.5). Now Puo E l/2, and we may apply
P again with h 1/2, i.e., consider p2uo l/4. Repeating this gives Pnuo 12/2,a
function defined at points of the form j/2n. The question is: what is lim-oo P’uo?
Since this is a linear process we may assume that u0(0) 1 and uo(j) 0 for j 0
and get the general case by linear combinations of the translates of this initial data.

For u e l we use the cardinal series interpolation (see [10]) Ch to think of u as
a (C) function on R:

Chu(x) u(jh)H(x/h j), where H(x)’= sin(rx)
’x

Since (H(.- j)}jez is an orthonormal family, Ch is an isometry l --* L2(R). Set
Un :-- Pnuo e l_, and Cn(x) C2-,Un (X). Then

by using (1.4) and (1.5). By induction, this gives

n

(1.6) ,,(w) =/:/(2-nw) Hp(2-.Cw),
j=l

where

(1.7)
1

ke_i(2k_F1)w]p(.,) := +
k
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i.e., (1.3) with h2k ----ok and h2k+l k. From (1.6) we get

,+(w) p(w/2),(w/2).

Thus assuming {=}=eN converges suitably, the limit will satisfy (1.2) and conse-
quently (1.1). The limit of the process for general u0 is then

j).

These interpolation processes are used in computer graphics for generating curves
and surfaces from discrete data [1], [2], [5], [6]. It also appears in the analysis of the
Picard-LindelSf iteration (waveform relaxation) for numerical solution of large systems
of ordinary differential equations (see [9]). There interest lies in the T/s-stability of
the process.

Another instance where (1.1) arises is multiresolution analysis (see [3], [8]). Rough-
ly speaking, there we look for a function such that

V c V-= { f(2 .)IS e

where V is the subspace (in L(R), say) spanned by the translates {(.- k)}6z.
Then there exist Am’s such that (1.1) holds. It is beautiful theory that such ’s
exist, and there are conditions on h’s which ensure that the be {(.- k)}6z is
orthonormal [3], [8]. Then the functions @(.- k), where

form an orthonormal bis for the orthogonal complement of V in V. This @ is
called an orthonormal wavelet.

Resrk. Numerical computation of the solution of (1.1) is ey (see [4]). We can
apply the iteration n+i r.h.s, of (l.l) with n, starting from an initial function
with compact support, e.g., the characteristic function of an interval. If (1.1) h a
continuous solution, a more economical way is to first find the values of at the integer
points (of the compact support)this is a system of linear equations after fixing one

after that atof them. Then we simply use (1.1) to get the values of @ at points + ,
points + , etc. This way we directly get final values of .

In 2 we prove an abstract result that gives s sup{ s s} a function
of the spectral radius of a finite dimensional positive operator sociated to p of (1.3).
The results about this operator that will be needed are proved in 3. There we
also give explici bounds for s in terms of a couple of pointwise values of p. In 4
and 5 these tools will be applied to the symmetric iterative interpolation and to the
orthormal wavelets of Daubechies [3], respectively. Both of these applications improve
the known results.

The main point to the favor of the technique proposed here is that it connects
the smoothness of to the spectral radius of a positive matrix, while the approach of
[4] connects it to the joint spectral radius of a pair of matrices which is more dicult
to estimate.

2. An absrae resul for s. In this section we prove a result that
allows us to compute sup{ s s} from the spectral radius of a positive operator
(evenually a matrix).
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Let us study the existence and smoothness of the solution of (1.1) by first taking
0(x) H(x):= sin rx/rx, then iterating

(e.1) +1() (ex )
k

and examining in which T/s the sequence {n} converges (note that Cn e 7-/8 for every
s >_ 0). From (2.1) we get

n+l(w)

(see (1.3)), and consequently,

n

(2.2) 5() (2-)Hv(2-).
j=l

Remark. Comparing (1.6) and (2.2) shows that we can define the same iteration
either locally on discrete data by (1.4), (1.5) or globally on continuous data by (2.1).

We will study the two terms of the right-hand side of

12separately. Fix s _> 0 and put en(w)"= n(W)- n-l(W) Iwl 2s. We want to see for

how large values of s the estimate frt en(w)dw < COn holds with some 0 < 1 We
have en(-w) en(w) and

]n () n-1 ()] ]w]28 =q (-)en (),
where q(t):= 4s Ip(t)l 2 Since/:/(w) 0 for I1 > , we have

en(w)dw
[<2’r

en(w)dw.

We will study the convergence of these integrals through the operator Tq"

in the following way.
LEMMA 2.1. Let {en} satisfy

()

(b) +()=q

where q is even and 27r-periodic. Then

(2.5) In fl,,,l<2,. en(w)dw ten (t)dt,



SMOOTHNESS FOR DILATION EQUATIONS 1019

where hi (t) 2[el (t)+ e(t- 2r)] and hn+ Tqhn.
Proof. From (a) the claim is trivial for n 1. Assume that the lemma holds for

n. Then

In+ jwl_<2n+l en+l (w)dw [e.+ (w 2"r) + en+ (w + 2"r)]dw.

Call the last integrand n(W). It satisfies (a) and (b) so that applying the lemma with
n to n gives In+l f[ n(t)dt, where

(2.6)

1 (t) 2[e2(t 271-) -- e2(t -- 271-) -- e2(t 471") --
t /fr- t

i.e., In+ fo T-l;l(t)dt f0 Th(t)dt. El
The key idea in studying the integrals fl en(w)dw in terms of f[ hn(t)dt lies

in the fact that the positive operator Tq has better properties (see the next section)
than the one that maps en to e,+l. The best property here is that if q is in Cd--the
d + i-dimensional space spanned by {cos(jt)}=0--then Ta maps Cd -+ Cd. Thus
we end up with studying the Frobenius-Perron eigenvalue of a positive operator in a
finite-dimensional space.

In the next section we will prove (Theorem 3.4 and Proposition 3.5) the following.
Assume

(1)
(e)

q(t) 4s(2 + 2cos(t))vr(t) with r positive on [0, r].
u0 is nonnegative and not identically zero on [0, r] with u0 O(t2a)
for small Itl for some <_ .

Set u, := Tuo. Then for any s > 0 there exist C, c > 0 such that

c(48# s)" _< u(t)dt <_ C(4v-+s# + ),

where # is the spectral radius of Tr.
We apply this to the In’s twice: for s 0 and s > 0, corresponding to the two

terms of (2.3). Naturally, we want 4-+# < 1.
Since H (1/x/)X[-,] we find for t e [0, r],

hl(t) 2[el(t) -- el(t 27r)] ; IP() 1 + Ip(} ) It 2rl

Rewriting the assumptions (2.7) in terms of p we get the lower bound for the following.
THEOREM 2.2. Assume p(t) 0 for t yr. Let o, 1 be the greatest numbers

such that for t --+ O,

p(t) 1 + O(to), t) o(t.,),
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where
1

k

Let # be the greatest eigenvalue of the positive operator Tr in C[0, r]"

where

r(t) (2 + 2cos(t))
/f # < 4vo-1, then C--the (normalized) solution of the dilation equation (1.1)-
satisfies

- og(u)
s0:=sup{s ICET/8}= log(4)

Proof. To show the upper bound s < log(u)/log(4), assume # 0---a solution
of (1.1)--is in :H8. We have

Denote the last integrand by fn(w) (independent of n). We are now in the situation
of Lemma 2.1: since (1.1) implies (w) -p(w/2)(w/2) giving further

Thus

where

By Proposition 3.5,

Thus

f=(w)dw T=-lK(t)dt,

f(w)dw >_ c(48#- )’.

Remark. Any question about weakening the assumptions of this theorem is di-
rectly forwarded to 3--can we prove something similar about Tr with weaker prop-
erties of r? The same is true if we look for 7-/I-convergence. Also, then we come
to similar situations with weaker r. Only in the case when p is already a square (a
nonnegative polynomial of cos(t)) can we study the T/-convergence directly by these
methods (see 4). On the other hand, generalizations to other two-scale equations of
type (1.1) (i.e., 2 replaced by a bigger integer) seem reachable by these techniques.

3. Some properties of T. Recall the definition of Tr" C[0,

(3.1)



SMOOTHNESS FOR DILATION EQUATIONS 1021

First we prove the main convergence result of iterations with Tr when r is a positive
polynomial of cos(t). Then some results for perturbed r are given. Finally, tools for
getting upper and lower bounds for the spectral radius of Tr are derived. We will
often write T in place of Tr.

Most of the tools used for the next result are standard in the literature on positive
operators, but a suitable theorem for the present purpose was not found.

THEOREM 3.1. Let r be a d-degree polynomial of cos(t) positive on [0, r]. Then
for any nonnegative nonzero uo e CliO, ], the sequence {Trnuo/ IITuolI} converges to
the unique positive norm-1 eigenvector ofTr. This eigenvector is a d-degree polynomial
ofcos(t) and corresponds to the greatest eigenvalue, which is equal to the spectral radius
olT.

Proof. We show first the existence of a positive eigenvector. Let Cd be the (d+ 1)-
dimensional space spanned by {cos(jr) d}=o. If

d d

r(t) Z PJ cos(jt), u(t) Z uj cos(jr),
=o =o

then
d

Tu(2t) Z pjuk [cos(jr)cos(kt) / cos(j(r t))cos(k(r t))]
j,k--0

d

+ +  os((j
j,k=O

j+k=even

i.e., T maps Cd into itself. Let K, respectively, K be the cone of nonnegative,
respectively, positive functions in C[O, r] and Kd, K their intersections with Cd. All
of these are T-invariant.

LEMM 3.2. I] 0 u K, then there exists n > 0 such that Tu K.
Pro@ u is positive at some point t jr/2m 0 j 2.
If j < 2m-, then Tu is positive at jr/2m-1.
If j 2m-l, then Tu is positive at (2- j/2m-1).
In either ce Tu is positive at some jr/2m-1. Iterating this gives that Tu is

positive at zero or . Thus Tm+lu is positive at zero. It is also positive on some
interval [0, 2-m’]. Then Tm’Tm+u is positive on [0, r].

Using compactness gives further in Cd that there exists an M such that TMKd C

K. Now the standard theory of positive operators in finite dimensions states that
there exists a unique positive norm-1 eigenvector of T in Cd. Denote by the
corresponding eigenvalue.

Return now to C[0, r] and take 0 u0 e K C[0, r]. Take n0 such that
Touo K. Since K is normal, a theorem of Stetsenko [7, Thin. 9.1] states that

lira r(rouo)l1/
n

where pr is the spectral radius of T. Since u0 might as well have been equal to we
have pr #. Take the sequence {v,} {T"uo/IITnuoll}. We know that vn e g for
n >_ no and limn-oo IITvnll #. Set

mint v(t)/g(t)
maxr Vn (T)/(T)
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Then

n+l
mint [r()v,() + r )vn(r )]/’5(t)
max [r()v,()+ r(r- )vn(r- )]/()
mint vn (t) /’5(t) mint T’5(t)/’5(t)

max,. Vn(T)/’5(T)max,. T’5(T)/’5(T)
Thus {fin} is nondecreasing, and for n >_ no,

mint vn (t) > fin
mint fi(t)

max,. vn (T) max,. "5(T) >- C > O.

LEMMA 3.3. The sequence {v} is bounded in Cl[0, ’].
Proof. Set R maxt I/(t)/r(t)l and a mint(r(t)/r(r- t)). For n _> no,

/n+l
Vn+l

1 /(),()- (.- ),(.- )
r(r(-1(1 + 1(- 1

(1(1-(- )(- 1
()(1 +(- 1(- )

_<R+l+ac v,

Thus I1/,11 and consequently I111 is bounded. [:]

By Lemma 3.3 there exists a convergent subsequence {v} --. v E K (with
increasing nj’s) Write w - u if w- u E K. Define for u K

(3.) (u) max{A Tu

__
Au}.

is clearly continuous in K and (Tu) >_ (u). We have (u) _< tt since assuming
the contrary, u, e > 0 such that Tu - (# + )u gives

Tu - (# + )Tn-lu - ( + g)nu,

implying pr > #. Similarly,

(3.3) u K, n >_ O = Tnu- #nu K.
Assume now that Tv (v)v. Then there exists an m such that Tm(Tv (v)v) e K,
i.e., (Tmv) > (v). On the other hand,

(T’v) lim(T’v <_ lim (Vn+ (v).
3 3

Thus Tv (v)v and (v) #.
If v = ’5, then either

(1) v-’5 e KU(-K) or

(2) for w(t)"= max(’5(t), v(t)) holds and

In case (1), assume, e.g., v- ’5 e K. Since ’5(t’) 1 for some t’ and

tt’(v "5)(t’) Tm(v "5)(t’) > 0
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for m big enough we have v(t) > 1, a contradiction.
In case (2), there exist m and > 0 such that

Tm(w-v) >- w and T’(w-) >- w,

i.e., Tmw >- (#m _{_ )W, a contradiction to (3.3). Thus v ft. It follows that fi is
the only limit point of {Vn}. By compactness (Lemma 3.3), (vn} -- . This ends the
proof of Theorem 3.1.

Next we turn to the case where we have

() (2 + 2 cos())().

THEOREM 3.4. Let r be as in Theorem 3.1 and r as above with u > O. If
0 u0 E C1[0, r] is nonnegative and satisfies uo(t) O(t2), then the sequence
{To/ IITo II }oo

() (1 co())(),

where is the positive eigenvector of T and c is such that Ill 1. Moreover,
(t)/Teuo(t)"uo unifoly.

Proof. Set u Tu0 and v(t) (1 cos(t))-Un (t). Then v0 e C [0, ] and

1 )](1 cos(t))

i.e., v+ Tvn. Apply Theorem a.1.
or the ce where uo does no allow full division by (1- cos(t)), the following

will suce for our presen needs.
PROPOSITION a.. et 0 o 0, T#o nd s before bt o(t)

O(to) with := u- uo 0. Then for 9iven e > 0 there eist C, c > 0 such that

c(,- e) u(t)dt C(4, + e).
Pro4 or the lower bound, take vo 0 such that o v0 0, and v(t) O(t).

hen T#(o- vo) 0. or given e > 0 take (Theorem a.4) n0 such that for n no
holds

+ o()
To() <

and c > 0 such that the lt inequality below holds for n n0. Then

u(t)dt T#vo(t)dt c(- e).
or the upper bound set vo(t):= (1 -cos(t))-oo(t) and -- 4r. Then r and
Tev Tv for every v 0. Thus, inductively, Tvo Tvo, T(Tgvo) T(Tvo)
n+ andv0

(t)dt T#o(t)dt (1 cos(t))oTvo(t)dt

N 2o4 T#vo(t)dt C(4 + e).



1024 TIMO EIROLA

Remark. Thus far the results of this section have used the condition that r is a
polynomial of cos(t) only for proving the existence of a positive eigenvector. If this is
known by some other means, then any positive r E C1[0, r] will do. Then, naturally,

is not a polynomial of cos(t).
Now we make more heavy use of the fact that r is a polynomial of cos(t)and turn

to estimate #. For 0 E [0, ], set 0 K (the dual cone of K): (rio, u) :-- u(O). Then

In Cd we have a better cone than Kd, namely:

{ }Kd’= ueCd u(t)=Euj(l+cos(t))J(1--COS(t))d-J, uj >0
j=0

This is smaller than Kd since 0 # u Kd implies u(t) > 0 for t (0, r). It follows
that the y0’s with 0 E (0, r) are interior points of (Kd). We also have

(b)
u Kn v Km = uv Kn+m

n < m gn C gm and Kn + Km C gm.

Property (a) is simple. From 1/2(l-x)+ 1/2(l+x) 1we get 1 e K1. Then the
repeated use of (a) gives 1 E Kn for all n >_ 0. Given u K, take 1 Km-n and
use (a) to show (b).

Naturally we also need the following.
LEMMA 3.6. If r Kd, then TKd c Kd.
Proof. Set y := cos(t/2), x := cos(t) 2y2- 1, and let r,u Kd r(t)

=0 rj(1 + x)J (1 x)d-J u(t) -j=oUj (1 + x)(1 x)d-J. Then

d

Tu(t) E riuj[(1 + y)i+J(1 y)2d-i- + (1 + y)2d-i-(1 y)i+J],
i,j=O

and the lemma follows after noting that for k < d,

(1 + y)k(1 y)2d-k + (1 + y)2d-k(1 y)k
(1 y2)k[(1 + y)2(d-) + (1 y)2(d-)]

---(12-)k 2E.: (2d12k) (l--x) E Kd.

From the previous proof we also see that fi is an interior point ofKd because fi(0)r(0) >

()0 oro > 0, and the first term of (3.5) for gives oro2 t=o 2 ((1- x)/2),
thus introducing a positive coefficient (after multiplication with 1 Kd-) for each
(1 x)d-t(1 + x). Thus 0 # w (Kd) implies (w, fi) > 0.

We be the estimates for on the following.
LEMMA 3.7. If r Kd and 0 # w (Kd)’, G R, then

(a)
(b)

T’w- Aw (Kd) # >_ ,
Aw T’w (Kd) # <_ .
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Proof. (a) 0 <_ <T’w AT, > (it- A)<w, fi> and <w, fi> > 0. (b) is similar.
From (3.4) we get

r 72/3

In the applications of this paper we have r(2r/3) >> r(r/3) which suggests that

2r/3 is close to the positive eigenvector of T. Now Lemma 3.7 gives immediately
it >_ r(2r/3).

Note that for u E gd and t E (0, r/2) we have:

(3.6)

d

(I+COS(t) )jl+COS(2t)u(t) <_ E uj (1 + cos(2t)) (1 cos(2t))d-J
j 0

<
l+cos(2t)

and similarly u(r- t) _< ((1 + cos(t))/(1 + cos(2t)))du(r 2t),
To obtain an upper bound for it, set w 172/3 + a17/3. Then

,w Tw (,k r(213))#.1 +( r(rl3))#.la a [r(16)#.l + r(516)7.1]
From (3.6) we get for any u e Kd: u(r/6) < su(r/3) and u(5r/6) <_ su(2r/3), where

s ((2 + x/)/3) d. Thus Aw T’w e (Kd) if

(")a -r - -a sr =0.

Solving these gives the following.
THEOREM 3.8. If r e gd satisfies r(2r/3) > ((2 + /)/3) d

r(r/6), then

r -g- <<r 1+
r(rl3)r(5rl6)

(a/( + ))e(e/a) (/6)(e/3)

4. Iterative interpolation. Here we apply the results of 2 and 3 to the re-
peated interpolation scheme (1.4) P’l -- 12h/2 in the case where P is "identity on
the old grid":

(4.1)
Pu(jh) u(jh),
1

We restrict ourselves to odd (2m- 1)-degree symmetric polynomial interpolation, i.e.,
with Skm-1 such that if x is a (2m- 1)-degree polynomial, thenl Jk----m

(a.:)
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The question here is: how smooth is limn-o pnuo? As noted in 1, we may take
uo(k) 5o,k. From symmetry we get -k ilk-l, and further from (1.7),

p(t) 1 + E J[e-it(2j+l) + eit(2j+l)] 1 + E flJ cos((2j + 1)t)
j=0 j=--m

The last sum is the interpolation of cos(r) at T 0; thus it has to be 1 / O(t2m).
Furthermore, repeated use of

cos(nt) 2 cos(t)cos((n 1)t) cos((n 2)t)

gives

p(t)= l+cos(t) Ejsin(t)zJ
j=0

On the other hand, a standard integration formula gives

(4.3) cos(t) E (-1) sin(t)2
j=0

1- 2Cm sin(’)2m-ld 1 + O(t2m),

where Cm 2-2m((2m 1)!/((m 1)!)2). Since the polynomials of sin(t) multiplying
cos(t) in (4.2) and (4.3) are of degree 2m-2 and have (2m- 1)-fold tangency at t 0,
they have to be equal. Hence

(4.4) p(t) 1 c. sin(T)2m--dT.

To apply the results of 2, it remains to divide the zero of p at 7r. Integration by parts
yields

m--1

p(t) Cm(1 + cos(t))" E "Y}n(1 + cos(t))J(1 cos(t))m-l-J
m

j=0

(l+cos(t))2,, mEj=0m_l (m--jl+j). (1-cs(t)j2/.
J k) Thuswhere 7 := YIk=0 (m- k)/(m +

(4.5)
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F*G. 1. The Sobolev exponents Sm with the upper and lower bounds (4.8).

We use the first form of (4.5) to estimate

(4.6) r(t) <_ (2 + 2cos(t))-2m for t e 0,

the third one to see that r K2"-2, and the fourth to estimate for t (r/2, r]"

r(t) (1 cos(t)
2

(4.7) 1 < : <
2-2 (1 cos(t))2m-2 2 cos(t)

The form of the second line of (4.5) will be used later in 5. Now d 2m- 2 and
Theorems 2.1 and 3.8 give the following.

THEOREM 4.1. For fixed m 1 the iteration of 2m- l-degree symmetric poly-
nomial inteolation converges to a function for which 8m sup{s Cm s}
log()/(2 log(2)), where is the spectral radius ofT in C2m-2. RuSher, s satisfies

(4.8)

( ( ))-log r() 1+ (3/(2+))_rC2,/.a)_r(/6)r(2,/3) -log(r())s2 log(2) 2 log(2)
and r r is given in (4.5).

To obtain ymptotics of sin, note that j > (j + 1)(j 1) gives

lm 1 11m 1-c 2’
and this together with (4.7) implies

lm-1/2 ()2m(4.9)
9

Furthermore, (4.6)nd (4.7) give

<r < lm-5
2 m2

2m

2m: 4-)/81] 2m-1

3(m-1/2) [4(7 +
<

(3/(2 + -))2m-2 .r()2 r(-g)r(-) 1 81m2 ()4m/((7 d- 4x/)(m ))
which tends to zero when m ; hence m/(rm(2r/3)) 1. Thus, ymptotically,

( log(3))sm 2
log(2)

m + O(log(m)) 0.415m.

For small values of m we can compute the eigenvalue of T directly giving, e.g., Sl
3, s2 -(log(5 + 3)/21og(2)). For Fig. 1 we have computed the mimal
eigenvalues of T numerically.
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Cases m 2 and m 3 were considered also by Deslauriers and Dubuc [5]. They
got 2 E C2-e and 3 E C2"s3. The case where m 2 is also treated in [4].

As pointed out in the Remark after Theorem 2.1, the T/-convergence can be
treated by the present method (and, consequently, the Cs-convergence) when p(t) is
a square, which is the case in the present situation. Everything works similarly with
q(t) replaced by 28pm(t) and r(t) by pro(t):= (2 + 2 COS(t))--mpm(t) to give

am :--sup{ s Cm e T/I}-- log(#m)/log(2),

where #m is the spectral radius of Ton. Thus we get the am’S in this case for free.
In Table 1 we have the sin’s and am’S for different values of m. Note that the

values of Deslauriers and Dubuc are sharp.

TABLE 1

1 1.5 1.
2 2.4407 2.
3 3.1751 2.8300
4 3.7931 3.5511
5 4.3440 4.1935
6 4.8620 4.7767
7 5.3628 5.3173
8 5.8529 5.8294
9 6.3352 6.3233
10 6.8114 6.8054
11 7.2826 7.2796
12 7.7495 7.7480
13 8.2128 8.2121
14 8.6730 8.6726
15 9.1304 9.1302
16 9.5854 9.5853
17 10.038 10.038
18 10.489 10.489
19 10.938 10.938
20 11.386 11.386

An interesting property of these numbers is that ISm aml seems to tend to zero.
This is also easy to prove from the estimates for the spectral radii. This leads us to
expect that for big m the limits might be also in 7-/ with essentially the same s, but
larger p.

5. The orthonormal wavelets of Daubechies. Here we consider solutions of
(1.1) with hk’s satisfying a further condition

hk-2ihk-2j 2i,j,
k

which gives orthogonality for (.- k)’s (see [3]). We skip the details and take directly
the family of hk’s indexed by m >_ 1, which was proposed in [3]. They can be defined
from

(15.1) Ipm(t)l 1 c, sin(T)m--ldT.

Meyer’s book [8] contains a proof that the smoothness of grows linearly with m.
Daubechies [3] shows that the growth factor is _> 0.196. Here we give it exactly.
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Comparing (5.1) and (4.4) shows that the pin’s here are exactly the square roots
of the p,’s of 4 (note that our p equals m0 of [3]). So it remains just to write it
down, as follows.

THEOREM 5.1. With (5.1), the solution Cm of (1.1) satisfies

:= sup{ e - og(u)
log(4)

where # is the spectral radius of Tr in the space of (m-1)-degree polynomials of cos(t)
and

m--1

Moreover, Sm has the estimates

-log r() 1 + (3/(z+/))._lr()._()()
(5.2) <_ Sm <_ log(r())

As in 4, we get, asymptotically,

Sm
log(3)(1-2 log(2)) + OOog( )) 0. 075 .

Remark. We see that the asymptotics of s, is exactly the same as the one that
Daubechies [3] gives as the upper bound ever reachable by her method. Also for all
m Sm here is exactly half of am of 4.

Again for small values of m the eigenvalue of T can be computed directly. This
gives, e.g., sz 5, s2 1, s3 3- (log(3)/log(2)). For Fig. 2 we have computed
the maximal eigenvalues of Tr numerically.

110 115 2:0 U

FIG. 2. The Sobolev exponents Sm with the upper and lower bounds (5.2).

In the next table we list the 8m’S together with the a,’s of Daubechies [3] and
Daubechies and Lagarias [4] such that , E C-.

We see that the present results practically imply (via 7-/8 c C8’ for s > s + 1/2)
those of [3] (cases m >_ 5), while the results of [4] (cases 2 _< m <_ 4) are in the gap
(neither imply nor are implied by the present ones).
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m
TABLE 2
8m, o’vn

1 0.5
2 1
3 1.415
4 1.775
5 2.096
6 2.388
7 2.658
8 2.914
9 3.161
10 3.402
11 3.639
12 3.874
13 4.106
14 4.336
15 4.565
16 4.792
17 5.019
18 5.244
19 5.469
20 5.693

0.550
1.088
1.618
1.596
1.888
2.158
2.415
2.661
2.902

6. Conclusions. A positive operator technique has been shown to apply in the
study of the smoothness of the solutions of some dilation equations. At present, the
positive operator works well only with trigonometric polynomials. Further applica-
bility of this technique depends most of all on possible generalisation of the results
of 3.
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TWO-SCALE DIFFERENCE EQUATIONS II. LOCAL REGULARITY,
INFINITE PRODUCTS OF MATRICES AND FRACTALS*

INGRID DAUBECHIES AND JEFFREY C. LAGARIASt

Abstract. This paper studies solutions of the functional equation

N

f(x) _, c,,f(kx- n),

Nwhere k->2 is an integer, and Y.n=o cn k. Part showed that equations of this type have at most one
L-solution up to a multiplicative constant, which necessarily has compact support in [0, N/k-1]. This
paper gives a time-domain representation for such a function f(x) (if it exists) in terms of infinite products
of matrices (that vary as x varies). Sufficient conditions are given on {on} for a continuous nonzero Ll-solution
to exist. Additional conditions sufficient to guarantee fe C are also given. The infinite matrix product
representations is used to bound from below the degree of regularity of such an L1-solution and to estimate
the H61der exponent of continuity of the highest-order well-defined derivative of f(x). Such solutions f(x)
are often smoother at some points than others. For certain f(x) a hierarchy of fractal sets in R corresponding
to different HSlder exponents of continuity for f(x) is described.

Key words. H/51der continuity, subdivision schemes, wavelets, infinite matrix products

AMS(MOS) subject classifications. 26A15, 26A18, 39A10, 42A05

1. Introduction. This is the second part of a series of two papers concerning
functional equations of the type

N

(1.1) f(x) E c,f(kx- n).
n=0

In Part I (Daubechies and Lagarias (1991)) we discussed existence and uniqueness of
Ll-solutions. We saw that nontrivial Ll-solutions to (1.1) can only exist if IN c,[ >= k.
If Z c, k, then the solution, if it exists at all, is unique and furthermore it has compact
support contained in [0, N/(k-1)]. We shall assume that Z c,=k in this paper.
Functions satisfying equations of type (1.1) arise in many contexts. Our own motivation
lies in the role played by such two-scale difference equations in the construction of
orthonormal bases of compactly supported wavelets (see 6.3 in part I or Daubechies
(1988)). Similar equations characterize certain nowhere differentiable functions con-
structed by De Rham (1956, 1957, 1959). They also play an important role in interpolat-
ing subdivision schemes with applications to computer aided design, on which an
important body of work exists; papers in this subject treating 2-scale difference
equations are, e.g., Dubuc (1986), Micchelli (1986), Dyn, Gregory, and Levin (1987,
1991), Deslauriers and Dubuc (1987, 1989), Micchelli and Prautzsch (1987, 1989), and
Dyn and Levin (1989). All these examples satisfy Z c, k.

For the sake of simplicity we shall usually choose k 2, even though all our
techniques can be applied for general integer values of k >_-2. We shall also restrict
ourselves to real coefficients c, and, correspondingly, real functions f Our analysis
can, however, also be used for complex c,, without any changes. We are thus mainly

* Received by the editors November 30, 1988; accepted for publication (in revised form) September
16, 1991.

? AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974.
Mathematics Department, Rutgers University, New Brunswick, New Jersey 08903.
This author is "Bevoegdverklaard Navorser" at the Belgian National Science Foundation (on leave);

also on leave from Department of Theoretical Physics, Vrije Universiteit Brussel, Belgium.
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concerned with equations of the type

N

(1.2) f(x) E c,,f(2x- n)

with real c, and E c, 2.
Not all equations of type (1.2), with E c, 2 have a nontrivial Ll-solution. There

exist several possible approaches to the study of existence and smoothness of solutions
to (1.2). One approach uses the trigonometric polynomial p(:) =1/2yN,,=oC,, ei". In
particular, if p(:) can be factored as

(1.3)

and

(1.4)

p(:) [(1 + ei)/2]TM q(:)

sup Iq(:)l < 2+-,

then there exists a nontrivial Ll-solution f to (1.2), which is, moreover, m times
continuously ditterentiable (Daubechies (1988)). Other sufficient conditions on p
guaranteeing existence and smoothness can be found in Deslauriers and Dubuc
(1987, 1989). Typically these conditions all achieve regularity off by imposing decay
on its Fourier transform f(:). These methods work best when p() is a nonnegative
function, as illustrated by Deslauriers and Dubuc (1987), who obtain very sharp
information about the regularity of functions f constructed via a symmetric Lagrangian
interpolation scheme. For more general examples, lacking the positivity of p(:), this
analysis leads to less than optimal results (Daubechies (1988), Deslauriers and Dubuc
(1989)).

In this paper we use a different technique to study the regularity of solutions of
(1.2). It is essentially a "time domain" method, in the sense that it does not involve
Fourier transforms at any stage. This time domain approach hinges on the fact that if

f satisfies (1.2), then the values f(x) can be easily calculated, recursively, for all dyadic
x, i.e., all x of the type m2-J(m 7,j 1), if the values f(m) at the integers are known.
Provided suitable conditions are satisfied, we can then show that there exists a con-
tinuous extension of these f(rn2-j) to all of , thus defining f(x). In fact, an explicit
formula for f(x) can be expressed using an infinite product of matrices (depending
on x). It is then possible to discuss the H61der continuity, differentiability, etc., of this
extension, which is the desired solution of (1.2).

We explain the matrix technique in detail in 2. We show how to choose a
"correct" initialization {f(m); rn 7} for the iterative spline approximation to f, and
we formulate sufficient conditions on the c, guaranteeing that the process converges
to a continuous Ll-solution of (1.2). We also compute lower bounds for the H61der
exponent of the resulting function f(x). In 3 we show how similar ideas, using the
sum rules (1.5) together with some technical conditions, can be used to prove that
fC.

The time domain method proposed here leads in many instances to sharper results
than the Fourier transform methods mentioned above. One such example is the function

b plotted in Fig. l(a) (or in Fig. 3(a) in Part I). Even when handled with care, the
Fourier transform method only establishes that the HiSlder exponent of 4 is at least
.5-e (see Daubechies (1988)). In fact b is H61der continuous with exponent 2-
In (1 +x/)/ln 2 .5500...; the method presented in this paper achieves this (optimal)
result. Moreover, the Fourier transform method typically only controls global regularity
properties: the detailed, local analysis of the regularity of solutions to (1.2), accessible
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via our matrix method as explained in 4, is wholly outside the reach of Fourier
transform based techniques. Using the time domain approach we can show, e.g., that
the function b in Fig. la is almost everywhere differentiable, and that its H61der
exponent .5500... is determined by a dense set of "bad" points which has zero measure.
In fact, there exists a whole hierarchy of fractal sets, all with zero measure, correspond-
ing to the H/51der exponent between .5500... and 1. Another interesting example is the
basic function associated to the dyadic interpolation scheme first studied in Dubuc
(1986) and Dyn, Gregory and Levin (1987). In this case the function p()= c,,e i’ve

is positive, allowing the Fourier transform method to achieve the already optimal result

f C2- for the global regularity of f. Our time domain method recovers this result
(although by a more involved analysis than via the Fourier transform method), but it
also establishes thatf is almost everywhere twice differentiable, which is a result outside
the reach of the Fourier transform method. A detailed discussion of these and other
examples can be found in 5.

When we developed this technique, we were unaware of related and at that time
unpublished work of Micchelli and Prautzsch (1989) and Dyn and Levin (1989), to
which referees drew our attention. Let us give a short overview of the situation, pointing
out the overlap and the differences between our work and theirs. The two papers by
Micchelli and Prautzsch (1989) and the two by Dyn and Levin (1989) (hereafter called
IMP] and [DL]) are both motivated by the applications of interpolation subdivision
schemes to computer aided design (see Micchelli (1986), Micchelli and Prautzsch
(1987) and Dyn, Gregory, and Levin (1987, 1989)). The coefficients cn in an interpola-
tion subdivision scheme typically satisfy c2n+o 8bO for some no, but both IMP] and
[DL] are applicable to more general coefficient choices. [MP] focuses on the existence
and smoothness of solutions to (1.2), whereas [DL] is more concerned with the
convergence of the corresponding interpolation scheme, that is, in the language of 4
in part I, with existence of smooth solutions and convergence of the cascade algorithm
to these solutions. It is proved in [DL] that the cascade algorithm converges to a CL

solution only if the coefficients c satisfy the L+ 1 "sum rules"

(1.5) E c,,nl(-1) =0, /=0,..., L.

Moment conditions of the type (1.5) also turn up in a different context. If the solution

f to (1.2) has the property that the integer translates f(. n), n 7/are all independent,
then the moment condition (1.5) is equivalent to saying that all the polynomials of
degree at most L can be written as combinations of the f(.- n), and can therefore be
obtained exactly by the associated subdivision scheme. See Cavaretta, Dahmen, and
Micchelli (1989) for a general multivariate discussion of this aspect. Sum rules of type
(1.5) are in fact satisfied by all interesting examples (wavelets as well as interpolating
schemes); it is easy to check that they are equivalent to the requirement that p(sc) can
be factored as in (1.3). If we are concerned with only the existence of a reasonably
smooth solution to (1.2), without convergence of the cascade algorithm to this solution,
then conditions (1.5) are not necessary, and [MP] do not, in fact, use them. The
discussion of possible solutions f(x) to (1.2) in [MP] makes use of the same matrices
as our approach. In particular, for the choice k 2, we deal with two matrices To and
T1, both determined by the c,, and f(x) is then given by the limit

f(0)

lim [Td,(x)Td2(x Ta.(x
f(1)

f(-1)
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where the index dr(x is the jth digit in the binary expansion for x (see 2). A very
special structure of the matrices To, T1 is then required for f to be a C/-function: both
matrices have to have the eigenvalues 1, 1/2,..., 2-/, and the corresponding left eigen-
vectors e, e (1 0, , L) have to define flags of nested subspaces with very particular
properties (see 5 in [MP] or 2, 3 below). In our paper, we require that the sum
rules (1.5) hold; as shown by examples and by IMP], they are not necessary, but they
make it possible to write very explicit expressions for the eigenvectors e, el. It turns
out that (1.5) forces the eT, e to satisfy many of the conditions in [MP], which explains
why we have only one technical condition (as compared to the four conditions in
Theorem 5.2 in [MP]). If this condition is satisfied, then a simple spline approximation
argument proves that the function f is indeed L times continuously differentiable. This
simple argument was partly suggested to us by one of the anonymous referees, who
we would like to thank here. In an appendix we shortly sketch our original, longer
approach, which does not use splines but which can be generalized to certain higher-
dimensional situations where splines would be hard to use.

Another difference between our paper and [MP] is that we also exploit the structure
of the matrices To, T1 to study local regularity properties of f: the importance of the
binary expansion of x in determining f(x) means that points with different frequencies
of the digits 1 or 0 in their binary expansion correspond to different lo-cal H61der
exponents for f In fact, this feature, first observed experimentally in graphs of
orthonormal wavelet bases with compact support, was one of our main motivations
for undertaking this study.

2. Continuity and H61der continuity. If f satisfies (1.2), then the values of f(x)
can be computed explicitly, recursively, for all dyadic rationals x, i.e., for all x of the
type m2-(m7,jN), if the values f(m) at the integers m are known. If f is
continuous, then the f(m2-) suffice to determine f everywhere; a sequence of conver-
gent spline approximations was constructed in Theorem 4.1 in part I. However, for
general cn and for arbitrarily chosen f(m) this procedure will typically diverge and
not lead to a continuous function at all. The following proposition gives a necessary
condition that the cn have to satisfy and specifies restrictions on the choice of the
initial values f(m) for the iteration scheme.

PROPOSITION 2.1. Assume that N
=o C 2. Iffis a nontrivial continuous L1-solution

to (1.2), then:
(1 o) The N 1) x N 1 dimensional matrix M defined by

Mij C2i-j, 1 <-- i, j <--_ N- 1

has 1 as an eigenvalue.
(2) The (N 1) dimensional vector (f(1),. f(N 1)) is a right eigenvector of

M with eigenvalue 1, and f(m) 0 for all m <= 0 and m >-_ N.
Proof. By Corollary 2.2 in part I, support (f) [0, N]. This implies that f(m) 0

for m 0, m >_-N. The other conclusions follow from Theorem 5.1 in part I. []

In what follows we shall impose that the cn satisfy the first sum rule in (1.5); this
condition is sufficient (but not necessary) for (1) to hold. Explicitly,

N

(2.1) E (-1)"c, 0

or, equivalently, since Yn c, 2,

(2.2) c2. c2.+1 1.



TWO-SCALE DIFFERENCE EQUATIONS: LOCAL REGULARITY 1035

This condition is satisfied in all the practical examples discussed in part I. It also has
a very simple interpretation in the cascade algorithm (see 1.4). In this algorithm, the
jth level consists of (2j- 1)N+ 1 different coefficients a, which are computed from
the (j- 1)th level via

aJ2m C2(m-k)aJk, aJ2m+l C2(m-k)+laJk
k k

(see, e.g., Micchelli and Prautzsch (1987), Dyn, Gregory, and Levin (1989) or
Daubechies (1988)). The condition (2.2) states, therefore, that the total weight of the
a-1 in the computation of a is independent of m. In the case where the cascade
algorithm simplifies to an interpolation subdivision scheme, this "equal opportunity"
condition is automatically satisfied, since then

c+2, 6,o for some (see 1.4),

hence

N

2m+1+/ Cn+l- C2m+l-- Cn 1 1 Z C2m+,.
n=O

If the scaling factor k is an integer larger than 2, then (2.2) has to be rewritten as

(2.2’) Ckn f Ckn+l Ckn+(k_l) 1.

This is again an "equal opportunity" condition when looked at from the point of view
of the cascade algorithm. Note that (2.2’) is equivalent to requiring that p()=
N in
,__o c, e is divisible by (l+eie+ "+ei(k-)).
We return to the dyadic case (k=2), and we assume that (2.2) is satisfied. It

immediately follows that for all j, 1-<_j_-< N-1,

N-1 N--1

Mij--- 2i_j---1,
i=1 i=1

where Mij C2i--j (see above, or 1.5) and where we use the convention Cl 0 if < 0
or l> N. Consequently, 1 is an eigenvalue of M, with left eigenvector (1, 1,..., 1).
The necessary condition in Proposition 2.1 (1) is therefore satisfied.

Let us assume that the eigenvalue 1 ofM is nondegenerate. (This will be guaranteed
by a technical condition below.) Then there is a unique (up to normalization) right
eigenvector a with eigenvalue 1 for M. This eigenvector cannot be orthogonal to the

N-1left eigenvector (1, 1,..., 1), i.e., Y.i= ai 0, so that we can normalize a to have
N--1

i= ai 1. We then pick the f(n) to be

f(n) =a, n 1,. ., N- 1

=0 n--<_0 or n>-N.

We define successive spline approximations f to f as in 1.4:
(1) fo(x) is linear on every n, n + 1 ],

fo(n) =f(n),
(2) f VJfo,

where V is the linear operator

N

(2.3) Vg)(x) c,g(2x- n).
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If f is continuous, then the f converge to f (see Theorem 4.1 in part I). A priori we
have, however, no reason to expect a continuous solution to (1.2); in fact, for many
choices of the cn, even if they satisfy (2.2), f will not be continuous, and the f will
converge to f only in some distributional sense. We shall impose further conditions
on the cn which will enable us to prove that the f constitute a Cauchy sequence in
L, which then automatically leads to continuity for f. In order to do this, we introduce
a "vector" notation.

Finding solutions to (1.2) is the same as finding fixed points for the linear operator
V defined in (2.3). We shall only be concerned here with functions g supported on
[0, N] support (f). For such functions (2.3) can be rewritten in "vector" form. Define
the vector valued function w: [0, 1 -N by

(2.4) w(x) g(x + n- 1), n 1,. ., N.

Knowing the function g is equivalent to knowing w: [0, 1 ]- N. Note that necessarily

(2.5) w(0) w(1)_, for 2 =<j =< N.
Moreover, g is continuous if and only if w is continuous on [0, 1] and if

(2.6) w(0), 0 =w(1).

Let us now define the linear operator V on vector valued functions w satisfying (2.5),
(2.6) by

(Vw)(x), Vg)(x + n 1),

where we assume w and g are linked as in (2.4). Then V is given explicitly by

[Tow(2x) if x <- 1/2,
(2.7) Vw(x)

(TlW(2X- 1) if x => 1/2,

where To, T are the N x N-matrices defined by

(2.8) (To)0 Czi--j--1, 1 <= i,j <= N,
(T1)0 c2_, l<-i,j<=N,

or

Co 0 0 0 0

C2 C CO 0 0

C4 C3 2 Cl CO 0 0

0 0 0 0 0 0 CN
C CO 0 0

C3 C2 Cl Co 0

0 0 0 0

0

0

0

Note that if we strip either To of its first row and column, or T1 of its last row and
column, then the resulting (N-1) (N-1) matrix is exactly M. Moreover, (2.2)
implies that the N-dimensional row vector el (1," , 1) is a left eigenvector of both
To and T1, with eigenvalue 1,

el To el el
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Formula (2.7) can be written more succinctly if we use binary expansions. For any
x [0, 1] we can write

x= Y’. d2-j, wheredj=0orl for allj.
j=l

We then define the action of the shift operator " on x by

(2.9) ’x= E d2-+1.
j=2

This corresponds to shifting the decimal point in the binary expansion of x one step
to the right and dropping the old first decimal. In fact,

2x if 0=<x<1/2,
’x=

2x-1 if1/2<x<=l.
Note that this does not yet define -x for x =1/2; we shall come back below to what
happens at x 1/2. For x 1/2, (2.3) can therefore be rewritten as

(2.10) Vw(x) Ta)w(-x),
where we have introduced the notation d(x) for the jth digit in the binary expansion
of x. For x 1/2 the first digit in the binary expansion (2.9) is not well defined, since we
can take either d 0, d 1 for j ->_ 2 or d 1, d 0 for j >= 2. Extending (2.10) to
x 1/2 leads, therefore, to two different equations, depending on which choice was made
for the binary expansion of 1/2,

w(1/2) Tow(l) or w(1/2) Tw(0).

For w satisfying the restrictions (2.5), (2.6), there is, however, no contradiction between
these two equations, since (T), (To)+,j+a for 1 <_- i,j =< N- 1. Equation (2.10) there-
fore holds true for any x [0, 1].

Let us apply all this to the spline functions f and define

[vj(x)],=f(x+n-1), j, n=l,...,N.

It follows that

v(x) (WVo)(X)

Tdl(x)Td2(x Tdj(x)0(7"Jx).
Now that we have introduced all the necessary notation, we are in a position to
formulate the main result of this section.

We will use the operator norm for matrices defined by IIT]] =sup,o ]lTv][/llv]l,
2where Ilvll is the Euclidean norm of v, ]]vll 2= jN=, Vj.

THEOREM 2.2. Assume that the c,, n 0,. ., N satisfy

C2n--- C2n+l "-1.

Define the N x N-matrices To and T1 by

(To)ij c2i-j-1, (T1)o c2,_j, 1 =< i, j =< N.

Define E1 to be the (N-1)-dimensional subspace orthogonal to el (1,..., 1), the
common left eigenvector of To, T for the eigenvalue 1. Assume that there exist A < 1 and
C > 0 such that, for all m ,
(2.11) max IITd,Td2 TI,II--< cA.

dj=Oor l,j= l,...,m
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Then the following hold"
1 The eigenvalue 1 is of the (N 1) x (N 1)-dimensional matrix M defined by

M. ci_, 1 <-i,j <-N-1 is simple and there is an associated right eigenvector a with

Ei--1 ai 1.
(2) The vector-valuedfunctions vj(x) defined above satisfy el v/(x) 1 for allj N,

all x [0, 1 ].
(3) The corresponding functions f converge uniformly to a continuous function f,

1[ -f ----< c2-Jllnhl/ln2.

(4) The limitfunctionfis an L-solution to (1.2); it is normalized so that
1, and it is Hiilder continuous,

(2.12) If(x) f(Y)l <-- C[x

with a [In hi/In 2.

Proof. (1) The constraint (2.16) automatically implies that 1 is a simple eigenvalue
of To and T. Indeed, if 1 were not a simple eigenvalue of, e.g., To, then there would
exist a right eigenvector e for To in E, with eigenvalue 1 (regardless of whether the
eigenvalue 1 is degenerate or not, in which last case the matrix To, restricted to the
invariant subspace for the eigenvalue 1, can be brought in Jordan normal form but
not diagonalized). It would then immediately follow that

contradicting (2.11 ).
(2) We already know that 1 is an eigenvalue ofM and that the (N 1)-dimensional

vector (1,..., 1) is a left eigenvector for this eigenvalue. Since (To)+.+=M,
1 <= i,j =< N- 1 and (To) =0 forj_-> 2, we find that any eigenvalue ofM is an eigenvalue
of To, with at least the same multiplicity. Since 1 is a simple eigenvalue of To, it is,
therefore, also a simple eigenvalue of M. It then follows from arguments presented
above that the right eigenvector a for the eigenvalue 1 of M can be normalized so that
N-1

__
a- 1. As previously agreed, we then define

[o(X]-a_(-x)+ax, n- ,..., N,

with the convention ao 0 an.
(3) From the normalization of a, it now follows that, for all x [0, 1],

N

e. o(X- E [o(X]----
n=l

We now prove, by induction, that the same is true for all . Suppose e. j(x)= 1.
Then, for all x [0, 1],

where we have used e. To--e =e. T.
(4) Next we show that the (x) are uniformly bounded. Since e. (x)= 1 for

all k, x, it follows that (x)-(x) E for all k, 1, x. Hence

ch sup
y[o,]
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Consequently,
k

j=l

<-sup [Ivo(y)ll+f(1-A)-1 sup [Ivl(y)-vo(y)[I,
y[0,1] y[0,1]

so that IIv(x)ll is bounded uniformly in k and in x.
(5) Together with el" Vk(X)= 1, the uniform boundedness of the Vk(X) implies

that the Vk constitute a Cauchy sequence in L-norm. Indeed, since

Ilvj+(x)-vj(x) II- IITd,(,,)’’’Ta(x)[V(X)--Vo(X)]
-<_2CA sup

l,y

we find that supx[o,1] Ilvj+k(x)-vj(x)ll can be made arbitrarily small by choosing j
large enough, independently of k. It follows that there exists a limit,

v(x) lim b(x),
j-oo

which is continuous since all the v are continuous and the convergence is uniform
in x,

sup Ilv(x) v (x)ll -< CM.
x[0,1]

Since every v satisfies (2.5), (2.6), so does v. It follows that the function f defined on
[0, N] by

f(x) [v(x Ix] )] [x]+l

(where Ix] denotes the largest integer not exceeding x) is continuous, and that

(2.13) IIf-fll_-< CAj= C2-"
with a Iln A l/In 2.

(6) Since f Vf-l, the limit function f satisfies f= Vf, i.e., f is a solution to (1.2),
which is necessarily L sincefis bounded and compactly supported. We have, moreover,
el. v(x)= lim_. el. vj(x)= 1, so that

dxf(x)= dx E [v(x)],= 1.

(7) The Hhlder continuity follows from (2.13) and standard spline results trans-
lating estimates on how well a function can be approximated by piecewise polynomials
into H61der estimates on the function itself. (See, e.g., Theorem 6.10 in Schumaker
(1981), which uses approximations by piecewise constant functions rather than piece-
wise linear f; an estimate similar to (2.13) can also be proved for piecewise constant
approximations to f) For the sake of convenience, we also give a direct proof by the
following short argument. Suppose that 2-(j+l) -<- y--x<=2-j. Then there exists N so
that one of the two following alternatives holds" (1 1)2-j <- x <- y <- 12-j or (l 1)2-j _-<

x <-_ 12-j -< y _-< (l + 1)2-j. We shall only discuss the second case; the first one is similar.
We then have

]f(x) -f(Y)l <----If(x) -fj(x)[ + [f(x) -fj(/2-)
+ If(/2-) -(y)l

<= 2C2- + ](x) -f(/2-)I + I(y) -(12-) 1,
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by (2.13). Because of the choice of l, there exists kN so that x’= x-k and 1’2-=
12-- k are both in [0, 1]. We can, moreover, choose binary expansions for x’ and 1’2-with coinciding first j digits (choose the expansion ending in ones for I’2-, and if x’
is dyadic, the expansion ending in zeros for x’). It follows that

[[Ta(,)’’’ Td(,)[Vo(’x’) -Vo(’(/’2-))]l
_< CA C2-,

where we have used (2.11), the boundedness of v0, and v0(u)-vo(U’) e E1 for all u, u’.
Similarly we can bound [f(y)-f(/2-J)l; putting it all together leads to

If(x)-f(y)l C’2-= C"lx-yl=,
which is (2.12). U

Remarks. (1) Note that the argument in point (7) would also work, in principle, if
A <1/2. In that case If(x)-f(y)l<= cIx-yl/ woud follow, with e > 0, which is, only
possible if f= constant. Since support (f)=[0, N] and f is continuous, this implies
f--0. It follows that A in (2.11) necessarily satisfies A _->1/2.

(2) Under the conditions of this theorem, for 0-<x -< 1 all infinite products
Tda(x)Td2(x)Td3(x of the matrices To and T converge to the limit matrices

f(x) f(x) f(x)
f(x + l) f(x + 1) f(x + 1)

Tdt(x)Td2(x)Td3(x .....
f(x+)V-1) f(x+)V-1) f(x+N-1)

Theorem 2.2 is similar to Theorem 5.1 in Micchelli and Prautzsch (1989), with
the following differences. On one hand, IMP] are only interested in continuity, and
technical condition (b) in their Theorem 5.1 is a little less tight than our (2.11), although
both are very similar. On the other hand, they have extra conditions (a), (c), (d), which
are here automatically satisfied because we have restricted ourselves to the case where
the sum rule (2.2) holds.

To apply Theorem 2.2 we have to verify the technical condition (2.11). It might
seem impossible to check in practice, since it involves the norms of infinitely many
products of matrices. It turns out, however, that (2.11) can be reduced to a criterion
that uses only a finite-time computer search. This is the constant of the next lemma.

LEMMA 2.3. Define

(2.14) A max IITdl... TdmlE, 1/m.
dj=0orl
j=l,...,m

A necessary and sufficient condition for (2.11) to hold is that

(2.15) Am < 1 for some m e N.

Proof. Suppose Am < 1. Write n qm + r, with q, r e N, 0 _-< r < m. Then

A< max (1, A1, , Am-1)Am Am.

This implies (2.11) with A A,, < 1, and C A,"+ max (1, ,,-1Am-i). Conversely, if
(2.11) is satisfied, then A,,-< c1/mA, hence A < 1 for large enough m. U
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In some examples, the smallest value m for which (2.14) holds may still be too
large: up to a formidable 2" matrix norms may have to be checked for every candidate
m. In the next section, we shall see some additional tricks to simplify the search.

The technical condition (2.11) or (2.14) on To, T1 can be interpreted as a "spectral"
constraint. In fact, given two matrices So, $1, we can define (Rota and Strang (1960),
Daubechies and Lagarias (1991)) the joint spectral radius for So, $1 by

(2.16) t3(So, $1) lim sup max lisa,... Sdmlillm]
dj=0orl
j=l,...,m

In the case where the two matrices are identical, it is well known that (2.16) reduces
to the spectral radius. We have the following.

LEMMA 2.4. A necessary and sufficient condition for (2.11) to hold is that the joint
spectral radius I3(ToIE,, TilE,)< 1.

Proof We have t;(Tol,, TII,) lim SUpm- Am. If t;(Tol,, Tlle) < 1, then A,, < 1
follows for large enough m. On the other hand, the proof of Lemma 2.3 above shows
that h, < 1 implies h, =< c1/nlm for all n , which leads to t3(TolE, TIIE) < 1. [q

Note that if (Tol,Tl[,)-Ao 1, then (2.11) holds for all h> ho, but not
necessarily for h ho.

Remarks. (1) As noted before, the sum rule Y c2,= c2,+1 is not necessary for
a continuous solution to exist. An example is the continuous function f(x)=x/2
for 0-<x=<2, 2-x/2 for 2-<_x=<4, zero otherwise, which satisfies f(x)=
1/2f(2x)+f(2x-2)+1/2f(2x-4), with Y c2,=2, E C2n+l"-0" This example has been
obtained by "stretching" an equation that does satisfy (2.1)" the function f(x)=f(2x)
satisfies

f(x) 1/2f(2x) +jT(2x 1) + 1/2f(2x 2).

Consequently, the matrices To, T1 still have many interesting properties in this case,
even though they do not have a common left eigenvector for the eigenvalue 1.

(2) By the same argument as in the remark following Theorem 2.3, we necessarily
have Am---->1/2 for any choice of m t, where h, is as defined by (2.14).

(3) For any matrix T the spectral radius p(T),

is given by

p(T) max {llxl;/x eigenvalue of T},

p(T) lim IIT’II 1/’-- inf IIT’II 1/’.

If we restrict the choices dl,’", d, in (2.11) to either all zero or all 1, it follows,
therefore, that

(2.17) p(To[z,), p(TI[E,) < A,

i.e., all the other eigenvalues of To, T1 (excluding 1) have absolute value smaller than
A < 1. The condition p(To[zl), p(TI[e,)< 1 is, however, not sufficient to ensure that
(2.11) holds. An example is given by

N=3; Co=-.75, c1=.2,

c2 1.75, c3 .8.

In this case the spectra of To, T1 are {1,-.75, .95} and {1, .8, .95}, respectively. We
have, therefore, p(Tol,)= p(TllE1)= .95. On the other hand, the spectrum of To, T1 is
{1, .50976...,-1.06226...}, implying that A,, => (1.06226...)1/2> 1 for any rn.
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(4) Because of the special structure (2.8) of To, T1, it can easily be shown that

spectrum (To) {Co} t_J spectrum (M),

spectrum (T1) {CN} t_J spectrum (M).

In order for (2.11) to be satisfied, it is therefore necessary that Icol, Ic l-< 1.
(5) At the end of Deslauriers and Dubuc (1989), which mainly concerns the

solutions of an equation of type (1.2) corresponding to a symmetric Lagrangian
interpolation scheme, a conjecture is presented concerning generalizations to other,
non-Lagrangian, interpolation schemes. Translated in our present terminology, this
conjecture reads as follows.

CONJECTURE 2.5. Assume that , c, 2n+1--1. Define the bounded operator
A On 12(7/) by (Aa)=l c2j_lat. Then there exists a continuous nontrivial solution to
(1.2) if 1 is a nondegenerate eigenvalue of A and if all the other eigenvalues of A have
modulus strictly smaller than 1.

The operator A does have a rather bothersome spectrum, however; we find that
all the complex numbers with modulus strictly smaller than 1 are in the point spectrum
of A. For the simple case Co 1, c C_ 1/2, C 0 for In[ > 1, e.g., and h C, [hi < 1,
the sequence a defined by

a_ =0, nN

a=0, a=l, a.2 -2h ", a.2m=h’(h+l)
Aa=0 if n_-->5, n3.2 or 4.2

is clearly in le(7/), and satisfies Aax= Aa. It follows that the closed unit disk is part
of the spectrum of A. In practice, it may be very hard to decide whether 1 is the only
element on the unit circle that is not only in the spectrum of A, but also a true eigenvalue
of A. For this reason, this conjecture, even if true, does not seem to give an easily
checkable criterion for a given set of c, to lead to a continuous solution of (1.2).

We can prove a result analogous to Conjecture 2.5. Define, for any two matrices
So, $1, their "generalized spectral radius" by Daubechies and Lagarias (1991)

p(S1, S2) lim sup max p(Sd" Sd,,)l/n],
n-co dj=0,or

j=l,...,n

where p(S) denotes the usual spectral radius. Berger and Wang (1991) prove that

p(Sa, $2) (S,, $2).

Consequently Theorem 2.2. and Lemma 2.4 give the following.
THEOREM 2.6. Assume that the c, n 0,..., N satisfy _, c 1 , c+. Then

there exists a continuous nontrivial solution to (1.2) if p(To],, T],)< 1.
It would be of interest to determine necessary and sufficient conditions on {c,}

for the existence of a continuous solution to (2.1) having c 1 -- ce+.
(6) The same analysis can be done for two-scale difference equations having larger

(integer) values of k. In general, there will then be k different (No+l)
(No+ 1)-matrices To, , Tk-1, where No is the largest integer strictly smaller than
N/(k-1). Instead of binary expansions of x e [0, 1], we take the expansion of x in
base k. Otherwise, the proofs carry over without change.

3. Higher-order regularity. If L additional "sum rules" of the type (2.1) are
satisfied, then techniques similar to those that proved continuity and H/Slder continuity
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in the preceding section can be used to show that f C, with > 1. The enlarged set
of "sum rules" is

N

Icn 0 for 0,1, L;(3.1) (-1)nn
n-----0

N inthis is equivalent to requiring that p()- 1/2 =o c e is divisible by (1 + ei)TM. For
L-0, (3.1) reduces to (2.1). We define the vectors uj E,j- 1,..., L+ 1, by

(3.2) (Uj)k- kj-l, k- 1, N.

The vector Ul is a common left eigenvector of To, Ta, with eigenvalue 1. Similarly the
uj lead us to left eigenvectors of To and Ta with eigenvalue 2-j/a (see below). This
spectral analysis of To, T1 can then be used to prove the following generalization of
Theorem 2.2.

THEOREM 3.1. Assume that the c, n- 0,... N, satisfy n=oV c 2 and

N, (-1)nlcn --O for 1-0,1,...,L.
n=0

For every m- 1,..., L/ 1, define Em to be the subspace of Rrv orthogonal to Um-
Span {Hi, , u} where uj (1 j-i, 2-a,..., N-I). Assume that there exist 1/2 <- A < 1,
0 <- <-_ L(l N) and C > 0 such that, for all binary sequences (dj), and all m ,
(3.3) ]lTdl TI+11--<
Then

(1) There exists a nontrivial continuous Ll-solutionffor the two-scale equation (1.2)
associated with the cn

(2) This solution f is times continuously differentiable;
(3) If A >1/2, then the lth derivative f) off is H61der continuous, with exponent at

least Iln AI/ln 2; if A =1/2, then the lth derivative fl off is almost Lipschitz: it satisfies

If’(x + t)-f(t)(t)l--< Cltllln Itll.
Remarks. (1) The restriction A <-_ 1/2 means only that we pick the largest possible

integer l-< L for which (3.3) holds with A < 1. If L, then we shall see below that
necessarily A _>- 1/2; if < L and A < 1/2, then we could replace by + 1 and A by 2A, and
(3.3) would hold for a larger integer I.

(2) The formulation ofTheorem 3.1 implicitly assumes that L+ 1 < N. If L+ 1 N,
then Ut/a=R, Et/a={0}, and condition (3.3) becomes meaningless. In the case
L+ 1 N, the (N + 1) coefficients c, are completely determined by the N "sum rules"
(3 1) and the requirement u,=0 c, 2. The characteristic determinant of the resulting
system of N+ 1 linear equations is different from zero (it can be written as a positive
linear combination of positive Vandermonde determinants); the unique solution to the
system is c, 2-N+I(nN), 1 --0," N. For N 2, e.g., we find Co 1/2, C 1, C2--1/2. The
corresponding function f(x) is given by

f(x) { 0-<--1<-- 1’
-x l_--<x<-2.

This function is Lipschitz but not C a. This is typical of what happens for larger values
of N, when L+ 1 N: the corresponding function f is the B-spline function of degree
L, which is C L-a, and its (L- 1)-th derivative is Lipschitz, but not everywhere ditterenti-
able. The points where f(L-a) fails to be differentiable are 0, 1,. ., N, where the left
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and right Lth derivatives of f do not coincide. In most of what follows we shall
implicitly assume L+ 1 < N.

To prove Theorem 3.1, we shall need several technical lemmas. The first one shows
how the uj are related to left eigenvectors of To, T1 with eigenvalue 2-j+l.

LEMMA 3.2. Assume that (3.1) holds. Let To,T1 be defined as in (2.8), u,j=
1, , L+ 1 as in (3.2). Define U: Linear span {Ul, , u}, j 1, , L+ 1. For all
j 1, , L+ 1, 2- is an eigenvalue of both To, T1. The corresponding left eigenvectors,

o respectively, are both in U:. Wefix their normalization by requiring thatdenoted by e, ej
0

Uj, Thene e -u U_I.

(3.4) e (-1) e
k=l 1

or, equivalently

(3.5) e: e,.
/c=l 1

Proof. (I) Define, for k 0,. , L,

C=Y (2n)c, Y (2n+ 1)c,+.

We then easily check from the definitions (2.8), (3.2) of To, T, and the that

n=l 1

,= -I

for j I, , L+ I. It follows that, for every j, 1 j L+ I, there are left eigenvectors
for both To, T, with eigenvalue 2-:+, in the linear span of {u, u2,"" ", u:}. We

o respectively. Thendenote these eigenvectors by e,

o(3.6)
n=l n=l

where we take aj,: 1 b.:.
o -:+1 o 1.T1=2-:+1(2) From (3.6) and e:. To 2 e:, e: e:, we derive

= n 1
(3.7)

a, C2-= i=o m-1
a,.

These equations determine a,, b, recursively, staing from %, b,. From (3.7) it
follows that

(j- (j-

where o 1 o, and the , satisfy the recursions

1
(3.8a) fl =oZ (k i)’. C-’2i’
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(3) Together with ao 1 =/30, the recursions (3.8) imply that

k 1
(3.9) ak Y (--1)’

,:o . t-,

or, equivalently,

k 1

i=0

One way of checking this is to verify that if the/3i satisfy (3.8a), then the right-hand
side of (3.9) satisfies (3.8b). It follows that

a,,, (-1)j-k
k=n k-1

bk.,.

This implies (3.4) and (3.5). [3

Instead ofthe piecewise linear splines in 2, here we shall use piecewise polynomial
splines of degree 21+ 1, where is the same as in (3.3). We shall determine the initial
spline function fo for the iteration by fixing the values offok)(m), 0 <- n <-- N, 0<--_ k<= I.
They will be defined in terms of the right eigenvectors of To, T1 for the eigenvalues 1,
,..-, 2-. We first show that these eigenvalues are all simple.

LEMMA 3.3. Assume that (3.1) and (3.3) hold. Then the l+l eigenvalues
1, 1/2,. , 2- of To, T1 are all simple.

o h 1 L+ 1 are left eigenvectors of To with eigenvalueProof. Since the ej,
2-+1, there exists an appropriate basis transformation B such that BToB-1 has the form

1 0 0

0 1/2
0

0 0 2-t

A

where A, C are (N-L-1)x(L+I)- and (N-L-1)x(N-L-1)-dimensional
matrices, respectively. The roots of the characteristic equation for To are, therefore,
1, 1/2,..., 2- together with the roots of the characteristic equation for C. It is easily
checked that C= BI+,ToI+,B-’IB+,; the spectral radius p(C) of C can, therefore,
be bounded by

p(C) lim sup
kc

<-lim sup
kcx3

_--< lim sup [[IBI+,II IIB-11.+,II cAk2-lk] 1/k

k-cx3

A2-/< 2-l.

It follows that the eigenvalues 1, 1/2,. ., 2-t of To are also simple. A similar argument
applies to T1.

Since the eigenvalues 1, 1/2, , 2-t ofTo are also simple, it makes sense to introduce
the corresponding right eigenvectors , 1 _-< k <- + 1, which are uniquely determined,
up to normalization. We fix their normalization by requiring

l<_k,k’<__l+l.
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We similarly define right eigenvectors , of T1 corresponding to the eigenvalues
1, 1/2,..., 2-1, with normalization determined by

l<_k,k’<_l+l.

We now define the piecewise polynomial spline for fo of degree 21+ 1 by

(3.10)

(--I)kk !(+),+i, k=O,..’, I,
n=0,...,N-l," aJ)’n’=

0, k=0,...,l,
n=N.

Remark. Because (To)in Coting, the vector (1, 0,. , 0) is a left eigenvector of To
2-I -k,with eigenvalue Co. It follows that ce {1, , }, since Co 2 0-< k <- would

imply the existence oftwo linearly independent left eigenvectors for 2-k. Consequently,
(+) (1, 0, , 0) ,+ 0 for 0 =< k -</. (We can prove completely analogously
that the right eigenvectors of T1 satisfy (,+I)N =0 for k= 1,..-, l.) For n=0,
(3.10), therefore, specializes to

fok)(o) O, k 0,..., l,

so that, despite appearances, there is complete symmetry between the constraints at
zero and at N, the two ends of the support of fo.

As in 2, we again use the "folding" process that associates to a function g: - ,with support [0, N], the vector valued function w, [0, 1]-N by means of

[w(x)],=g(x+n-1), x6[0,1], n=l,...,N.

The function g is times continuously differentiable if and only if w is times
continuously ditterentiable on [0, 1],

(3.11) [wk)(0)], [wk)(1)],_, 2<-n<=N,O<=k<-l,

(3.12) [W(k(O)],=O=[w(k(1)]N, O<=k<--l.

"Folding" fo leads to the vector valued function Vo: [0, 1]-->, each component of
which is a polynomial of degree 2/+ 1; Vo satisfies (3.11) and (3.12). In particular, for
n=2,...,N,k=O,...,l,

(3.13)
[v0k)(0) ], [v0k)(1)],_l (-- 1)kk [+
[v0k)(0)], [v0k)(1)]N 0.

Iterating the linear operator V defined by (2.3) on fo leads to a sequencef of piecewise
polynomial splines of degree 21 + 1 and finer knot sets; their "folded" versions vj can
also be written as

vj V:vo or v:(x) Tal(x)Ta2(x) Taj(,)Vo(rx)

(see 2). We now have the following lemma.
LEMMA 3.4. For every j d and 0 <-_ k <-_ min (21 + 1, L),

(3.14) e+l" vj(x) (--1)kxk.
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Proof. (1) We start by proving the assertion for j =0. By the construction of
Vo, e. Vo(X)- Pk(X) is a polynomial on [0, 1] of degree 21 + 1. It is completely deter-
mined by the values of the pkm)(o), Pk")(1), 0_--< m--< I. It, therefore, suffices to prove

(3.15) P"(O) (-1)kk! tkm

(3.16) Pk’(1) I(_l)k k!

(k-m)!
ifm<-k,

0 if m>k.

We have (use (3.13))

P")(O) e,+ Vo’)(O) 1)’me,+l-oem+l

(--1)kk! tSkm,

which proves (3.15), and

(3.17)
N-1

P(k")(1) e,+l (om)(1) (--1) mrtl!" 2 (e+l)n(em+l)n+,.~
n=l

Due to the special structure of To, T1, we have

~1~0 (em+l)n(em+l)n+l

Since (1,,+1)N--0 (see the remark after (3.10)), (3.17) reduces to

pk,)(1) (1),mVe+l-1em+l,

which can be computed with the help of Lemma 3.2:

er+l em+le +, "em+ 2 (1)k-r ~1

r=O

0 if k<m,

(_l)k_, k
ifk>-_m.

Hence

(km)(1) I(0 1) k
k!

(k-m)!

which proves (3.16) and establishes (3.14) for j =0.

if k>-m

if k<m,

(2) For higher values ofj we proceed by induction. Suppose (3.14) holds for
Then

(3.18) e+l" Yj+l(X)--e+l "Td,(x)j(7"X).

If x--<_1/2, then d(x)-0 and (3.18) becomes

e+l" vj+l(x)= 2-ke+l L/(2x)
2-k(--1)k(2x)k (--1)kxk,
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which is (3.14) again for index j + 1. If x > 1/2, then we use Lemma 3.2 again"

e+l TlV(2x 1)
r=0

(-1)k-r 2 es+l vj(2x- 1)
=O =0 S

(2x-1 (-1 (-1)-s=0 t=lO

(-2)- 2: (2x- 1

(-2)-(2x) (-1)x
which is again (3.14). This proves the lemma.

We need one more technical lemma before we attack the proof of Theorem 3.1.
LZMMA 3.5. Assume that (3.1) and (3.3) hold. If A > , then there exists C > 0 so

that, for all binary sequences (dj), all m , and all k with k L,

 3.19 = cxm2

IfA =, then (3.19) still holdsfor l+ 1 k L; for k= l, (3.19) is replaced by the slightly
weaker bound

(3.19’) llTa,""" Tal/+l[ Cm2-<l+).

Note that we implicitly assume < L; if L, then the lemma is trivial.

Proof (1) We prove (3.19) by induction, working from high to low values of k.
For k L, (3.19) is (3.3), and we have nothing to prove.

o(2) Because of the existence of the left eigenvectors e, era, 1 m L+ 1 for
To, Ta, with eigenvalues 1,,.-. 2-, and the relationships (3.4) and (3.5) between
these eigenvectors, there exists an appropriate basis transformation B so that
(B-,, oem)= 6, and BE= {w; w=0 for rm}. The matrices BToB-, BTB- have
the form

(3.20) BToB-1

1 0 0

0

0

0 0 0 2-L

Co
1 0 0

t2,
0

2-LtL+l, tL+l,L(3.21) BTB-a

C1
The matrices BIEk+ITdIEk+B-11nEk+, are then obtained by deleting the first k+ 1 rows
and columns of (3.20), (3.21). Let us denote these (N k 1) x (N k 1)-dimensional
matrices by S]. It then follows that, for _-< k _-< L- 1

(3.22) S:(2
-k- 0 0)

where Cog, C1k are (N-k-2)-dimensional column vectors
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(3) Let us now assume that (3.19) holds for index k + 1 ->_ + 1. Then

From (3.22) it follows that

2-(k+l)m/

(3.23) Sa, Sm=[
Odl

r=l

where

R+I k
dr- C dr

2k+1 k+
d Sdm

2 -(k+l)(m-r)k+l-dl "Sdr_lCdk
r=l

Ck+l 2-(k+l)(m-r)(A2-1)r-l’max
r:l

(2+-/)
C’2-(k+l)(m-1)

m_ 1
A2k+-_ 1

C"A9-Im

where we have assumed that A2k+l-t > 1, i.e., k + 1 or A >. We come back below
tothecase k=l+l,A=.

It follows that the three pieces in (3.23) are all bounded by C’"Am2-ira (since
k + 1 and A ). There exists, therefore, Ck (independent of m or the dj) so that

k k mlIISd,’’" 2-

This proves the induction step if k + 1 or A > .
(4) We now treat the case k + 1, A . In this case we find

2-(-e+ +
oa Na_Ca =< C+ 2-(+(-2-(+(-

r=l r=l

C+2-(+l(m-(m 1).

Therefore, the three pieces in (3.23) can all be bounded by C’2-(+

proves (3.19’).
We are now ready to attack the proof of Theorem 3.1.
Proof of eorem 3.1. (1) As a consequence of Lemma 3.4 we have, for 0 N k N l,

and all j, j’e N,

0,

hence (x)-,(x)e +1 for all xe[0, 1], all j,j’
(2) It follows that

sup
ye[0,1l

where

1 if
Y(J)=

j if;t=1/2.

m, which
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Consequently,
j-1

=<C 1+ yx(r)Ar2-tr

r=0

which is bounded uniformly in j and x.
(3) We now use this uniform bound to prove that the vj constitute a Cauchy

sequence in L. We have

I[Vj+r(X)--Vj(X)[[- [IT,(x) T,.,(x>[V,.(x)
<-- C%(j)AJ2-lj,

which can be made arbitrarily small by choosing j large enough, independent of r.
The vj tend, therefore, to a limit v, which satisfies

(3.24) Ilv(x)--j(X)[ =< C’},x(j)AJ2-lj.

(4) Since all the vj satisfy

[j(0)]n+ [j(1)],, 1 =< n --< N 1,

[v (0)],-- 0-- [v(1)]N,
so does v. It follows that v can be "unfolded" into a continuous function f, for which
(3.24) translates into

(3.25) IIf-11-< c(2-),
where ba(t)= l+ if ; >1/2, (t)= [og tit l+’ if Z =, with a [n ;l/n 2.

(5) Formula (3.25) tells us again how well f can be approximated by piecewise
polynomials, and this can be translated into smoothness estimates on f This result is
no doubt well-known to spline experts, but we could not find in the literature a full
proof of the exact result we needed. For convenience’s sake, we offer the following
proof "from scratch."

Note first that, by Lemma 3.4,

eO+,, yJl)(x {0 if k < l,
(-1)t/! ifk=l.

(l)It follows that v; (x) vJ!)(x ’) Et+ for all j, j’, all x, x. On the other hand, the recursive
definition of the vj leads to

cl)(x) l, (1) (TX).Z ldi(x)Vj_

Together, these two observations imply
(I) (X]lVj+l, )-vJ’)(x)ll- 2’llT<x T<)[v’)(x)

_--< CAJTx(j) sup [llv]/)(y)ll / IIv(0/)(y)ll],
y6[0,1]

(l)which can be used, similarly to the argument in (2) above, to prove that the v (x)
are bounded uniformly in j and x, and that the vJ l) are a Cauchy sequence in L. The
limit of the vJ is necessarily the /th derivative of v. Moreover,

I[/(/)(X)- vJ/)(x)II __< CAJya(j),

uniformly in x.
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The remainder of our argument is similar to (7) in the proof of Theorem 2.3 Take
x _<- y in [0, N] so that 2-+1) =< y x -< 2-j (a slight extension of the argument can be
used on a neighborhood of [0, N], so that the results are also true at zero and N).
Then there exists m N so that either (m 1)2- =< x _-< y -< m2- or (m 1)2-j -<_ x -<_

m2- <-y<-(m+ 1)2-. We discuss the second case; the first is similar. Then

[f(l)(x f(O(y)] <_ 2CA%(j) + if,) (x) _jjl)(m2-)l + if(y) fl)(m2-) l,
by the bound on v(/)-vJ. There exists n so that x’= x-n and m’2-j= m2--n are
both in [0, 1]; moreover, we can choose binary expansions for x’ and m’2-j with the
same j first digits. Consequently,

IfJ’)(x)-fJt)(m2-)[ =< IlvJt)(x ’) -vJ(m’2-J)
2 IlTa,(x) T4<)[V(o’)(rx’)-V(o’)(r(m’2-))]ll

=< CA%(j),
where we have used (3.3), the uniform boundedness ofv{o’)(y), and Vo’)(y) Vo)(y ’) e E,+,
for all y, y’. A similar bound holds for IfJ’)(y)-fJl)(m2-)l. Putting it all together, we
obtain, for 2 -(+1) IX Yl R-J,

If(’)(x)-f(’)(y)[ _< C’X3,(j),

which translates to

if a > , and to

If(’)(x) f(l)(y)l <_

[f(l)(x _f(l(y)[ <__ Cllog2 Ix Yll x Y[
if a=1/2.

Remarks. (1) If L, then we would not need Lemma 35, so that the assumption
a>--5 would never be used. The argument of (7) would work if (3.3) held for a <1/2,
but it would lead to a Hflder exponent a larger than 1 for f(l), hence to f(l) =_ O. This
is incompatible with the fact that f is compactly supported, except if f--0. It follows
that for matrices To, T1 constructed as in (2.8), the constant A in (3.3) is necessarily_->1/2
if/=L.

(2) We chose fo so that v(o)(0) (-1)k!6+1 (see (3.13)). Since, for x<2-,
vJ)(x) 0v0

it follows that

v))(o) (_)k,.oOk+l
(-)k!L,,

where we have used To+l 2-k.,+, Hence the fJ)(n), Ok l, are independent of
j. Because of the bounds (3.25), this implies also, for 0 k I,

f()(n) =fJ)(n) (-1)k [+,],+,, 0N n N N- 1,
(3.26)

f(k)(N) =0.

In 1.5 we had already seen that the f()(n) were linked to the right eigenvectors of
M for the eigenvalues 2-, but it wasn’t clear how to choose their normalization, explicit
in (3.26). Note thatf)(n)=f()(n) for 0N kN/implies thatf) converges tof() for
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0_-< k<_-1 (see Theorem 4.2 in part I)" not only do the f themselves converge, their
derivatives up to /th order do as well.

(3) By continuity, Lemma 3.4 carries over to v(x)" for 0_-< k _-< min (2/+ 1, L),

(3.27) C+l" v(x) (--1)kx k.
The following lemma states that (3.27) holds for all k- L, even if 21 + 1 < L.
LEMMA 3.6. For all 0 <- k <= L, e+l v(x) (--1)kxk.
Proof. (1) If 21 + 1 -->_ L, then we have nothing to prove. We assume 21 / 1 < L and

restrict ourselves to k > 21 + 1.
(2) We only need to prove the lemma for dyadic rationals x; by continuity it then

holds for all x [0, 1]. Take, therefore, x n2-j. The proof works by induction on j.
(3) If j=0, then only n=0, 1 lead to x[0, 1]. Since V(x)=Tdl(X)V(’rX), we have

v(0) Toy(0), v(1) Tlv(1). Consequently,

e+l" v(0)= e+l" Toy(0)= 2-ke+l V(0);

hence e+l" v(0)-- 0. Similarly, e+l-v(1)=0, which implies (use Lemma 3.2)

=(--1)ken’v(1)=(--1) k,
where we have used (3.27) for k=0. This proves e+l" V(X)=(--1)kxk for all dyadic
rations x n2-j with j 0.

(4) Suppose that the lemma holds for all x n2-,j fixed, 0-<_ n < 2. Take y of
the form r2--1, rN, 0_-< r-<2+. If y-<1/2, then

e+l" v(y)= e+l" Tov(2y)

2-ke/l v(2y) (--1)k2-k(2y) k (by induction)

If y _-> 1/2, then
(- 1 )kyk.

e+l" v(y) e+. Tv(2y 1).
As in the proof of Lemma 3.4, we have

s+l
s=l

Hence

e+l "v(y)=2-k()(-1)k-s(1-2y)ss=o (by induction)

=2-k(--2y)k=(--y) k.
This proves the lemma. U
As in 2, the condition (3.3) can be reduced to a condition involving only a finite

number of matrix norms or interpreted as a "spectral" constraint:

(3.3)<=> ;(Tol+, TI+,) < 2-1,
(3.28) <=> =l rn N so that

L
3’, max [[Tdl""" Td,IEL+II[ /m <2--1.

dj=0orl
j=l,...,m

LIf (3.28) holds for some m, then (3.3) holds with A 2 Ym.
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Even the condition y < 2-1 for some m N may be hard to check in practice: for
any fixed m, it is necessary to verify the norms of 2 matrices. Some simplification
may occur if the c, are symmetric, cj cN_j, but even then the number of matrices is
huge if m is large. In the case of the Lagrangian interpolation scheme with dilation
factor 2 and 5 nodes (see 5), we find that y <1/2 only if m => 7. Because the c, are
symmetric in this case, the number of matrices to check is only 26 instead of 27 but
that still amounts to a large number of computations for a fairly simple example. We
can reduce the number of computations significantly by some simple tricks listed in
the following proposition.

PROPOSITION 3.7. The following are all equivalent to (3.3).
(1) For some m N,

(3.29) y < 2-’.
(2) For some N N-matrix B with det B O, and for some m ,

(3.30) L ,T,;B < 2-

where

3m;a max
dj=0orl
j=l,...,m

with d BTdB-1.

(3) There exists a finite collection of "building blocks" D, j 1,..., J, with D=
{d, d,..., d}, each d 0 or 1, which is complete, in the sense that every dyadic
sequence can be written as a sequence of blocks D and for which

(3.31) max t<2-l,
j=l,’",J

where t
oo (1) The proof of the equivalence (3.3) (3.29) is similar to the proof of

Lemma 2.3.
(2) We prove (3.29) (3.30). Since

we have L 1/nTLr.,  KIIBII liB- II] By the same argument used in the proof of Lemma
2.7, y <=. C1/’T for some C > 0. If y <2-/, it follows, therefore, that T,;BL < 2- for
large enough n, This proves (3.29) (3.30). The converse implication is proved in the
same way.

(3) The implication (3.29)(3.31) is obvious: it suces to take the 2 "building
blocks," each consisting of m entries, with every entry zero or 1.

(4) Finally, we prove (3.31)(3.29), which completes the proof. Suppose (3.31)
is satisfied. Define K =max {k;j 1,..., J}, C =max
or 1 for each j}. Take now any fixed sequence (d), and n . The n-tuple (d d,)
can be written as a sequence of building blocks D, followed by a stretch of entries
that has at most length K,

(d... d)=
L DIf a max o, and denotes the number of entries in D, then we have, therefore,

liT<""
<_ 2-amc21Kce-K

which amounts to (3.3).
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LNote that the bounds on y, on T,,;B, or on the tJ all lead to lower bounds for the
H61der exponent of f(L), since (3.29)-(3.31) are equivalent with (3.3), with 27,,,1L
2 L 2’,,;, or max tJ playing the role of h.

It is, of course, possible to combine (3.30) and (3.31) and to define t-r (for the
matrices a BTaB-). A bound on the -r, similar to (3.31), is again equivalent with
(3.3).

Remark. The proof of Theorem 3.1 presented here relies on arguments which
translate convergence rate to f by spline functions into regularity estimates for f. There
exist generalizations of lattice two-scale difference equations to higher dimensions for
which it does not seem possible to find appropriate spline functions playing the role
of the f; here (one such generalization is outlined in the Appendix). For this reason
we present a sketch of a different proof in the Appendix, a fully detailed version which
would be longer and more complicated than the proof in this section, but which does
not use spline functions.

4. Local regularity and fractal sets. We assume again that the cn, n 0,..-, N
N

satisfy the L+ 1 sum rules (3.2) (with L+ 1 <N), as well as n:0 C=2. If (3.3) is
satisfied, then Theorem 3.1 tells us that f is times continuously differentiable, and
that f(l) is H61der continuous with exponent Iln hl/ln2. The proof for the uniform
H/Alder continuity of f(l-1) uses that, for any point x,

(4.1) IlTdl(x) Tdm(x)lEL+, ----< 2-mlAm"
In some cases, more accurate bounds on the left-hand side of (4.1) can be obtained
for some values of x, depending on the relative frequency of the digits 0 and 1 in the
binary expansion of x. This can then be used to compute local H61der exponents,
which may be larger than the uniformly valid H61der exponents for f(l-). More
precisely, we have the following theorem.

THEOREM 4.2. Assume that the c,, n =0,... N, satisfy the L+ 1 sum rules (3.2),
and assume that =o c, 2, with L < N 1. Assume that there exist m N, and tXo, tx < 1
such that

--h(4.2) IlTdl""" Td I,+11[--<2 /./,ira/Z0

for all possible combinations of dj, dj 0 or 1, j 1,..., m, with S -’-Ej=I d;.
Let f be the solution f of the two-scale difference equation (1.2) associated with the

c,, and let f(1) be its lth derivative, which exists and is H61der continuous, with exponent
min (lln 11, Iln l)/ln 2, by Theorem 3.1. Take x [0, N]. Assume that the decimal part
of the binary expansion of x satisfies

(4.3) r,, (x) __1 E d(x) tends to a limit r(x) as m ->

(4.4) 0< r(x)<l.

Then the following holds:
(1) For all e > 0, there exist > 0 and C < c such that

(4.5) [f(L)(x)--f(L)(x + t)l--< fit[(- if Itl<
where a(x)=-min {1, [(1-r(x))[ln/Xol+ r(x)[ln/Xl[]/ln 2}, with r(x)= r(x- [x]) as

defined by (4.4).
(2) If leo->1/2> L(, and r(x) > (In 2-[ln Zo[)/lln /Xl[- Iln/Xo[), or if 1 -> UI,0 and

r(x) < (ln ol-n 2)/([ln ol- Iln 1), then f(l) is differentiable in x.
To prove this theorem we need the following lemma.
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LEMMA 4.2. Take x[0, 1]. Assume that (4.3) and (4.4) are satisfied. Then, for
all e > O, there exists an N so that, for all m >-N, the m first digits of the binary
expansions of x and x + are identical whenever

Proof (1) Fix e > 0. Choose 8 small enough so that

(4.6) [1 r(x)- 8]-126 -< e and [r(x)- 6]-126 <- e.

There exists N so that Ir,,(x)- r(x) <= 8 for m >_- N.
(2) Now choose m_-> N and 0-<_ <2-m1+)-1. If dm+l(x)=O, then it follows

from <2-m-1 that dj(x)= dj(x+ t) for all j=< m, and we are done. Suppose that
d,,+l(X)= l=d,,+z(X) dm+s(x), and d,,+s+l(X)=0. Then the condition (4.6)
implies an upper bound on s, since r,,+s(x)<-r(x)+ 8, while r,,(x) >- r(x)-8. Using
rm+s(x)=(m+s)-l[mr,,(x)+s] together with these restrictions leads to s=<

m28[1-r(x)-8]-l<= me. Therefore, <2-m1+-1_<2-m+)-l. Since d,,+s+l(X)=O,
this implies dj(x) dj(x + t) for all j =< m + s.

(3) The argument for -2-"1-)-1 < t=<0 is similar. If dm+l(X)= 1, then dj(x)=
dj(x + t) for allj < m because Itl < 2-"-1. If d,,+l(X) 0 d,,+z(X) dm+(x), and
d,,++l(x)=l, then s<=m28[r(x)-8]-l<=me. Hence t>-2-’+)-1, which implies
d(x) d(x + t) for all j <-- m + s.

We now proceed with the proof of Theorem 4.1.
Proof of Theorem 4.1. (1) Since /*o,/1 < 1, (4.2) implies (3.29), hence (3.3), so

thatf is times continuously differentiable. By Lemma 3.6 its "folded" version v satisfies

e+l’vl)(y)=(--1)tl!81k for 0<-- k<-- l,

which implies

vI(y) v1(y,) El+l for all y, y’ 6 [0, 1 ].

(2) It follows from (4.2) that there exists C > 0 so that, for all p ,
(4.7)

(by the same argument as in the proof of Lemma 2.3). The same arguments used in
the proof of Lemma 3.5 can then be used to derive that, for p => 1,

where the constant C may be different from that in (4.7), and where we have introduced
the extra p for the case where/-/g--= 2 for some n.

(3) Fix x [0, N], such that r(x) is well defined and 0< r(x)< 1. Note that this
excludes all dyadic rationals x, since these have r(x)=0 or 1, depending on which
binary expansion is chosen (for dyadic rationals, there are two binary expansions).
Fix e > 0. There exists y > 0 so that

(4.9)
[(1 r(x) y/2)lln/ol + (r(x) y/2)lln 111/(1 + y)

->_ (1 r(x))lln/o1+ r(x)[ln k,[- e/2= ce(x)- e/2.

Define 81 --2-(1+)-1 where Nr is chosen as in the proof of Lemma 4.2
(4) We have x=n+y, with 0<y<l, n=0,1,..., or N-1. Take

min (81, x n, n + 1 x). Then Ix + t] Ix] n. It follows that

[f(’)(x)-f(’)(X + t)[ (t) (t)-(X +I*.+,(x- ") -*.+,
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(5) Since Itl < a, there exist p-> Nv so that

(4.10) 2-{P+’){’+v)-’ Itl < 2-p(1+’)-1.

By Lemma 4.2, dj(y)= dj(y+ t) for j <_-p. Hence
V(1)(y v( l) (y + t) 2plTa(y) Tap(y)[v( l) 7"Py v( l) (’r Py -k 2Pt)].

It follows from (4.8) that

(4.11) IIv{l)(y)--vl)(y+
(6) From the proof of Lemma 4.2 we have

Ir,,(y)- r(y)l<-_ ,s,
with Jr(y)-8]-’215 <= % hence 8<-r(y)3"/2<= 3’/2. Substituting this in (4.11) we find

Ilv</)(y) -v(y + t)ll--< Cptxl[r(Y)--m/2]la’g[1--r(Y)--’/2]
<= C’p2-[(P+l)(l+v)]{["(Y)-r/2]lln,l+[1-r(Y)-/2]llnol}/ln2
-<_- C"(1 +lln Itll)ltl
<__c,,,Itl<,,-,

where we have used (4.9). This proves the first part of the theorem.
(7) Suppose now that t,o->_1/2>/xl, and that r(x)> 0n2-1n *ol/[n   l-Iln

i.e., /*{x}/x-r0’ <1/2. Choose 3’ so that
r(x) 1-

and
2-=_> a(x).

Choose Nv corresponding to 3’, as in Lemma 4.2. Then, as before, for p >- Nv, rp (y)-
r(y)l <= 3"/2; hence

,;p<)tz-v<)< a(x)/2 < 1/2.
It follows then from (4.2) that there exists C > 0 so that, for p _->

IIT<y)... Ta.y)le+l -< 2-<’+’)a(x) p.

The same arguments used in the proof of Lemma 3.5 lead to

(4.12) IITd,{y) Ta.<)le,+ll -< C2-"<’+’)a(x) .
(We assume a(x) > 1/2; if necessary we replace a(x) by 1/2+ e.) Since a(x) < 1, this means
that the eigenvalue 2-{I+Ip of Tdl(y) Tdp(y) is simple. It follows that Tdl(y) Tdp(y)
has a left eigenvector el+2(p; y) and a right eigenvector /+2(P; y) for this eigenvalue,
both uniquely determined, except for their normalization. By the structure of To and
Tl,el+2(p;y) is necessarily a linear combination of the Uk+l, 0=<k--</+l, or
equivalently, of the e+l, 0=< k=< l+ 1; we fix its normalization by requiring that the
coefficient of e+2 (which is necessarily nonzero) is equal to 1. We also fix the
normalization of +2(P; Y) by the requirement

e,+(p; y). ,+(p; y)= 1,

or equivalently, since /+2(P; Y)e E,+I, e+2 l+2(P; Y)= 1.
(8) The vectors I+2(P; Y) are uniformly bounded in p and converge to a limit as

p- 00, as shown by the following argument. We have

g/+,_(p; y)- g,+(p + 1; y)

2(l+l)PTd,(y) Tdp(y)[,l+2(p; y)_ 1+12 Tap+,{y)el+2(p+ 1; y)].
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Since e+2" Td 2-(/+l)e+2+linear combination of e+l, 0-< k_-< 1, we find e+2"
[/+2(P + Y) 2/+1T 1+1dp/l(r)et+2(p + 1, y)] 0, i.e., ,l+(P," y) 2 Tdp/y)l+(p + 1", y)
Et+2. Hence, by (4.12),

(4.13)

which implies, for large enough p,

116,+(p + 1; y)ll <- [1 + CA(x)P][1 CA(x)p]-lll,t+2(p; Y)II
_-< exp [3C,X(x)"]l[,t+_(p; Y)ll-

Hence, for all p > Po, where Po is chosen large enough,

116t+(p; y)ll--< exp {3 C;(x)o(1- x(x))-]ll,+(po; y){I -< c’,

and, by (4.13),

[16t+(p + r; y) 6t+(P; y)ll <-- 2cc’,x(x)"(1 ;(x))-1,

so that the 6t+_(p; y) form a Cauchy sequence in p, with limit 6t/2(Y).
(9) Any u in Et/l can be written as

U I+:z(P; y)(e+ u) + u’,

where u’ EI+, since e+_, u’= 0 and Ilu’ll <- C llull, with c independent of p, because
the /+(p; y) are bounded uniformly in p.

Choose now Pl max (Po, N), with Po, Nv as in (7) and (6). For
there exists p >-Pl so that

2-(P+1)(1+3’)-1 Itl < 2-’<+-,
which implies that x and x + t, or y and y + t, have the same p first digits in their binary
expansion. Then

VO(y + t)--v<l(y)= 2tPTd,<y) TdpyU,
with u=vl)(’Py+2Pt)-vl)(’Py) El+l. By Lemma 3.6, e+2" u (-1)1+1(/+ 1)!2Pt, so
that

v/(y) v(l(y + t) 21PTd<y) Tdy[(-- 1 )1+ 1(1 + 1 )! 2Ptl+(p; y) + U’]

=(--1)t+l(l+ 1)!t6l+(p; y) + U",

with Ilu"[[ _-< 2tPC2-P<t+A(x) p by (4.12), by the p-incident bound on u, and the bounded-
ness of v1). Because A(x)_--<2-v, it follows that,

(4.14)

-<_ (1 + 1) 1161+2(p; y)- 61+2(Y)I[ / C2v+22-vP-

As Itl-->O,po, and the right-hand side of (4.14) tends to zero, so that v is (1+ 1)
times differentiable in y (with (l+ 1)-th derivative (-1)t+(l+ !)!6/+2(Y)). Hence, f is
(l + 1) times differentiable in x Ix] + y, and the theorem is proved.

Under the conditions of Theorem 4.1, we find that different H61der exponents
correspond to the sets Vr,

(4.15) V {x [0, N]; r(x) r(x [x]) r}.
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These sets are fractal sets. Their Haussdortt dimension can be computed explicitly;
it is given by the following theorem, conjectured in I. J. Good (1941) and proved in
H. G. Eggleston (1949).

THEOREM 4.3. Forx[O, 1], kM, k>=2, and O<=l<=k-1, define rn(x; l, k) to be
the number of times, divided by n, that the digit 1 occurs among the first n digits of the
expansion of x in basis k. For any k-tuple (ro, rl,’", rk-1)= r with 0 <= rl <= 1 for all

k-1l<= k-1 and Yl=O rl 1, define
Vr(k) ={x[0, 1]; lim rn(x; l, k)= rl for/=0,..., k-l}.

Then Vr has fractal dimension 8 defined by
k-1

k-= H rrl’.
I=0

Remark. Note that the choice rl k-1 0, , k- 1 leads to 8 1. This was to
be expected, since in this case Vr contains all the normal numbers and, therefore, has
Haussdorff dimension 1.

Specializing to k 2, we find therefore that Vr, as defined by (4.15), has fractal
dimension

r[ln r[ + (l- r)lln (1 r)[
8-"

In 2

COROLLARY 4.4. We assume the same conditions as in Theorem 4.1, with 1/2 <= IXo, tZl.
Then, for any a, min ([In/Xol, Iln ,l) < < max (lln/Xol, Iln/xll), the set S ofx [0, N]
on which f is Hiilder continuous with exponent at least is a fractal set with Hausdorff
dimension d,, with

[In/Xo[ + [In/.L
d=l ifa -<

21n2

d -> rlln rl + (1 r)lln (1 r)
if a => ]ln/Xol + Iln/Xll

In 2 2 In 2

with

a In 2-Iln ol
r-Iln 11- Iln ol"

Proof The proof follows immediately from

dim (Vr) =rlln rl+ (1- r)lln (l-r). E!
In 2

As announced in the introduction, we thus find a hierarchy of fractal sets S, with
decreasing fractal dimension d for increasing H/51der exponents a. Similar fractal sets
can be introduced if/Zo < 1/2--</z or/z < 1/2-</o.

Remarks. (1) The different H61der exponents, and the associated hierarchy of
fractal sets do not occur as obviously if the coefficients cn, n 0, , N are symmetric,
i.e., if c, CN-n, n 0,’’’, N. In this case we find indeed that

OToO-1 =T1,

where O is the orthogonal matrix defined by

00 8N+l_i_j.
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We easily check that the subspaces Ul are invariant under O,

OUl= (N+ 1)’- (-1) "+
n=l r/ 1

inn"

It follows that the Ek are invariant under O’ =0-1= O. (O is an involution.) Con-
sequently,

T,lv -OlvTolvO-’lv
for all l=l,..-,L+l, and

If an inequality of type (4.2) were to hold for the Ta, this symmetry would immediately
imply that the same inequality would hold if/Xo,/Xl were both replaced by min (/Xo,/Xl).
The different H61der exponents a(x) then all collapse to the uniformly valid exponent
]ln (min (/Xo,/Xl))[/ln 2- e. Some fractal structure can still persist, however. An example
of this is given in 5.3.

(2) The "tricks" in Proposition 3.7 also apply here" in order to verify bounds of
the type (4.2) it suffices, e.g., to check a similar bound for the matrices a BTB-1,
restricted to BEd+l, where B is any invertible matrix. A convenient choice of B may
greatly simplify computations.

(3) In establishing local Hlder exponents and local differentiability we have
restricted ourselves to x such that r(x) lim,_oo r,(x) is well defined and 0< r(x) < 1.
In fact, it is possible to handle more general x as well. In fact, Lemma 4.2 tells us that
for those x for which r(x)=lim,_ r(x) exists and 0<r(x)<l, there can be no
"abnormally long" stretches of 0-s or 1-s. If x is not of this type (it is easy to
construct such x; they constitute a set of zero Lebesgue measure, however), then we
need to control these stretches in some other way. We show here how this can be done
when 1 >/Xo >/Xl > . For all x [0, 1 ], n [, we define

w,(x) min {k; d,_k(X)=O}/n.

Then nw(x) is exactly the length of the stretch of digits 1 ending at n; in particular,
if d, (x)= 0, then w 1.(x) 0. A detailed analysis shows that, for 0 < < 2-",

Ilv(/)(x) v(’)(x / t)ll-<- c[’;r"(x) [’1’) (1-rn(x)) -[- [nl(nx(X)-n(X))+ ’lJb)( ’-rn(X)+n(X))].
For -2-" < =< 0, we find

[[(/)(X)- V(/)(X + t)[ - C[,zrn(x) ldb) (1-rn(x))

where w l, doesn’t enter because/Xo>/Xl. Now define

?(x) lim sup r,(x),

r(x) lim inf r.(x),

l(x) lim sup [r,(x)- w 1,(x)],

rl(x) lim inf [r,(x) w 1,(x)].

Then it follows that, for small enough

Ilv(/)(x)- v()(x / t)ll--< Cltl -’<x)lln’l+<l-’x))lnl)/ln2
<: cltl{t(x)llnx,l+(x)llnxol}

if t->0,

if t-<0.
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This effectively defines two local H61der exponents a+(x), one from above and one
from below. Similar bounds can be derived if o< 1; in this case we need to introduce
o,(x), measuring the stretch of zeros preceding the digit d,(x).

The situation/o=>1/2>/1 or 1>--1/2> 0 is a bit more tricky, but can be dealt with
in the same way. Note that if r(x) is well defined, then (x) _r(x) l(x) _rl(x) r(x).

(4) The two H61der exponents a+(x) introduced in the preceding remark, one
from above and one from below, are particularly interesting in dyadic rational points
x. For such points, we have two possible binary expansions, one ending in all zeros,
the expansion "from above," which we denote by d+(x), and one ending in all ones,
the expansion "from below," denoted by d-(x). For the H61der exponent from above,
we have to start from d+(x). We then have

l(x)=r_l(X)=O

leading to a+(x) Iln ol/ln 2. Similarly, for the H/51der exponent from below, starting
from d-(x), we find

(x) =_r(x) 1;

hence, a_(x) [ln/ll/ln 2.
If o> > 1, we similarly find that f is left but not right differentiable in every

dyadic rational point.

5. Examples. We treat three classes of examples, namely orthonormal wavelets,
the de Rham function and generalizations, and the interpolation functions arising in
Deslauriers and Dubuc’s Lagrangian interpolation scheme or studied in detail by Dyn,
Gregory, and Levin.

In many of these examples we shall use the tricks proposed in Proposition 3.7.
In particular, we shall try to determine matrices B so that the BTdB-1 are easier to
study than the Td themselves. If the cn satisfy L+ 1 sum rules, then a very particular
choice for B is the following:

1)!(J-l for i<=L+(- 1,
\ill

B,=
LI(j _i+L) for i>L+l

L

where we use the standard convention that the binomial coefficient (12) vanishes if

n2 > nl. This is a triangular matrix; for =< L+ 1, the ith row can be written as ui linear
combination of Uk, k< i. It is easy to check that the inverse matrix B-1 is again a
triangular matrix, given by

1
[(J-1)!]-1 forj_-<L+l,

(B-1)’J
),+( L+I )1

i-j+L+l
(L!)- forj>L+l.

Note that for -< L+ 1, the ith row of B is a linear combination of Ul, Uio Because
of the special choice of the first L+ 1 rows of B, and because of the spectral properties
of the Td, with their nested left invariant subspaces spanned by the {Ul,’’’, Uk},
k-<_ L+ 1, we find, therefore, that

(BTaB-1)ij 0 if i<=L+ 1,j> i,

2-i+1 if =j_-< L+ 1.



TWO-SCALE DIFFERENCE EQUATIONS: LOCAL REGULARITY 1061

This means we are in the situation described in the proofs of Lemmas 3.3, 3.5; in order
to prove bounds on products of the restrictions TdlEL+I, it suffices to consider the
smaller matrices obtained by deleting the first L/ 1 rows and columns of the BTd B-1.
These submatrices are completely determined by Td and by the last (N-L-1) rows
of B and the last (N-L-1) columns of B-1. The matrix elements in these rows and
columns depend only on the difference j- between column and row index. Since the
(Td)i,j C2i-j-l+d depend only on 2i-j, this property will, therefore, be shared by the
submatrices representing BIEL/,TdlE/,B-11E/I. The entries of these submatrices will,
in fact, be given exactly by the coefficients of the quotient of cn ein by (1 + ei)TM.
That is to say, if

then the last (N-L-1) rows and columns of the BTdB-1 will be given by

(BTdB-1)0 2tq2i_j_(S_l)+a.

This observation reduces the study to much smaller matrices, obtained by "peeling
off" the sum rules; this is the analog, in our matrix notation, of the reduction from an
interpolation subdivision scheme S to the "smaller" subdivision schemes S(") in Dyn
and Levin (1989). A similar observation can also be found in Deslauriers and Dubuc
(1989).

5.A. Orthonormal wavelets with compact support. An orthonormal basis ofwavelets
is a family of functions generated from one single function by dilations and translations,

(5.1) Ojk(X) 2-J/2O(2-X k), j, k 7,

such that the resulting I[Ijk constitute an orthonormal basis of L2(R). A typical construc-
tion of such a basis involves the construction of an auxiliary function b such that

(5.2) (x) Y c,6(2x- n)

for some family of coefficients c,. In order to lead to an orthonormal wavelet basis,
the c, should satisfy the condition

(5.3) [p(sC)[2+ [p(+ 7r)[2= 1,

where p(:)= 1/2 Y,n c, e". If this condition is satisfied, then there exists an L2-solution
to (5.2), and the associated q is given by

(5.4) if(x) =E (-1)’c,+th(Zx + n).

For a thorough discussion of this construction, with proofs, see Mallat (1989) and
Meyer (1990). Equation (5.2) is a two-scale difference equation. If there is only a finite
number of nonvanishing c,, then (modulo some convergence conditions) has finite
support, and so has , by (5.4). In Daubechies (1988) the structure of finite families
{on; n 0,. ., N} satisfying (5.3) was analyzed. It turns out that these c, are always
nonsymmetric if we also require to be continuous. If this continuity requirement is
dropped, then there exists one and only one symmetric solution" Co cl 1, all other
c, 0, which correspond to b(x) 1 if 0 =< x < 1, 0 otherwise, or q(x) 1 if 0_-< x < 1/2,
-1 if 1/2 <-x < 1, zero otherwise; the q% then constitute the Haar basis. Apart from this
example, the interesting finite families of c, are asymmetric, and the corresponding 4,
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therefore, have local regularity properties associated with fractal sets, as described in
4. The simplest examples are

l+x/ 3-x/
N=3, Co- c2-

4 4
(5.5)

3 + v/- 1-x/
C1 C34 4

N=5, Co 1 + vq--+ x/5 + 2Vri-]/16,
c, S + x/]-+3S +2]/16,
c 0 2+245 +21/6,

(5.6)
c 10 2 25+21/16,
c4 [5 +-35+21/16,
c 1 +-45 +21/16.

Higher-order examples (always corresponding to odd N) cannot be written in closed
form; a table with numerical values of the c,, for N up to 19, is given in Daubechies
(1988), as well as the recipe for their computation. For any N, we denote the associated
solution of (1.2) by u.

For N 7, we have for instance

Co .325803428051,

c 1.01094571509,
(5.7)

c4 -.264507167369,

c5 .043616300474,

c6 .046503601071,

c7 -.014986989330.
c2 .892200138247,

c3 -.039575026235,

(Note that these cn are larger, by a factor x/, than the coefficients h(n) in Daubechies
((1988), Table 1); the h(n) are normalized by Yn h(n)= x/).

Let us discuss in detail what the analysis of 2-4 leads to when applied to the
concrete examples (5.5)-(5.7).

A. N 3. The c, defined in (5.5) satisfy two "sum rules" oftype (3.1), correspond-
ing to /=0, 1 or L=I. It follows that N-(L+1)= 3-2= l, so that E/+I=E2 is
one-dimensional. The matrices To, T1 are given by

l+x/
0

4
3-x/ 3+x/3

To= 4 4
1-x/

0
4

3+x/ l+v/
4 4

1 -x/ 3 -x/
4 4

0 0

0

l+x/
4

3-x/
4

0

3 + v/-
4

1-x/
4

Their eigenvalues are 1, , (1 +x/)/4 for To, and 1,1/2, (1-x/)/4 for T1. Since 1 >
(1 +,)/4>1/2> 1(1-,/)/41 we are in the situation described in Theorem 4.1, with
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/’Z0>1/2> /’/’1" Because EL+I is one-dimensional, ToIEL+, and TIIEL+, commute and

Tax Tam [E,+x multiplication bY 2- (1 +2x/) m-(1-2x/) sm
on E2,

for all rn N. Because we have sharp bounds for the Tax Td.,[E+I, the lower bounds
for the H61der exponents given in Theorem 4.5 are also sharp, except for the extra e

which we always have to introduce in local H61der exponents.
Since (3.3) is satisfied with 1=0, h =(1 +x/)/4, it follows from Theorem 3.1 that

)3 is continuous and that 43 is Htilder continuous with exponent l-
In [(1 +,,/)/2]ln 2 .5500. .. The following example shows that this estimate is sharp.
Applying (1.2) to X--2 leads to b3(2-m)= ((1 +X/)/4)mq3(1). The values of q3(1),
q3(2) are determined by the right eigenvector of T1 for the eigenvalue 1, which leads
to b3(1) (1 +x/)/2. Hence, for Xm----2 --)0,

]P3(O)-- C3(Xm)l ( l +2x)lXml-ln[(l+/3)/4]/ln2-- (1-1-2X/)lXrnl’5500""
By Theorem 4.1, (3 is differentiable in all x such that r(x) is well defined and

1 > r(x) > .2368....

In particular, (3 is differentiable in all normal numbers, since r(x)= for x normal.
Consequently, (3 is differentiable almost everywhere, as announced earlier. For values
of r between .2368 and zero, there exists a corresponding fractal set (see Theorem 4.3)
on which t3 is H61der continuous with a H/51der exponent, determined by r, between
.5500... and 1.

In dyadic rationals x, we find that b3 is differentiable from below, but is only
H61der continuous from above, with exponent .5500-.. (see Remark 4 at the end of
4). This is already illustrated by the behavior of b3 near x =0 (see above); it also

accounts for the "jaggedness" of the graph of b3 at dyadic points (see Fig. 1).

B. N =5. We now turn to the properties of bs. The corresponding cn, given in
(5.6), satisfy three sum rules of type (3.1), corresponding to L=2. In this case
N- (L+ 1) 5- 3 2, i.e., EL+I E3 is two-dimensional, and obtaining good estimates
for ]ITdl TdmlE+ll is not as straightforward as in the previous case. Explicit computa-
tion shows that

spectrum To {1, 1/2,1/4, (x/5 +2+qri-6+ 1)/16, (1 x/-f-6)/8}
(1,,, .470467..., -.270284...},

spectrumTl={1,1/2,:, (1-x/]-6)/8, (1 +v/’f-6 x/5+Zx/’)/16}
={1,1/2, J, -.270274...,.049817...}.

The spectral radii of both To]v3 and Tlv3 are, therefore, strictly larger than z, which
means that we cannot expect better than a Cl-result of bs, with some H61der continuity
for b. In order to obtain this much, we need to prove that (3.3) holds for 1, i.e.,
that [ITdl""" Tdmlll----< c2-mAm for some h_<-- 1. Straightforward estimates of IITol  ll
and [[T[3[ are much too large for our goal. To make computations easier, we apply
Proposition 3.7 and work with BToB-l, BT1B-1 instead, for suitably chosen B.
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1.5

(a)

0.07 0.068

0.06

0.066
0.05

0.04 0.064

0.03’
2.48 2.49 25 2.51 2.52 2.4 98

(b)

2.5 2.5002

FIG. 1. (a) The Ll-solution qb to the two-scale difference equation f(x)=[(l+v)f(2x)+
(3+x/)f(2x-1)+(3-x/)f(2x-2)+(1-v)f(2x-3)]/4. The function oh3 is H61der continuous with
exponent 2-1og2 (1 +x/)=.5500.... Moreover, tit) iS almost everywhere differentiable; in dyadic rational
points in [0, 3[ b is left but not right differentiable (see text). (b) Two successive blow-ups of c3 near x 2.5,
illustrating the self-similar behavior of dp3.

As a first step, we choose B1 as outlined at the start of 5, which in this case means

1 1 1 1 1

40 1 2 3
0 0 2 6 12

0 0 0 2 6

0 0 0 0

As explained above, the matrices BTdB-IlB,E3(d =0 or 1) are simply obtained by
stripping BTdB of their first three columns and rows. This results in

(5.9)

.470467.
B1ToB 11B’E3 .049817

BT1B_II (-.270284"0

o )-.270284...

4770467 ..’.
049817... ,]

as announced earlier, these reduced matrices can also be obtained directly from
(1 + ei)-3 n Cn e in. The norms of these matrices are still larger than we would like
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them. We apply, therefore, the same trick again and multiply (5.9) on the left by B2,
on the right by B1, where B2 is a conveniently chosen 2 x 2-matrix. The choice

( 1 0 )B2= .33188"’’ 4.92450’’’

diagonalizes B1ToB-IIB3 and reduces B1T1B-IIBe3 to a symmetric matrix,

and

Ba(B1ToB_IIa3)BI (.470467...0 0

-.270284

-.238644.
B(B1TB-I3)B

-.095535

-.095535 ..
.018177

Consequently, the norms of these matrices are given by their spectral radii, which
implies

p(BITIB-IlBE3)= p(TI[E3),
and similarly

IIB2(BIToB-IIB,)BI[I o(Tol).
It follows that, for all binary sequences d, and all m,

IlTa""" T.III--< c2-)-where sn = d, and , [2p(TI[)] .540569..., o [2p(Tol)] .940934-...
On the other hand, a 2[[T[z[] 1/" 2p(Tal3)(d =0 or 1). Since p(Ta[2)= p(Tal)
in this case (see (5.8)), the above estimates are, therefore, the sharpest possible for
o, .

Clearly < < o< 1. It follows that 5 is continuously differentiable, and that
is H61der continuous with exponent

(5.10) ]log ol/log 2- e .087833....

Since the sharpest estimate for 1 is strictly larger than , 5 is nowhere twice differenti-
has a largerable; because 1 < o, there exists a hierarchy of fractal sets on which 5

H61der exponent than (5.10). In paicular, the H61der exponent of on the full set
of normal numbers is

[llog/Xol + Ilog/x11]/2 log 2- e .487641 e.

The function b5 is plotted in Fig. 2. At first sight, we have the impression that 45 has
a sharp peak at x 1, contradicting its differentiability at this point. Successive blowups
of b5 around x-- 1 show that this peak is not really "sharp" (see Fig. 2(b)).

C. N 7. The cn corresponding to 47 are given by (5.7); they satisfy (by construc-
tion; see Daubechies (1988)) four sum rules of type (3.1), corresponding to L= 3. It
follows that EL+ E4 is three-dimensional. Explicit computation leads to

spectrum To {1, , , , .325803 , -.279620. , .093804. .},

spectrumT={1,1/2,-,-, .279620...,.093804...,-.014986...}.

Since p(Tolv4), p(Tl[v4)>, b7 is at most once continuously differentiable. In order to
prove that b7 is indeed C and to estimate the H61der exponent of h, we need to
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0.5

0

1.29 1.2865--

1.28

1.27

1.26

1.2864

1.286:5

1.2862

1.2861

1.25 1.2860
.98 .99 1.01 1.02 .9998

(b)
1 1.0002

FIG. 2. (a) The L-solution oh5 to the two-scale difference equation f(x)= c,f(2x-n), with c as

given by (5.6). The function d5 is continuously differentiable, despite appearances. (b) Two blow-ups of chs(x)
around x 1, showing that the peak ofch at x is not really "sharp." Wefind b(1) -(Y)2 1.63845

find bounds of the type (3.3), with 1, A < 1. In order to derive such bounds, we
shall again study [IBTB-’I411 for suitably chosen, invertible B. We choose B1 according
to the recipe at the start of this section,

1 1 1 1 1 1 1

0 1 2 3 4 5 6

0 0 2 6 12 20 30

BI= 0 0 0 6 24 60 120

0 0 0 0 6 24 60

0 0 0 0 0 6 24

\0 0 0 0 0 0 6/
The restriction to BE4 of the matrices BTaB- then simply consists of omitting the
first four rows and columns, leading to

.325803 0 0

BIToB-[B,4= .106451 -.292267 .325803
0 -014986 .106451

-1 {-.292267 .325803 0

BIT1B1 ]Bz4 -.014986 .106451 .292267
0 0 -.014986

We recognize again the same characteristic structure as in the matrices Ta themselves
(the /j-element depends only on 2i-j); the entries are the coefficients of the
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trigonometric polynomial 2-4(1 + ei#) -4 n Cn ei’. The matrix

B2 .144737 0.315439 8.125871
.466989 2.655918 2.241310

-IIBtV todiagonalizes BIToB-IlB,E4, and reduces B1T1B1
-.238104 .034981

B2BTB-IBIIB’z4 / .034981’’ -.002306’’’

\ .126825" .080468’’’

126825"’’ t-.004837
.039608

The norm of this last matrix (computed by IIAII [P(AtA)]1/2) is .296060...; since
B2BIToB]-BIIa+E is diagonal, its norm is given by the largest eigenvalue of To]4,
which is .325803.... We have thus proved that

IlTa,’’’ TamlEall C2-"(.651606"" ")"-s"(.592120"" ")s",

which implies that )7 E C and that b is H61der continuous with exponent

Ilog (.651606’’’
log2

=.617926 ..
Since our estimate of/Zo is sharp, this H/51der exponent is sharp as well. Since .L < 0,
we again have a hierarchy of fractal sets corresponding to larger Hflder exponents.
Note, however, that our estimate for /x is very likely not sharp (the norm of
B2B1TB-IBlla, is larger than its spectral radius, and it might be possible to sharpen
this estimate by other choices of B2, without losing the sharp estimate on To). The
range of H6lder exponents might, therefore, be even larger than suggested by our
estimates.

1.5

(a)

-I

-2

0 2 4 6

(b)

FIG. 3. (a) The L-solution 497 to the two-scale difference equation f(x)=zT=o %f(2x-r), with c. as

given in (5.7). Thefunction 49 is continuously differentiable. (b) The derivative 49 of497; 49 is H61der continuous

with exponent .6179....
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Figures 3(a) and 3(b) give plots of b7 and b, respectively. Both plots have been
realized via the cascade algorithm (see part I, 4).

Remark. Estimates for the Htilder exponents of b3, bs, and b7 were already
computed in Daubechies (1988)via a different method, involving the Fourier transform.
The table below compares the estimates found here with these earlier results. With the
notation b Cn+ for b C n, b() H/51der continuous with exponent a (a [0, 1[),
the estimates for n + a compares as follows:

best estimate in as computed
(Daubechies (1988)) here

43 .5 e .5500

b .915 e 1.0878.

b 1.275 e 1.6179.

Our present results are significantly better; moreover, they are optimal.

5.B. The de Rham function and generalizations. The de Rham function, as defined
in Part I, 6, is the normalized Ll-solution to the two-scale difference equation

4,(x) b(3x) +[4(3x- 1)+ 4,(3x + 1)] +[(3x- 2) + (3x + 2)].

Since the scaling factor is three instead of two, we are in a slightly different case from
before. This example will illustrate, however, that our techniques can be used for all
integer scaling factors k, modulo minor adaptations. In general, we have (k 1 )-matrices
To, T,..., Tk-1, with matrix elements given by

N+ N1(T/)q Cki_j_Nl_k+l.l, 1 < i,j<
k-1

where we assume that the index n of the c, ranges from -N to N. In this case, with
k 3, Co 1, Cl C_l , c c_ , we have, therefore, three 2 x 2 matrices,

To T= T= 0

We have =_ c 3, and the c satisfy one sum rule"

E =E =E
The vector (1, 1) is a common left eigenvector for To, T, T, with eigenvalue 1. The
remaining eigenvalues of To, T, Te are, respectively, ,-], and . For x [0, 1] we
shall now use the ternary expansion of x (since k 3); as in Theorem 4.3, we define

r,(x,i)=#{d(x)=i;jn} i=0,1 or 2,

where d(x) are the digits ofthe ternary expansion ofx (each equal to zero, 1 or 2). Then

(5.12) Td,( Ta.(,[, multiplication by 3-2"t-(;+-(;(-1)(;.
By the extension of Theorem 2.2 to scale factors k 2, it follows that is continuous.
Since

is HSlder continuous, with exponent In ()ln 3 .36907.... In fact, this example
is so easy (paly due to c 0 for all n) that the HSlder continuity can be established
without recourse to the matrix analysis presented in this paper; we then find that the
H61der exponent of is indeed exactly In (2)l/n 3.
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From (5.12) it also follows that the local H/51der exponent of b at y [-1, 1] is
often larger than the uniformly valid exponent Ounifor --.36907 .. For y n + x, n
-1 or 0, x [0, 1], we find that

Ith(y + t) (y)l <-- Cltl-,
with

In 3 (to + t’2) In 2 In 2
(v) +o uniformc___

In 3
rl_x_

In 3

where we have assumed that rl(x)=lim,_.o[r,(x; 1)] exists. Only where rl(x) =0 is
a(y) Ounifor On the other hand, there exists y such that rl(x) 1, namely y [0, 2]
of the type 3-J(l +1/2); in these points b is Lipschitz. As usual, there exists a hierarchy
of fractal sets corresponding to the H/51der exponents between and auniform; their
Haussdorff dimension is given by Theorem 4.3. In particular, for the full set of normal
numbers, we find

In 2
normal-- O uniform -- --In 3

21n2=1 31n3-.57938"’’.
A straightforward generalization of the de Rham function is obtained by choosing

Co 1, Cl=C_l=1/2-y, C2 C_2 -- 3"

corresponding to the two-scale difference equation

4) V(x) 4) V(3x) + (1/2- 3’)[ b r(3x 1) + th r(3x + 1)]

+(+ )[(3x- 2) + 6r(3x + 2)].

In this case the matrices To, T, T are

+ ,T= + ,T2To=
_

+r -r 0 +r
We have again c3, c3,+ c3,+2 1, causing To, T, T2 to have a common left
eigenvector for the eigenvalue 1. The remaining eigenvalues are + y, -2y, + y,
respectively. It follows that r is continuous only if I+ 1< and 121 < a, i.e., if

I1 < . For , we obviously reve to the de am case; for y =- the function

r is piecewise linear, -1/6(x)= l+x for -lx0, l-x, for 0xl, and zero
otherwise; for y =0 the resulting o consists of a copy and its mirror image of the
Cantor-Lebesgue function on [0, 1].

The same analysis as before results in H6lder continuity for , with exponent

r (min Elan (+ )l, In (2)l])/n 3. For y n + x, n - or 0, x [0, 1], such that
ra(x) lim, Jr,(x; 1)] exists, we find a larger local HSlder exponent

[In (1/2 + 3’ )l
In 1/2121+ "

+rl(x) if1/2>3’ >-,c%(y) In 3 In 3

In 3 In 3

For 3’ =--, all these H/51der exponents (local and uniform) collapse to 1, which was

to be expected since b -1/6 is piecewise linear. If, for some y and some y, av(y) as
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given by (5.13) is larger than 1, then this means that b r is differentiable in y. This
happens, for instance, if (1/2+  )=12 1 and if rl(x)=. In particular, b r is differenti-
able almost everywhere if-1/2< y<.05921689....

Fig. 4 gives the graphs of b for the values 2’ = (de Rham case), 2’ , 3’ .05,
3,=0 and y=-.

5.C. Lagrangian interpolation functions and generalizations. In Deslauriers and
Dubuc (1989), general symmetric Lagrangian interpolation schemes are defined, for
arbitrary integer scaling factor k > 1, and an arbitrary number of nodes. Deslauriers
and Dubuc characterize the regularity of the associated "fundamental functions,"
which are solutions to two-scale difference equations with scaling factor k,

kN-1

f(x)=f(kx)+
n=l

c.[f(kx-n)+f(kx+ n)],

-1 0

-1 0
(b)

-1 0
(c)

-1 0
(d)

-1 0
(e)

FIG. 4. The generalized de Rham function d for different values of y; (a) 3/= (the de Rham case),
(b) Y=2, (c) 3,=.05, (d) 3,=0 (characteristic function of Cantor set), (e) y=-. In the cases (c), (d), and
(e), c is almost everywhere differentiable.
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where the cn have the peculiarity that Ckm--" mO (see Part I). The cn in a Lagrangian
symmetric interpolation scheme are completely determined by the requirement that

kN-1p(s)=k-l[l+2n=l cncosnsc] be divisible by (l+e’+...+ei(k-1)) L, with L as
large as possible for the given N (this leads to L= 2N). The resulting p(:) is positive
for real sc, which is of great help in the analysis of the regularity off We have indeed
(see part I or Deslauriers and Dubuc (1989)) f()=Hj=lp(k-J); since p(s)=
((1 eik)/k(1 ei))Lq(), this leads tof(sc) ((1 ei)/)L H-I q(k-J) The quotient
q(:) is a trigonometric polynomial, q(sc) --n qn e inC. The regalarity of f is given by
the largest h such that [:[hf(sc) is in El(R); it turns out that these Ll-norms can be
estimated in terms of N and the spectral radius of a finite matrix, constructed from
the qn in the same way as To, T1 are constructed from the cn (see 7, 8 in Deslauriers
and Dubuc (1989)). A similar technique was used by one of us, independently, to
obtain estimates in the Ll-norm of ISCIIN()[, where bN are the functions associated
to orthonormal wavelet bases (see 5.A). In that case, however, the function p was
not positive, and it was necessary to use the Cauchy-Schwarz inequality to reduce
everything to more tractable L2-estimates, which, however, led to less sharp estimates
(see the table at the end of 5.A).

Let us see now how the present methods, which avoid Fourier transforms, perform
on these interpolation functions. We shall restrict ourselves to one of the simpler
examples, with k--2 and N 2. In this case the cn are

9(5.14) Co 1, cl C_ 1--, C3 C-3 --1-"

We have two matrices: To, T1,

0

0

0

1

0
T1 0

0

/o

0 0 0 0 0

0 0 0 0

1 6 0 -6 0

0 1 1 6 0

0 -6 0 6 1

o o o o
- 60 0 0 0

0- 60 0

1 6 0 --6 0 6 1 6
o o- o
0 0 0 0

The cn in (5.14) satisfy four sum rules. Because of the symmetry cn c_n, we have
T OToO, where O is the involution Og 6+g-7. Consequently, T, To have the same
eigenvalues; we find

spectrum (To) spectrum (T1) {1, , , 8, -6},
where the root z has multiplicity two in the characteristic polynomial of To, T. It
follows that IITol311- IITIIII -> , so that the best we can hope for is a bound of type

__.1(3.3) with l= 1 and A , corresponding to [f’(x / t)-f’(x)l < clt[llog Itll. It turns out
that the restriction of (say) To (the same will be true for T1) to the two-dimensional
space associated with the eigenvalue z can be brought to the normal Jordan form, but
cannot be diagonalized. There are, therefore, only one left and one right eigenvector
of To with eigenvalue 1/4, and they are orthogonal. This is what causes the extra factor
[log ]tl[ in the "almost Lipschitz" bound on f. The degeneracy of z is lifted, however,
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as soon as To, T1 are mixed: if (dl, , dn) does not consist of only 0- s or only 1 s,
then the eigenvalue 4 of Tdl"’’Td, is nondegenerate. If, however, the sequence d
has a tail consisting of only 0-s or only 1-s (corresponding to a dyadic rational x),
then the gap between 4 and the closest eigenvalue tends to zero as n tends to infinity,
and an attempt at the construction of 3(n; d(x)) (see the proof of Theorem 4.1)
diverges for n - o. Iffwere twice continuously ditterentiable, then its second derivative

f" would be given by these limits 3(00; d(x)) (see 4); the divergence of 3(n; d(x))
at dyadic rational x shows, therefore, that f cannot be twice differentiable at dyadic
rationals.

To check that (3.3) holds for l= 1, A =, we shall again compute estimates for
BToB-, BTB-, with a conveniently chosen B, rather than work with TO[E4 TI[E4
themselves. The existence of four sum rules suggests at we use for B

1 1 1 1 1 1

0 1 2 3 4

(5.15) BI=
0 0 2 6 12 20

0 0 0 6 24 60

0 0 0 0 6 24

60 0 0 0 0

The matrices BToB?a,, B1TBla4 then reduce to 2 x 2-matrices,

BToB;,
_

BT,B;IIBIE4 _/-
The matrix

(5.16) B2

then diagonalizes B1ToB-I[B1E4 and reduces B1T1B-I[BE4 to a symmetric matrix. It
follows that, for d 0 or 1,

IIB2B1TaB-B[BIE4I p(B2BTaB-BIIBIE4)

This implies (3.3) with 1, ,t 1/2. Theorem 3.1 then implies that f is "almost" C2, in
the sense that f C and that f’ is H/51der continuous with exponent 1 e, with e > 0
arbitrarily small; in fact If’(x + t)-f’(x)l<= Ctlln It]l for sufficiently small t, a result
which was first proved in Dubuc (1986).

Since T OToO-1, where O is an orthogonal matrix (see above), we necessarily
have /x0 =/x, where /Xo,/x are as defined in 4. Nevertheless, we can still improve
on the estimate lITurgy) T.()III < Cn2-2n for special, nondyadic x. Group the digits
in the binary expansion of x together in pairs, p(x)--d2,,_(x)d2,,(x), n 1, 2,....
Assume that the pairs 0 1, 1 0 occur with an asymptotic frequency larger than zero,

p(x) lim inf
l
# {j < n p(x) 10orpj(x) 0 1}>0

Then it can be shown that, for large enough n,

(5.17) liT(n; d(x))lll <-- C2-"",
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where A < 1. Moreover, 3(x)=lim,_3(n; d(x)) is well defined in these points x;
repeating some of the arguments in 4 shows, therefore, that f is twice ditterentiable
in x. The estimate (5.17) is a consequence of the fact that B2B1ToB-IBIIB, and

B2B1TB-B-IBI3 have a common left eigenvector with eigenvalue , while also

IIBzBIToTIB-BI IlB,nlll/Z IIB2B1TToB-’BIIB,4II /2= .150156 ..
Here B1, B2 are the matrices defined by (5.15), (5.16), respectively. This implies

(5.18) [[B2BTa""" Ta.BI[Bz4[[-<- C max (8

where C depends on B, B2, but not on n. For large n, the right-hand side of (5.18)
is bounded by

C[(.150156 .)P()()1-p()], _< C4-(.600624...)e().
Together with (5.18), this implies (5.17), with h =(.600624-..)P().

Note that p(x)= 1/2 in every normal point x. The above argument proves therefore
that f is almost everywhere twice differentiable. Figure 5 gives graphs of both f and

f’ (both were also plotted in Dubuc (1986)). Note that f looks "smooth," but that f’
again exhibits "bumps" which repeat themselves at different scales.

0.5

(a)

o

-1

-z- 6
(b)

FIG. 5. (a) The Ll-solution to the two-scale difference equationf(x)=f(2x)+[f(2x-1)+f(2x + 1)]-
6[f(2x 3) +f(2x + 3)]. Thus function is "almost" C (see text). (b) The derivative f’ of the function plotted
in (a).

The c. in (5.14) were chosen so,that, with the restrictions c, c_,, c2 c_2=0,
the polynomial p()= )-3 i.

.=-3 Cn e was divisible by the maximum possible number of
factors (1 + e i). Other examples, still satisfying c, c_,, c2 c_2, c, 0 for In I> 3,
were mentioned in Deslauriers and Dubuc (1987). These examples satisfy fewer sum

rules, (p(sc) is divisible by fewer factors (1 + ei)), and the corresponding p() is not

positive any more. In order to evaluate the regularity of the function f, Deslauriers
and Dubuc had to resort to other, less optimal techniques. They prove, e.g., that for
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1 --1 1/2- a, c3 c-3 a, the function f is continuous if a 6 ]-6, 6[. Our present
technique leads to better results. For the case a =-, e.g., we show that f is con-
tinuously ditierentiable. To do this, we shall use Proposition 3.7 again. Since the c,
satisfy only two sum rules in this case, we choose B1

1 1 1 1 1 1

0 1 2 3 4 5
0 0 1 2 3 4

BI=
0 0 0 2 3
0 0 0 0 1 2
0 0 0 0 0 1

BIToB-IIB,E2, BITIB-IIB,E2 reduce to 4 x 4-matrices, with eigenvalues 3-, __3__16, and (1 +

1 0 0 0

2y/9 y 0 -y
5 26v/i -1 +2x/i

B:z Z Z Z Z
81 3

5 + 26x/i 1 + 2x/i
Z Z Z

ix/)/4. The matrices

81 3

where y, z, z’ are arbitrary complex parameters, diagonalize BIToB-II,e, so that

IIB2BIToB-’B’]I2II p(Tol)= I(a + ix/)/41 .433012 ..
For the choice y .3, z .27 +.08i, z’ .27 .08 i, the norm corresponding to T1 is

=BT, ;;[. .604342....

This is still larger than , and, therefore, not sufficient to show that f C. However,
if we define

ta’"dm IlTd,red Td ,ll 1/,

B2 la,, with the parameters in B fixed as above, then wewhere Td =BB1TdB-1 -2

check that

to, tlo, tllO0, tllOlO0, tllOlOlO, tllOlOllO, /11010111,

1101100, /1101101, tll0111, /111000, /111001,

/1110100, /111010100, t1110101010, t11101010110,
(5.19)

t11101010111, tlOOlO0, t1110101101, t111010111,

tlllOllO0, t11101101, t1110111, /111100,

tllllOlO, /11110110, tllllOlll, tlllllO and tllllll.

are all <1/2.
Since these groups of indices constitute a complete set of building blocks (any

binary sequence can be decomposed into them), it follows that

[ITal TIII <-- 2-m’m
for some X < 1, if m is large enough (see Proposition 3.7). Note that in order to derive
(5.19) only 56 matrix norms were calculated (this includes candidates that failed, such
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as tll01,.. "), even though the longest sequences of digits has 11 elements. Checking
all 211 sequences of this length would have been much more cumbersome, and would,
in fact, not have been sufficient in order to conclude that (3.3) holds, since some of
them still lead to to > .

From all this it follows that the functionf corresponding to the two-scale difference
equation with k- 2, Co 1, Co Cl r, c3 c_3 -, all other c, 0, is continuously
differentiable. It is plotted in Fig. 6, together with its derivative.

For general a, Co 1, cl c_1 1/2- a, c3 c-3 a, we find that

spectrum (To) spectrum (T1) { 1, 1/2, a, --2a,
1 + x/1 + 16a),.

4

We conjecture that

the associated function f is in C if-1/4 < a < 0,

the associated function f is continuous if -1/2 < a < 1/2.

Appendix. In our analysis of lattice two-scale equations of the type

N

(A.1) f(x) c,,f(2x- n),

the interval [0, 1] and binary expansions play a special role. This is because [0, 1] has
the following two properties: [0, 1] and its integer translates tile the real line, and
[0, 1]--A-l[0, 1]U A-l([0, 1]-I-1), where A is multiplication by 2. The interval [0, 1]
is, moreover, the unique bounded subset of satisfying these two conditions. If the
scale factor in (A.1) were k instead of 2, then we would define A to be multiplication

1.5

0.5

-o.5 -’z 6
(a)

-2

-4 -’z 6

FIG. 6. (a) The Ll-solution to the two-scale difference equation f(x)=f(2x)+[f(2x 1) +f(2x + 1)]
[f(2x-3) +f(2x + 3)]. Thisfunction is continuously differentiable (see text). (b) The derivative ofthefunction
plotted in (a).
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by k, and [0, 1] would be tiled by the A-l([0, 1]+ m), 0 -< rn -<_ k- 1, leading to k-adic
expansions. All this can be generalized to higher dimensions. We can then write

(A.2) f(x) Y c,f(Ax- n),
nI

where x e R", I is a finite subset of 77 a, and A is a linear operator on Rd that preserves
7/a and has all its singular values strictly larger than 1. For d 2, examples of such A
which have been proposed for applications are

A0 AI= -1 1 -1 1

Ao is used in many two-dimensional subdivision schemes; since it consists of a simple
uniform dilation, the one-dimensional approach used earlier can be transposed without
any problems. The role played before by [0, 1] will now be played by [0, 1], and
binary expansions still do the trick. For the matrices A and A the situation is more
complicated. A was first proposed by M. Vetterli (1984) for a subband coding scheme
with exact reconstruction for two-dimensional images; presently, several groups are
working on the corresponding orthonormal wavelet bases (GriSchenig and Madych
(1992), Lawton and Resnikott (1991)). An interpolation subdivision scheme using A
is studied in Mongeau (1990); strictly speaking, Mongeau uses

A= 22
for which the triangular lattice {(rn + n/2, n,/2); m, n 77}, not ;2, is invariant. The
matrix

maps the triangular lattice to Z2 and can be used to translate Mongeau’s results to
results for lattice two-scale equations involving A2; we have A2 BArB-.

A large part of our analysis can still be carried out, even for nonuniform dilation
matrices such as A1 and A2. Since A has only integer entries, and its singular values
are all larger than 1, det A k 7/, with k > 1. The role played by [0, 1] for (A.1) will
now be played by the unique set F defined by

rathe collection {F+ n: n Zd} tiles d,
mF itself is tiled by the k elements of {A-l(1 + m); m Za fq A([0, l[a)}.

For both A1 and A, the corresponding set F is a set with fractal boundary; F is the
so-called twin dragon set. The set F will be the "elementary building block" for the
support of compactly supported solutions to (A.2), just like [0, 1] was for (A.1). The
number N of such building blocks constituting support (f) will be determined by the
nonvanishing coefficients e, in (A.2). We can then "fold" f as follows:

[v(x)], f(x + z,,), x F, z, Za, n 1," ", N,
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where U Nn=l (F+z,) D support (f). Points in Rd can then be represented by F-adic
expansions; in particular, for x c F, we define

dl(x) {m Zd I""1 A([0, l[d); X A-I(F + m)},

dj+l(X) dj(Ax- d,(x)).

These expansions are unique, except for x in a set of measure zero (corresponding to
the dyadic rationals in the one-dimensional case with A--2). We can again define a
shift operator r on F by

dj(’rx) dj+l(X) j 1, 2,

and the equation (A.2) can be rewritten in vector notation as

v(x) =Td,<,v(rx),
where the k matrices TI are all determined by the coefficients cn. We can then derive
existence, continuity, smoothness, etc., of v (hence of f) from the spectral properties
of the T. A first extension to higher dimensions can be found in Mongeau (1990),
extending our original approach, which did not use spline functions. It seems hard to
use spline functions, which are piecewise polynomial and have to be fitted together
correctly on the boundaries of the building blocks, when the building blocks have
fractal boundaries as in these examples. Mongeau’s work, by using appropriate powers
of A, reduces everything to pure dilations, and thereby avoids the fractal boundaries,
at the price of having to deal with much larger matrices Td. It is also possible to deal
directly with the fractal sets by extending our original, longer, and more complicated
proof without spline functions (as shown in Cohen and Daubechies (1991)). Therefore,
we would like to outline here the major steps of the proofs of Theorems 2.2 and 3.1
without spline functions. For simplicity, we return for this outline to the one-
dimensional case, with A multiplication by 2.

What follows is an outline of the proof of Theorem 2.1. The starting point is the
equation

v(x) Ta,<x) Tdm<x)v(r’X)
=T(m; d(x))v(’r’x).

From v(0), v(1) (which can be determined from the right eigenvector of M for the
eigenvalue lmsee 1.5), we can thus derive v(x) for all dyadic rationals x. Existence
and continuity ofv will be proved if this definition ofv on a dense set can be continuously
extended. This is done in the following steps:

el, the common left eigenvector ofTo, T1 for the eigenvalue 1, is a left eigenvector
of every T(m; x), with eigenvalue 1;

consequently, el" v(x)= 1 for every dyadic rational x;
IIv(x)ll is uniformly bounded, for all dyadic rationals (this uses the condition

(2.11), together with v(x)-v(x’) El);
we then use that, for small enough t,

v(x + t)-v(x) T(m; d(x))[v(’r’x + 2"t)

together with (2.16), to show that the restriction ofvto the dyadic rationals is continuous
and satisfies

[Iv(x v(y )[1 =< CA
if Ix- y[ <= 2-’. This suffices to show that v has a continuous extension to all of [0, 1 ],
and to prove the H/51der continuity of this extension.
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In the details of the proof, we have to be careful, occasionally, because dyadic
rationals have two binary extensions. This does not cause any real problem.

Next we sketch the proof of Theorem 3.1.
Every T(m; d) has a left eigenvector ek(m; d) for the eigenvalue 2-k-1)m,

1 -< k _-< L+ 1, which can be written as ek(m; d) e+ combination of e,, k’ < k. These
ek(m; d) are bounded uniformly in m N and d {0, 1}. (This is a purely combinatorial
fact, and we do not need (3.3) to prove it.)

For k<=l+l, the eigenvalue 2-(k-1)m of T(m; d) is simple; there exists a
corresponding right eigenvector k(m; d), uniquely normalized by
ek(m; d). k(m; d)=e. k(m; d)= 1. These k(m; d) are bounded uniformly in m
and d. (To prove this we need (3.3); the proof is analogous to (7) in the proof of
Theorem 4.1.)

where

and

liT(m; d)l/ll c1m2-ml, l+ 1 -<_ k-< L,

liT(m; d)[,,/,l[ CA"2-"lqb,x(m),

b,(m)= 1 if A>1/2, bx/:z(m)= m,

liT(m; d)l,./,ll c2-mk, 0 <- k <- l- 1.

(Part of this is Lemma 3.5; the third bound is proved analogously.) By taking k 0,
we see that (3.3) implies (2.15), so that v can be constructed and is continuous by
Theorem 2.3.

The k(n; d) converge to a limit for n- c. Moreover, if x is a dyadic rational,
then lim,_(n; d+(x))=lim_.(n; d-(x)). We can, therefore, define k(X)=
lim_ (n; d(x)) for all x[0, 1], lkl+l. Finally (x) is continuous in x.

For allx[0,1],k=0,...,L,

e+,. v(x) (-1)x

(see the proof of Lemma 3.6).
With all these ingredients, we prove, e.g., differentiability of v as follows" for

small enough,

v(x+ t)-v(x)=T(m; d(x))[v(mx+2mt)-v(rx)]

2-m2(m; d(x)){e2(m; d(x)). [v(rx + 2t)-v(x)]}

+T(m; d(x))r,

where we have used e(m; d(x)). [v(y)-v(z)]=0 and where rE2, I1 11 bounded
independently of x, t, and m. Consequently,

v(x+t)-v(t)
(m; d(x)) + o(1) :(x),

and v is differentiable in x if 1.
Higher-order differentiability is established analogously. We find

d k

dx
v(x)= (-1)kt(x), j=0,..., I.

(There is no need to "guess" the ansatz (3.10) with this approach.)
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All these results for v must then be "unfolded" to state results forf; in principle,
problems could occur at the integers. Since [k(0)]l=0=[k(1)]N and [k(0)],,+l=
[k(1)]m, rn 1,. N-1, unfolding works without problems.

Here ends our outline of the proof without spline functions.
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Abstract. In this paper it is shown that, under mild continuity and growth hypotheses, if f(x, u,.) is
quasi-convex and if un, u W’ are such that un--> u in L, then

faf(x, u(x), Vu(x)) dx<-liminf laf(x, un(x), Vu,,(x)) dx.

The proof relies on a blowup argument in connection with a truncation result that allows one to consider
uniformly convergent sequences.

Key words, quasi-convexity, lower semicontinuity

AMS(MOS) subject classification. 49

1. Introduction. Our objective is to discuss lower semicontinuity of the functional

I(u) ff(x, u(x), Vu(x)) dx, u wl’l(; P),

where f is quasi convex in Vu. Our result is that if

(1.1) u,, u WI’(I); ) and u,- u in LI(; P),

then

I(u) <=lim inf I(u,),

provided f has linear growth in V u and satisfies some technical conditions. Another
way to express (1.1) is to say that u,, u W1’1(1); P) and u, - u in @’(1); P), which
is much less stringent than assuming, for example, weak convergence in W’(I); P).
This lower semicontinuity result was obtained by Dal Maso [DM] in the scalar case
p- 1; in the vector-valued case and for f-f(A) convex, by Ball and Murat [BM] and
Reshetnyak [R]; when p > 1 and f=f(x, Vu) quasi-convex the problem was addressed
by Fonseca [Fo] and, independently, by Kinderlehrer [K]. For the case where f--
f(x, u, a) and f(x, u,.) is convex, Aviles and Giga [AG] obtained lower semicontinuity
results.

The main new tool involved in this paper is a careful truncation technique which,
together with a blowup argument, enables us to reduce to the case where the sequence
u, converges uniformly. Murat has informed us that related truncation arguments are
used in the context of renormalized solutions to partial differential equations (see, e.g.,
[BDGM]).

The study of this problem was motivated by the analysis of variational problems
for phase transitions and the related question of understanding the relaxation of
functionals of the type

(1.2) u---> If(x, u(x), Vu(x)) dx
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in spaces admitting discontinuous functions u. An important example consists of the
family of singular perturbations

E(u) := Ia W(u(x))dx+e2fah2(Vu(x))dx
of the nonconvex energy

E(u) := Ia W(u(x)) dx,

where W has two potential wells at a and b. Depending on the constraints or boundary
conditions imposed on the admissible functions, E(.) often admits infinitely many
minimizers that are piecewise constant functions ofbounded variation, u { a, b} almost
everywhere in 12. In the search for a reasonable selection criterion the properties of
the limits of sequences of minimizers for the perturbed problems (see [FT1], [G1],
[G2], [KS], [Mo], [OS]) are studied. The natural notion of convergence for the
functional in this context is F-convergence, as introduced by De Giorgi [DG] (see
[At], [DM], [DD] for more recent expositions).

In the isotropic scalar case, i.e., if u :12- R and h I1" II, using an idea of Modica
and Mortola, Modica [Mo] showed that the F(L1) limit of the rescaled energies

1
J(u):=-E(u)

is given by

0(u) (u),

where

of(u):=inf{liminflaf(x’u"(x)’Vu"(x)){u.},,-+o
dxlu" W1’1(12;)’ u"->uinL}

is the relaxation in BV (12; R) of (1.2) and

(1.3) f(x, u, A)= 2/W(u) h(a).

Precisely, if u {a, b} almost everywhere and if {u a} has finite perimeter in f, then

inf {lim inf.l(u)lu wl’l(; ),/Je "-)’ u in L1} ’(u).
{u}

This result was generalized by [OS] to "anisotropic" functions h with linear growth
for which h2 is convex and the integral representation for the relaxation of(. was
obtained by Dal Maso [DM].

In this work we consider the case were u is vectorial, and we prove lower
semicontinuity of (1.2) in L, thus obtaining the absolutely continuous part of of(u)
with respect to the N-dimensional Lebesgue measure.

2. Lower semicontinuity in L for quasi-convex integrands. Let p, N_-> 1 and let
MpxN denote the vector space of all p x N real matrices. Recall that a Borel function

f" MPN- is said to be quasi convex if

f(A)<= f(A+Vq(x)) dx
meas (D) o
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Wl’O{r P).for all A6MpN for every domain DcR, and for all p o .;R If [f(A)l <
C(1 +[JAil) we can easily show by approximation that the inequality holds for all
q9 W’I(D; R P).

Let II cN be an open, bounded domain, and let

f" IIxN p x MeN -> [0, +oo).

We consider the following hypotheses on f:
(H1) f is continuous;
(H2) f(x, u,.) is quasi convex;
(H3) There exists a nonnegative, bounded, continuous function g’fxEP-

[0, +), c, C > 0 such that

cg(x, u)llAII- C <=f(x, u, A) <= Cg(x, u)(1 + IIAII)
for all (x, u, A) flxN PxMpxN"

(H4) For all (Xo, Uo) e flxR p and for all e > 0 there exists 6 > 0 such that Ix Xo] +
]u Uo[ < 8 implies that

and

f(xo, u, A)-f(xo, Uo, A) _-> -(1 + IIAll),

[f(xo, u, A) -f(x, u, A)I-<- e(1 + IIAII).
THEOREM 2.1. Suppose (H1)-(H4) hold. If u,, u Wl’l(fl; g P) and u, --> u in

LI(; P), then

(2.1) Iaf(x, u(x), Vu(x)). dx<=lim inf Iaf(x, u,(x), Vu,,(x)) dx.

Remark 2.2. (i) If (H2) is replaced by convexity and if the growth condition (H3)
holds, then the hypothesis (H4)1 presents no restriction. This fact will be examined in
4.

(ii) Lower semicontinuity for functions of the type (1.2) follows from Theorem
2.1. Indeed, suppose that

f(x, u, A)= 2x/W(u) h(a),

where h is a nonnegative quasi-convex function and

clIal[- c <- h(a) <-_ C(1 + Ilall).
Set

WM(U) := min {M, W(u)} and fM(U, A):= 2v/WM(U) h(A).

It is clear that fM satisfies (HI)-(H4) and so, if u,, u wl’l(fl; P) are such that u, --> u
in LI(II; P), then

IafM(U(X), VU(x)) dx<----liminf lafM(U,(X), VU,(x)) dx

<=lim inf ff(u,(x), Vu,(x)) dx.

Letting M- +o and using the monotone convergence theorem, we conclude (2.1).
(iii) As we showed in (ii) the boundedness of g presents no restriction for the

examples that we have in mind. This assumption becomes crucial for proving in
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Proposition 2.4 that the u, may be considered to be smooth functigns, which in turn
allows us to apply in (2.14)2 the change of variables formula (2.3) for Lipschitz
functions.

It is possible to remove in (H3) the boundedness constraint imposed on g by
using a suitable generalization of the change of variables formula (2.3) for W1’1

functions. For the sake of clarity, however, we focus attention on the case where g is
bounded.

The main idea of the proof is to use a blowup argument to localize (2.1) (see 2.5)
and Step 2 in the proof of Theorem 2.1) and a careful truncation technique for
vector-valued functions which allows us to replace L convergence by uniform conver-
gence (see Lemmas 2.6 and Step 3 in the proof of Theorem 2.1). First we recall some
auxiliary results.

PROPOSITION 2.3. Iff" MpxN’-’ is quasi convex and if If(a)l<-_ C(1 + Ilall) for
all A MPN and for some constant C > O, then there exists a constant C’= C’( C, N)
such that

If(A)-f(B)l <= C’llA- BII
for all A, B MPs.

Proof. This follows from the rank-one convexity of f. We refer the reader to
Dacorogna [D, Chap. 4, Lemma 2.2] or Evans [E], for example.

PROPOSITION 2.4. (i) If Theorem 2.1 holds true for being a ball, then it holds
true for all open, bounded sets .

(ii) Let f be a ball. If H1) and H3 hold and if u, u W’ t2 NP are such
that u, - u in L(I); NP), then there exist , C(N p) such that Ila.- UlIL:. 0 and

lim inf [f(x, a,(x), Van(x)) dx lim inf (f(x, u(x), Vu(x)) dx.

Proof The proof follows essentially the argument by Acerbi and Fusco [AF], and
for completeness it is included in 3.

PROPOSITION 2.5. Let f" MpuN be a function satisfying (H1), (H2), and

ONf(a) C(1 +[[a[I) a Mpxu

for some C>0. IfAo MpxN and ifu WI’(; NP) are such that u,0 in L(; NP)
and { u l} is bounde< then

meas ()f(Ao) Nlim inf af(Ao+ Vu(x)) dx.

Proo See 3.
We will also use the following results.
If u W’(; N P), then for almost everywhere Xoe

(2.2) li_! lu(x)_u(Xo)_VU(Xo)(X_Xo)l/(-,dx =0.
B(xo,e

If w e W’(NN’, N) and g e L(Nu’, ), then the change ofvariablesformula (or co-area
formula) holds, namely

w-()
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For details see Calderon and Zygmund [CZ], Evans and Gariepy [EG], and Ziemer
[Zi]. An easy consequence of (2.3) is the following estimate on level sets of W1’+

functions.
1,+ ULEMMA2.6. Let v Wo( ;EP); let 0<a<fl<L, and let Co>0 be such that

I{IvlL}fqB(O,1) IlVv(x)ll Co.

Then

ess inf tH_,((x B(O, 1)1 In

Proof Let B:= B(0, 1), and consider a cutoff function 0 C(N’, ) such that
q 1 in B(0, 1) and its support is contained in B(0, 2). Applying the co-area formula
(2.3) to

w(x) := q(x)lv(x) and g(x) := Xo,L3(Iv(x)l)Xs(x),
we have

Hm_,({x B] Iv(x)l t}) dt

liVv(x)ll Co.

And so, if

ess inf tHN_,({X BI Iv.(x)l t})= a,
t(,,/3)

then

Thus

If I taCo >- HN_,({X nl lv.(x)[- t}) dt >= dt

Co
ess inf tHN_,((x B t}) =< --.
,(,) In (fl/a)

Proof of Theorem 2.1. In the sequel, using Proposition 2.4, we assume f is a ball
and that u, C(Eu; E P). In addition, suppose, without loss of generality, that

limno++inf If(x, u.(x), Vu.(x)) dx .-+++lim If(x u.(x), Vu.(x)) dx < +oo.

Step 1 (localization). We first reduce the problem to verifying the pointwise
inequality (2.5) below. As f is nonnegative, there exists a subsequence such that

f(., u. (’), V u. (.)) +/x weakly in the sense of measures,
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where/x is a nonnegative finite measure. Using the Radon-Nikodym theorem, we can

write/z as a sum of two mutually singular nonnegative measures

/x= /xa(X)LN + /Zs,

where LN denotes the Lebesgue measure in N and for almost everywhere Xo e

(2.4) o(Xo) lira
(B(xo, e))

< +.
o L((Xo, ))

We claim that

(2.5) (Xo)f(xo, U(Xo),VU(Xo)) fora.e, xoe.
Assuming (2.5) momentarily, consider an increasing sequence of smooth cutoff func-
tions , with 0 k 1 and sup (x) 1 in . We obtain

lim f(x,u(x),Vu(x))dxliminf (x)f(x,u(x),Vu(x))dx
n+ n+

(x) (x)e (x)o(x) dx

(xg(x, u(x), Vu(x)) dx.

Letting k +, the result follows now from the monotone convergence theorem. The
rest of this section is dedicated to proving claim (2.5).

Step 2 (blowup). We use a blowup argument in connection with (2.2) to derive
a lower bound for o(xo). Let xo be a Lebesgue point for u, Vu and such that (2.2)
and (2.4) hold, and consider the ane functions

Uo(X): U(Xo)+VU(Xo)X and Wo(X):=VU(Xo)X.

We abbreviate B := B(0, 1), and we consider a subdomain B’ B. We claim that there
exist sequences r, 0+ and w W’(N; N p) such that w Wo in El(B; NP), and

(2.6) o(xo) > lim
1 ff f(xo+ rx, U(Xo) + rw(x), Vw(x)) dx.

+meas (B)

Let e Co(B) be a cutoff function such that 0N N 1 and (x) 1 if x e B’. By (2.4)
we have

1
(Xo) =lim (B(xo, e))

oe meas(B)

d(x)> limoSUp e meas (B) (xo,

(2.7) =lim sup m p f(x, u(x), Vu,(x)) dx
o +e meas(B) (o, e

lim sup li
1 f (x)f(xo+ x, u.(xo+ x), Vu.(xo+ x)) dx

o meas(B)

lim sup li sup
1 f f(xo+ ex, U(Xo)+ ew.(x), Vw. (x)) dx,

o + meas(B) ,
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where

w,(x) := u.(xo+ x)- U(Xo)
E

1
u.(Xo + x) Uo(X)] + Wo(X).

E

By (2.2) and H61der’s inequality

1 Ie-O +cx B

1
| [u(x) (Xo) v(Xo)(X- Xo)laxlim

eO F_, ,J B(xo, e)

Now (2.6) is obtained by a standard diagonalization argument. Indeed, choose a
sequence rk 0, and choose nk such that

and

Letting

1

J f(xo+ rkX, U(Xo)+ rkW.,(X), VWnk,rk(X)) dx
meas (B) ,

-< 1/k+li.rn sup
1 I f(Xo+rkX, U(Xo)+rkW. r(X),VW.,r(X))dx.

-.+oo meas (B) n,

Wk ;-- Wnk,r

(2.6) follows from (2.7) (a further subsequence may be chosen to ensure that the limit
on the right-hand side of (2.6) exists).

Step 3 (truncation). We show that the sequence w, constructed in Step 2 can be
replaced by a uniformly convergent sequence. More precisely, we claim that if
g(xo, U(Xo))>0, then there exists a sequence if,. W;,(NN’, NP) such that I1. ,1,,-

<

Const., ft.- Wo in L(B; NP), and

(2.8)
1

/z,(Xo) >--lim | f(xo+ r.x, U(Xo)+ r.ff,.(x), V,,(x)) dx.
meas (B) ./.,

Let 0< s < < 1, and let q.,t be a cutoff function such that 0=< qs,,-< 1, qs,t(r)= 1 if
< c (t s) -1 Set-< s, q,,,(-)=0 if z > t, I1,,

and

4,".,(x) := .,(Iw.(x)- Wo(x)l)

w".,(x) := Wo(X)+ .,(Iw.(x)- Wo(X)l)(w.(x)- Wo(X)).

Clearly

(2.9) w.7,, woll -< t.

Define

h.(x, s, A):=f(xo+ r,,x, U(Xo)+ r,,s, A),
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and let L= IlWo[Ir(B)+ 1. By (H3) and as g(xo, U(Xo))>O,g continuous, there exists
no such that for all n -> no, Isl <-- L
(2.10) c(IIAII / 1) h.(x, s, A) >- cllAII- c
for some c, C > 0. Also

I h11(x,w" w"(x))dx f,,(x), V ,t
u’ B’n{Iw,,(x)-wo(x)l<-- s}

(2.11)

and by (2.10) we have

which implies that

(2.12)

h11(x, w11(x),Vw11(x)) dx

+I h11(x,w".t(x), Vw,t(x)) dx
u’n{s<]w.(x)-wo(x)l<-t}

+ I h11(x, Wo(X), V Wo(X)) dx,
.Iu’n{lw,,(x)-wo(x)l> t}

-C <-- h,,(x, Wo(X), Vwo(x)) <- C,

h11(x, Wo(X), V wo(x)) dx <= C meas {x Bl[w11(x -Wo(X)[ > t}.

On the other hand, if s < [w,(x)-Wo(X)[ < t, then

v Ws",,(x)= Vu(xo) + ,,(Iw.(x) Wo(X)l)(Vwo(x)-V,(Xo))
+ (w.(x)- Wo(X))(R) ’,,([w.(x)- Wo(X)l)V[w.(x)- Wo(X)l.

Thus, by (2.10), we have

(2.13)

h,,(x, ws,t(x), Vws,t(x)) dx

C I{s<lw.(x)-wo(x)lt} (1 4-IlVw.(x)-VU(Xo)[[) dx

+C
1 It- s

We remark that for almost all we have

Iw.(x)- Wo(X>l Ivlw.(x)- Wo(x)l dx.

(2.14a) (1 + IIVw11(x)-VU(Xo)]l) dx=O,

and by the change of variables formula (2.3)

1
lim

(2.14b) -,,- t- s I Iw.(x)- Wo(x)l Ivlw.(x)- Wo(x)l dx
B’Cl{s<lw,,(x)-wo(x)l<-t}

<-- tH_,{x B’llw.(x)- Wo(X)[ t)

for almost every t. Due to (2.10),

IVlWn(X) W0(X)l dx IB,CI{]Wn(X)_Wo(X)[<I} ([IX7w.(x)ll + c) dx

<-- C [h11(x, w11(x), Vw11(x)) + 1] dx
B’

_-< Const.
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since the latter sequence is convergent. Hence, by Lemma 2.6 there exists tn
EIIw.-woll /= IIw.-woll 1/3 such that (2.14) holds (with t= t,,), andL L

tnHN-I{X B’I Iw(x)- Wo(X)l t,,} <
Const.

According to (2.14), choose 0<sn < tn such that

I{s <lw(x)-wo(x)l- t} (1 +lvw(x)-V(xo)l) dx- O(1/n),

Sn
Iw(x)- Wo(x)l Ilvlw(x)- Wo(x)l dx

<-- tHrv-l{X l) Iw(x) Wo(X) t) + 0(1/n),

and set

,(x):=wTo,,o(x).
By (2.9) . woll t. 0,

and by (2.6), (2.11)-(2.14) we conclude that

/z(Xo)__>lim
1 I f(xo+ r,x, U(Xo)+ r,w,(x), Vw,(x)) dx

meas (B)

lim inf
1

h.(x, w.(x), Vw.(x)) dx
meas (B)

liminf
1 {I h,(x,,(x),V,(x))dx

meas (B)

-O(1/n)
In II"w-wo’’-I/-C

meas {xBIl(x)-o(x)l>
L

lim inf
1 j- h(x, (x), V(x)) dx,

meas (B)

since tn > w. woll 1/2 and thusL

1
meas {x B Iw,(x)- Wo(X) > t,} w woll L w woll

Finally, the bound on llTff, ll.,(.) follows from (2.10).
Step 4 (proof of Claim We want to show that

(Xo)f(xo, U(Xo), 7U(Xo)) fora.e, xoO.
Let Xo be a Lebesgue point for u, 7u and such that (2.2) and (2.4) hold. If g(xo, U(Xo))
0, then (2.5) is satisfied trivially as f is a nonnegative function. If g(xo, U(Xo))>0
consider a subdomain B’ B and let e > 0. By (2.8) and (H4) we have

a(Xo)lim
1

f(xo+ r,x, U(Xo)+ rff,(x), Vff(x)) dx
meas (B)

 lim
meas(B) ,
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By Proposition 2.5 and taking into account that {Vn} is a sequence bounded in L1,
we deduce that

txa(Xo) >- f(xo, U(Xo), VU(Xo)) dx eC.
meas (B)

Letting e- 0, we conclude (2.5) given the arbitrariness of B’.

3. Proofs of auxiliary results. In this section we prove Propositions 2.4 and 2.5.
PROPOSITION 2.4. (i) If Theorem 2.1 holds true for f being a ball, it holds true for

all open, bounded sets
(ii) Let be a ball. If (H1) and (H3) hold and if u., u W’(f; p) are such

that u. u in L(f; P), then there exists . C(EN; P) such that I1. ullimO and

inf [f(x, g.(x), Vg.(x)) dx lim inf [ f(x, u.(x), Vu.(x)) dx.lim
+oO J

Proof (i) As in Acerbi and Fusco [AF], we show that it suffices to prove Theorem
2.1 in the case where 1) is a ball. Indeed, if the result was true whenever the domain
is a ball, for an arbitrary open set 1) and using Vitali’s Covering Theorem, we can write

I,.J (a + eiB(O, 1)) E,

where meas (E) =0 and {a+ eB(0, 1)} is a family of mutually disjoint balls. Fixing a
positive integer k we have

lim inf f(x, u.(x), Vu.(x)) dx >- lirninf f(x, u.(x), Vu.(x)) dx
1- i=1 ai+eiB(O, 1)

i=1 ai+eiB(O,1

Letting k- +oe and using the monotone convergence theorem, we conclude that

Iaf(x,u(x),Vu(x))dx<-liminflaf(X, Un(X),Vu,,(x))dx.

(ii) As in Acerbi and Fusco [AF], we remark that we can extend un WI’(f;
to u.* e W’(NN-, N P). Moreover, as C(N’, ) is dense in W’I(N’, P), there exist
sequences v. e C(N’, N ) such that

(3.1) )n,k u*. in WI’I(R N’, P)

as k- +oo. Moreover, we may assume that V..k and V V.,k converge to u. and
respectively, almost everywhere. We claim that

(3.2) lim laf(x’ v"’k(X)’Vv"’k(X)) dx= Iaf(X’ VUn(X)) dx"

Indeed, by (H3),

O<=f(x, u, A)<-_ C(1 + Ilal]),
and thus by applying Fatou’s lemma to x-->f(X, Vn,k(X),VV..k(X)) and C(I+
Ilvv.,(x)ll)-f(x, v..(x), XTv.,(x)) and by observing that

f (1 + IIVv..g(x)ll)dx (1 + IIVu.(x)[I)dx,
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we have (3.2). Finally, using (3.1) and (3.2), for all n choose k, such that

1

and

Iof(x, v,,.(x), Vv,,g(x)) dx- Io f(x, u(x), Vu,(x)) dx
1

It is clear that, setting

n :"- Dn, kn

we have

and

li,rn Ia f(x, ,, (x), 7J,, (x))dx =li,rn fa f(x, u,, (x), V u,, (x))dx.

We next prove Theorem 2.1 in the special case where f=f(A) and u is an affine
function. The proof presented here was obtained in Fonseca [Fo] (see Theorem 4.6
and Remark 4.16), and we are now aware of the fact that Marcellini’s [Ma] proof for
the case of weak convergence in Wi’m, m > 1 is essentially the same. Yet another proof
has been given by Kinderlehrer [K] who uses a subdivision of 12 in small domains in
connection with the Vitali covering argument.

PROPOSITION 2.5. Let f’MpxN-R be a function satisfying (H1), (H2), and

O<-f(A) <- C(1 + IlAII)

for some C>0. IfAo MpxN and if un W1’1(12; RP) are such that Un0 in LI(f; R e)
ana v is  ounaea, then

meas (12)f(Ao) -< lim inf J-a f(Ao+ V u,(x)) dx.

Proof The proof is taken from [Fo]. Related ideas appear in [DG] and [Ma].
We may assume without loss of generality that

lim inf f f(Ao+VU,,(x)) dx lim fa f(ao+VU,,(x))dx) < +c.

Due to the growth condition, {IIV u, II} is bounded in L, and so there exists a subsequence
and a finite measure/x in 12 such that

IlVu. II-" weakly*,

i.e., for every q Co(O)

(3.3) fa (x)llVu.(x)l, dx- fa dtx(x).

Consider an increasing sequence of subdomains 12k such that tqk @ f and 12 U 12k.
Let Ck be a smooth cutoff function such that 0 -< Ck =< 1, Ck 1 in 12k, Ck =0 in f\k+l
Setting

u:= %, W’(f P)



1092 IRENE FONSECA AND STEFAN MOLLER

as f is quasi convex, we have

f(Ao) meas (a)<_- Ia f(Ao+ Vu,(x)) dx

f(Ao) dx+ f(Ao+VU(X)) dx
\lk k+\fk

+ fa f(Ao+Vu.(x)) dx,

which implies that

f(Ao) meas (k+l) fa f(Ao+ Vu(/))dx+ f f(Ao+ Vu.(x))dx.
k+k

As f is nonnegative, we deduce that

(3.4) faf(Ao+VU(x)) dx-f(Ao) meas (k+)-a+,,a
On the other hand,

n f(Ao+Vu(x)) dxC n (l+,,Ao+Vu(x),,) dx
+ +lk

N C meas (ak+lak)+ C fa [[Vu.(x)[[ dx
+k

+ c [ I..(x)[ IIv(x)ll dx
+lX

N C meas (+)

+ C fn (+l(x)-_l(x))llVu.(x)l dx

+ c f I.(x)] IIv(/)ll dx.

As u. 0 in L(fi), by (3.3) and (3.4) we obtain

lip Ya f(Ao+VU.(x)) dx-f(Ao) meas (ak+l)

e-C meas (a+,Xa)-c . (,+,(x)-@k_l(X)) d.(x).

Finally, summing the above inequality for k 2,..., i, we have

(i-1)lip f(Ao+VU,(x))dx-f(Ao) 2 meas(ak+)
k=2

-C 2 meas (a+lka)+ (@k+l(X)--@k_l(X)) d(x)
k=2

f(Ao+ Vuk(x)). dx.
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Dividing by (i-1) we find

lim f(Ao+ Vun(x)) dx-f(Ao) -1 meas
k=2

1
_-> -C/_-- {meas (a/)- meas ()

+ I (,+(x)+,(x)+(x)-,l(X)) d(x)}

1
_->- c/_--35 {meas (a) + 4"(a)}.

Letting i-> +oo, we conclude that

lim ff(Ao+VUn(X)) dx-f(Ao) meas (12)_->0.

4. Lower semicontinuity for convex integrands. Suppose that f:12xRPxMPXN-->
[0, +oe) satisfies the hypotheses:

(H1) f is continuous;
(H2’) f(x, u,.) is convex;
(H3) there exists a nonnegative, bounded, continuous function

[0, +oe), c, C > 0 such that

cg(x, u)llAII- c <-- f(x, u, A) <- Cg(x, u)(1 + IIAII)
for all (x, u, A)E12xPxMpxrq;

(H4’) for all Xo E fxN
p and for all e > 0 there exists 6 > 0 such that

implies that

If(xo, u, A) -f(x, u, A)I-<- (1 + Ilmll).
We obtain the following corollary of Theorem 2.1.

COROLLARY 4.1. If the assumptions (H1), (H2’), (H3), and (H4’) hold and if
u,, u wl’l(f; P) are such that u, --> u in L(12; P), then

f(x, u(x), Vu(x)) dx_-<lim inf f(x, u,(x), Vu,(x)) dx.

Clearly, in order to apply Theorem 2.1 it suffices to prove that for convex integrands
with linear growth (H4’) reduces to (H4).

PROPOSrrION 4.2. Iff satisfies (H1), (H2’), and (H3), then for all (Xo, Uo)xIR p

and for all e > 0 there exists 6 > 0 such that

u Uo[ < 6 implies that f(xo, u, A) -f(xo, uo, A) ->_ e (1 + A II).
We introduce the recession function f given by

f(x, u, tA)-f(x, u, O)
f(x, u, A):= sup

t>0

Note that, for fixed (x,u,A)xPxM" and g given by g( t) := f(x, u, tA)-
f(x, u, 0), g is a convex function with g(0)= 0, and so

(4.1a) t--> g(t)/t is increasing;
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therefore,

f(x,u,A)=supg(t)/t
t>0

(4.1b) f(x, u, tA)
lim as +.

If (H1) and (H3) hold and iff(x, u,. is convex, then f(x, u,. is convex (and hence
continuous), homogeneous of degree one, and (see, e.g., Fonseca and Rybka (FR,
Lemma 2.3])

O<=f(x, u, A)<= Cg(x, u)l[AII
for all (x, u, A) xVxMvN.

The proof of this result is based on the following auxiliary lemmas, where for
notational convenience we omit the dependence of f on the variable x.

LEMMA 4.3. If (H2’) and (H3) hold, then for all u p

f(u, rA)
lim .sup -f(u,A) =0.
r-/oo Ilall-- r

Proof Fix u P. By (H2’) and (H3) the functions

f( u, rA)
a---

are Lipschitz continuous uniformly with respect to r. By (4.1)2 these functions converge
to f(u,.) pointwise. By the Ascoli-Arzela theorem, the convergence is uniform on
compact sets, and so

f(u, rA)
lim sup -f(u,A) =0. rq
r--,+oo llall-- r

LEMMA 4.4. If (H 1), (H2’), and (H3) hold, for all Uo ff p and for all e > 0 there
exists 6 > 0 such that

lu u0[ < 6 implies that f(u, A) f(Uo, A) >-_ -e

for all matrices a MPxN such that Ilall .
Proof Step 1. Assume that f(u, 0)=0 and fix Uop and e >0. By (4.1) and by

Lemma 4.3 we may choose r0> 2 such that

f Uo roA e
O<_f(uo, A)-" <-

to 2

for every A with IIAII- 1. On the other hand, as f is continuous there exists 6 > 0
(depending only on e and to) such that

lu Uol < implies sup If(u, roA)-f(uo, roA)l < e.

By (4.1) we have

f(u, roA)
f(u,A)>="

t"o

f uo roA

=f (Uo, A)

>=f(uo, A)-e.
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Step 2. As in the proof of the previous lemma, we set g(u, A):=f(u, A)-f(u, 0),
and we apply Step 1. The result follows from the fact that f(u, A)= g(u, A).

ProofofProposition 4.2. Step 1. Assume that f(u, 0) 0, and fix Uo R P, e > 0. By
(4.1), Lemma 4.3, and by continuity choose ro> 2, 6>0 such that

f uo roA e
O<=f(uo, A)-" <-

ro 2

for every A with IIAII 1, and

[u Uo[ < 6 implies sup If(u, roA)-f(uo, roA)[ < e.
IIAII_-<I

Thus, if lu Uol < 6 and if IIAII =< ro we have

(4.2) f(u, A)>=f(uo, A)- e >=f(uo, A)- e(1 + IIAII),

and by (4.1) if A= rB, IIBII 1, r> ro, then

f(u,A) f(u, rB)
>

f(u, roB)
r ro

f(uo, roB) e

ro ro

>-f(uo, B)
2 ro

>=f(uo, B)-e.

Finally, as f(u, .) is homogeneous of degree one, by (4.1) we deduce that

f( u, A) =>fo Uo, A) e a -> f( Uo, A) e a

which, together with (4.2), yields the result.
Step 2. In the general case we apply Step 1 to the function g(u,A):=

f(u, A)-f(u, 0) in order to find 6 > 0 such that

If(u, 0) -f(Uo, 0)l <
2

whenever ]u Uol < 6. Hence

and g(u, A)>= g(uo, A)- (1 + IIAII)

f(u, A) ->f(u, 0) +f(uo, A) -f(uo, 0)- (1 + IIAII)

>=f(uo, A)---- (1 + IIAII)

>--f(uo, A)- e(1 + IIA[I). t3

5. Concluding remarks. The integral representation for the relaxation if(.) in
BV(I)) of

I(u) := Ia f(x, u(x), Vu(x)) dx
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was obtained in the scalar-valued case by Dal Maso [DM], who proved that

(5.1)
(u)= fnf(x, u(x), Vu(x)) dx+ I2(, D(x, u-(x), u+(x), u(x)) dHu_,(x)

In( dC(u) (x)) dlC(u)](x),+ fo x, u(x), dlC(u)

where HN-1 denotes the N- 1-dimensional Hausdorff measure, and the distributional
derivative Du of the function u BV(I; ) admits the decomposition into mutually
singular Radon measures

Du VULNLg + (u+- U-)I’HN-1 [(U)+ C(u).

Here LN is the N-dimensional Lebesgue measure; V u denotes the absolutely continuous
part of Du, i.e., the Radon-Nidodym derivative of Du with respect to LN, Z(u) is the
jump set of Du with normal u defined for HN_ almost everywhere x 6 fl, and C(u)
is the Cantor part of the derivative (for details we refer the reader to Evans and Gariepy
lEG], Federer [Fe], Ziemer [Zi]). In (5.1) f represents the recession function (see
2), and D(x, a, b, u) is given by

b

D(x, a, b, v)= f(x, s, v) ds.

In the isotropic vector-valued case, i.e., if u:f --> p and h I1" II, Baldo [B] and Fonseca
and Tartar [FT1] obtained once again that the F-limit Jo(" of

J(u) := W(u(x)) dx + e h2(Vu(x)) dx

coincides with the relaxation

(u):= inf lliminf If(x’( ,-+oo
Vu,(x)) dx /n wl’l(-; P), Un --) U in L1),

where f is given by (1.3). This result confirms Gurtin’s [G1], [G2] conjecture that the
"preferred" solution has minimal surface energy (see also [Mo]).

In the anisotropic, vector-valued case and with u subject to the constraint curl
u- 0, recent work by Kohn and Mfiller [KM] seems to indicate that the Modica and
Mortola inequality

J(u) >- Inf(x, u(x), Vu(x)) dx

with f given by (1.3) is no longer optimal. However, it is clear that

u - In f(x, u(x), Vu(x)) dx

still provides a lower bound for the rescaled energies J(. ). In particular, the F-limit
must be bigger than or equal to (u). The issue thus arises to find an integral
representation for (u) in the vector-valued case.
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Fonseca and Rybka [FR] proved that, when f(x, u,.) is convex and if u takes
only the values a and b across a plane with normal v, then

(u)= Iaf(x, u(x), O) dx + I.(, K (x, a, b, ,) dHN_,(x),

where

and

K(x, a, b,  ):=inf{f f(x, (y),VsC(y))dy

M={: wl"l(Q,,;NP)l(y)=bify ,=1/2, :(y) a if y., =-1/2, and : is periodic
in the remaining Ul," ", ’N-1 directions with period 1},

where {ul,..., /N-1, // /IN} forms an orthonormal basis of Nv and Q is the cube
{YeNNIlY" Uil<1/2, i= 1,"" ", N}. The characterization of the surface energy density
K was inspired by the work of Fonseca and Tartar [FT2].

Independently, Ambrosio and Pallara [AP] showed that (. admits an integral
representation with the same structure as in (5.1), and this result together with the
work of Fonseca and Rybka [FR] provides a complete characterization of (u), namely

(5.2)
(u)= Iaf(x, u(x),Vu(x)) dx+ fr K(x, u-(x), u+(x), r,(x)) dHu_,(x)

(u)

+ f x,u(x) (x) dlC(u)l(x).’dlC(u)l

To identify the first and the third term on the right-hand side of (5.2) [AP] makes use
of the lower semicontinuity results of Aviles and Giga [AG], whose proofs rely on
sophisticated tools from geometric measure theory. Also, f has to satisfy linear growth
condition from below, i.e.,

(5.3) cllAII- C <=f(x, u, A)<- C(1 + IIAII)

for some c, C > 0, preventing a situation as in (1.3). In addition, we remark that the
convexity hypothesis on f(x, u,. may be too restrictive. Indeed, as shown by Acerbi
and Fusco [AF], Dacorogna [D], and Morrey [Mr] the W’-weak lower semicon-
tinuous envelope of the functional (1.2) is the integral of the quasi convexification of
the energy density f(x, u,. ), and so we expect quasi-convexity as a natural constitutive
assumption rather than convexity. This concern is genuine as there are examples of
quasi-convex functions with linear growth that are not convex (see Sverik [S] and
Zhang [Zh]).

In this work we consider quasi-convex integrands, and we relax (5.3) to include
degenerate lower bounds. Under these conditions we provide an analytical proof of
the lower semicontinuity of (1.2) in L, thus obtaining the first term in the relaxation
5(u). Our method seems to be appropriate to proving the lower semicontinuity of the
third term in (5.2) corresponding to the Cantor part of the measure Du, and it might
be conjectured that the representation of (u) given by (5.2) is still valid for quasi-
convex integrands with possibly degenerate lower bounds.
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STABILITY IN OBSTACLE PROBLEMS
FOR THE VON KARMAN PLATE*

E. MIERSEMANNt AND H. D. MITTELMANN$

Abstract. The buckling beyond the critical load of a plate governed by the von Karman equa-
tions is studied. A variational inequality formulation of the problem is derived. The deflection of
the plate is subject to an obstacle and the question of the stability of the state with a nontrivial
contact set is considered. A stability criterion characterizing the bound through a Rayleigh quotient
is proved in the general case. It is specialized to simply connected plates for which also a stress
function is introduced. For a square plate numerical continuation along the variational inequality
branch yields solutions whose stability is then checked through evaluation of the stability criterion.
Stability bounds for both clamped and simply supported plates are obtained.

Key words, plate buckling, von Karman equations, variational inequality, stability, obstacle
problem, continuation method
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1. Introduction. We consider a bounded domain as base domain for a plate.
It is assumed that the admissible deflections away from the base domain are bounded
by a given obstacle and that the plate is compressed by a force PK(s), where K is a
vector in the base domain acting on the boundary 0f of f. Here, P denotes a real
parameter. For P > P0, where P0 is the critical load of the free problem, the plate
contacts the obstacle in a certain region. In many cases there exists a critical value
Pcrit > P0 at which the deflection of the plate switches to another state. In the case of
the linear theory of the plate critical loads Pcrit were calculated in [7] for the circular
plate, in [8] for the rectangular plate, in both cases for a constant obstacle.

Recently, earlier results of the authors were extended to nonconstant obstacles;
see [9]. The determination of the critical load is based on a stability criterion for vari-
ational inequalities. The aim of this paper is to extend these results to the nonlinear
theory of the plate governed by the von Karman equations. This nonlinear approach
yields a good stability criterion from the mechanical point of view. In contrast to the
above mentioned papers, variations of the displacement vector in the base domain are
also considered.

In the numerical part of this paper, a rectangular plate with a constant obstacle
is calculated. The results will be compared with the calculations for the linear plate
problem from [8].
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2. The physical background. Let 2 c R2 be the bounded, possibly multiply
connected middle surface of a thin elastic plate. We use the following notations:

w, = Oxa w,a =_
OxaOx (’/= 1,2.

D bending stiffness, D
Eh3

12(1 -/121

h thickness of the plate,

E modulus of elasticity (Young’s modulus),

/l Poisson ratio (0 </l < 1/2).
By w(x) and v(x), x (xl,x2), we denote deflections perpendicular to the base
domain and by u (ul(x), u2(x)), r-- (rl(x), r2(x)) displacement vectors in the base
domain. The bending energy el of the plate is given by (see, for example, [4, p. 50])

D [(Aw)2 + 2(1 -/l)(w,212 W,llW,22)] dx.

The stretching energy e2 is, (cf. [4, p. 63])

(2.2) e2 - uba5 dx.

We are using the summation convention. In (2.2), u/ is the strain tensor and aa/
the stress tensor.

According to the yon Karman theory, it is assumed that

E E E
U12(2.3/ all

1 --/12 (Ull +/lU22), 322
1 /12 (U22 nt- /lUll), (712

1 +/l

holds.
Instead of (2.3), we can write

(2.4) (7f afu

with

Set

E
a1111 a1112 --0 a1122

E
32212 0 a2222 1-/]2’ a1212

E
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that
In the nonlinear plate theory that yields the von Karman equations, it is assumed

(2.5) ua eaf 4- 1/2w,aw,f

holds.
The outer work is defined by

(2.6) A A1 + A2 + A3,

where
m

i--0

here Si denotes the m + 1 disjoint curves of the boundary of f, and fi (f, f) are
vector fields defined on Si.

A2 ] u,f, dx,

where f (fl, f2) is a vector field defined on ,

here g denotes a scalar function defined on f.
Set U- (u, w) with u-- (u, u2), then the total energy is given by

e(U) e (U) + e2(U) A(U).

Now, we assume that the admissible deflections w away from the base domain
belong to a convex set V with 0 E V and that the admissible displacements u are in
a linear space 2. Replacing U by U + e-R with R (r, v- w), 0 < e- < 1, r E :, and
v V, then U + e-R is an admissible vector in R3. We expand e(U + e.R) in powers of
e- and obtain

2
e(U + e-R) e(U) + e-e’(U)(R) / -e"(U)(R,R) 4- O(e-3).

Here e, e’, etc., denote (formal) Gateaux derivatives of real functionals.
Concerning the historical background of the following stability criterion, see [3,

p. 257].
DEFINITION 2.1. The state U is said to be statically stable if

+ >

holds for each fixed R 0 and for all e- with 0 < e- < e-0(R). This definition and
expansion (2.7) imply a variational inequality as a necessary condition for a stable
state, namely

(2.8) > o
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X

FIG. 1.1. Plate subject to nonconstant obstacle.

for all R.
According to the yon Karman theory, the displacement vector U is given by

U(x) ?1 (X)l -- u2(x)2 -- w(x)3,where ul, u2, and w satisfy the system (2.11), (2.12) of 2. Here 1, 2, and 3
denote the basis vectors in p3. If one is interested in the physical problem where
the displacements are restricted by an obstacle surface S given by z (x), then the
unilateral condition is characterized by the inequality

< +

see Fig. 1.1.
This problem coincides with the problem considered in this paper only if (x)

const. For a nonconstant , our problem may be considered merely as an approxi-
mation of the physical problem provided u. Vb is small.

2.1. The first (ateaux derivative. For the convenience of the reader, we
derive here the first variation, see, for example, [4, p. 64]. Thus, we recall some more
or less known facts. We have

e’(U)(R) ei (U)(R) + e2(U)(R) A(R).

The definitions of e and A imply

ei (U)(R) a(w, v w),

where

a(w, v w) D .Io [AwA(v w)

+ (1 -/]){2w,a2(v w),12 w,11(v w),22 w,22(v w),11}] dx
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and
A(R) A1 (R) / A2(.R)+ A3(R)

m

i--0

From (2.2) and (2.4)we obtain

(2.9) e2(U) hJ (utj) dx,

where
() 1/2.u.

The u are defined through (2.5). Replacing U in (2.9) by U + eR, setting

u.() 1/2(()o. + ()..) + 1/2()..().
with

we obtain

u(e) u + er, () =+(v-),

e2(U)(R) h au(O) dx.

Here we have used the relation O/Outj ai.
Using

1u.(0) (.. + ..) + {..(, ). + .(v

and a a, we finally arrive at

e2(U)(R) h/ a,(r, + w,(v w),} dx.

Since w belongs to the convex set V and r to a linear space, the variational inequality
splits into a coupled system of an inequality and an equation:

(2.11) w E V: a(w, v w) + hf aafw,a (v w), dx -/ g(v w)dx >_ 0

for all v E V;

m

h ara, dx
i=0

for all r t:. The symmetric stress tensor a and its dependence on w is given
through (2.3)and (2.5).

For a given w e V, (2.12) defines aaf a(w). Inserting these aa into (2.11),
we see that (2.11) is a nonlinear variational inequality in w and that the displacement
vector u does not occur explicitly in (2.11).

For a remark concerning the existence of solutions to (2.11) or (2.12), see the next
section.
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Remark 2.1. If is a convex set as well, with 0 E , then (2.12) has to be
replaced by the associated variational inequality

m

j=O

+/a f(s -r)dx for all s E E.

2.2. The second Gateaux derivative. The second derivative of el is given by
(see the expansion (2.7))

R)

where R- (r, v); here we replace v- w in (2.10) by v.
Since

e(U)(R, R) h-se2 (uj(e)) dx

at e 0, it follows that

at e 0, where e (r,z + r,).
3. The stability criterion. Now we fix the function space under consideration.

Let V be a closed convex subset of a Sobolev space H with 0 V. In this paper
we assume that U H(t) for the clamped plate and H H(t)N H2(12) for the
simply supported plate. Then we set

V- (v e H; v(x) <_ (x) on }.

Here e C4() is given such that (x) > 0 holds on 12.
Let be a closed linear subspace of Hl(gt) HI().
Remark 3.1. Set

Na {(a +bx2,c-bxl);a,b, c e R}

and N =_ NNa.
Under the assumption

(A) A(r) + A2(r) 0
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for all r E N, there exists for a given w E V a solution u : to (2.12) that is
uniquely determined up to additive functions belonging to N. Here we have to take
into account that (2.12) implies

h aa eaj + -w,aw,/ 1 dx Al(r)-+- A2(r),

where
11/2(uo, + +

From this it follows that

a,w,w,l.r dx 0

holds for all r N3.
The proof of the existence of solutions is based on Korn’s inequality (see, for

example, [1, Chap. III, 3]) for the three-dimensional case.
For existence results concerning variational inequalities of the type (2.11), see [5].
Define H H and V : V. Thus, V is a closed convex subset of H.
Let U (u, w) V be a solution of the coupled system of the variational in-

equality (2.11) and of the system of equations (2.12). We recall that a,/3(w)in (2.11)
is defined through (2.12).

In what follows, we are interested in whether U is stable in the sense that

>

holds for all W V such that IIW- UII < p for a sufficiently small p > 0, and equality
takes place only for W U. The norm on H is defined by

IIUII 2 Ilulll / ( ) + +
For a given w let aa/(w) be the solution of (2.12) for y 0 and f 0, where

aa is defined through (2.3) and (2.5). By a(1)
/ we denote the solution of (2.12) for

f 0, where in (2.12) the a are defined through (2.3) with u e. That is, we
set w 0. Accordingly, we denote by .(2) the solution with fi 0 on the right-hand
side of (2.12).

Now, we replace fi in (2.12) by -All and f by -A2f and g in (2.11) by A3g
with real parameters A1, A2, and A3. Using this notation, we can decompose a/ of
(2.11) as follows:

(3.1) a, a,(w) "-() " a()AlOot A2 0*

From the definition of the symmetric stress tensor through (2.12), we obtain (n(i)denotes
the outer unit normal at Si)

(3.2)
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For the second variation of e2 we write

(U)(R, R) 4(U)(R, R) + (U)(R, R),

where we have set

4(U)(R,R)

h ./ a3(w)v,v,3 dx

/ { 1 }{ 1
[W,.r + W,,.r] } d+ +[w,,+w,,] + ,

and
a(1)v / a(2)v,v,3 dx,e2(U)(R R) -hA1 3 ,.v,3 dx hA2 3

that is, the right-hand side is independent of U.
For a given t > 0 we define

v(u) {R e H; U + R e V}.

Let R E Vt(U). Then e(U + tR) is expanded with respect to t:

(3.3)

(u + tR) =(U) + t’(U)(R)

+ (et(V)(R,R) / eI(U)(R,R) + e2(U)(R,R)}

+ o(t).

Let U be a solution of the variational inequality (2.8), or equivalently, of the
system (2.11), (2.12), where g in (2.11) is replaced by A3g and fi in (2.12) by -Alfi
and f by -A2f. That is, w E V is such that

f
a(w,v w) + h ./o aa(w)w,(v w), dx_

)lh 3 , ,3 3w, ,
+ A3 [ g(v w) dx

for all v V where a(w) r(1) and ,(2)
v va3 are defined through (3.2).

Set I:I V, where : @ N is the orthogonal decomposition with respect
to the Hilbert space norm on H1 H1; for notation, see Remark 3.1. Define

VOI:I

and

Set

9, v,(u) I.

eg1 (U)(R, R) egll (R, R) -- (12(V)(R, R),
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where we define

Then, the sum

elI (R, R) =- h Ja aafe,e dx.

Q(R, R) =- e7 (R, R) +e(R, R)

is equivalent to the defined Hilbert space norm on H.
We remark that each W E V, W 7 U, may be written as U / tR with t > 0,

Q(R, R) 1, and V + tR e V, where t2 Q(W U, W- U) and R-- t-(W V).
Remark 3.2.

Q(U)(R, R) =- ei’(R, R) + e(U)(R, R)

may also be used as a norm on H, provided IlVll is not too large. This follows by
using the inequality 2ab <_ ea2 + e-b2 for all e > 0.

Define for a given positive constant A

rt,A(U) {R e rt(U); Q(R,R) _< 1 and e’(U)(R) <_ At}.

Set
q(U)(R, R) =_ -e12(U)(R, R) e2(R, R),

and let
q(U)(R,R)A:HI= max

Ref\{0} Q(R, R)

The existence of a maximizer follows from Sobolev embedding theorems.
We make the following hypothesis.
(H) Let tn -- 0, tn > 0, and let Rn Vt,,A(U) be a weakly convergent

sequence Rn R. Then it follows that

q(U)(R,R) < 1.

THEOREM 3.1. Suppose that the hypothesis (H) is satisfied with a constant A
satisfying 2A > A 1. Then the solution U to the variational inequality e’(U)(W-
U) >_ 0 for all W V defines a strict local minimum in the sense that there exist
positive constants c and p such that

 lIW- Ull 2

holds for all W e r with IIW- Nil < p.
Proof. The result follows from the expansion

t2
(3.4) e(U+tR) e(U) + te’(U)(n) + -ff [Q(R, R) -q(U)(R, R)] + O(t3), 0<t_<t0.

If R e rt(u), Q(R,R) 1 and e’(U)(R) >_ At is satisfied for a constant A not
depending on t, then (3.4) implies

t2
e(U + tR) e(U) >- z-x[2A + 1 A:I_I1] -t- O(t3).
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Now, we consider those R e Vt(U) such that Q(R,R) 1 and e’(U)(R) <_ At. The
expansion (3.4) yields that

2
e(U + tR) e(U) >_ [1 q(U)(R, R)] + O(t3)

since e’(U)(R) >_ 0 holds.
We pose the maximum problem

t(U) max q(U)(R,R)
REt,A
q(U)(Rt, Rt),

where Rt denotes a maximizer. If (H) is satisfied, then the assertion of the theorem
follows.

4. A special case. To simplify the matter, we consider a simply connected plate
and assume here that [lUll is small enough such that Q(U)(R, R) defines a norm on H;
cf. Remark 3.2. Moreover, we suppose that the solution U (u, w) of the variational
inequality (2.8) satisfies

(x) on c A u
w(x) < (x) on

for an open set 4 with a piecewise smooth 04.
We assume that A2 A3 0 holds. Set A A1/D,

and
0

A _= n(A- Aw)

on 0.4; n denotes the outer unit normal on 0,4.
As in [9, Lemma 4.3, Rem. 4.1], we prove the following.
LEMMA 4.1. Let Lx 0 on ,4 and A1 > 0 on 0,4.

R (r, v) of hypothesis (H) of 3 satisfies v Vv 0 on 0.4.
Define

"(1)v dxDh fnv ,v,
-1 max

REo\{0} Q(U)(R,R)

where

Then the weak limit

I:I0 {(r, v) e I=I; v-- Vv--0 on 0,4}.
As in Theorem 3.1, we can prove the following result.
THEOREM 4.1. Under the above assumptions, the solution U (u, w) of the

variational inequality (2.8) defines a strict local minimum of e if A < # is satisfied.
From the definition of # it follows that # is an eigenvalue of the problem: seek

R e H0\{0}, R (r, v) such that

Q(U)(R, S) #hf .(1)(a.1) v,, dx
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for all S e H0\{0}, S (s, ), where Q is defined by

Q(U)(R, S) =- a(v, ) + h In a(w)v,, dx + h In a,,,(w, v)(s,, + w,,,)dx

with

a(v, ) =_ D/a[AvA 4. (1 ){2v,12,12 v,11,22 v,22,11}] dx.

The a(,f(w, v) are defined through (2.12) with f 0, fa(i) 0, i 0, 1,..., m, and

R (r, v) denotes a solution of the above maximum problem for the Rayleigh quotient.
This implies that the a are bilinear forms satisfying

This follows along the lines of 2.1. The definition of a(w) and a(w, v) implies
that

+ + +
holds.

The equation (4.1) is equivalent to the system

and

(4.4) aaf(w, v)s,f dx 0

for all s E , or equivalently,

(4.5)
a,(w, v),f 0 in f,

aam(w, v)nfl 0 on 0f.

Remark 4.1. In fact, the eigenvalue equation (4.3) is the linearization of the
associated equation to the variational inequality (2.11) at w.

4.1. Introduction of the stress function. If the plate is simply connected,
then it is well known that a stress function can be introduced and we get the von Kar-
man equations in the nonconstrained case; see, for example, [4, p. 65] or [11, p. 109].

Let U (u, w) E V be a solution of

1 h-a(w, v w) + - a(,(w)w,a(v w), dx

_> ,kh In ,"(1)w,,(v w), dx
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for all v E V where --(1)
,,f, a,(w) are defined in 3, and let R- (r, v) E I:to be a

solution of

-a(v, ) + o’,(w)v,,,f dx 4- - o’,f(w, v)w,,f dx

tzh f a(1)vo ,oq,f dx

for all (s, ) H0.
The stress tensor a,f(w, v) is defined through (4.4) or (4.5). It follows from this

definition that

(4.8)

holds.
Let X =- X(w), X e H() be the solution of

(4.9) A2X E(w2,12 W,llW,22).

X is called a stress function. Then we have for a,f =_ a,(w)

(4.10) all= X,22, a12 -X,12, a22 X,11.

The associated weak equation to (4.9) is given by X e H(f);

AxACdx E/n(w,lw,22,l w,lw,2,2) dx

for all e Ho2(a).
The af(w, v) in (4.7) are defined through (4.10) but with X e H(12) given by

(4.11) A2X E(2w,12v,12 W,llV,22 w,22V,ll),

or, equivalently, X Ho2() such that

a
AxACdx E fa{[w,lv,22 + v,lw,22],l IT,iV,12 + v,lw,12],2} dx

for all e H02().
Let/z(a\C) be the lowest eigenvalue or (4.7) with v and defined on /\C and

v (Ov/On) O, (O/On) 0 on 0,4 and in the case of a clamped plate on 0,
too. If the plate is simply supported, then the boundary conditions are v 0 on
0f and we have to add a free boundary condition on 0f; see, for example, [4, p. 54].

Let #(4) be the lowest eigenvalue of (4.7) with v, e H(j[). Then, U (u, w)
is stable if

) < min{#(f\C), #(.A)} #o

holds.
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4.2. The rectangular plate. We take [0, a] [0, 1] and assume that the
plate is compressed by the force f(0) -Aln, n the outer unit normal. From (3.2) it
follows that

where tia denotes Kronecker’s symbol. If v 0 on 0t, then (cf., for example, [4,
p. 54])

D /a(Av) dx D fo ( )a(v, v) T - I ) t dS.

Here a denotes the curvature that is positive if 0 is convex with respect to the inner
normal at the boundary point under consideration. Thus, in the case of a rectangular
plate, we have the variational inequality

AwA(v w) dx + - a,f(w)w,,(v w), dx

>_ A /a Vw V(v w) dx

for all v e V, where the a,(w) are defined through (4.9) and (4.10).
The eigenvalue equation (4.7) reads now as

(4.13)

Here the a,(w, v) are defined through (4.11) and (4.10). We have used the relations
(4.5) and (3.2).

Further, #(4) is the lowest eigenvalue of (4.13) with v defined on jt and v
(Ov/On) 0 on 04, and #(t\C) is the lowest eigenvalue of (4.13), where v is defined
on \C and v (Ov/On) 0 holds on 04, and v Av 0 on 0t for the simply
supported plate or v (Ov/On) 0 on 0t in the case of the clamped plate.

5. A remark concerning the unconstrained problem. Here we consider a
simply connected plate that is simply supported at the boundary 0t. That is, we
have to describe w 0 at OFt for the deflections w perpendicular to the x-plane.

Let fi 0, i 1, 2,... m, f 0, and g 0, and set f0 -Aln; n denotes the
outer unit normal on 012. A direct calculation shows that assumption (A) from 3 is
satisfied.

In the absence of an obstacle, the system (2.11), (2.12) becomes

h
(5.1) A2w- a(w)w,, =-,kAw in gt,

A2X E(w2,12- w,11w,22) in ,
(5.3) (rll X,22, a12 -,12, 622 X,11,

with the boundary conditions

OX(5.4) X=nn =0 on0gt,
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(5.5) w 0 on 0f,

(5.6) Mw =_ On---- -t- u-n 0 on 0f.

The last one is a free boundary condition; see, for example, [4, p. 54]. In the case of
the clamped plate, we have to replace (5.6) by Ow/On 0 on 0ft.

Now, we are interested in the question of whether a solution of (5.1)-(5.6) is
stable in the above sense. For this question concerning shells and plates, even when
the first eigenvalue is not simple, see [2], [10] and the references therein.

Let A0 be the first eigenvalue of the linearized problem to (5.1)-(5.6), that is, of
i2w --/iW 0 in f under the boundary conditions (5.5) and (5.6).

In what follows, we assume that A0 is a simple eigenvalue. We recall that, in the
case of a simply supported plate, A0 is simple, and the associated eigenfunction does
not change its sign in f provided f is convex; see [6].

By a well-known method, we find for the eigenvalue ,k of (5.1)-(5.6) the expansion,
[e[ < e0, e0 sufficiently small,

A Ao + 2A= + O(ea), W Wl -I- 2W2 -t- O(53),

where Wl is an eigenfunction to the linearized problem and ,)t2 is defined by

h (Wl)Wl,oWl dx-5 ff aaf ,
fa [Vwll 2 dx

Inserting the w from (5.7) into (4.13), we find that

and

V Wl -[- 52V2 -- 0(53)a Ao + ea + O(e),

where #2 is given by

#2 IVwl 12 dx - a,(wl)wl,aWl,fl dx + - O’a(Wl, Wl)Wl,aWl, dx.

Since

af(w)w,,w, dx > 0

for w 0 (see, for example, [5, Lemma 7.4]) and (4.8) hold, we obtain

3h

" ff O’a/(Wl)Wl,cWl,f dx
ff [TWl 12 dx

and thus A2 < 2. This means the buckled state is stable, at least for small deflections.
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5.1. Continuation from a stable buckled state. Let (ws,As) be a stable
solution of (5.1)-(5.6). Now, we add Tg to the right-hand side of (5.1), where T is a
real parameter and g is defined on and sufficiently regular. We are interested in
solutions (W(T), A(T)) such that (w(0), A(0))= (ws, As) holds.

Let #(T) be the first eigenvalue to (4.13) with w =_ W(T), then, from 4, the
stability criterion follows

(W(T), A(T)) is stable if A(T) < #(T) is satisfied.

We say that the stability bound is attained if and only if A(r) #(T) holds.

6. Numerical results. For the numerical calculation we use the characterization
of the eigenvalue #0 by the Rayleigh quotient; see 4. Set

B(v) fa IVvl dx

and

where

Then, #0 is given by

(6.1) #o min
A(r,v)

(,.)e B(v)’
v:O

where the linear space : contains all functions from (H x H1) H2 such that

(6.2) Ja rl dx O, /n r2 dx O, x2rl xr2 r2, + r,2)dx 0

are satisfied for r and

( ov )v 0 on 0 and n 0 in the clamped case

Ov
v 0 on OA

On

for v.
First, a continuation method has to be used to continue from the first bifurcation

point A0 along the stable branch of solutions to the von Karman equations (5.1)-(5.5).
A0 is given as the lowest eigenvalue of the linearized problem. Since the emphasis here
is on the determination of the stability bound #0, a relatively simple method was used
for this continuation, namely the projected relaxation method already used in [9].
Iteratively, the method was applied to (4.12) after first solving (4.9) for X. Initially,
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a small multiple of the eigenfunction of the linearized problem was used as a starting
guess; subsequently, the solution at a certain A-value was used as a guess for
This corresponds to a zeroth-order predictor step. In general, this should be replaced
by a first-order predictor as given in [9]. Also, instead of the relaxation algorithm,
a projected Newton method as in 4 of [8] may be preferable. A finite-difference
discretization as in [8], [9] was applied to (5.1)-(5.5); see the Appendix.

Second, the variational inequality solutions have to be tested for stability. At
each computed point along this part of the branch, the eigenvalue problem (6.1),
(6.2) is solved. This problem again was discretized by an analogous finite difference
method. Both numerator and denominator in (6.1) are quadratic forms in the values
at grid points of the variables v, rl, and r2. In order to make sure that the asociated
matrices are symmetric, the functionals A, B were discretized, and the orthogonality
conditions (6.2) were added through three additional rows and, for symmetry, also
columns of the matrix associated with A, while the matrix for B had zero entries in
these positions. The inverse iteration method with shift successfully applied in [8] was
used to determine #0.

In the following we report about some computations for both the simply supported
and the clamped square plate subject to a constant obstacle (x) _= d. A square grid
of size 1/(n + 1) is used, and i is taken as 10(20) in the simply supported
(clamped) case. With a bisection method is adjusted such that u0() holds.
The physical quantities entering the problem (cf. 2) are chosen as those for a steel
plate, E 2.106 kg/cm2, .25. The obstacle has the value d .05, and the
thickness h of the plate has to satisfy h < 2d. A collection of formulae for the discrete
problem is given in an appendix.

Computations for n 31 yielded the stability bounds given in Table 6.1. These
are the load values for which #0(). They show that for the nonlinear theory
stability holds for slightly different load values and contact sets compared to the linear
theory; cf. [8]. For w 0 in (6.1) this reduces to the linear problem considered in [8]
since the r are zero in the minimum. Also, formally, (6.1) reduces to this problem for

hiD O. Here this quotient is on the order of 10-2. More extensive computations,
also for nonconstant obstacles, will be done and presented elsewhere.

TABLE 6.1.

Stability bounds for square plate of length 1 and thickness h .025

Boundary condition stab. bound % contact

simply supported 168.73 37.1

clamped 319.6 23.1

Appendix. The biharmonic operator on a square grid is approximated by the
difference stencils (each has to be multiplied by h-a)

1
2-8 2

1 -8 20-8
2-8 2

1
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for grid points a distance of 2h or more from 0fl. For points adjacent to 0fl,
1-8 21 -8 1 22 -8 1

2 -8 2 -8 2
1 1

are used for clamped, and

1-8 19 -8 1 18 -8 1
2 -8 2 -8 2

1 1

are used for simply supported boundary conditions at Of/or 0Jr. The standard five
point star (multiplied by -2)

1
1-4 1

1

is used for the Laplace operator. Analogously, the terms w,a are approximated by
the stencils (times h-2)

01 4
1 -2 1 -2 0 0 0.

1 0-1/41

For the discretization of B(v) in (6.1) the five-point star is used, which is equivalent
to replacing B by

n+l

Bh(v) h2 E [(55v)2 + (52dv)2]’
i,j--1

where vi,yv(ih, j), 5,jv (vi,j -Vi-l,j)/h, and vii 0 for i,j O, and n + 1.
Analogously,

where

n+l1 E 22h-Ah(v, r) (5l,v + 5,v)
i,j=l

+ ,,
ki,j=

n+lE (J) 2]
1 v2 E [(i;J))2 +

i,j--1

n+l

1122
2uE (i,j) (i,j) 4E n+

1-u + ())
i,j=l

1 + u
i,=1

ti"2 5(5a), a (-1)+X,f

w(’),v)"fg(i’J) 1 (/,jc -- jr + W}’j)jV + ,
and the summation convention is used with respect to a, . The ha# are averages of
the aa in such a way that the matrix of the quadratic form Ah is symmetric. The
integrals in (6.2) were approximated by

n+l n+l

i,j=l i,j=l

hZ[rli,(j 1)h ri,(i 1)h e,r + .rl]
i,j=l
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ON ASYMPTOTICS OF SOLUTIONS OF ELLIPTIC MIXED BOUNDARY
VALUE PROBLEMS OF SECOND-ORDER IN DOMAINS WITH

VANISHING EDGES*

JACEK BANASIAK?

Abstract. This paper investigates the behavior of variational solutions of second-order elliptic mixed
boundary value problems (MBVP) with real coefficients in n-dimensional domains with edges near the
points where the edges are vanishing. It is shown that the first coefficient involved in the decomposition of
the solution into regular and singular part can be extended continuously in appropriate spaces across such
points, thus showing that the standard decomposition formula holds also in such domains.

Key words, elliptic boundary value problems, nonsmooth domains

AMS(MOS) subject classification. 35J25

Introduction. In this paper we investigate the H2-regularity ofvariational solutions
of the second-order elliptic problem

(0.1) Au =f in , u b on FD, Bu q on FN,

where l-I c R is a bounded domain with boundary F consisting of smooth parts lD
and IN and a "collision submanifold" Fc, which can coincide with an edge of F. A
and B are, respectively, second- and first-order differential operators defined in some
neighborhood of . Problem (0.1) has been investigated since the end of the 1960s,
starting from the pioneering paper by Kondratiev [9]. It is known that, in general, the
solutions to (0.1) have singularities due to presence of Ft. One of the constructive
methods in dealing with such singularities is to seek a decomposition of the solution
into two parts, one of which is regular, whereas the second carries all information
about the singularity of solution. Such methods provided practically complete descrip-
tions of two-dimensional problems; see, e.g., [7], [12], [1], [2]. In more dimensions
certain difficulties occur. One type of decomposition formula for variational solution
to (0.1), [10], specified, for example, to A=A, B=O/On, and either zr/2<a<=w(t) <-

/3<zr or zr<y<-w(t)<-_6<3zr/2 on Fc reads

___v(0.2) U(X) lgreg(X qt_ C0(t)r=/2’(’) sin
2w(t)"

Above, x=(r, O, t), tF, r(x)=dist(x,F), Ureg is a "regular" function, and eo
is square-summable on F.

Formulas ofthat type are not always satisfactory since Ureg is usually not sufficiently
regular along F due to poor regularity of Co; see, e.g., [6]. So, instead of (0.2), the
so-called "nontensor product" decomposition 13] was proposed; see, e.g., [8], [5].
Here the "regular" term is indeed regular with respect to all variables. The main
disadvantage of such decomposition is that variables, tangential and transversal to Fc,
are not explicitly separated as in (0.2), except in special cases, discussed in 13], where
the authors have shown that for higher regularity of data the tensor product form
exists and has required regularity properties.

Received by the editors November 16, 1990; accepted for publication (in revised form) November
25, 1991.
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However, as pointed out in [3], e.g., neither method deals with the case when the
opening to between FD and Fv is equal to r in certain points of Ft. We shall consider
this case here, calling it a "vanishing edge." The difficulty arising here is due to the
fact that such a domain is not locally diffeomorphic to a dihedral angle.

Our method of dealing with this difficulty is based on a decomposition formula
for variational solution u of two-dimensional problems. To use this formula, we reduce
(0.1) locally to a model two-dimensional problem with parameter, thus obtaining a
family of decomposition formulas, which can be "glued" together thanks to explicit
expressions for coefficients of the decomposition. Thus, our technique leads us directly
to formulas of type (0.2), and our main result, specified to the quoted example, is that
(0.2) holds if r/2 < a =< to(t) <- 3r/2.

We decided to confine ourselves only to the first asymptotic in order to show in
the clearest way possible the influence of the "vanishing edge" on the first step of
regularization of the variational solution. Higher regularization involves a number of
both technical and qualitative problems of its own, [10], [12], [3], which, added to
geometrical difficulties, see (A6), creates a difficult problem, which was beyond the
scope of our investigation.

1. Basic notations and definitions. Let be a bounded open subset of with the
boundary F Fo UF F where FD and F are open C3’-submanifold in F such
that FFN= and ’rv =F. F is assumed to be n-2-dimensional, C3’-

submanifold of F, and F =1 Fi, 1-< r . We assume that all Fi are closed and
every point x Intr F (interior relative to F) has a neighborhood in , diffeomorphic
to an n-dimensional dihedral angle. Some F can be submanifolds with boundary
(bdFi), and for x bdFi we have the to(x)= r. We assume that if F F , then
Fi f"l Fj bdFi f-’l bdFj.

In other words, F can be situated on the edge of the boundary, and this edge
can either vanish or change itself from acute to obtuse (or reversely) in some point of
the boundary.

We shall denote by 0 the ith partial derivative. Let A be defined on a Sobolev
space H(12) by

(1.1) Au := O aijO bl -I ai O tl nt- ao tl.
i,j=l i=1

We assume that A is strongly elliptic with real coefficients and ai C2’X(fi) for
i,j 1,. , n and ai L(f) for =0,. , n. By A we denote a vector field, coinciding
with the conormal field on Pu and/2 := A + b, where b C’(N,) and - is some vector
field, tangent to 0(N. We define B := "),0 y 2in=l [d,i Oi.

We consider the following problem: for givenf L2(), find u satisfying

Au f in

(1.2) yu=O on

Bu O on0N.

We can assume that (1.2) has a unique solution u e Hl(f), [1], [7]. We shall
investigate the behavior of u in a vicinity of Fc, particularly near a "vanishing edge."

2. Geometry of the problem. In the first step we perform a change of variables,
which is an analogue of the "flattening" of the boundary. We shall show that the
domain with "vanishing edge" is locally diffeomorphic to a domain, called a generalized
dihedral angle, where the opening can vary along the edge.
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First we introduce some notation. For ::=(1,’’’, :,)", ::=(:1, ’):=
(sc, sc2, so"), and also sc :-- (:, 0,. ., 0), :2 := (:1, sc2, 0,. ., 0). Yi is a unit coordinate
vector of a Cartesian system, and for any two vectors d,/, w(d,/) denotes the measure
of the angle between them. Moreover, {a0}i",j= is the matrix of principal coefficients
of A after transformation.

LEMMA 2.1. For every x F there exists an open neighborhood Ux ofx and a C 1’1

diffeomorphism : U,,- W (a unit cube) such that
(a) q(UflFN)={e W"; =0, 2>0};
(b) (U C r) { e w"; o};
(c) For every (0, 0, ")e W" there exist cl c1((’), c2 c2((’) satisfying c+ c2 1

such that

(UxNro)N{e"; :"= const} {: W"; Cll- c2:2= 0}.

We define w(") by cos w -Cl and sin w c2
(d) q(U na) ={see W"; 0<w(Y_, ) < w(:")};
(e) (2.t7)(0, :’)= rfi(sc’’) (rnl(sc"), rnz((’), 0,..., 0)

for > 0 and rn # O, where . denotes the Jacobi matrix of rb;
(f) c71 c72 1. and 2 2 0 for SOl O.
Remark 2.2. A sketch of the proof and explicit formula for w(sc’’) is given in the

Appendix. Here we only note that if the edge of 12 vanishes at x, then w((’)= 7r, where
(0, 0, ’) ,(x).

3. Regularity of the solution. According to 2, MBVP (1.2) is locally equivalent
to the following problem:

Au=f in D,
(3.1) u=-OlU+b(t)O2u=O on aN,

yu 0 on GD.

where := sc’’ will hereafter denote the parameter along the edge, D is defined by
Lemma 2.1(d), GN := (FN), GD (FD). Moreover, b(t)= mz(t)/m(t) (see Lemma
2.1(e)). We put Gc := (Fc). The main aim of the paper is to prove Theorem 3.1, which
describes the behavior of the solution to (3.1) close to the points, where w(t)= 7r. Let
tp(t)=arccotb(t), 0<q<Tr, A,,(t)=(-q(t)+mr)/w(t), m=0, +1,..., and sc=

(SOl, sc2), and D’= Dr-1 {so; const}. Then we have the following.
THEOREM 3.1. Let u H(D) be a solution of (3.1), and O(t) oo(t)+ O(t) satisfies

7r< O(t)<=27r for t Gc. Then

U( t) Ureg( t)+c,(t)" ra’(t) sin (Al(t)O+(t)),

where

C Lz({t G; O(t) >--_ k}),

Ureg L2({t 6 Gc; k<= O(t)--< 2r}, H2(Dt))

for every k > .
The proof depends on a number of lemmas and is postponed till the end of this

section. We start with the following considerations. According to Lemma 2.1(e),

(3.2)
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where Zl/ 2i,j=l oi( ijOju
02 i.j K (g%OJu), where

with d0(0,0,")=0 for i,j=l,2 and A2u=

K={(i,j); l<=i<-n, 3<-j<-n or3<-i<-_n,l<-j<-n}.

Our aim is to show that if u is a HI-solution of (3.1) (with compact support), then
both u and 2u belong to L2(D). Certainly, the two last summands in (3.2) are
square summable; thus, we include them in the right-hand side of the equation.

We recall that we are concentrated upon points with to(t)= r. Other cases have
been extensively dealt with in [4], [10], [12]. We use those results without further
comments.

Thanks to Lemma 2.1(a)-(d), the boundary of D near the point se= (0, 0, t)e Gc
such that to(t)= r can be described by

,= (,) {o2 tan to(t)

where :’= (:2, t). We "flatten" D by

(3.3) 1 1- [(t),

for :2 >_- 0,
for :2 < 0,

This is an invertible transformation with inverse given by

(3.3’) , sr, + d ("), se’= ".
For derivatives we have the following formulas"

-tan to(t), :2 < 0,
0’st’ -:z. Oito(t). cos- to(t), 2 < 0,

for ->_ 3 and 0’i 6o for ->_ 2,j ->_ 1, and =j 1. Since 0ito(t) cos-2 to(t) is continuous
in a neighborhood of with to(t)= or, we see that 0isrl are continuous for i_>- 3 and
only 02 suffers a jump across Go. Thus, the transformation (3.3) is bi-Lipschitz with
Jacobian equal to 1. Since u H(D), (3.1) is equivalent to

(3.5) f 8, o’uo v ae f fv d,
D i,j=l D

for every ve H(D) such that yu =0 on Go, where 2:= -b and := + b, and
0 := a0 for remaining i, j. If (’):= u((’)), then a satisfies the identity

for every v e H(N,+) satisfying ,v =0 for ’ =0, ’z < 0 where g0 :=,= 80r0sr. By
(3.4) a discontinuity of aj can only appear if either or j equals 2, and then ao suffers
a jump across Gc. Therefore, each i0 is Lipschitz continuous in the direction of G
and the following lemma holds.

LEMMA 3.2. If is a variational solution of (3.5) then ok01 L2(N+,) for (k, 1) K.
Proof The proof is analogous to Nirenberg’s method of differential quotients [7],

if we notice that the estimates for oko involve only bounds for 010 i, j 1,. ., n

[7, Form. (2.2.2.4)]; so, if k->l, 1->3, then okolL2(+n) by (3.4).
Therefore, we see that t7 satisfies the equation

(3.7)
2

aoO0 a=F=f- +
ajO 0 in.,

i,j i,j K
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where, by Lemma 3.2, F L2(n+). However, (3.7) is still not satisfactory since the a0
have jumped across Go. To overcome this difficulty, let us consider (3.7) in the
variational form"

(3.8) In a,oiaoed f Fv d
+n i,j=l +n

for v as in (3.6). Applying (3.3’) to the identity (3.8), we see that u H(D) satisfies

(3.9) a* OiuOJv d F*v d0
D i,j=l D

for v as in (3.5), where

(3.10) al*l 11--2 ljO d- ijO dO d,
-=-3 i,j =3

a=o- 82k(Okd) fori=l,j----2 or i=2,j=l (see(3.5)),
k=3

a*2 82 and F*(sr) F(’(sr)).

Thus, coefficients of (3.9) are Lipschitz continuous. Fubini’s theorem, applied to (3.9),
shows that for almost everywhere Gcu(., t) is a variational solution of the two-
dimensional problem"

(3.11) f aOuOvd d=I F*vdl d2,
D i,j=l

where v HI(Dt), yv=0 on G: G ("1 {:; const}. Now we have the following.
LEMMA 3.3. Let r=(21+2)/2. If u Hl(D) satisfies (3.1), then rOOu L2(D)

fori, j=l,2.
Proof The proof depends on Kondratiev’s estimation for MBVP in a rectilinear

angle, [9]; see also [14]. Since u(., t) satisfies (3.10), we have for almost every and
i,j 1, 2, [9],

(3.12) f r2lOiOJulZ dl d<-c f ((F*r)2+(olu)2+(o2u)2+(r-lu)2) dl d2,
D D

where the constant C depends on the bound for coefficients and its first derivatives
and, therefore, can be made common for all G. Since u =0 on F’D, we can use
Hardy’s inequality to estimate (r-u). Finally, integrating (3.11) along G, we obtain
the thesis of the lemma. ]

The following proposition concerns the tangential regularity of the solution to
(3.1), and although it is not used in the sequel, we give it for its own interest.

PROPOSITION 3.4. If u satisfies (3.1), then OOu L2(D) for (i,j) K.
Proof We have oioJff =-’,l=l (okoll,t)OikOJl’q-2=l okuoioJk i,j= 1,..’, n

where :(sr) is defined by (3.3’). Since (i,j) K and uHI(D), we see by (3.3) that
the second summand is square integrable and will be omitted in the sequel. Moreover,
OikOsrl 0 if and only if either k and =j or k 1 or we have a combination
of the above conditions. Therefore, for j>=3oloJ=ololuoJl+oloJu and since then
[0Jl[ Mr for some M _-> 0, we see by Lemmas 3.2 and 3.3 that oloJll L2(D). Now let
i> 1, j_->3. Then OiO=0101uOlOJl+OOluO+oloJuOl+OOJu, and it follows that
[0i1011 -< Mr. Therefore, application of Lemmas 3.2 and 3.3 and the first part of the
proof .gives the thesis.
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Now, from (3.2) and (3.10) we see that a* 1 + a, where la[-< Mr for some M > 0;
thus, by Lemma 3.3, aOOau L2(D). Similar considerations, applied to the remaining
a, show that for almost every G, u(., t) is an H-solution of the problem

t)= (., t) in Dr,
(3.13) B,u=olu( -, t)+ b(t)O2u=O onG’N

yu(’, t)= 0 on GD

where ff= F*- iOiu
i=1
(a- 1)0 -(a*l+ b)O’Oeu-(a*, b)OO’u L:(D).

Therefore, we can use the two-dimensional theory developed in [1], [2], [4]. If
we denote

H D’ D,={u )’AuL2( B,u=OonG’N, yU 0 on Go},

2 H2(Dt’--

then, in particular, A is a topological isomorphism of (equipped with the graph
norm) onto L2(D), and t is a closed subspace of of finite codimension for any
to(t). Also, the image of t is closed in L(D) since the boundary data are
homogeneous. As a consequence, we see that for almost all G, the solution u of
(3.13) has the form

(3.14) u( t)= u( t)+ E c(t)rt. sin (A(t)0 + O(t)),
0Am(t)l

where (r(), 0(()) are plane polar coordinates centered at zero and Ur(’, t) H(Dt).
It follows, [1], that (3.14) holds for every to and tp. Now we can complete the proof
of Theorem 3.1, focusing on the case to(t)= r, since the detailed considerations
concerning the case where o)(t) r can be found in [3], [10].

Proof of Theorem 3.1. In such a simple case as (3.13) it is possible to determine

c explicitly as in [10], [11]. We omit lengthy calculations that are similar to those in
[10]. [11]. Let w(, t)= w(r, O, t)= r-,’) sin (A(t)O+ (t)), and r C(E,) be a
function equal to 1 in the neighborhood of Gc, satisfying the adjoint boundary condition
on Go U GN. Then

1 (fr ww’d(+fD uA(rtw’)d()(3.15) c

We see that the second integral, say I2(t), has no influence on regularity of C since
z(r/wl) 0 in a neighborhood of G. For the first integral, we have

(3.16) IIl(t)l<- R(t)ll( ", t)ll/(o’" (O(t)-Tr)-
for a bounded R; so cLe({t; O(t)_>- k}) for k defined above.

Next, Ureg(Sc, t)= U(:, t)--c(t)" W(, t) and since both summands on the right-
hand side belong to L({t; O(t)>-k},), the left-hand side does also. However,
Ureg , and norms, induced on , from H(D,) and t are equivalent, 1], so

UregL2({t; O(t)>-k}, H:(Ot)).
Remark 3.6. Theorem 3.4 can serve as a tool for proving regularity results for u

both in H(f), 1 <s<2, s 3/2 and in weighted Sobolev spaces H’(f, r, e), [10].
However, as we saw, the first asymptotic of MBVP behaves in the same way in the
neighborhood of points, where w r, as it does near other points of G (as only O r,
2r); thus, we do not go into detail.

Appemlix. Here we prove Lemma 2.1 and give an explicit formula for the opening
w(t) in terms of geometrical properties of the original boundary.
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Proof We obtain @ as a superposition of four transformations, the first of which
is a modification of a normal transformation [15]. Hereafter, we adopt a convention
that superscripts I, II, III, and IV will refer to successive steps of our construction. In
some neighborhood of x, ON is a graph of C3’-function b with outward normal
given by

(A1) -- ,Vial, where g (-1, 02b, ., 0"4))

and h h(x) [(/2. )(X)]-1/2 [( A" )(X)]-1/2 for x Ft. We define new coordinates
in the following way:

(A2) X q(Y2, Yn) Ayl/z, Xi Yi AYltZi, 2, , n.

Let y=I(x), then detI= 1/A(/. )=(. ff)/l] on Ft. It is easy to check that
I=-A-l and also that a 1 on (F).

Furthermore, let F be locally defined as a graph:

rc {x e e"; x (r(x"), x"), x e(x")}.

It is seen that FIc-- :II(Fc f3 Ux) {y Wn; y =0, Y2-- 7(Y")}. The second transforma-
IItion, i, will straighten F and make a22 equal 1 on F=c I(Fc). We define it as an

inverse of

(A3) Yl Z,, y2 Z2/ (Zt’) ")/(Z"), ytt._. Ztt._.

where/3 is defined below. Let us denote by A the Laplace-Beltrami operator on y 0
generated by A and by fro o/1ol, o= (1, _3%.-., _). Taking

(A4) /3 (y’) [( Pao ff0)(y)] 1/2 y, [,I

we obtain a= 1 on Fc {z; z z2 0}, and, as defined, does not change properties
achieved in the first step.

III III IIIIn step III we perform a transformation to obtain a2 a2 0 on F We can
take, for example,

(A5) v z,, v b(z")z + c(z")z, v"= z,

II II 2]-1/2 II -1
a12 cwhere b a12 [1 and [1 II’2n--1/2 IIIa2) on F Now (-h Y)

-A-l(1, b, 0,. ., 0), and since both A and b depend only on variables from F we see
IIIthat (e) is satisfied after step (III). Clearly aI--

a22 1 for v v2 0.
In the last step we straighten lines L(v")--dPIldpIIdi(OD I’] Ux) ["] {v; V" const}

by projecting them onto their tangent lines. In our case (x bdFi) we can assume that
L(v") is locally graph of a function v X(v2, v"), and, consequently, define iv in the
following way:

v for v2 => 0,

v + v22X(0, v") -X(v2, v") for v2 < 0,(A6)

Since Fo is a C3’-manifold and oIV= along the collision submanifold, (I)IV is a
C l’-ditteomorphism, which does not change properties achieved in the first three steps.
Therefore, all requirements of the lemma are satisfied by the transformation =v,defined in a suitable neighborhood of x. [3
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Now we express w((’) and q(") in terms of quantities defined on the original
a 12(0, 0, v"), and furthermore a 12boundary. It is clear, (A4), that cos q(") II II__

fl-l[(a2, ", an)" 0] (where both sides are calculated along Fc), and since ai
--(A" rfii)/(A" ) (see (A1)), we have

(A7) cos q (TA" )- (A" rhi)no on Fc.
i=2

Let "k := (ok, 0," , 0, 1, 0," 0), where 1 is situated on the kth place. We define
rfi :=(A, "3,"’, ’), where M denotes the vector product of n-1 vectors in
n-dimensional space. Let N =Y2 and denote by o the vector, tangent to Go,
lying in the plane, spanned by N and/2. It follows then, from (AS), that

-b(. "D)+ c(rfi. o)
COS O)

((t. "D)2+ [C(th "TD)--b(g" "D)]2)
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ABRIKOSOV’S VORTICES IN THE CRITICAL COUPLING*

SHENG WANG’ AND YISONG YANG

Abstract. A necessary and sufficient condition is obtained for the existence of multivortex solutions of
the Bogomol’nyi system arising in the abelian Higgs theory defined on a rectangular domain and subject
to a ’t Hooft type periodic boundary condition. In particular, the number of vortices of a solution is confined
by the size of the domain. Such solutions realize the magnetic periodic cell structure in a superconductor
predicted by Abrikosov. If the periodic boundary condition is removed, the Bogomol’nyi equations on a
bounded domain possess solutions with an arbitrary number of vortices, and these solutions may be used
to approximate the unique finite energy solution over the full plane. Moreover, it is shown that, for any
given vortex distribution in the plane, the Bogomol’nyi system has a continuous family of gauge-distinct
solutions with infinite energy.

Key words. Bogomol’nyi equations, vortex-like solutions, maximum principle, sub- and supersolutions,
’t Hooft periodic boundary condition, quantized magnetic flux, superconductivity, gauge transformations
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1. Introduction. One of the most significant features of the classical two-
dimensional abelian Higgs theory is that it allows a family of vortex-like solutions
labelled by topological integers. It is known that the dimensionless Higgs self-coupling
parameter, A > 0, plays a crucial role in the model, so that, in suitably normalized
units, for A < 1, vortices attract, while, for A > 1, repel, and the system is unstable
against decay into separated vortices [10]. In fact, currently, all known finite energy
solutions for A 1 are rotationally symmetric [18], [4], which can well be viewed as
vortices clustered together, and it was conjectured that [11] these field configurations
are the only finite energy solutions of the model modulo gauge transformations,
although a verification of this statement still remains outstanding. On the other hand,
for the critical choice A 1, the situation is entirely different. The numerical study in
[10] first suggested that A 1 vortices do not interact, and solutions with finite separ-
ations between vortex locations should exist. This conclusion was then supported by
an index theorem argument [22]. Finally, the existence of such arbitrary multivortex
solutions was proved through a nonconstructive variational approach [11].

The main purpose of the present paper is to obtain the A 1 multivortices of the
abelian Higgs theory over a periodic lattice cell realized by a ’t Hooft type boundary
condition and to approximate the full plane finite energy vortices of Jaffe and Taubes
[11] by bounded domain solutions. The former may well be viewed as a compact
version of the model. Multivortex solutions of such a nature were first explored in the
pioneering work of Abrikosov [1] in the context of the Ginzburg-Landau theory [8]
of low transition temperature superconductivity, where it was predicted that, under
some circumstances, the magnetic flux may penetrate the sample in the form of
vortex-lines with a period structure, and the total flux through a lattice cell is a quantized
value proportional to the number of vortices confined. Although this prediction has
been confirmed in numerous physical experiments, a mathematical verification has not
been worked out in the literature yet. Earlier attempts include, for example, the work
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of Odeh 17], where a prescribed flux problem was studied so that the order parameter
and the magnetic field were periodic. However, his solutions do not give rise to
vortex-lines and the quantized flux. We shall show in this paper that the ’t Hooft
periodic boundary condition [21 can naturally be used to realize Abrikosov’s multivor-
tices in the critical case A 1. This appears to be the first rigorous result concerning
the existence of a quantized periodic lattice pattern in the classical theory of supercon-
ductivity. On the other hand, the latter arises from the problem of constructing vortex
solutions in the self-dual limit. Gauge field theories in two dimensions are rather
different from those in three and four dimensions. It is well known that in three and
four dimensions topologically nontrivial solutions (monopoles and instantons) may
be found explicitly 19], [5], [23], [2], while in two dimensions, no explicit vortex-type
solutions have ever been obtained. Hence it will be interesting to provide a constructive
method to get such solutions. Some recent relevant numerical simulations include
[7], [9], [6], [14].

The contents of the paper are as follows. In 2, a ’t Hooft type periodic boundary
condition is introduced for the abelian Higgs model. Due to this boundary condition,
the magnetic flux will assume a nontrivial value proportional to the total number of
vortices confined in the finite rectangular region under consideration. For the critical
choice A 1, the energy lower bound can be saturated by the solutions of the
Bogomol’nyi equations [5]. These equations are then reduced to a scalar elliptic
equation, coupled with a source term characterizing the locations of vortices. In 3,
we solve this elliptic equation via a monotone iteration method. Such a method may
provide a useful construction of the Abrikosov solutions of the Bogomol’nyi system
over a periodic lattice cell. The condition which ensures the existence of multivortices
indicates that the total number ofvortices or magnetic flux strength cannot be arbitrarily
large, but is bounded by the size of the domain. Section 4 is a simple remark on the
magnetic properties of multivortex solutions in the presence of an external field. In

5, we solve the Bogomol’nyi system over a bounded domain subject to a natural
boundary condition imposed on the observables--the amplitude of the Higgs field and
the magnetic field. We shall see that solutions with arbitrarily large vortex numbers
exist. Such solutions are constructed by an iterative method similar to that in 3. Two
numerical examples will be presented as an illustration. In 6 we prove that the
bounded domain solutions obtained in 5 can be used to approximate in a global way
the full plane finite energy multivortices of Jaffe and Taubes [11]. In 7 we show that
for any distribution of vortices, the Bogomol’nyi system has a continuous family of
gauge-distinct solutions of infinite energy. Such an observation may be viewed as a
complement to the uniqueness theorem in [11] for finite energy solutions. Section 8
is a brief summary.

2. The alelian Higgs model over a lattice cell. The energy density of the static
abelian Higgs vortex model is given by the expression

1 2 1 A
12(b, A) Fk+ IDjb 12+ (lb 1)2,

where A=(AI, A2) is the gauge potential of the magnetic field Fk =OA,-O,A, ch the
complex scalar Higgs field, and D =0j-iA the gauge-covariant differentiation.

However, in physical experiments, quantized periodic vortices are observed mainly in type II supercon-
ductors for which A > 1. In such a situation there is no Bogomol’nyi reduction and the full second-order
Ginzburg-Landau equations have to be considered and, thus, our method here fails.
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We assume that the field configuration (b, A) satisfies the following ’t Hooft [21]
type periodic boundary condition on the boundary of the rectangular region f
(-L1, L1) x (-L2, L.) in

(-L1, x2) ei-L,’x2) (L1, x2) e it/’’x2) -L2 < x2 < L,
(2.1)

b(x1, -L2) ec(x’’-t)= ck(x, L2) e (x’’t’), -L1 (Xl ( L1,

A(-L,, x2) + (V)(-L, x2)= A(LI, Xz) + (V)(L,, x2),
(2.2)

a(xl,-t2)---(V)(xI,-L2) a(xl, t2)-+-(V)(x1, t2), -L <x < tl,

where : and " are real phase change variables. The requirement that b be single-valued
implies in particular the relation

(, )-(,-)+(-,-)-(-,
(2.3)

+ ’(-L-, L2)- ’(L-, L2)+ sr(L-, -L2)- sr(-L-, -L2)+ 2rN 0

with N 7/. Therefore, from (2.2) and (2.3), we find the total quantized magnetic flux
through 12:

(2.4) I F2 dx fo Aj dxj 2N.

It is interesting to notice that is independent of the size of 12.
For A 1, using (2.4), the energy may be rewritten in the form

E(, A)-- fn $(b, A) dx

1 1- INI+ dx f+-(l-1) +IDeatiOnal

Im dx {O(e4*D)}
2

according to N NI, where e is the standard skew-symmetric 2-tensor with e 1.
However, the periodic boundary condition (2.1), (2.2) implies

fa dx {Oj(ejk*Dk)} foa *D dxj=O.

As a consequence, there holds the energy lower bound estimate as in the Nz case
(cf. [11]):

(,A)INI.
This lower bound is saturated if and only if (, A) is a solution of the self-dual (or
anti-self-dual) Bogomol’nyi equations

D qb + iD2dp O,

12
X,(2.5)

F,2 +(14’ -)=0,

subject to the periodic boundary condition (2.1), (2.2) on 012.
Without loss of generality, let us consider the self-dual (N > 0) equations (2.5+).

The solutions of the anti-self-dual system (2.5-) may be obtained by taking the
"conjugate" (b, A)- (4*,-A) of the solutions of (2.5+).
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Let Z(4) be the set of zeros of 4 in 12. It is convenient to view as a subset of
C and use z xl + ix2 to denote a point in f. We assume that 4 does not vanish on
the boundary 0. As was shown in [11], the structure of (2.5+)1 allows us to conclude
that Z(O) is a finite set, say Z(b) {zl," , Zk}, and that, in a neighborhood of zj, 4
has the representation

(2.6) oh(z) (z- zj)nh(Xl, x2)

so that n is a positive integer and h is a smooth nonvanishing scalar function. The
well-known prescribed vortex problem is that, given zl, , Zk f and nl, , nk 7/+,
find a solution of (2.5+) such that Z(b) {zl, , Zk} and the multiplicity of the zero
z z of 4) is exactly n, j 1, , k. The multiplicity n is sometimes called the local
charge or local vortex number of the solution at z zj.

For a solution pair (4, A) of (2.5+), since Ibl2 is periodic, it is easy to see from
the method in [11] that Ib[2< 1 everywhere in the periodic cell or otherwise I)l2 1,
which means that the solution is gauge-equivalent to the trivial solution b 1, A 0.

(0 -iOn)3. A construction of multivortex solutions. With the notation 0=
A1 + iA2, (2.5+)1 yields the relation

(3.1) c -2i0" In b, away from Z(b);

therefore, outside Z(b),

F12-- -i(Oa -0"a*) -200" In [b]= -1/2A In 14)12.
As a consequence of the above equation and (2.6), it is seen that u =-In Ibl2 satisfies

k
n6(z--z) inlAu=e

(3.)
u is periodic on 0f.

Conversely, if u is a solution of (3.2), then (b, A) is a smooth solution of the
Bogomol’nyi system (2.5+) subject to the periodic boundary condition (2.1), (2.2),
where

1 k

ch(z)=exp-(u(z)+iO(z)) with 0(z)=2 Y narg(z-z),
j=l

and A is determined by the formula (3.1) (see [11]). Moreover, it is easily verified
that, with the notation in (2.3), there holds N nl +’’ "+ nk.

Therefore, to find a solution to the prescribed vortex problem of (2.5+), it suffices
to solve (3.2). In our discussion below, it is most convenient to regard (3.2) as an
elliptic equation defined over a 2-torus and make no mention of the domain of the
equation if there is no risk of confusion. A monotone iteration method will be adopted
to construct the solution of (3.2).

The following result is useful for a background subtraction.
LEMMA 3.1. For any smooth function f satisfying f(x) dx 1, there is a function

Uo, which is smooth in the complement of the set {zl, , Zk}, SO that
k

(3.3) Auo= -47rNf+ 47r nj6(z z),
j=l

and in a neighborhood of zj, uo-ln [z-zj[2 is smooth. Here N= nl +’’" + nk.
For a proof of this lemma, see [3].
With the notation of Lemma 3.1, let v= u-Uo. From (3.2) and (3.3), it is seen

that v satisfies

(3.4) Av e+Uo+ (47rNf-1).
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Remark 3.1. Kazdan and Warner [12] have studied the (3.4)-type equations on
a compact Riemannian manifold via constructing sub- and supersolutions. In their
case f is a constant. In order to have larger flexibility in implementing numerical
computations, we allow f to be an arbitrary function. It will be much easier to decide
a solution Uo of (3.3) when there is no restriction to f. Actually, we may just choose
Uo to be such that Uo(Z) In Iz- z12" in a neighborhood of z zj, j 1,. , k and let
47rf(z)=-AUo(Z)+47r Y nj6(z-zj). Our development below may be viewed as a
specialization of that in [12].

LEMMA 3.2. Assume N < LIL2/ 7r. There are smooth functions U >-_ V such that

(3.5) A U e t+Uo- (47rNf-1) <__ O,

and

(3.6) A V- e V+"o- (47rNf-1) >= O.

Proof The property of Uo implies that e "o is a smooth function and vanishes at

z, j 1,. , k. It is not hard to see that

(3.7) (A- e"o) U 4rNf- 1

has a solution. In fact, P A e"o- 1 W2’2 - L2 is bijective and p-1 L2
_
L2 is compact.

Hence 1 + p-1 is Fredholm of index zero due to the selfadjointness of P. Equation
(3.7) may now be rewritten in the form (1 + p-l)U P-l(4",rNf- 1). This equation has
a solution because the only solution of (1 + p-l)U =0 or (A-e"o)U =0 is the trivial
one U =0 (the Fredholm alternatives).

Thus we have

A U- e U+Uo-(47rNf- 1) <_- A U- e U+Uo- (47rNf- 1) + eUo(e t U) 0,

which verifies (3.5). U is a supersolution of (3.4).
To get a subsolution of (3.4) that satisfies (3.6), we consider the equation

(3.8) A V= 47rNf tr,

where r is a constant. In order to have a solution to (3.8), it is necessary and sufficient
that the right-hand side of the equation is of zero integral mean [3]. This results in
the condition

, 4rN/Ifzl ,n.N/LIL2.

From the assumption in the lemma, we have tr < 1. There holds, due to (3.8), the
equality

(3.9) A V- e v+’o- (47rNf- 1) ([ 1 tr] e V+o).
Choose a solution V of (3.8) so that

sup V-<_ min {In (1- o-)- sup Uo, 0}.

Then it is seen clearly that the right-hand side of (3.9) is nonnegative. Hence (3.6) is
proved.

Finally, the comparison U->_ V follows from the inequality (A-e")(U-V)_-<
(r-1) < 0 and the maximum principle.

LEMMA 3.3. For N < LIL2/’rr, equation (3.4) has a unique solution v. This v satisfies
the bounds U >-v >= V and may be obtained in the limit

(3.10) lim v, v,
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where {vn} is a monotone approximation sequence of v determined through the iterative
scheme

(3.11) vl= V or U,
(A- K)vn e.-,+uo- KV,_l + (4rrNf- 1),

with K _->sup eU+t( Here the limit in (3.10) is in the space Ck for any positive integer k.
Proof. Let us start with the assumption vl V. We first show by induction that

v,_-< U, n 1, 2,.... In fact, vl-<_ U has been established in Lemma 3.2. Suppose
v, <= U for some n. Then

(A- K)( U- v,+,) <-(e’+- K)( U-v,,) <=0.

Thus vn+ <= U as well.
Next, we prove that

V= vl<-- v2<= <-- v, <=" <-_ U.

Indeed, from Lemma 3.2 we have (A- K )(v2- v) --<_ 0. Consequently, v2- vl >= 0.
By induction, if there holds V vl <- v2 <-" --< v,, then

(A- K)(Vn+l- Vn) e(en e"-’) K(v, v,-1)
<=(e"o+t-K)(v,-vn_,)<=O,

which implies v,+- v, >- 0 as expected.
If v U, a similar argument shows that

U= v>- v2>-. .>- v,>- .>= V.

Thus, in particular, we have proved that { v,} is bounded and convergent pointwise.
By virtue of (3.11), it is seen that {v,} is convergent in the W2’= norm. A bootstrap
argument then indicates that {vn} converges in any Wk’2 norm, hence, in any Ck norm.
The limit (3.10) is the unique solution of (3.4).

The lemma is proved.
It is easy to observe that r < 1 is also a necessary condition to ensure the solvability

of (3.4). In fact, integrating both sides of (3.4), we have

0 I- e+U dx + 4rrN-[fl,

which implies r < 1.
We can now state the following.
THEOREM 3.4. For any z, , zg 12 and positive integers ha,. , nk, the system

(2.5 + subject to the boundary condition (2.1), (2.2) has a smooth solution (, A) such
that the zeros of ch are exactly z, ., Zk with respective multiplicities n 1," ", nk, if and
only if n +" + nk N < LL2/ rr. Moreover, up to gauge transformations, this solution
is unique and can be obtained by the iteration scheme (3.11).

Proof The proof of existence has been obtained. To get the uniqueness part, let
us assume (b, A) and (b’, A’) are two solutions of (2.5+) so that the zeros of b and

4’ are z,..., Zk with respective multiplicities nl,..., nk. Consequently, u In I 12
and u’= In 14’12 satisfy the same equation (3.2). This in turn implies u u’ or [(/)12= Ih’l2,
namely, the difference between 4 and b’ is a phase variable. Such a phase variable
makes (b, A) and (b’, A) gauge-equivalent.

Remark 3.2. If N>0, we can apply the maximum principle to (3.2) in the
complement of the set {Zl," ", z} to show that u < 0 everywhere, which corresponds
to the property [[2< 1 for a solution pair (4, A) of (2.5+). In the special case where
N--0, the only solution of (3.2) is u 0, which corresponds to the trivial solution

b 1, A=0 of (2.5+).
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Remark 3.3. The Euler-Lagrange equations of the energy density (b, A) in 2
assume the form

0kfjk - (t[Ojt]* IDle]),
(3.12)

A
DD (1 1=- 1),

which are known to be the two-dimensional Ginzburg-Landau equations. In 2, Jaffe
and Taubes [11] showed that, when A 1, (2.5) and (3.12) are equivalent systems
for finite energy solutions. In our periodic case here, solutions of (2.5) subject to
(2.1), (2.2) are obviously solutions of (3.12) (A 1) under the same boundary condition.
However, we do not know whether the two periodic systems are equivalent for A 1.
Thus our condition for the existence of a multivoex solution only applies to the
Bogomol’nyi equations (2.5), but not to (3.12).

Remark 3.4. For a solution (, A) given in Theorem 3.4, the observables [12 and
F2 are both periodic on the lattice cell. Such a voex structure confirms the prediction
of Abrikosov on the magnetic response fashion of ceaain superconducting materials.
Our study above has been restricted on a rectangular periodic cell. However, a general
parallelogram domain does not render additional diculties, and the same existence
results hold. In this case, for an investigation of the more delicate existence problem
of multivoices in the electroweak theory where the gauge group is SU(2)x U(1),
see [20].

Remark 3.5. The voex model defined by a holomorphic line bundle L over a
compact Riemann surface M has been studied in the work of Noguchi [16]. It is
concluded that, if the integer-valued first Chern class c(L)= N O, then an N-voex
solution exists if and only if N < Vol (M)/4. Our condition in Theorem 3.4 may be
interpreted in this topological spirit. The difference is that in Noguchi’s solutions the
gauge potentials can only be real in local unitary frames of L, while in our solutions,
the gauge potentials are globally real, additional geometric complications are not
raised, and a transparent physical meaning is contained.

4. The effect of an external field. From 2, we see that the self-dual (N > 0) and
anti-self-dual (N < 0) Bogomol’nyi voices occupy the same energy level E  INI;
therefore, there is a symmetry in the vacuum real world. The purpose of this section
is to remark that such a symmetry can be broken by switching on an external field.

For simplicity, let us assume the external field is a constant magnetic field, denoted
by F. Under the influence of such a field, the total (Gibbs) energy over the lattice
cell is written in the form

E (6, A) dx- kF) dx.

The periodic boundary condition given in (2.1), (2.2) leads to the quantized flux (2.4).
Consequently, the energy now becomes

1
F12(1-1) +lD,iOlE(, A)= (IN[-2NF)+

for N [NI. The lower bound

(4.1) E  (INI- 2NFT )
is saturated by the solutions of the self-dual and anti-self-dual Bogomol’nyi equations.
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First, from (4.1), we observe that, if the external field is sufficiently weak so that
]F < 1/2, then the absolute energy minimizers can only have zero vortex number N 0.
Theorem 3.4 implies that the Higgs field has no zero in fl, and the solution is
gauge-equivalent to the trivial (superconducting vacuum) solution b 1, A 0. Thus
there is no field penetration into the lattice cell, and the magnetic screening is complete.

Next, if IFI 1/2, the energy minimum is still E 0, which may be attained at the
vacuum solutions as well as at the N-vortex solutions satisfying sgn N sgn F. This
situation describes a transition phase between the superconducting vacuum and the
onset of a coexisting normal-superconducting phase.

Finally, as the external field goes beyond the critical threshold IF] 1/2, namely,
lETS[ > k, the lowest energy level is occupied by those N-vortex solutions that satisfy
sgn N=sgn F. and IN] =max {n e T/+[n < LLz/Tr}. In other words, the orientation
of the vortices depends on the directon of the external field, and the vortex number
should be as large as possible to achieve a maximal magnetic penetration. This is a
kind of vortex-line orientation selection phenomenon under the influence of an external
field, and the vacuum symmetry is thus broken.

The above discussion illustrates the celebrated Meissner effect in superconductivity
theory.

5. Arbitrary number of vortices in a bounded domain. From Theorem 3.4 we see
that, under the ’t Hooft type periodic boundary condition given in 2, the total magnetic
flux is proportional to the number of vortices living in the lattice cell, and this number
is confined by the size of the domain. In this section, we observe that, if the periodic
boundary condition is removed, such a restriction will no longer exist. In other words,
a bounded region may allow an arbitrary number of vortices. It is conceivable that,
at the same time, we will lose the flux quantization property.

Let us consider a boundary value problem of the Bogomol’nyi system. It is natural
to impose a boundary condition on the observables ItS[2 and F12. Thus, for the self-dual
Bogomol’nyi equations, we have the boundary value problem

D149 + iD2qb O,

(5.1) F,2+1/2(16[- 1) 0, xa;

where 0f is assumed to be sufficiently regular (Lipschitzian, say).
The equation (5.1)2 implies the compatibility condition F,2; (a -1 12)/2 on 0a

for the boundary data. Moreover, physically, it is natural to assume the inequality

(5.2) 0<11_-<1.
Since the treatment of (5.1) is similar to (2.5+) and a special case of (5.1) has

been studied in [24], our discussion below will be brief.
Let zl,..., z be the zeros of b (or the vortex locations of a solution (4, A) of

(5.1)) with respective multiplicities n,..., neT/+. Then (5.1) is reduced after the
substitution u In I,I2, fi= In 1 I2 into the problem

k

(5.3)
Au e"-l+47r n6(z-z), xFt,

j=l

u= gt, x Of.

To solve (5.3), we borrow the background subtraction function Uo from [11]"
k

(5.4) Uo(Z) 2 nj In (1 /lz-z l-2).
j=l
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Thus v-= u- Uo will solve the modified problem

Av- e+Uo/ (g- 1),
(5.)

V Uo, x E 01),

where

k

g(z) 4 nj(1 + Iz zjl2) -2.
j=l

It is easy to verify that eUo =< 1 and is smooth. The following lemma gives us a pair
of super- and subsolution of (5.5) as for the problem (3.4).

LEMMA 5.1. There exist functions U >- V such that

(5.6) AU-et+"-(g-1)<--O, x6f,

(5.7) A V e V+"o (g 1 _--> 0, x 6 f,

and U V f Uo, X O.
Proof Let U and V be the solutions of the linear equations A U g 1 and A V g

(x f), respectively, with U V fi- Uo on 0f. Then it is self-evident that U satisfies
(5.6). To see that V fulfills (5.7), it suffices to achieve the inequality V+ Uo<_-0 in
---{ZI,""" Zk}. First, we have V+uo=-<_0 for x EOl) due to (5.2). On the other
hand, we may choose e>0 sufficiently small to make B(z)={zllz-zl<e}l)
j=l,...,k, and V+uo<-O on OB(zj), j=l,...,k. Since A(V+uo)=0 in
11 U

_
B(z), we have, in, V+ Uo -< 0, by virtue of the maximum principle. Finally,

letting e 0, we reach the desired conclusion.
Using Lemma 5.1, we can find the unique solution of (5.5) in the limit lim,_ v, v

as in 3, where {v,} is constructed through the scheme

v-- V or U,

(5.8) (A-K)v,,=e’"-’+"o-Kv,,_l+(g-1), xf,

vn=t-Uo, x60f, n=2,3,...,

whereas K >_-e t, M sup U. Such a solution gives rise to a multivortex solution of
the problem (5.1) with prescribed vortex locations zl,..., Zk and local charges
n,..., nk through the construction mentioned in 3 with u Uo+ v.

In the rest of this section, we present two numerical examples of the multivortex
solutions of the Bogomol’nyi system (5.1), computed using the iterative scheme (5.8).
We shall see from these solutions that the flux may not be quantized as in the periodic
case (see (2.4)). Rather, it depends on the locations of vortices.

In our computations shown below, we choose the domain to be a lattice square"
1 (-3, 3) (-3, 3). According to the conclusion of Theorem 3.4, such a region cannot
allow more than two vortices if the t’ Hooft type periodic boundary condition intro-
duced in 2 is imposed. On the other hand, from the discussion of this section, we
see that if the boundary data are prescribed to the observables I 12 and F2, then the
domain may accommodate as many vortices as one pleases. We shall specify Ibl 1
and F2 0 for simplicity. Such a condition represents a complete boundary magnetic
screening. The numerical implementation can be described as follows.

First of all, the interval (-3,3) is discretized with 150 equidistant grid points,
which results in a finite difference mesh for the square domain f. The scheme (5.8)
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is then solved through the standard five-point approximation algorithm for the boun-
dary value problems of elliptic differential equations. As usual, the discrete approxima-
tion to v, in (5.8), and so on, at the mesh point (xl(i), x2(j)) will be denoted by
The constant K in (5.8) is chosen to be K 1 + eM with M =sup Ui,j. The initial v,
is taken to be V,j. Here U and V are the unique solutions of the equations A U g 1
and h V=g(xII) with U= V=-uo on 0fl as in the proof of Lemma 5.1. The
termination criterion of the iterative scheme (5.8) is set to be

)n--1(5.9) Iv v"-’ I-- max Iv,j ,, < 10-3.
,3

If the accuracy (5.9) is attained at a certain step n k, then the computation will halt
and v ,j will be recognized as an approximation of the unique solution of (5.5) at the
mesh points. Thus, a numerical solution of the boundary value problem (5.1) of the
Bogomol’nyi equations is obtained.

Figures 1 and 2 present two numerical solutions with total vortex number N--4.

"llllHIJlllINYXAIXllllllll IliJ,"

FG. 1. A solution offour separated vortices.

FIG. 2. A solution offour clustered vortices.
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Figure 1 gives us the behavior of the magnetic field over of a computed solution
of four separated vortices located at the points z ----1.5--1.5i, Z2 --1.5 --1.5 i, Z3--
1.5 / 1.5i, and z4- -1.5 / 1.5i, with local vortex numbers or charges satisfying nl n2
n3--/’/4-- 1. The numerical solution is obtained at n -27 (27 iterations). The magnetic
penetration attains its maximal value FI,_ 0.5 at the centers of the vortices as expected.
The total normalized flux is /2r- F12 dx/2r- 1.774, which cannot be an integer
up to numerical errors.

Figure 2 illustrates the magnetic field distribution in fl of a numerical solution of
four clustered vortices centered at z- 0, with the local charge-N-4. In this case,
the program takes 31 iterations to achieve the accuracy (5.9). The shape of the graph
of F2 indicates that the magnetic penetration in a neighborhood of the center of these
clustered vortices now gains a relatively larger average value than the separated ones.
The total normalized flux for this solution is /2r- 1.878, which is greater than that
of the solution of separated vortices given in Fig. 1.

Further computer experiments show that the flux depends sensitively on the
locations ofvortices. For example, a pair of clustered vortices centered at z -1.5 1.5
and z2-1.5/1.5i with n-n2-2 (another four-vortex solution of (5.1)) yield a
normalized flux /2r 1.580.

Remark 5.1. If we choose

k

Uo(Z) n In (Iz-
j=l

then g 0 in (5.5), which gives us a system with a much simpler inhomogeneous term.
However, in this case we lose the bound e"o<_-1. In fact, for large domains, sup e"
may take large values, and this in turn requires K be sufficiently large to ensure the
convergence of the iterative scheme (5.8). Numerical experiments carried out on the
square domain just specified indicate that the choice of Uo according to the above
simpler expression results in as much as four times the computing time needed with
the choice of Uo according to (5.4).

6. Approximating a vortex solution in the full plane. In this section, we prove that
the bounded domain solutions obtained in 5 may be used to approximate a vortex
solution of the Bogomol’nyi equations on full R2.

Let (th, A) be a finite energy solution of (2.5+) on Rz so that Z(th) {z,. , Zk}
the multiplicity of the zero z z of b is n _-> 1, j 1, , k, and nl +" + nk N. The
existence and uniqueness of such a solution has been established in Jaffe and Taubes
11]. Moreover, there holds the exponential decay estimate [11]"

(6.1) 0=< 1 < C()e-(1-e)lzl, Z 2,

where e (0, 1). The function u In [oh[2 is the unique solution of the equation

k

(6.2) Au e" 1 + 47r Y n6(z z) in 2,
j=l

which vanishes at infinity 11 ].
Suppose fo is a bounded domain in so that Z(ch) 1o. Choose u’ C(2)

satisfying u’= u in R-o. From (6.1) and using the simple inequality In (l-s)>-2s
(s (0, 1/2)), we have

In (2C(e)+ 1)
(6.3) -2C(e) e-(1-)lzl<- u(z)<-O for [zl> r---

1--e
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Let {12,}: ’1 C -2 C C ’n be a monotone chain of bounded convex
domains whose boundaries are sufficiently regular (piecewise smooth and Lipschitzian,
say) and U12, 2. Denote by u, the unique solution of the boundary value problem

k

(6.4)
Au=e"-l+47r nj6(z-zj) in12,,

j=l

u=0 onO12,,

n 1, 2, . We shall show that u. u as n - .LEMMA 6.1. Given m 1, 2,... and {u,},_>_m, there holds

u <- <-_ u, <-_ <= u,, <= O in12,,.

Proof It is easily observed that u, _-< 0 in f, for each n- 1, 2,. .. In fact, since
u, behaves likes nj In Iz-Zjl2 in a neighborhood of z zj, we can find an ro> 0 such
that for any 0<<r/o we have Bn(z)=12, and u,<0 on OB,(zj),j=l,...,k. On
the other hand, in 12, 12,- U-I B,(z), Au, e"--1. Hence the condition u, =0 on
012, and the maximum principle allow us to conclude that

Next, we show that Un+ <= U, in f,, n 1, 2,. .. To see this, we examine the
relation A(u,+- u,) e ".+, e". e".+,’".)(u,+- u,) in 12,. Since (u,+l- u.)]0.
u,+lloa.-<0, we conclude again from the maximum principle that u,+ _-< u, in 12,.

The inequality u-< u, in f,, n 1, 2,... is contained in the above proof. Thus
the lemma follows.

LEMMA 6.2. There holds the bound

where M > 0 is a constant independent of n 1, 2,....
Proof Since 12, is convex, using the standard L2-estimate in the equation

(6.5)

we have

A(u,-u)=eU.-e in 12,,

(u, u) -u’ on 012,,

where C > 0 does not depend on 12,.
First of all, since u’= u outside fo, we see from (6.2), (6.3) that u’ W2’2(2).

On the other hand, by virtue of Lemma 6.1, there holds lu,- u <-lu[. So it follows
from (6.3)that sup, [[u,- ul[. is finite. Finally, again from Lemma 6.1, le"-- e" -<_

II-e-I 1-14l2. Hence (6.1) implies that sup, e"- e" [l(a.) is finite as well. This
proves the lemma.

We are now ready to establish the expected convergence result. For convenience,
we understand that u, 0 in 2_12,. For a function f decaying sufficiently fast at
infinity, we define the norm

Ifl, s%zG
LEMMA 6.3. Given 0 < < 1, there holds the limit

(6.6) lim lu. u[, 0.

(6.7)

Proof From Lemma 6.2, we see that, in particular, for m 1, 2,...,

<-- M, ,, >_- m.
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Therefore un u --> some w, W2’2(,,) weakly and Wm W,,,, in 1),, for m’>- m due to
Lemma 6.1. Set

w=w,,, Zlm, m:l,2,....

Then w is well defined in 2. We can obtain from (6.7) that w e W2’2(2). This fact
implies that w decays to zero at infinity. Moreover, a simple argument applied to (6.5)
leads us to conclude that w is smooth and verifies

Aw eu+w e u.
In other words, u + w is also a solution of (6.2). By the uniqueness theorem in [11],
we must have w 0.

Let e > 0 be so small that e < 1-/x. We have by (6.3) and Lemma 6.1

(6.8)
2C(e) e-([1-e]-")lzl Izl> r

On the other hand, since U, R2, for any given r > 0 there exists m 1 so that
B {z =llzl r} m. We have shown that u, u weakly in W’2(O). From the
compact embedding W2’2() C(), we may conclude that u, u uniformly on

B. Combining this observation with (6.8) we arrive at the expected limit (6.6).
In paicular, u, u uniformly in R2.
From the sequence {u,} we can construct as in } 3 the corresponding solution

pairs {({", A{"))} of the Bogomol’nyi equations (2.5+) on ,. It can be shown that
(",A{")(,A) (in a suitable sense). However, since the physically interesting
fields are 161 and F2, here we only discuss the convergence 16")[61, F)=

OaA")-O2A]") F2 in detail.
Using Lemma 6.1, we see easily that

(6.9)
n--.

While from (2.5+)2, which relates ") and & to F] and F2, we get

(6.10) F)- FI -(16(")l- [612).

As a consequence of (6.9), (6.10), we conclude that (16"1, F) (161, F) (as )
in the same sense as the convergence for u, u stated in Lemma 6.3.

We summarize the results we have just obtained as follows.
THEOREM 6.4. Let (", A) be the solution of the Bogomol’yni system (2.5+)

on ,, obtainedfrom the unique solution u, of (6.4), and (, A) thefinite energy solution

of (2.5+) on full 2 with the same vortex distribution. en
1 1611 ..- 16" ... 6,

F,>. .>F>. .>1
a12

1’12-I1=10, IF’-F210, and

(as n ). In other words, the total flux of the vortices confined in a bounded domain
approaches the quantized flux of the vortex solution on 2 with larger domains giving
successively better approximations.
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7. A family of infinite energy solutions. It has been shown in Jaffe and Taubes
[11] that, for any vortex distribution in 2, the Bogomol’nyi system (2.5+) has a unique
finite energy solution. The purpose of this section is to note that, when the finite energy
condition is removed, such a uniqueness will no longer hold. More precisely, we state
and prove the following.

THEOREM 7.1. For any {zl, , zk} c 2, nl, , nk 7+, the Bogomol’nyi system
(2.5+) has a family ofgauge-distinct infinite energy solutions { , A )}0< so that
Z() {z, , Zk}, the multiplicity of the zero z z of is n, j 1, 2,. , and
there hoM

(7.1) C e-[1/411z12 Izl e-tl/nlllz]2+" for large Izl,
where C, C> 0 are constants, which may depend on a, and

(7.2) 16(">1= dx 2.

Proof Choose a function w e C(R2) that verifies the propey w(z) In ]z[ when
]z[ 1. Thus f kw is of compact suppo, and

fdx fdx Aw dx Ow ds 2.
xl2 xl=2 Ixl=2 Or

Consider (6.2). Introduce as before the background subtraction function

k

Uo(Z) 2 in +
j=l

The substitution v u- Uo leads us from (6.2) to the modified equation

(7.3) Av= K(z) eV-af
where

0 _-< K (z) e u(Z) O(e-Izl) for Izl-->
Equation (7.3) has been well studied in the elegant works of Ni 15] and McOwen

[13]. In particular, McOwen showed that, for any a: 0< a <, (7.3) has a smooth
solution v("), which approaches a constant at infinity and

fu K eV() dx a fn fdx
From the solution u Uo+ v) of (6.2), we can construct as in Jaffe and Taubes

[11] or as in 3 the solution pair (6<, A) of the Bogomol’nyi equations (2.5+) so
) Uo+V()that IY]2 e< e K e As a consequence, we see immediately that

verifies the desired decay estimate (7.1) and the space-average (7.2). Since (7.2) is
invariant under the U(1) gauge transformation

e, A A+V,

different values of a give rise to gauge-distinct solutions. These solutions are necessarily
all of infinite energy.

Remark 7.1. If the underlying domain R2 is replaced by an asymptotically
Euclidean Riemann surface, the solutions of the curved space version of the
Bogomol’nyi equations are superconducting voices in a shell geometry or cosmic
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strings [25]. It is possible to modify the argument used in this section to establish a
similar class of infinite energy solutions there.

8. Conclusions. In this paper we have shown that, on a lattice cell f=
(-L1, L1) x (-L2, L2), when a t’ Hooft type periodic boundary condition is imposed,
the Bogomol’nyi system arising in the abelian Higgs theory allows an arbitrarily
distributed N-vortex solution, if and only if INI < L1L2/Tr. Such a solution exhibits
the periodic structure of Abrikosov’s mixed state vortices in a superconductor so that
the magnetic flux can only take a quantized spectrum of values. On the other hand,
when the periodic boundary condition is replaced by a boundary value condition on
the observables Ibl2 and F12, the system possesses a solution for any prescribed vortex
locations and given total vortex number. In this case, numerical examples have shown
that the flux is no longer quantized as before, but depends sensitively on the locations
of vortex-lines. Such solutions can be used to approximate a finite energy full plane
vortex solution in a global way, and in the large domain limit the flux approaches the
quantized value related to the total vortex number. Moreover, for any prescribed vortex
distribution, the Bogomol’nyi system on R2 has a continuous family of gauge-distinct
solutions of infinite energy so that I(12 decays to zero exponentially fast at infinity.
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EXISTENCE AND NONEXISTENCE OF SOLITARY WAVE SOLUTIONS TO
HIGHER-ORDER MODEL EVOLUTION EQUATIONS*

SATYANAD KICHENASSAMY" AND PETER J. OLVER’$

Abstract. The problem of existence of solitary wave solutions to some higher-order model evolution
equations arising from water wave theory is discussed. A simple direct method for finding monotone solitary
wave solutions is introduced, and by exhibiting explicit necessary and sufficient conditions, it is illustrated
that a model admit exact sech solitary wave solutions. Moreover, it is proven that the only fifth-order
perturbations of the Korteweg-deVries equation that admit solitary wave solutions reducing to the usual
one-soliton solutions in the limit are those admitting families of explicit sech solutions.

Key words, solitary wave, nonlinear evolution equation, water waves, singular perturbation

AMS(MOS) subject classifications. 76B25, 35Q51, 35Q53, 35B25, 76B15

1. Introduction. In the study of equations modeling wave phenomena, one of the
fundamental objects of study is the traveling wave solution, meaning a solution of
constant form moving with a fixed velocity. The determination of such solutions is
accomplished by solving a reduced differential equation in fewer independent variables
by one. In particular, the traveling wave solutions for a one-dimensional wave equation
are found by solving a connection problem for an associated ordinary differential
equation. Of particular interest are three types of traveling waves: the solitary waves,
which are localized traveling waves, asymptotically zero at large distances, the periodic
waves, and the kink waves, which rise or descend from one asymptotic state to another.
All of these are, in the completely integrable case, solitons, coming from the inverse
scattering solution to an eigenvalue problem, and dependent on a free parameter. On
the other hand, the existence of these types of solutions is not dependent on integrability
of the model, or the connection with an inverse scattering transform method of solution,
as evidenced by the (4 theory; cf. [37], [38], and the examples described here. Except
in the simplest instances, it is by no means obvious that such types of traveling wave
solutions even exist. In addition, once existence is known, the delicacy ofthe connection
problem to be solved makes their numerical computation rather difficult to effect in
an easy, practical manner.

In this paper, we concentrate on the determination of solitary waves, whose
importance for fluids came to the forefront with Scott Russell’s experimental observa-
tion of solitary water waves in the Edinburgh canal [33]. Airy’s premature dismissal
of these solutions based on a linearized analysis of the free boundary problem necessi-
tated the construction of suitable models exhibiting such solutions. This was accom-
plished, in the case of long waves over shallow water, through Boussinesq’s bidirectional
models and, subsequently, the celebrated Korteweg-deVries model, whose solitary
wave solutions are explicit sech2 solutions, which, moreover, have the remarkable
soliton property of interacting without change of form. More recently, Amick and
Toland, [4], and others, [1], [2], [19], have proved the existence of such waves for the
full water wave problem. For small amplitude waves, the Korteweg-deVries solitons
do a good job of modeling solitary water waves, [13]. However, the model fails to
replicate such important physical phenomena as having a wave of maximal height,

* Received by the editors April 16, 1991" accepted for publication (in revised form) January 17, 1992.
? School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455.
$ The research ofthis author was supported in part by National Science Foundation grant DMS-89-01600.
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originally conjectured by Stokes (cf. [ 1]) and the breaking of large amplitude waves.
Owing to the difficulty of analyzing the water wave problem directly, the construction
of suitable models is of great importance. One possible approach is to retain higher-
order terms in the Boussinesq perturbation expansion, leading to fifth-order model
evolution equations. One of the principal purposes of this paper is to show that there
are definite difficulties with this procedure, in that for most of these higher-order
models, solitary wave solutions of the appropriate form do not even exist! Indeed, this
holds for almost all versions of the models derived from the water wave problem. (An
alternative approach would be to employ the two-timing approach advocated by Segur,
[42], and others, in which the higher-order terms in the expansion are forced evolution
equations governed by the leading order Korteweg-deVries equation. However, it is
hard to see how the requisite phenomena of maximal height and breaking would
manifest themselves in this approach.)

The present paper is devoted to the analysis of solitary wave solutions to a general
class of scalar fifth-order evolution equations; see (2.1) below. We begin by discussing
the various models that are included in this class, such as the fifth-order Korteweg-
deVries equations, other integrable equations, water wave models, and models from
elastic media with microstructure. The third section discusses known results on explicit
solitary wave solutions for certain models, numerical results, and a nonexistence result
of Amick and McLeod for the critical surface tension water wave model. Next we

present a simplified approach to the determination of explicit monotone traveling wave
solutions, which reduces the fifth-order evolution equation to a third-order ordinary
differential equation. This leads to explicit criteria for the existence of exact sech)-

solitary wave solutions, which imply that these models admit either 0, 1, 2, oo, or oo + 1
exact sech)

solitary wave solutions. Here oo indicates a one-parameter family of
solutions valid for a range of wave speeds, and these particular models are explicitly
characterized by a pair of simple algebraic relations on the coefficients. Interestingly,
even for fifth-order Korteweg-deVries models, there is the possibility of having more
than one solitary wave solution for a given wave speed, leading to unusual "bound
state solutions." Finally, we present a nonexistence result that says, in essence, that
the only models which are perturbations of the usual Korteweg-deVries equation and
that possess solitary wave solutions reducing, in the limit, to Korteweg-deVries solitons
are those that have a one-parameter family of explicit sech2 solitary waves. See Theorem
13 for a precise formulation. Our proof relies on a general method introduced by the
first author [24] in a similar study of breather solutions of Klein-Gordon equations,
which we outline at the end of 3. Our result does not completely rule out all solitary
wave solutions, but only those which reduce to Korteweg-deVries solitary waves in
an appropriate scaling limit; nevertheless, it does demonstrate that "physically relevant"
solitary wave solutions do not, in general, exist. This has some interesting implications
for perturbation theories, which we discuss in the final section.

2. Higher-order model equations. We will consider a class of fifth-order model
evolution equations of the general form

u, + tXUxxx + aUx)ccx + ,SUUxx + 8UxU)cx + P’( u)Ux
(2.1)

U -1- [].6Uxx -{- OlUxxxx -]- iUUxx -{- ")/U2x + P(u Ix O.

Here a,/3, 3’, 23,+/3, and/x are assumed to be constants, and P(u) is an analytic
function of the dependent variable. Many of these models require that P be a cubic
polynomial

(2.2) P(u) pu + qu2 + ru3,
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where p, q, r are constants, although this will not be necessary for most of our analysis.
(However, only these models will admit explicit sech2 solitary waves.) Note that we
can assume without loss of generality that p 0 by going to a suitable moving coordinate
frame. In the models derived by perturbation expansion, the coefficients in (2.1) will
depend on a small parameter, e, in terms of which p is of order 1, q,/z are of order
e, and a,/3, 6, and r of order 82.

The general class of equations (2.1) includes many well-known equations that
have been studied at length in the literature. If the e 2 terms are absent, the model (2.1)
reduces to the well-known Korteweg-deVries equation

(2.3) ut +pu, + tzu + 2qUUx O,

which serves to model many different wave phenomena requiring a balance between
dispersion and nonlinearity, [33], [46]. Also of note is the modified Korteweg-deVries
equation

(2.4) ut + pUx + IUxxx + 3ruZux =0.
Both the Korteweg-deVries and modified Korteweg-deVries equations are known to
be integrable via inverse scattering techniques, [33], [42], [46], the scattering operator
for the Korteweg-deVries equation being the well-studied Schr6dinger operator L--
D2+ v, where the potential v(x, t) is a suitable multiple of u(x, t), and D d/dx. In
particular, their solitary wave solutions are solitons, and interact without change of
form. Their speed is related to the value of the associated spectral parameter (eigen-
value). There are additional integrable models included in the class (2.1). The particular
parameter values

__1(2.5) fl=Ka, 6=Ka, r=a, q l,

where K 0, describe a four-parameter family of integrable fifth-order Korteweg-
deVries equations [33], which are soluble by the scattering problem associated with
the same Schr/Sdinger operator. (More accurately, the models given by (2.5) are linear
combinations of purely fifth-order (corresponding to the parameter a) and third-order
(corresponding to the parameter/z) Korteweg-deVries equations.) The Sawada-Kotera
equation [41],

(2.6) ut + u,xx,, + 30uux, + 30uux + 180U2Ux --O,

and the Kaup equation [21],

(2.7) u, + ux,x + 30uu,,, + 75 u,u,, + 180u2ux O,

are also known to be integrable, being associated with the scattering problem for the
third-order operator M= D3+vD+w; cf.[21]. For the Sawada-Kotera equation,
v=6u and w=0, whereas for the Kaup equation v=6u and w=3u. However, in
contrast to the higher-order Korteweg-deVries equations, we cannot add in third-order
terms to these equations without destroying their integrability.

Other models of the general form (2.1) that are (almost certainly) not integrable
also arise in applications. In [34], [35] the second author proposed certain special
cases ofthe general fifth-order model (2.3) as models for the unidirectionalpropagation
of shallow water waves over a flat surface. (See [29] for extensions which include
bottom topography.) These arose from two sources: first as the second-degree correction
to the standard Korteweg-deVries model for the undirectional propagation of long
waves in shallow water arising in the Boussinesq expansion for the full water wave
problem. Second, using a general theory of noncanonical perturbation expansions of
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Hamiltonian systems, these types of models appear as "Hamiltonian versions" of the
Korteweg-deVries model, incorporating the correct first degree expansions of both the
water wave Hamiltonian functional (energy) and the Hamiltonian operator. Indeed,
whereas the full water wave problem admits a Hamiltonian structure due to Zakharov
[50] and the Korteweg-deVries equation admits two distinct Hamiltonian structures
[36], neither of these matches the perturbation expansion of Zakharov’s structure.
Alternatively, we can verify that the first-order perturbation expansion of the water
wave energy functional is not conserved under the Korteweg-deVries flow. The Hamil-
tonian models attempt to rectify these unexpected difficulties. In the water wave models,
u(x, t) represents either the surface elevation or the horizontal velocity measured at a
fraction 0 -<_ 0 <_- 1 of the undisturbed fluid depth. There are two small parameters called
a,/3 in [34], [35], but, to avoid confusion, we denote them here by e, which measures
the ratio of wave amplitude to undisturbed fluid depth, and K, which measures the
square of the ratio of fluid depth to wave length. In the shallow water regime, e and
K are assumed to have the same order ofmagnitude. The Bond number, which represents
a dimensionless magnitude of surface tension, is denoted by z. In all models, the
leading order (Korteweg-deVries) terms are all the same:

1-3 3
(2.8) p=l, = 6 q=-e,
representing a Korteweg-deVries equation except when the Bond number has the
critical value =1/2. (See below.) The models differ only in the higher-order terms,
which take the following forms:

u horizontal velocity at depth 0; second-order model

2 19-- 30’--45r2 5--3" 53 3602 39
(2.9) a=

360 fl=e 12
6=e

24
r=0,

2(5-60-3-)(2-302)
18

(2.10) 139_ 16802_81r
t KE l"

24

u surface elevation; second-order model

2 19-30r-45r
2 5

(2.11) a=
360

/3=e
12

6=e

u surface elevation; Hamiltonian model

1-3r 3(1-3)
(2.12) a=0, fl=e, 6=e,

8 8

u horizontal velocity at depth 0; Hamiltonian model

53-6602-27
--K

15
E

32

23 + 15"

24

1 2

8

5 2
r--E

32

((2.12) corrects an error in [35, eqn. (4.28)].) It is interesting to note that none of these
models is integrable, except the Hamiltonian model (2.10) for the horizontal velocity
at the particular "magic depth"

(2.13) 0 x/--,
where the model turns out to be a fifth-order Korteweg-deVries equation. (This formula
corrects a misprint in reference [35].)

The model

(2.14) Ut +pUx + tUxxx + 2qUUx + aUxxxxx 0
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arises in the study of water waves with surface tension in which the Bond number
takes on the critical value -= , where the Korteweg-deVries model no longer applies;
cf. [18]. The particular case p =/z 0 arises in both magneto-acoustics and nonlinear
transmission lines; cf. [31], [49]. The equation

(2.15) ut +pux + Uxx, + aUxxxx, UUx,x 2UUxx 0

was proposed by Benney [6] as one possible model for the interaction of short and
long waves. Third-order models of the form

(2.16) ut + u, + iu,,, + 2quu, + fluu,,x + 8uu,, + 3ru2u, O,

in which/3 28 0, r 0, were proposed by Kunin [28, 5.3] in his study of elastic
media with microstructure. Note that the Hamiltonian model (2.12) for water waves
is of this type, but with/3 38 0, as are both second-order models (2.9), (2.11) at
the particular Bond number r=5--.3970, and the Hamiltonian model (2.10)
at depths 02= or -1/2r. Additional models of the form (2.1) have been derived for
weakly nonlinear long waves in a stratified fluid [14] and free surface waves over
rotational flows [12].

Incidentally, the theory of Kodama [25] shows that all such fifth-order equations
with ce 0, and P(u) a cubic polynomial, can be recast asymptotically into canonical
form as fifth-order Korteweg-deVries equations under an appropriate change of vari-
ables. Thus, in a certain sense, all the models (2.1), (2.2) are "approximately integrable,"
although this remark does not imply much in the way of rigorous results for them.

Very recently Ponce [39] has proved that the initial-value problem for (2.1), (2.2)
is locally well posed in any Sobolev space HS() for any s-> 4. Specifically, Ponce
proves the following result.

THEOREM 1. For any Uo Hs() with s >= 4, there exists a T> 0 and a unique strong
solution u(x, t) in the space C([0, T], H oc of the initial value problem
(2.1) with u(x, O)= Uo(X).

3. Solitary wave solutions. We now review known results concerning solitary and
other traveling wave solutions to particular models of the form (2.1). We begin by
discussing the known explicit solutions to these equations.

First recall that the Korteweg-deVries equation, modified Korteweg-deVries
equation, and the class of fifth-order Korteweg-deVries equations (2.5) all possess
explicit sech2 solitary wave solutions for all wave speeds c > p P’(0). The amplitude
of these waves is proportional to the wave speed. If q/tx < 0, then the solitary wave is
a wave of elevation, whereas if q//x > 0 it is a wave of depression. The Sawada-Kotera
equation (2.5) also admits sech2 solitary wave solutions for all wave speeds c>0;
cf. [30]. On the other hand, the Kaup equaton (2.6) has solitary wave solutions of the
anomalous form

2a2(2 cosh 2+ 1)
(3.1) u(x,t)--

(cosh2+2)2 =ax-16aSt.

Again, these exist for a range of wave speeds c 16a4> 0.
For the model (2.14) for water waves at critical surface tension, provided a < 0,

Yamamoto and Takizawa [48] produced an explicit solitary wave of depression in
terms of a sech4 function:

-338a------ --da x+ P+169a/t
This solution was also derived by Hereman et al. 15] using a more systematic procedure,
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and, much later, also by Huang et al. [16]. This "anomalous" solitary wave solution
is quite surprising; it only appears for one particular (positive) wave speed: c=

-36/x2/169a. It is unclear whether this solution has any physical meaning. (Other
similar "anomalous" sech2 solitary wave solutions will be determined for many of the
models (2.1), (2.2) in 6.) Of less direct relevance to our results, but still of interest,
Hunter and Scheurle [17] proved the existence of traveling waves to the model (2.7)
that bifurcate from Korteweg-deVries solitons, but are no longer decreasing as Ixl- ,
having small but finite amplitude oscillatory tails.

Kawahara, [22], claims to numerically establish the existence of "oscillatory
solitary wave" solutions to the model (2.14), and Nagashima [31], [32], in the case
p=/=0, "establishes" their existence experimentally (!). Also, Zufiria [51], in the
context of the water wave problem, while more concerned with periodic traveling wave
solutions, does investigate "approximate solitary waves" for this model and concludes
that they are not unique. However, Amick and McLeod [3] have, using powerful
complex-analytic methods, rigorously proved that the model (2.8) does not possess a
solitary wave of elevation for a > 0, with a sufficiently small. (Note that this result
does not exclude the exact solitary wave (3.1). See also Hunter and Scheurle [18] for
a less rigorous version.) It appears to be quite difficult to extend this technique to the
more general models considered in this paper, especially in view of the fact that, for
certain models, solitary wave solutions do exist. Amick and McLeod’s result implies
that Kawahara and Zufiria’s numerical solutions cannot be correct, and we propose
an explanation for such numerical results in 8. Indeed, many numerical procedures
for finding such waves are, in our opinion, rather suspect, as most of the nonexistence
results are of the "exponentially small" variety, i.e., to all orders in e a solitary wave
can be shown to exist, but one may suspect that exponentially small terms (like e-1/)
prevent its final establishment. See Byatt-Smith [11], Kruskal and Segur [27], [43],
and Troy [44], for other problems of this type. Numerical schemes are hard pressed
indeed to discover such exponentially small errors!

In the third-order model (2.16), which includes Kunin’s third order models for
elastic media and some of the water wave models, the equation for solitary waves can,
in certain cases, be integrated directly, and one has the intriguing phenomenon of a
wave ofmaximal height, reminiscent of the Stokes phenomenon (although the maximal
height waves for these models exhibit cusps rather than corners). Indeed, for the full
water wave problem, Amick and Toland [4], have proved the existence of monotone
solitary wave solutions of small amplitudes up to a maximal height wave with a 120
corner for the problem in the absence of surface tension. (For large values of surface
tension, meaning Bond number - > 1/2, Amick and Kirchgissner [2] and Sachs [40] have
proved the existence of monotone solitary wave solutions, while very recent results of
Iooss and Kirchgissner [19], and Beale [5] demonstrate the existence of solitary wave
solutions with damped oscillatory tails for 0 < " < ). See also the papers of Wadati,
Ichigawa, and Shimizu [45], and Kawamoto [23] for other types of model equations
exhibiting limiting cusp waves. It is an interesting question as to whether any of the
fifth-order models exhibit such phenomena. Also, the behavior of large amplitude
waves (including the possibility of breaking) in these models is not known.

Finally, we mention papers by Yamamoto and Takizawa [47], [48], and Kano
and Nakayama [20], which exhibit other types of traveling wave solutions, including
periodic waves and solitary sech2 waves approaching a nonzero asymptotic value as
x- +. (These can, of course, always be transformed into "genuine" solitary wave
solutions, with zero asymptotic limits, to a different model of the same basic form
(2.1) by subtracting a suitable constant from u.)
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Our own results include the following existence and nonexistence criteria.
On the one hand, we exhibit explicit conditions for a model of the form (2.1) to

possess a sech2 solitary wave solution. First, for such solutions to exist, P(u) must
necessarily be a cubic polynomial, (2.2). Interestingly, the parameter space
(a, fl, t,/z, p, q, r) splits into five regions: three of these are relatively open subregions
in which there are, respectively, two, one, or no exact sech2 solitary wave solutions.
In the first and second regions, most models have such a solution for a unique, or
precisely two, possible wave speeds, similar to the anomalous sech4 solution to the
model (2.8). Secondly, we prove that there are two algebraic relations that must be
satisfied by the coefficients in order for the model to admit a one-parameter family of
sech2 solitary wave solutions for a range of wave speeds. This family includes the
higher-order Korteweg-deVries equations, (2.4), the Sawada-Kotera equation (2.6),
and the Hamiltonian water wave model (2.10) at the particular depth (2.13), but also
many other (presumably nonintegrable) equations as well. This leads to the two further
regions, each of codimension 2, in which there is either a one-parameter family of
secha solitary wave solutions, or such a family plus a single anomalous sech solitary
wave solution. These results reconfirm the idea that solitary waves may arise indepen-
dently of the model being integrable. Also, since the Kaup equation (2.7) admits a
one-parameter family of solitary wave solutions for a range of wave speeds that are
not sech: solutions, we must exercise a bit of caution in drawing unwarranted con-
clusions from this result!)

On the other hand, assuming aq O, and introducing a small parameter e

representing the departure of the models from the Korteweg-deVries equation, we
prove that the only models that admit solitary wave solutions that are perturbations
of the corresponding Korteweg-deVries solitons, and satisfy certain analyticity condi-
tions, are the models that satisfy these same algebraic relations. Thus the only physically
relevant solitary wave solutions that can exist are always given by sech2 functions! In
outline, our nonexistence result is proved in two basic steps, similar to earlier work
of the first author on the nonexistence of breather solutions to a general class of
nonlinear Klein-Gordon equations, including the 4 equation and the double sine-
Gordon equation [24]. We first establish the existence of "solitary wave tails," i.e.,
traveling wave solutions that decay exponentially fast at either +o or -, by proving
the convergence of the appropriate formal power series solution. The second step in
the proof is to match this solution with a formal asymptotic expansion of the solution
starting with the one soliton solution of the Korteweg-deVries equation obtained by
omitting the fifth-order terms in the model. We then show that, by analyzing the poles
of this solution in the complex plane, the second series cannot converge to a true
solution, and so we conclude that such a solitary wave solution does not exist. The
details will become clearer in the subsequent discussion.

4. The equation for traveling waves. We begin by recalling the elementary method
for reducing the problem of traveling wave solutions to an evolution equation such as
(2.1) to a connection problem for an ordinary differential equation. A traveling wave
solution is just a solution of the particular form

(4.1) u=u()=u(x-ct),

where c is the wave speed and x- ct is the characteristic variable. Substituting the
ansatz (4.1) into (2.1), we are led to look for solutions to the fifth-order ordinary
differential equation

(4.2) ou"’"+ (flu + Ix)u"’ + Su’u" + P( u) cu]’ O,
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where the primes indicate derivatives with respect to . Any solution u() of (4.2) thus
provides a traveling wave solution to the original evolution equation (2.1). The ordinary
differential equation (4.2) can be integrated once, so we effectively have a fourth-order
equation

(4.3) au"" + (Bu + tx)u" + yu ’2 + Q(u) O,

where

(4.4) O(u) P(u)- cu d,

with d being a constant of integration.
Consider the case of a localized traveling wave solution, meaning one that is

asymptotically small at large distances, so u 0 as sc- +. Note that this requires
Q(0) 0, which fixes the constant of integration d. As it stands, (4.3) is still invariant
under the group of translations in : (and so could be integrated once more, [36, 2.5])
and the discrete reflection -. One way to get rid of this ambiguity is to assume
that the wave has its crest (or trough) at :0 0, and is symmetric with respect to the
crest, which means that u is an even function of :. Thus we have a fourth-order
boundary value problem on the half line {so> 0}, with boundary conditions

(4.5) u’(0)=u’"(0)=0, and u(:)0,

As it stands, it is by no means obvious how to solve the nonlinear connection problem
(4.3), (4.5); in particular, the two boundary conditions at : 0 define too small a target
to try to aim for with a standard shooting approach. This already strongly indicates
that, barring exceptional circumstances, the existence of solitary wave solutions will
be rare.

5. An equation for monotone solitary waves. We introduce an effective direct
method for determining explicit "monotone" (see Definition 2 below) traveling wave
solutions to general one-dimensional evolution equations, reducing the fourth-order
boundary value problem (4.3), (4.5) on the half line to a (singular) third-order "initial-
value problem." The method could also be used to effectively compute solitary and
periodic waves (when they exist) numerically, although we have not tried to implement
it. (In fact, the method was originally developed by the second author in a failed
attempt to prove general existence results concerning solitary wave solutions to these
models!) It draws its inspiration from a paper by Kano and Nakayama [20], in which
they showed the existence of explicit periodic solutions involving combinations of
elliptic functions to certain particular fifth-order models by proving that a suitable
polynomial solution w to the reduced equation could be determined; see also Krishnan
[26], where a similar method is applied to systems of Boussinesq type. Our method is
much more direct and easier to implement than that of Hereman et al. [15].

DEFINITION 2. A monotone solitary wave solution is a localized traveling wave
solution, i.e., u-0 as sc +, which is monotone on the open intervals (-, sCo),
(o, ), and symmetric about the point sCo. The solitary wave is a wave of elevation
(depression) if u is montone increasing (decreasing) on (-, :o), in which case

Uo u(sCo) is called the crest (trough). A monotone periodic wave solution is a traveling
wave solution which is periodic in sc, is monotone on the intervals between crests and
troughs, and is symmetric about any crest or trough. A monotone kink wave solution
is a traveling wave solution which is monotone on the entire real line and approaches
limiting values at large distances, so u- u as :-, and u- u2 as :-.
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Rather than try to look directly for the required solution u(), we assume that it
can be reconstructed as the solution of the simple first-order ordinary differential
equation

du
(5.1) u’=w(u), u’=

d:’
where w(u) is a function to be determined. Clearly, once the function w(u) is known,
(5.1) can be solved explicitly for u(:) by a simple quadrature"

(5.2) ,/w(v)- + c.

Examples of solutions that have this form are the soliton and cnoidal wave solutions
of the Korteweg-deVries equation [46, 13.12], where the function w(u) is a cubic
polynomial. In particular, if u(:) is a monotone function on a given interval, the
function w(u) is defined implicitly by the relation (5.1).

The key is the behavior of the function w(u) near its zeros. A simple zero will
correspond to a crest or a trough, while a double zero will provide an asymptotic
exponential tail for u() near oo or -oo. Thus, a solitary wave solution will correspond
to a positive solution w(u) between a double zero at u- 0 and a simple zero at the
crest or trough Uo. (See Fig. 1). Similarly, a periodic wave solution will correspond to
a positive solution w(u) between two consecutive simple zeros, (Fig. 2), while a kink
solution has two consecutive double zeros, (Fig. 3). We thus have the following useful
criterion for the existence of monotone traveling wave solutions to such models.

u(C)

w(u)

FIG. 1. Solitary wave solution.
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u2-

u(C)

w(u)

FIG. 2. Periodic wave solution.

PROPOSITION 3. Let w(u) be an analytic function of u, which is positive on the
interval u0< u < Ul, with W(Uo) W(Ul) =0. Let u() be the corresponding solution to the
first-order ordinary differential equation (5.1). If Uo and U are simple zeros of w, then u
is a monotone periodic traveling wave, oscillating between a peak u and a trough Uo. If
Uo is a double zero and Ul a simple zero of w, then u is a monotone solitary wave of
elevation with peak ul and asymptotic value Uo at +o. Conversely, ifu is a double zero
and Uo a simple zero of w, then u is a monotone solitary wave of depression with trough
Uo and asymptotic value u at +/-o. Finally, if Uo and Ul are both double zeros of w, then
u is a monotone kink wave with asymptotic values Uo, u at +/- (either going from Uo to
U or the reverse by the reflectional symmetry).

Using the ansatz (5.1), we substitute into the ordinary differential equation for
the traveling wave solution u(:), and thereby obtain an ordinary differential equation
for the function w(u) of order one less than that for u. The goal is then to determine
suitable solutions w(u) (if any exist) of this reduced ordinary differential equation.
Differentiating our basic equation (5.1), we find that, as long as u’ 0,

tl tl

U"" 1/2 WW W-w W
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u(C)

w(u)

u u
2

u

FIG. 3. Kink wave solution.

where the primes on w indicate derivatives with respect to u. Substituting into (4.3),
we deduce that w must satisfy the third-order ordinary differential equation

(5.3)
1__a4 {2ww’" + w’w"} +- (flu + l)W’ + yw+ Q(u) =0.

Any solution to (5.3) will implicitly determine a special traveling wave solution to the
original wave equation (2.1) via the integral (5.2). In particular, for a monotone solitary
wave solution to the original equation, we need to find a solution w(u) to (5.3) satisfying
the initial conditions

(5.4) w(0) w’(0) 0, w"(0) > 0,

is positive, w(u)> 0, for u between 0 and a 0, and

(5.5) w(a) =0, w’(a) O, w"(a) <.
In this case a will be the amplitude (crest or trough depending on the sign) of the
solitary wave.

6. Exact solitary wave solutions. In certain special cases, we can use the representa-
tion (5.1) to easily find exact sechz solitary wave solutions to our original evolution
equation (2.1). For a solitary wave solution of the specific form

(6.1) u(x, t) a sech2 A(x- ct), A > O,
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the corresponding function w(u) must be a cubic polynomial:

(6.2) w(u) 4(u 1 )U p// - 0-//3,

where

4A2

(6.3) p 4A> O, o-=-0
a

are constants to be determined from the equation. Note that since a =-p/o-, we see
that 0- < 0 gives a wave of elevation, and 0- > 0 a wave of depression. Substituting (6.2)
into (5.3), we first deduce that Q(u) (and hence P(u)) must be a cubic polynomial,

(6.4) Q(u)=(p-c)u+ qua+ ru3,
with Q(0)=0; cf. (2.2), (4.4). Moreover, the coefficients p and 0- must satisfy three
polynomial equations"

(6.5) ceO
2 + lp + (p c) O,

(6.6) 15ap0- + 2(/3 + y)p + 3tx0- + 2q O,

(6.7) 15a0-2 + (3/3 +2y)0-+2r 0,

arising as the coefficients of the powers of// in (5.3). The fact that the solution p of
the indicial equation (6.5) must be positive places certain inequality constraints on the
wave speed c depending on the relative signs of the coefficients a,/.. As long as we
also have a nonzero solution 0- to (6.7), then (6.6) imposes a single compatibility
condition on all the coefficients of the evolution equation (2.1) and the wave speed c.
As we will see, this implies that there are three open regions in parameter space
(coordinated by a,/3, y,/, p, q, r), where the model (2.1), (2.2) has precisely 0, 1, or 2
sech solitary wave solutions, for a particular value of the wave speed c.

For a special five-parameter family of models, there is actually a continuum of
sech2 solitary wave solutions for all sufficiently large wave speeds. Note that according
to (6.5), p will depend on the wave speed c, whereas (6.7) implies that 0- does not.
Therefore, if the compatibility condition (6.6) is to hold for a range of wave speeds,
the coefficient of p and the constant term must lead to the same equation for 0-. We
conclude that the models for which this occurs are those for which

(6.8) (/3 + y)/x 5qa and 15cer fl(fl + ).
In particular, the four-parameter family of integrable fifth-order Korteweg-deVries
equations (2.5), and the Sawada-Kotera equation, (2.6), both satisfy these constraints.
However, these do not exhaust all the models satisfying the constraints (6.8); presum-
ably most of the others are not integrable. (Although the Kaup equation, (2.7), has a
continuum of solitary wave solutions, they are not of sech2 type, and so it is in a
different class.)

For these particular models, the nature of the sech solitary waves, which comes
from an elementary analysis of the conditions for (6.5), (6.7) to admit real solutions
p, 0-, and the resulting signs, is of interest. Since the wave amplitude is given by the
formula a 3txp/(2q), and p > 0, if q/x > 0, then the solitary wave is a wave of elevation,
whereas if q/x <0 it is a wave of depression, as in the Korteweg-deVries case (2.3).
Substituting into (6.5), we deduce the following quadratic equation relating wave speed
and amplitude:

4aq2 2
a2 + qa / sign sign q/..(6.9) c-

92 p, a-
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If a/ > 0, then there is a unique solitary wave for each supercritical wave speed c > p.
However, if a and / have opposite signs, then besides these supercritical sech2

solutions, there is a nonzero sech2 solitary wave at the critical wave speed c p, and
two distinct sech solitary waves for the range of subcritical wave speeds between p
and p-/2/(4a), reducing to a single wave of amplitude a*=-3/(4aq) at the
limiting wave speed c* =p-1/(4a). Figures 4 and 5 graph the different possible
relationships (6.9) between wave speed and amplitude for the one-parameter family
of sech solutions to the models satisfying (6.8).

The elementary observation that a model of the form (2.1) can admit more than
one distinct solitary wave solution for a given wave speed does not appear to be well
known, even for the integrable fifth-order Korteweg-deVries models. In this particular
case, this result can also be detected using the associated scattering problem as follows.
The Lax pair for such an equation takes the form Lt [B, L], where L is the usual
second-order Schr6dinger operator, and B =/B + aB5 L3+/+ aL+/- is a linear com-
bination of the third- and fifth-order operators giving the homogeneous third- and
fifth-order Korteweg-deVries equations. The eigenvalue for the soliton is constant,
and the associated norming constant has the time dependence re(t)=
m(0) exp [8/t/3- t/5]. The corresponding wave speed is then c (8ff,T3- al)/2l.
Thus, we can clearly have ranges of wave speeds for which there are two distinct sech
solitons traveling at the same speed. Note that the corresponding two-soliton solution
for two such waves represents a bound state with two humps traveling at the same

g<O g>O

>0

2

P--

x<O

2

FIG. 4. Wave speeds and amplitudes for qtx > O.
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<0 kt>0

t>0

2

Ct<0

c

pP
a

FIG. 5. Wave speeds and amplitudes for qtx < O.

speed. This phenomenon is reminiscent of the construction of bound states to the
sine-Gordon equation, consisting of several solitons with phases having real parts with
the same speed, the sine-Gordon breather being an example. However, the present
property is much stronger, and its appearance for the fifth-order Korteweg-deVries
equation is, we believe, a new observation. Note that similarly, we can arrange bound
states for linear combinations of higher-order Korteweg-deVries equations to have
any number of desired humps traveling in tandem.

Let us summarize our general results completely characterizing models admitting
exact sech2 solitary wave solutions. The different possibilities are: 0, 1, or 2 exact sech2

solitary wave solutions, a one-parameter family of sech2 solutions, or a one-parameter
family along with a single additional exact sech solution. The first three occur on
relatively open subsets of parameter space, whereas the latter two occur on parts of
the boundaries between these subsets.

THEOREM 4. Consider the model evolution equation (2.1), assuming ce O. If P(u)
is not a cubic polynomial, then the model has no exact sech solitary wave solutions. If
P(u) is given by (2.2), then we define
(6.10) " (3/3 + 2y)- 120ar,

so that (6.7) has O, 1, or 2 real roots

-(3/3 + 2y) +x/
(6.11) o-, tr:z

30c
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according to whether is negative, zero, or positive. If r 0, the real roots are nonzero;
if r=O, one root, namely trl =-(3fl +23’)/(15c), is nonzero unless fl =-3" also. Then
the model (2.1), (2.2) will have O, 1, or 2 exact sech2 solitary wave solutions for each
nonzero real root o’i, which also satisfies

3/xo’ +(6.12) ,, 15ao’, + 2(/3 + y) # O, O, 2q> O.

Finally, if (fl + y) 5qa and 15ar fl(fl + 3"), then the model has a one-parameter
family ofexact sech2 solitary wave solutions validfor a range ofwave speeds corresponding
to thefirst root trl -2(/3 + 3’)/(15c). Moreover, if3’ O, the second root r2= -fl/(15t)
gives rise to a single additional exact sech solitary wave solution provided p2, as defined
by (6.12), is positive.

Example 5. The only possible water wave model which has a one-parameter family
of exact sech solitary wave solutions, i.e., satisfies the conditions (6.8), is the Hamil-
tonian model (2.10) at the particular depth (2.13). Otherwise, these models all fail to
have families of sech solitary wave solutions of the requisite type. However, Theorem
4 implies that many of the water wave models admit one or two anomalous sech2

solitary wave solutions. The precise numerical values for which the different possibilities
occur are rather strange; we will just summarize the results, which
were deduced with the help of MATHEMATICA. First, in the case of the second-order
depth model (2.9) provided a 0, i.e., except for the particular Bond number

" (2x/-5)/15 .3970, the model admits a single exact sech solitary wave solution
unless 3/3+23"=0, which occurs when ’= (73-3602)/51. For

2x/- 5 73-3602
0-<_’< or

15 51

the anomalous solitary wave is a wave of elevation, while for

2x/-- 5 73-360:z

15 51

it is a wave of depression.
Similarly, for the second-order surface model (2.11) there are one or two exact

sech2 solitary wave solutions provided c 0, and " > 0, which requires

4v/19866- 249 2x/-0- 5
0 _-< - < .9453, - .3970.

333 15

On the range

x/-8- + 5 x/23377 91
.4740 < " < .6068,

30 102

there are two anomalous solitary wave solutions; otherwise, there is just one. In all
cases, these are waves of elevation. The Hamiltonian depth model (2.10) also admits
exact solitary wave solutions for various ranges of values of the Bond number and
depth, but the results are too complicated to warrant inclusion here. We are not sure
of the physical significance (if any) of such exact solutions.

7. Existence of solitary wave tails. We now turn to the consideration of more
general types of solitary wave solutions. We begin by proving the existence of "solitary
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wave tails," meaning solutions to the ordinary differential equation (4.3) for traveling
waves with the correct asymptotic behavior at +c. First, let

(7.1) Q(u)= E qmum

be the power series expansion of Q at u 0. (Note that Q(0)= 0 is necessary for the
existence of an asymptotically decreasing solution to (4.3).) If P(u) is a cubic of the
form (2.2), then

(7.2) ql P c, q2 q, q3 r, qm O, m > 3,

where c is the wave speed.
DEFINITION 6. A solitary wave tail is an exponentially decreasing solution u(sc)

to the equation for traveling waves with asymptotic expansion

(7.3) u(:)--- u, e-+ u2 e-2 + u3 e-3 +" ",

with 0 > 0, which converges for : sufficiently large.
Of course, we can also discuss solitary wave tails at ---c, but these are found

by using the reflectional symmetry replacing : by -:. We can also consider "oscillatory
solitary wave tails," i.e., convergent expansions of the form (7.3) with 0 complex and
Re 0 > 0. Our convergence proof will work more or less the same way in this case, but
we will just concentrate on the real exponentials for simplicity.

The existence of such an expansion leads to immediate restrictions on the exponent
0 and the coefficients in the model. These result from an analysis of the balance
equations obtained by substituting (7.3) into (4.3), and equating terms in the various
exponentials e-k, k 1, 2, 3,. .. The first few of these are easily found.

(7.4) e-" O04 nt-/-/,02 -lt- q)ul O,
2(7.5) e-" (16aO4+41xO+ql)uz+[(+y)OZ+q]Ul=O,

(7.6) e-3" (81aO4+9txOZ+q)u3+[(5+4y)O:+2qz]Uluz+q3u3=O.
Since u 0, (but is otherwise arbitrary), the first balance equation leads immediately
to the indicial equation

(7.7) aO4 + lxO2 + q O.

The existence of positive real solutions 0 to the indicial equation (7.7) places constraints
on the coefficients c, /x, q of the linearized model so that exponentially decaying
solutions can exist; see Theorem 7 below. Assuming these hold, we eliminate q using
(7.7), and the balance equation resulting from the coefficient of e-n takes the form

(7.8) ((n:+ 1)ff04-t [zO2)l,ln
where qt, is a (complicated) polynomial involving the coefficients of the equation and
the previous coefficients Ul, , u,_. Therefore, as long as the nonresonanee condition

(7.9) (n2+ 1)a0:+/x 0, n=2,3,...,

holds for the root 0 of the indicial equation, we can solve recursively for all the
coefficients u,, n 1, 2,..., in the expansion (7.3) and thereby determine a formal
solitary wave tail for the equation. Note that if a and/x have the same sign, then the
nonresonance condition (7.9) automatically holds. The resonant case is quite intriguing,
but we have not investigated it in any detail, and we leave it aside in what follows.

Note in particular, if u(sc) a sech2 A, then

(7.10) 0=-21, Ul--4a, Uz=-8a, u3=12a.
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Substituting (7.10) into the three balance equations (7.4), (7.5), (7.7), and using (7.2),
(6.3), we recover our earlier three equations (6.5), (6.6), (6.7), relating the equation
parameters and the solitary wave parameters a, A. Thus, we can deduce our earlier
parameter restrictions for the existence of sech2 solitary waves by an alternative
procedure based on the asymptotic expansion at oe. However, in contrast to the earlier
direct method, this does not prove that the sech2 wave is actually a solution to (4.3),
since we must also verify the higher-order balance equations. Remarkably, these are
all satisfied; see 8. This observation strongly indicates that only the first three balance
equations are important for solitary waves, a fact borne out in the following section.

THEOREM 7. Consider the model (2.1), and let Q(u)= P(u)-cu-P(O). Ifany one

of the conditions (a) aQ’(O) < 0, (b) a/x < 0 and Q’(O) =0, (c) a/x < 0 and 4aQ’(0) =/x2,
or (d) a =0 and txQ’(O) < O, then there exists a unique solitary wave tail (7.3) provided
the nonresonance condition (7.9) holds. If 0 < 4cQ’(0) </x

2 and atx < O, then, again
provided the nonresonance condition (7.9) holds, there are two solitary wave tails. In all
other cases there are no convergent analytic exponentially decreasing solitary wave tails.

The conditions of Theorem 7 place restrictions on the possible wave speeds c for
which there is any possibility of a solitary wave solution decaying exponentially fast
to 0 at +ee. In the case a/x > 0, for a unique asymptotic tail, we need the usual condition
that the wave speed be supercritical: c > p P’(0). (For the water wave models, this
gives the standard result that the wave speed of a solitary wave (if it exists) must be
larger than 1.) However, if a and /x have opposite signs, there is the possibility of
nonunique solitary wave tails for some subcritical wave speeds <p. Indeed, this
corresponds precisely to what we observed in 5 for the cases where explicit sech2

solutions exist.
Proof of Theorem 7. Rather than work with the formal asymptotic expansion for

u() directly, it turns out to be simpler to employ the method introduced in 5. We
let w(u)= u ’2 and prove that there is a convergent power series expansion

(7.11) w(u)= Wkbl
k-- W2/,/2 W3/,/3

k=2

for w at u 0, which solves the third-order equation (5.3) with the initial conditions

(7.12) w(0) w’(0) 0, w"(0) 2w2 > 0.

It is easy to express the coefficients Wk of W in terms of the coefficients u of u; in
particular, w2 02. Clearly, proving the existence of such an analytic solution w will
imply that the corresponding solution u() will have a convergent series expansion
(7.3), which is exponentially decreasing as -. Substituting (7.11) into (5.3), we
find that the only constant term is Q(0), which must necessarily vanish. The terms
involving’the first power of u give our by now familiar indieial equation

(7.13) aw2 d-/ZW2 -+- ql 0;

cf. (6.5), (7.7). Assuming that we have a positive solution w2 to (7.13) (cf. the hypotheses
of the theorem), we construct the corresponding power series for w recursively. The
coefficient of u’, m => 2, in (5.3) is

a(j- 1)(j- 2) flmw,, + tx(m + 1) w,,+l
[jwi_ w + iw,w_] + + ,yw 4c- qm O.

+=,,+4 2 2
i3,j-3

Extracting the terms involving w,,+ from the sum, we find the recurrence relation

19l ’km=3 k(k- 1)(m + k- 1)WkWm_k+ -4- 2(tim + 2y)w,, +4q,,
(7.14) w,,+l

2(m+ 1)[aw2(m2+ 1) +/x]



1158 SATYANAD KICHENASSAMY AND PETER J. OLVER

Since w2 02, the denominator does not vanish owing to the nonresonance condi-
tion (7.9), so we can continue to implement the recurrence relation (7.14), and thus
construct a formal series solution to (5.3) with the prescribed initial conditions (7.12).
We now need to prove convergence, which will follow from the next lemma.

LEMMA 8. Let w.= 02 be a positive root to the indicial equation (7.13). Assume
that the nonresonance condition (7.9) holds, and let Wm, m >= 3, satisfy the recurrence
relation (7.14). Then there exist positive constants A and M such that

IWml <=
m2 rn >=3.

Proof Given the convergent power series expansion (7.1) for Q, we know that
there exists a number R > 1 such that the coefficients of the expansion satisfy the
inequality

(7.16) Iql < Rm for all rn => 1.

The nonresonance condition implies that there exists a constant K > 0 such that
the inequality

m2 + m <= 2Klaw2(m2 + 1)+/.t

is valid for all rn => 3. Thus, we have the following estimate on the denominator of (7.14)"

(7.18) 2(m+ 1)l,w:(m: + 1) +/xml >_
(m+ 1)2m

K

Define the following constants"

{ 2 4R3 R}(7.19) a 91w3] M g max 7r2ca, (1 1 / I 1), a K

A straightforward induction, starting at rn 3, will prove the validity of (7.15). We
estimate all of the terms in the numerator of (7.14) in turn. For the summation, we have

E k(k-1)(m+k-1)lwk[[w,,-k+31 <= E
A2M’-3k(k-1)(m+k-1)

k=3 --3 k2(m-k+3)2

m+k

<=A2Mm-3k=3E (m_k)2
,,-3 2m-j< A2Mm-3

j=o j2

.n.2A2mMm-3

3

AtoM,,-2

3Kce

For the next two terms, we find, since m->_ 3,

2([/3 Irn + 2[vl)lwl < 2A(lC3lm + 2I])M
2m

2Am(I/3I + II)M-
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and, by (7.16),

41q, --< 4R __< 4R3M’-3

3K

both following from the definition (7.19) of M. Substituting these three estimates and
(7.18) into (7.14) easily proves the inductive step for the inequality (7.15).

8. Nonexistence of solitary waves. Having dealt with existence of explicit solitary
wave solutions to particular types of the general model (2.1), we now turn our attention
to a nonexistence result. We begin by explicitly introducing the small parameter e into
our model, and restrict our attention from the beginning to models in which P(u) is
a cubic polynomial. However, this restriction is inessential, and, coupled with the
results from Theorem 4, we can deduce that only in this case is there any possibility
of suitable solitary wave solutions existing. In the physical models of the form (2.1),
(2.2), there is a small parameter e, relative to which the translation coefficient p has
order 1, the Korteweg-deVries terms have coefficients x, q of order e, and the fifth-order
terms have coefficients a,/3, y (or 6), and r of order e 2. We also assume that x, q, and
a are all nonzero, so that the model is truly fifth-order, and, moreover, reduces to a
Koeweg-deVries equation when the O(e:) terms are neglected. We are interested in
the behavior of solutions in the limit e 0, but this is rather trivial without fuher
rescaling since all the terms except the translation will scale out, and everything will
reduce to zero. Rather than this, we need to introduce a rescaling of the equation in
which the fifth-order terms still have order e 2, but the translation and Koeweg-deVries
terms are of order 1, and compare these solutions in the e 0 limit. In terms of the
physical limit, then, we expect the solutions to be order e: peurbations of the
corresponding Koeweg-deVries solutions, which are themselves of order e. Note
that, in this limit, the velocity of a Koeweg-deVries soliton has order c =p + O(e:).

We begin with the once-integrated equation for traveling waves (4.3), which, using
(2.2), we write in the form

(8.1) (p c)u + u"+ qu2 + au""+ fluu" + TU
’2 + ru O.

Introduce the scaling

(8.2) = e, u =2v, c-p=2s,

where e, are small parameters, and s 0. Rewriting (8.1) for v= v(), we have

(8.3) ezv,,+ 2(qv2_ sv) + e4av""+ 2e2(flvv"+ yv’2) + 4rv3 0.

The condition that the rescaled equation (8.3) possess solutions having the proper
expansions in powers of e- at + is that the rescaled indicial equation

(8.4) s2= e2( + e2),
relating the two scaling parameters, hold. This allows us to eliminate and rewrite
the traveling wave equation in terms of the single small parameter e:

v"-v+v+s (v’’’’-v)+- +-(vv"+v +
(8.5)

=0.

PoPoswoy 9. ere exists a formal asymptotic solution to (8.5) of the form
(8.6) v(e, ) V0()+ 2Vl()+ 4V2()+
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in which

3s
(8.7) vo(r/) qq sech- 2’

and each v Pj(vo) is a polynomial in sech (//2), with Pj(0)=0.
Remark. The expansion (8.6) will formally represent the proposed solitary wave

solution to the original model reducing to the Korteweg-deVries soliton, (8.7), in the
limit e- 0. Thus each v(7) satisfies the condition that it describe a solitary wave; in
particular, it is an exponentially decreasing function of r/e . The numerically observed
solitary wave solutions [22], [31], [50] can, we believe, be explained by the existence
of this nonconvergent formal series. Indeed, a numerical code would be an approxima-
tion to a finite truncation of the series (8.6), which would appear to be a numerical
approximation to a genuine solitary wave. But owing to the ultimate nonconvergence
of the series, the numerically observed solitary wave solution cannot, in fact, be
considered to approximate any actual solution to the ordinary differential equation
(8.5).

Proof Note first that (8.7) is the unique even, decaying solution to the zeroth-order
equation

(8.8) v’g- vo+q vo=O.
S

To avoid complications in the subsequent formulae, it helps to introduce a further
rescaling

_r/ V(’)
2q

(8.9) ’-2’ =ss v(2’)’

in terms of which (8.5) takes the form

(8.10)
V" V2 2[ Vim gg" V’2-v+ + a(6 -v+vI+t + +v]

-1
I" e41. [[ggtt-Jf "/ Vt2 -] 2V3] + e652V3---0,

where

(8.11) c a /_3/3 33’ 9/xr
/x 8/x 8/x’ 4qTM

The solution V() will have a formal asymptotic expansion

(8.12) V(ff) Vo() + E2VI() + E4V2()+.
with leading term Vo(ff)= sech ft.

Using the abbreviation S(ff) for sech if, we group here a few formulae that are
elementary, but which will be required in the sequel:

(8.13)

(8.14)

Iterating (8.14) yields

(8.15)

S’2=4S2(1-S), S"=4S-6S2,
d2

d2 S" mSm[4m (4m + 2)S].

d4

d4 S 16m4S 16m(2m + 1)(2m2 + 2m + 1)Sm+

+4m(m + 1)(2m + 1)(2m + 3)S"+2.
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Consider the particular Schr6dinger operator

d 2

(8.16) L= dsr2+4-12S(sr).
We note that -12S(’) is a three-soliton potential (cf. [33]), so that the spectrum of
(8.16) consists of the eigenvalues {-5,0,3} and a continuous spectrum {A->4};
moreover, zero is a simple eigenvalue, with eigenfunction S’(’), which is odd. Thus,
L is invertible on even functions in L2. Also, (8.14) implies

(8.17) L(S’) mS"[4(1 m2) + (4m2 + 2m 12)S].

Together, these facts imply the following.
LEMMA 10. The differential equation

(8.18) Lf S2P(S), P a polynomial

has a unique even solution which has the form f SQ(S), where Q is a polynomial.
Now, inserting the expansion (8.12) in (8.10), each coefficient of e 2k results in an

equation of the form

or, in view of (8.16)

-’ v4 --Vk+3SVk=Fk(),

(8.19) L( Vk) -4Fk().

One can see by induction that Vk must have the form SPk(S), where Pk is a polynomial.
Indeed, according to Lemma 10, we need only prove that Fk(’) has the form SZRk(S),
where Rk is a polynomial in S. This results from the following:

(i) The remaining terms in V2 have the form VVk_i, 1 <_-i<_-k-1, and, by the
induction hypothesis, each V has the form SPi(S);

(ii) The coefficient of e 2k in the terms 62V2, e2g3, e4V3, and 66V is similarly
determined from V0, , Vk_,;

(iii) V’2 is a sum of terms of the form P(S)’Q(S)’, and S’2 has S2 as a factor by
(8.13);

(iv) VV" has S2 as a factor by (8.13) again;
(v) (8.15) shows that 6 Vcccc- V also has the form SzR(S) if V= SP(S).
Therefore, we have proved that there exists a formal series solution to (8.10) of

the form

(8.20) V(’) sech2 " + E ekPk(sech2 ’),
k=l

where the Pk are polynomials, Pk(O)= 0. This completes the proof of Proposition 9.
PROPOSITION 11. If the expansion (8.6) converges to a holomorphic function in e

and sech2 r//2 for q--) oo, and e near zero, then its associated solitary wave tail is a
translate of the exponentially decaying tail previously constructed in Lemrna 7.

Proof By hypothesis, we have a convergent expansion for the tail of the form

(8.21) v(e, r/)-- a1(8 e-" + a2(e) e-2" +’’’.

We must show that a(e) al(e) never vanishes so that we may replace r/by r/+ log a(e)
to obtain the series

(8.22) t(e, r/)= e-" + bz(e) e-z" +"’,
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which can be compared to the previous form of the tail. To achieve this, we assume
a(eo)=0 for some eo (possibly complex). Since (8.21) must solve (8.5), the series
argument from 7 immediately shows that in this case, all the coefficients vanish at
the point Co, ak(eo)--0, and hence V(eo, rt)= 0 vanishes for all ft. We show that this
implies that every e derivative (O"v/Oe")(eo, r/)=0 of v also vanishes at the point Co,

for all r/which, by the holomorphy assumption, ensures v(e, r/) 0, which is impossible
since Vo(r/) 0.

Note first that if V(eo, rt) vanishes for all r/, so do all its 7-derivatives; therefore,
the first e-derivative z()= v(eo, rt) solves the linear ordinary differential equation

(8.23) z"-z+ eo {Z""-z}=O,

since all the nonlinear terms vanish at Co. Moreover, since v(e, r/) is holomorphic, we
also have that z-* 0 exponentially fast at infinity. But it is easy to see (e.g., by using
the Fourier transform) that (8.23) has no nonzero L2 solutions. Similarly, an easy
induction proves that each derivative z (O"v/Oe")(eo, rl) also solves (8.23), nd must,
therefore, also be identically zero. This completes the proof and demonstrates the
connection between our two series solutions.

Now, by analysis of the analyticity properties of the solutions to our earlier balance
equations for the coefficients in the expansion (8.6) we deduce our final nonexistence
result.

THEOREM 12. Suppose (8.5) possesses a series solution (8.6), which is holomorphic,
convergent on a region of the form

(8.24) 1 12<

for Ko, 1 > O. Then the equation necessarily satisfies the constraints (6.8) and thus has
a one-parameter family of exact sech2 solutions.

Remark. The exact sech2 solutions are clearly holomorphic in a region of the
indicated form (8.24) provided 1 is chosen sufficiently small.

Proof We begin by writing (8.5) in the more convenient form

v" + e2ffv""-- l + eZ)v
(8.24’)

-t(1 + e2cT){v2 + eZ[vv"+ v’+ (1 + ezc)v3]},
where

(8.25) c a q / /3
3

y /zr
=, =--, =--, =--, r--

q2"s q q

We substitute the expansion (8.21) into (8.24’) to compute the balance equations; cf.
(7.4), (7.5), (7.6), for the coecients a. The indicial equation, i.e., the terms in e -’,
are already balanced by design. The terms in e-" lead to the equation

2(8.26) 3(1 +5e)a -(l+e){(l+5e)+e(+-5)}a.
Thus, a will have poles at e= 1/(5), contradicting the hypothesis of the theorem,
unless + 5, which, in view of (8.25), is the same as the first condition in (6.8).
Assuming this holds, and using (8.26) to solve for a, the remaining terms in e-3 lead
to the fuher balance equation

8(1 + lOeSS)a3
(8.27)

(1 + ee){(1 + lOeSS)+e(5+4 3-20)}a.
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Thus, a will have poles at e2= 1/(10c7), unless 5/ +4 3+ 20c7, which, in view of
the previous condition reduces to /3 =3, and, by (8.25) is the same as the second
condition in (6.8); therefore, the expansion will be holomorphic in the indicated domain
if and only if the conditions (6.8) hold and the equation admits exact sech2 solutions.
This completes the proof of Theorem 12.

The assumption of analyticity in Theorem 12 parallels that of [24]. It is likely that
the constant /x/(5a) in the domain (8.24) can be replaced by any positive constant

Co> 0, as the following argument plausibly indicates. Set, for simplicity,

Then the nth balance equation can, by a simple induction, be shown to take the form

6n+n(8.28) (n2- 1)(1 +(n2+ 1)e2c)an
t(1 + e2c)

where each , is a rational function in e, with poles at e2-- -1/((k2W 1)t), for
k 2, 3,.-., n- 1, and which vanishes identically if the sech2 conditions (6.8) hold.
In order that the expansion (8.6), and hence the ai depend analytically on e in some
neighborhood of e 0, these coefficients cannot have complex poles accumulating at
e =0. Thus, for n sufficiently large, each +6n must vanish at e2=-l/((n2+ 1)c).
This infinite collection of polynomial conditions seems highly unlikely in the absence
of (6.8). Indeed, we can straightforwardly reduce the size of the domain (8.24) by an
involved analysis of the first few of the rational functions , for n small, perhaps
using MATHEMATICA, but we have not tried to implement this.

Note finally that the proof of Theorem 12 can be readily extended to include the
case when P(u) is an analytic function, in which case the hypotheses imply that P(u)
must be a cubic polynomial also. Indeed, by the above arguments, analyticity of (8.6)
in a region (8.24) implies that not only the first three coefficients p Pl, q P2, r P3,
in the Taylor expansion of P(u) Y pu satisfy (8.6), but, moreover, a simple induction
will then show that all remaining coefficients must vanish if the poles in the general
recursion relation (8.28) are to cancel, so that p 0 for n _-> 4. We leave the remaining
details to the reader, and conclude this section by summarizing our basic nonexistence
result in a convenient unscaled form.

THEOREM 13. Consider an evolution equation of the form
(8.29) ut+[elu,,,,+eZ(auxx,,,,+UUxx+yuZ,,)+P(u, e)],, 0,

where e is a small parameter, a, fl, 7,/z are constants, and P is an analytic function of
the form
(8.30) P(u, e)--pu+equ2+e2ru3+e2u4R(u, e),

where p, q, r are constants, and R is analytic. Assume qtz # 0, so that the O( e terms are

of Korteweg-deVries type. Then the model has a solitary wave solution of the form
u u(x- ct, e) with speed c =p + e2s +..., which has a formal expansion of the form
(8.31) u= eOo[V/-(x-ct)]+ eapl[X/-(x-ct)]+ esq2[v/-(x-ct)]+"

which reduces to the Korteweg-deVries soliton qo(q {(3s)/ (2q)} sech2 7/2 in the limit.
Assume that the expansion (8.31) converges to an analytic function in a complex domain

of the form lel2<[//(5a)l+K, K>0, x-ct>>O. Then, necessarily, R=0; so P(u, e) is
a cubic polynomial in u, and the coefficients of (8.29), (8.30) are related by the conditions

(8.32) (/3 + y)/ 5qa and 15cr fl(fl + y),
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which guarantee the existence of a one-parameter family of exact sech2 solitary wave
solutions to the model

In summary, then, the models (2.1) which admit a one-parameter family of exact
sech2 solitary wave solutions are distinguished by the analyticity properties of their
solutions. This result is in direct analogy with those of [24], in which the linear, sine-,
and sinh-Gordon equations were distinguished among all one-dimensional Klein-
Gordon equations by similar types of analyticity properties. However, our result is
more revealing ofthe general method in that we no longer distinguish, by the smoothness
properties of their solutions, just integrable equations, but rather those having particular
explicit solutions. The method used here and in [24] is rather general, and is applicable
to a wide variety of similar problems.

9. Conclusions and further work. We have been able to prove, under certain
reasonable hypotheses, the nonexistence of solitary wave solutions to most fifth-order
evolution equations that arise as models for nonlinear water waves. This is very strange,
since most of the water wave models, except for the model (2.10) at the particular
depth (2.13), where the Hamiltonian model is a fifth-order Korteweg-deVries equation,
do not satisfy the requisite conditions (6.8) on the coefficients in the equation. Thus,
by trying to do better in modeling real solitary water waves, which are known to exist
[4], we, in a sense, do worse. The Korteweg-deVries model does have solitary wave
(soliton) solutions that do a reasonably good job approximating solitary water waves
[7], [8], [13]. But trying to get a more accurate model by retaining terms in e: leaves
us with no solitary wave solutions at all! Of course, this is not really an unequivocal
problem since presumably the model does do a reasonable job approximating the
solitary water waves for times on the order of 1/e2 (the Kortweg-deVries model being
accurate for times on the order of 1/e). Nevertheless, the results of this paper should
give one pause in the noncritical application of naive perturbation expansions as a
means for deriving model equations.

This leads us to wonder about the following questions: what happens to initial
conditions corresponding to solitary water waves as the time t- +? We expect that
small amplitude waves decay by dispersion or radiation, whereas it is plausible that
larger waves may even break. Is there a wave of maximal height? How do they behave
under collision--specifically do they emerge unscathed as true solitons [33], or is there
a small, but nonzero nonelastic effect, as in the BBM equation, [9]? It appears that
there is a need for good numerical integration procedures to study these models in
more detail. However, these must be long time accurate, and take into account
exponentially small effects. For Hamiltonian models, some form of symplectic
integrator [10] might be a good bet for investigating these questions. There is a lot of
work remaining to be done in this direction.

Acknowledgments. It is a great pleasure to thank Jerry Bona, Stuart Hastings,
Bryce McLeod, John Toland, and Bill Troy, all of whom made valuable comments on
earlier attempts on this problem.
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SOBOLEV SPACE METHODS FOR DUAL INTEGRAL EQUATIONS
IN AXIALSYMMETRIC SCREEN PROBLEMS*

F. PENZELt
Abstract. The explicit solution of some axialsymmetric scalar screen problems in Sobolev spaces

is presented. The well-posedness of the boundary integral equations, which are formulated as dual
integral equations, is proved. A reduction for the mixed boundary value problem to a system of
singular integral equations with a symbol from the Wiener-algebra is given.

The approach of dual integral equations has a long history [Mixed Boundary Value Problems
in Potential Theory, North-Holland, Amsterdam, 1966] whereas the new developments reviewed
in [E. Meister and F. O. Speck, Modern Wiener-Hopf methods in diffraction theory, Proc. Conf.
Dundee, 1988, in Ordinary and Partial Differential Equations, B. Sleeman and R. Jarvis, eds., 1989,
pp. 130-171] make it possible to handle these equations in Sobolev spaces.

Key words, fractional integrals, potential theory, Laplace equation, Wiener-Hopf equations,
dual integral equations

AMS(MOS) subject classifications. 26A33, 31B20, 35J05, 45E10, 45F10

1. Introduction. In this paper we present the solution of certain dual integral
equations by the Wiener-Hopf method. We prove the validity of the method in certain
Sobolev spaces. A lot of attempts to solve dual integral equations in distributional
spaces has been done before; cf. [11], [26], [28]. Some results about Fredholm proper-
ties of certain dual integral equations in Lp spaces are contained in [17]. Nevertheless,
the equations considered here do not fall into this class.

During recent years the screen problems considered in [3], [24] were reformulated
in Sobolev spaces of locally finite energy Hlloc(3\) and numerical procedures were
given in [6], [7]. This enables us to understand the explicit solution formulas for the
Dirichlet and Neumann problem for the Laplacian in the axiMsymmetric case in a
well-posed operator theoretic setting in Sobolev spaces. For this we have to define
some Sobolev spaces of axialsymmetric functions and to characterize their norms by
fractional integral operators (see Lemmas 2.1, 2.5, and 2.6).

These results are of independent interest. For example, Lemma 2.1 proves the
strong ellipticity of the weakly singular integral operator, which is the boundary in-
tegral operator for the Dirichlet problem. This operator was extensively discussed in
[27], [6], [7], [16], [29]. The hypersingular integral operator, coming up from the Neu-
mann problem will be handled in Theorem 3.2. Discussions of this integral operator
are in [27], [22].

2. Definition of function spaces and operators. Here we use the following
definition of the Fourier transform of a function f:

(2.1) ](x) Jmf’ e’f()d.
We start by defining some norms"
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We recall the definition of the following Sobolev spaces that appeared in the solution
of boundary value problems from [4]. H8() is the closure of the set of C-functions
having compact support in a bounded domain g in the norm I.llHs(lin). By H8 (12)
we denote the closure of the set of functions that are infinitely often differentiable in
gin, restricted to in the norm

(2.3)

If E H(Jn) denotes any continuation of f to/Rn. A lot of methods are available
for norms and operators that are homogeneous; therefore, we introduce the following
norms in S’(in)"

Let us define the spaces Rs() and/8() analogously to the spaces H() and
Hs() by using II f l] R8(n) instead of II f ll gs (n). Then we can prove our first result.

LEMMA 2.1. The spaces s() and () are the same set of S’(1R2)-distribu
tions for Isl < 1. The two norms in these spaces are equivalent. The same assertion
holds for the spaces Rs() and H

Proof. First we cite from [8] that Hs() is a space of S’-distributions having sup-
port in g. It is known from the book of Gelfand and Shilov [9] that such distributions
are derivatives of continuous functions. Therefore, the Fourier transform of these
distributions are in C and the distributions themselves have finite/()-norm for
s > -1. /() is a closed subspace of/’(); therefore, we can identify the spaces as
sets. Because the identity is a continuous and one-to-one mapping from/s() onto
/s(12), we can conclude the stated equivalence of norms. The same holds for the
spaces R (f) and Hs (f) because it is well known that g (f) and/-s(f) are dual
spaces with respect to L2 norm.

We introduce some Sobolev spaces of axialsymmetric distributions. We restrict
ourselves to Sobolev spaces of index s satisfying sl < 1. In this case Lemma 2.1
guarantees the imbedding of our spaces into the usual Sobolev spaces. Here we assume
2 to be the unit disk in/R2. For the definition we use functions in S((0, x)) and
have to recognize that they are restrictions of axialsymmetric functions from S(gi2),
the space of rapidly decreasing functions from C (/R2). Here So denotes the Hankel
transformation of order zero:

(2.5) Sol(x) := Jo(x)f()d.

By Jv we denote the Bessel-function of order t. If f E S(/Ti2) is an axialsymmetric
function, then it is well known [12] that the Fourier transform of f is also axial-
symmetric and given by the Hankel transform of f of order zero. From now on we
identify axialsymmetric functions with their restrictions to [0, oc) and vice versa. For
sl < 1, H(12) is the closure of the set

{flf e C([0, 1)), f(2k-1)(0) 0 for k e N}

in the norm Ilfll/() :- (f ISolof(x)12x2S+idx) 1/2, where lof is defined as the ex-

tension of f by zero to [0, ). The functions from C([0, 1)) have to vanish in a
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neighbourhood of x 1, but they must not vanish at x 0. For Is[ < 1 H(12) is
defined as the closure of the set

{fir e C([0,1]), f(2k-x)(0) --0 for k e N}

with respect to the norm [Ifl[/(n) :- inftI(fo [Solf(x)[2x28+ldx) 1/2, where the in-

fimu is taken over all extensions of f on [0, oc) such that If e S(/R2). For further
purposes we need the fractional integral operators defined in [24]"

(2.8) ,,f(z) :=
2x-2cz--2v/j0xF(a) (x2 u2)a-lu2"+f(u)du,

(2.9)
2x2 xcK,,af(x) F(a) (u2 x2)a-u-2a-2’+lf(u)du"

F denotes Euler’s F-function.
We give two distinct definitions of Mellin transformations:

(2.10) Mf(s) :- xS-lf(x)dx

for a complex variable s and

M.,2f(t) := Mf (- +
for a real parameter # and a real variable t. We introduce weighted Hilbert-spaces:

(2.12) L {/o }2((0,)) :- fl If(x)l2x-:dx <

Remark 2.1. The space L22((0, oc)) can be identified with the axialsymmetric
L2(2) functions restricted to the half-axis.

We cite from [18].
LEMMA 2.2. The Mellin transformation M,,2 is an isomorphism from L2((0,

onto L2(J) for all # E
In the next lemma we shall describe equivalent norms in the Sobolev spaces

/([0, 1]) and H([0, 1]) for s[ < by using the Mellin transformation or fractional
integrM operators. To abbreviate equivalence of norms, we shall use the symbol .

LEMMA 2.3. The following pairs of nos are equivalent in H(), respectively,
in H(n) for I1 :"

(2.13) I[filn;1/2 (a) If (1 + Itl)
dt

(/o ):inf IM1,2(lf)(t)12(1 / Itl)dt(2.14) IlfllH<. f

IM:,z(loY)(t)l(1 + Itl)dt(2.15) Ilfll(.)
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(2.16) Ilfll/1/2 (f) (1 + Itl)
dt

Proof. Let f e C([0,1]), $(-)(0) 0 for k e hr, and let If e S(q2) be an
extension of f on (0, oc). The Mellin transformations M3,2 and M1,2 map this type
of functions on functions from S(/R),

/o L(M1,2(lf))(t) x-1/2+U(lf)(x)dx e’pte1/2P(lf)(e:)dp.

The function e1/2P(lf)(ep) is in S(/R) because If and all its derivatives decay exponen-
tially at infinity:

(2.18) e1/2P(lf)(eP) < l+ekO
for p--. cx) and k E N,

(2.19) eP(lf)(ep) (lf)(O)O(ee for p

The proof for M3,2 is analogous.

inf ISolf(x)lZdx

f - + it dt

1 3 it=inf/lf (MJo) (- +it)(Mlf)(
2

inf/ it it 3 it)2--1/2--it (---) --1 ( -) (Mlf) (q-
2

[5].
The third and the fourth equality can be proved with the aid of formulas from

The asymptotic formula

(2.21) F(x + iy) lyl-1,

which holds for fixed real x and for y - +x), proves the first equivalence of norms if
we take the infimum over all extensions of f to L((0, cx)).

To prepare the proof of the second equivalence, we use the following formula,
which holds for continuously differentiable functions f, whose first derivative vanishes
at x 0:

1
J(x)f’()dSol(X) -This we prove by integration by parts on the left-hand side of the equation and

by using the relation (O/O)((/X)Jl(X)) Jo(X).
Let us assume that f is a function in C([0, 1]), satisfying f’(0) 0. Let If be a

smooth extension of f to (0, cx). Using the relation above and some properties of the
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Mellin transformation, which we looked up from [5] we get the following equation:

(2.23)

3 it) 2drIn (MSolf)(-+

1 2

(MJ1)(+it))(M(lf)’)(-it) dt

3 x it 1 1 it)
2

dr.

We prove the second equivalence of norms substituting t by -t in the lt integral,
using the above given ymptotic formula for the r -function and aking the infimum
over all extensions of I to L((0, )). he proofs of the third and he fourth equiva-
lence can be done analogously. We have to use funcgions f with compact support in
(0, 1).

o give an idea which functions are in the Sobolev spaces defined above, we prove
a corollary of Lemm 2.1, 2.2, and 2.a.

COrOllARY 2.1. The followin9 inclusions hold:

51,2((0, 1)) f
lIeL,(+)

1)) c Hi’

Proof. Let f e L1,2((0, 1)) have an extension Ife L1,2(/R+) such that

lMi,2(lf)(t)12(1 + Itl)dt <

Then it is possible to approximate If by functions lf, E C(K+) in the L,2(/R+)
sense. By Lemma 2.1, M1,2(lfn) converges to If in/2(l/)-sense, which implies conver-
gence almost everywhere. If n is large enough, the integrals f
must also exist; f can be approximated by functions from C([0, 1]) in the HI ()-
norm. The proof of the second inclusion is analogous. We have to keep in mind that
for functions f E L3,2(+) we get the estimate

(2.25) {M3’2(f)(t)]2
(1 + Itl)

dt <_ IIM3,2/ll =(z ) -II/I 2

Remark 2.2. The extensions f in Corollary 2.1 can be restricted to extensions

f e C([0, b]) for b > 1 because these functions are a dense subset of L,2(ti+).
Given a set t, we denote by )(: the characteristic function of t.
LEMMA 2.4. The operator g_1/2,1X[0,1], which maps f onto f: f(u)du, is ex-

tendable to an isomorphism from 1/2 () onto [-I] (t). The inverse is given by
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-d/dx. The operator I0,1X[0,1], which maps f onto f f(u)du, is extendable to

an isomorphism from H](f) onto H(f). The inverse is given by (Df)(x) "=

f’(x)+(f(x)/x).
Proof. Let v E C([0, 1)) v(2k-1)(0) 0 for k E N. We prove that g_l 1X[0,1]

is an isomorphism:

(2.26)

The formula for the inverse follows from -(d/dx)f: v(s)ds v(x). We shall
prove that the operator I0,1X[0,1] is the adjoint operator to K_1/2,1X[0,1]. For f
C((0, 1)), g e C([0, 1]) holds:

(e.eT)
1 x

(g_ f)(x)dx g(x)x f(u)dudx
u

which proves that the operator I0,1X[0,1] is adjoint to the operator K_1/2,1X[0,1 with

respect to the natural dual pairing between/] (t) and HI (f). The formula for the
inverse is now obvious, v1

Remark 2.3. The constant functions are not in the range of the operator
-g X[0,1] indeed they are not elements of/(gt) for s > 1/2 The operator D2 --1/2,1
maps the function which is equal to one on the disk onto the function 1/Ixl, which is

in H (gt). On these facts hinges the injectivity of the operators D and d/dx.
LEMMA 2.5. The operator x1/2K.y,1/2 maps L2((O, 1)) one-to-one onto [-t () and

the operator (d/dx)x1/2 K,1/2 maps 522((0, 1)) one-to-one onto U] (f), if’ > -5"

Proof. Let v C((0, 1)). The function g :-- x1/2 K., 1/2 v behaves like x2+ 1/2 at
1 the function is inx 0 and vanishes in the neighbourhood of x 1. For -), > -5 g

L((0, 1)). To estimate the/] (f) norm of g, we may use the following relation:

V/1 / I1 I’( + ’ + g)(My)(1 + it)itr(1 L() -- II(Mv)(1 +

and IlVllL((0,1)). TheThis proves the equivalence of the norms llx1/2K 1/2 vll (a)

mapping property of (d/dx)x1/2 K,1/2 follows from Lemma 2.4.

LEMMA 2.6. The operator x1/2Iv, 1/2 maps L2((O, 1)) one-to-one onto H] () and

the operator Dx1/2 17, 1/2 maps i((O, 1)) one-to-one onto H 1/2 (12), if r > -1/2.
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Proof. Let v e C((0, 1)). We calculate the Mellin transform of h(x)"= x1/2In, 1/2
(lov)(x); h is in C((0, oc)) and vanishes in a neighbourhood of x 0. From [5] we
cite

1
+ it)(Mlov)(1 + it)

2
(Mh) - + it/ F(1/2) (M((x

2 1)-1/2X(1,oo))) (-2v/
(.)

( t ) ( t ) (Mlov)(l + it).+-i r- 1+--
This proves, that the first operator in question maps L((0, 1)) continuously into

Hal/ (t). Its injectivity is well known [18]. To prove surjectivity, we prove that the

inverse operator is densely defined and continuous from HI (t) into L2((0, 1)). For
this let us assume hi e C0([0, 1]),h2k-1)(0) 0, if k e N is given. Using some
formulas from [24], we get the following result:

(2.30) (In, 1/2
1 lxx2+2n(in+1/2,1/2h)(x).-h)(x) -x-2n-

We extend h by lhl to the half-axis such that the support of lh is a bounded
interval, say [0, x0], and obtain

(e.a)

M(In,1/2-1x-1/21hl)(1 + it)

x_2n_l+it d 2 u2n+(lhl(u))dudx

f0 f0 () ’+1/2 (1())xF(}(-2, 1 + it) x-2v-2+u X[,) ff()2 1

(-1 2 + it)M([,)()( 1)-)(-1 2 + it)(Mlhl) + it
r(5

3 it)
Here we used integration by parts and the relations

(2.32) [j0x u2n+v/x2(lh-u2(u))dul<l--x ox u2n+V/1_]lhl(U)]du-O()2 () for x---, oc,

(2.33)
u2n+(lhl(U))

du < JllhlllLOo([O,xol)x/x u v/1 t
dt O(x2n+) for x --, O,

which ensure the existence of the integrals above and allow us to neglect the boundary
terms in the second equality.

Using formulas (2.14), (2.21), we conclude the desired surjectivity of x1/2 In, 1/2 The

mapping property of the operator Dx1/2 In, 1/2 follows from Lemma 2.4.
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Remark 2.4. The fractional integral operators x 1/2 K, 1/2, x- 1/2 Iu, 1/2 map functions
with support in [0, 1), respectively, [1, cx)) onto functions of the same type. This
property holds because their Mellin symbols, which are defined by

F(1/2 + /+ i) (x1/2" F(1/2 + i)(.a) (k,1/2)(t) :=
r(1 ++i)’ ,,)(t) :=

r(1 +-i)’
e holomorphically extendable to the lower half plane and to the upper half plane,
respectively.

3. Formulation and solution of dual integral equations for the Lapla-
cir. The Dirichlet problem for the Laplacian reads

(1)(3.1) Au 0 in R3\, u(x) O if Ixl - ,
(3.2) u-g one,

where we assume g to be in H (2). In [27] the following weakly singular integral
equation for the jump of the Neumann data was derived:

(3.3) Va nn (x):= - x -Yl
(y)dflu 2g(x).

In [27] the invertibility of the operator V"/1/2 (fl) g/2(fl) is proved and Galerkin
methods are investigated.

For the disk fl and an ialsymmetric function g, equation (3.3) reads

(3.4) So
l
So [Ou ]

where we look for [Ou/On] H (). To point out the relation to dual integral
equations, we cite from [24] the following formal derivation of (3.4)" The potential
ansatz

leads to the dual integral equations

(a.) ()&(o)a (), 0 1; ()&(o)a 0, > 1.

he second equation in (a.6) gives us the informagion that he Hankel transform
of B is supported in [0, 1]. Using the first equagion in (a.6), we end up with equation
(a.4), where B denotes the Hkel transform of IOn/On].

We have to solve he Wiener-Hopf equation (a.4). his we shall do by "liing"
this equation o a Wiener-Hopf equation in ((0, )). This method is well known for
half-space problems; compare [8], [2g]. he operators which map (a) bijectively
onto () may be constructed by partition of uniy [10]. In the ialsymmeric ce
his can be done more explicitly by use of the fracgional integral operators introduced
in 2.
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THEOREM 3.1. The explicit solution of equation (3.4) is given by

[Ou] d 1/2K1/4 (x1/21 )--1(3.7) nn -xxx ’-} _1/4,1/2 2g.

Proof. We multiply equation (3.4) by (x1/2I_1/4,1/2) -1 from the left and we use the

ansatz [Ou/On] (-(d/dx)x1/2 g1/4,1/2)C with C e L22((0, 1)). Then we end up with an

equivalent equation in L22((0, 1)):

(3.8) (X 1/2 I_1/4,1/2 )_ 1XftS0 1S0Xg (xdx1/2 K1/4, 1/2 ) C (x 1/2 I_1/4, )-12g.

The operator on the left-hand side of the last equation is the unit operator in
L((0, 1)). We prove this by application of the Mellin transformations, assuming C
C((0,1)).

(3.9)

(MI’2SI -xd x1/2K1/4’1/2C) (t)

--(M1,2Jo)(t) (M (So d --xXK1/41/2)) ( it)
31 I-it)(MJo)(- +it)(MJo)( , +it)

)2r( -it)r( + i x C +it

( ) ( )1 r( +i)r( -i) (MK C)
1

+it 2r( +i)r( i) -’
( ) t)r(} i)1 t r( +ig (Me)(1 +it)+i r(+i)r(-i)
r( i) (Me)(1 + it) (M,I

So(d/d)K C vanish iden-So we proved that the functions I_ aC + S0
ticMly on the whole half is.

The Neumann problem for the Laplacian reads

U
(3.11) 0 h on gt

where we assume h to be in Ht (ft). In [27] the following hypersingular integral
equation for the jump of the Dirichlet data was analyzed:

(3.12)
1 0 /n 0 1

Va[u](x) :=
2r Onx

[u](y) Ony Ix Yl
day 2h(x).
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For the disk 2 and an axialsymmetric function h this equation leads to the fol-

lowing Wiener-nopf equation for [u] e H():

xnSoxSoxn[u] 2h.

By analogy to Theorem 3.1, which describes the solution of the Dirichlet problem,
we can prove the following theorem.

THEOREM 3.2. The explicit solution of equation (3.13) is given by

[u] x1/2 K_1/4,1/2 (Dx1/2 I1/4,1/2 )-12h.

Proof. We multiply (3.13) by (Dx1/211/4,1/2) -1 from the left and we use the ansatz

[u] (x1/2K_1/4,1/2)d with d E 522((0, 1)). Then we obtain an equivalent equation in

L((0, 1))"

(Dx1/2 I1/4,1/2 )-lxnSoXSoX(x1/2 K_1/4,1/2 )d (Dx1/2 I1/4,1/2 )-12h.

The operator on the left-hand side of the last equation is the unit operator in L((0, 1)).
As in the proof of Theorem 3.1, it is sufficient to prove an identity for d E C((0, 1)):

(3.16) xnSoxSoxnx1/2 K__
_
d xnDx1/2 I_

_
d.

42 42

To calculate the Mellin transform of xnSoxSoxnx1/2K__ _d we give some com-

ments in advance: The operator x1/2 g__
_
maps C((0 1)) into C((0 1); the opera-

42

tor SoxSo maps ialsymmetric functions from S(2) onto distributions from S’(2).
Its Mellin symbol is derived by the use of the convolution theorem and the Fourier
transform of the S’() distribution e3/2Jo(eX).

(3.17) s1/2+UJo(s)ds e(1/2+u)Jo(e)(e)dx eUJo(e)(ea/2)dx.

The function e3/2Jo(eX) grows exponentially as x +oc; nevertheless, it is an
element of S(/R). This follows from the equation

d
+

and the boundedness of e Jl(ex) at +/-x). Therefore, the Mellin transform M3,2 of J0
may be taken by holomorphic extension from the formula (1) on page 326 of [5]. We
calculate the Mellin transform:

(3.19)

M3,2(SoxSox 1/2 K_1/4,1/2 d)(t)

() (3)1(MJo) +it (MJo) - it M(xK_1/4,1/2 d) - + it

)r( i)F(- + i5 M(x1/2K d) +itt)F(1/4 +i) -1/4,2r(_i
(u(e)/(1 +
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Now we finish the proof:

(3.20)

These formulas hold in the distributional sense. So we proved that for d E
C((0, 1)) the distribution SoxSox1/2g__ _d-Dx1/2Ix _d is equal to the null element

42 42

of S’(/R2).
Remark 3.1. Explicit solution formulas for the boundary value problems discussed

in 3 for the Helmholtz equation are not known to the author. The methods used
here to derive explicit formulas break down because of the nonhomogeneity of the
Helmholtz operator. Nevertheless, in a future project we plan to use the methods
developed here for investigation of numerical procedures for nonaxialsymmetric cases,
for the Helmholtz equation and for time-harmonic crack problems.

4. Mixed boundary value problems. We want to formulate the Dirichlet-
Neumann problem for the Laplacian here, which leads to a nontrivial system of
Wiener-Hopf equations. This type of boundary value problem appears, for exam-
ple, in the theory of acoustics; compare [21] and in the theory of subsonic flows,
compare [13]. In Rawlins’ paper the solution for the half-space case had been given
explicitly. One essential step in Rawlins’ paper was the derivation of the factoriza-
tion of a certain matrix. For the discussion of this and related problems, [14], [20]
should be consulted. In our case, we reduce the problem to the factorization of a
meromorphic nonrational matrix function. This factorization is not explicitly known
to us because the matrix does not fall into classes factorized in [1], [19]; therefore, we
end up with the regularization of the Wiener-Hopf operator to a system of singular
integral equations in (L2(/R))2 with a symbol from the Wiener-algebra.

The Dirichlet-Neumann problem for the Laplacian reads

(4.1) Au=0 inR3\, u(x)=O/x) iflxl--,x

(u
(4.2) u(r, 0-) g(r), -ffn (r, 0+) h(r) for r e (0,1).

Here we assume g e HI (12) and h e HA2().
The ansatz

(4.3) u(p, z) a()e-ZJo(p)d for z >0
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and

(4.4) u(p, z) ()eZJo(p)d

lead to the system of dual integral equations

(4.5) ()Jo(p)d -h(p),

and the transmission conditions imply

for z < 0

0_<p<_l,

(4.6) (() -/())Jo(p)d O, (() +/())Jo(p)d O, p > 1.

The transmission conditions lead to the new ansatz:

(4.7) 2 Soxaa + xSoxab, 2 Soxaa- xSoxab.

This ansatz for a and b reduces the mixed boundary value problem to the following
system of Wiener-Hopf equations:

(4.8) xa + xnSoxSoxab -2h, xaSo-1 SoXa xb 2g.
X

Of course, we look for a e H () and for b e HI (f).
We "lift" this system of Wiener-Hopf equations to a system in L((0, cx))" for

this we introduce the substitutions

d
(4.9) a -xXK1/4,1/2c, b= x1/2K__,,_d, 2h= -Dx1/2I_,_u, 2g xI v.

Inserting these equations into the system above and using Theorems 3.1 and 3.2,
we get the Wiener-nopf system in L((0, 1)) that we looked for:

-x(Dx1/211/4’1/2)- d--K1/4’1/2Xcux + xad Xau,
(4.10)

Xac- Xa(I_1/4,1/2)-IK ,1/2xd Xav.

An application of the Mellin transformation leads to

pl
(t)M2,2c(1 + it) + PM2,2d(1 + it) PM2,2u(1 + it),

(4.11) r

PM2,2c(1 + it) Pr(t)M2,2d(1 + it) PM2,2v(1 + it),

where P denotes the projector onto L2 functions that are boundary values of functions
that are holomorphically extendable into the lower half plane, and r denotes the Mellin
symbol of the operator (I_ 1/4,1/2 )-

F(1/4 + i)F( -i) sin((-34 + i)r)(4.12) r(t) "=

This symbol had already been calculated by Rooney [23]. It is a meromorphic
function with all its poles and zeros lying on the line i. A lengthy but simple
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calculation proves that the operator -(Dx1/2 I1/4,1/2)-1 x1/2 K_,,2- has the Mellin symbol-. The matrix

(4.1a) (t) := ; 1
1

is an elemen of (L())x, having constang determinant. he limi values of r at
infinigy are given by:

(4.14) lim r(t) i.

It is a matrix of functions that have a finite jump at infinity. The matrix

( 1(4.15) a(t) :=
--r 1

is a dissipative matrix in the sense of [2]. ansformation of the results from [2] to
the real line allows us to use Bach’s fixed point principle for the solution of (4.11).
We believe that it is more convenient to give a reduction to a system of singular
integral equations with a matrix being continuous at infinity. If we solve this reduced
equation by a numerical method, we get an approximate solution of the boundary
value problem which h the same singularities like the exact solution. We state the
following theorem.

THEOREM 4.1. The solution of the axialsymmetc mixed bounda value problem
(4.1), (4.2) is equivalent to the solution of a system of singular integral equations in
(n()):

(4.16) PaoPu Pf,

where the matx ao is defined by

(. 0(tl
-(1 + (; (; +

nd r is defined b

i(( +(4.1a) r(t) :=
i(( +

The mtN o(t) converges to the identit mtN t infinit.
Pro@ We ransform (4.11) equivalently by multiplying the matrix by the

constang matrix

(4.19) (11 -11 )
from he righ and is inverse from the left o ge the new matrix , defined by

( 1 ) )(.0
-(1+ (;- -(; +

1 ) (1 ))

The function (r+;)(t) vanishes exponentially for t . A sandard mehod to
reduce the system of singular integral equations wih the matrix having a disconginuity
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at infinity is to fill up the discontinuities by multiplying the matrix with diagonal
matrices with entries like (t +/- i). Here we multiply the matrix with meromorphic
functions that have algebraic behaviour at infinity on the real axis:

(4.21)
r(1/4-1/2)

ao(t) r(1/2-1/2)

0 / r(1/4+1/2)0 r(1/2+i)
r(i-1/2)

a(t)
r(1/2-i) 0

0 /r(1/4+i1/2)
r(1 .+)

We multiplied 91 from the left side with a matrix holomorphically extendable
into the upper half plane, while the last matrix in the product is holomorphically
extendable to the lower half plane. Both matrices have algebraic behaviour at infinity
in their half planes of analyticity. By using the well-known formula

(4.::) r()r(- z) sin(rz)’
we get the representation (4.17) for a0. By the methods described in [15], the solution
of (4.11) may be reduced to (4.16). The diagonal elements of a0 converge to +1,
which is seen from the formula (4.14) and the following one:

lim
sin(a + it) e+i(a_.).

t-i sin(-/+ it)

The off-diagonal elements of a0 vanish exponentially at infinity on the real axis, which
1 and the boundedness of rl at infinity.follows from the behaviour of r + 7
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ENERGY INEQUALITIES FOR INTEGRO-PARTIAL DIFFERENTIAL
EQUATIONS WITH RIEMANN-LIOUVILLE INTEGRALS*

YASUHIRO FUJITA?

Abstract. This paper presents energy inequalities for the integro-partial differential equations with the
Riemann-Liouville integrals. These equations interpolate between the heat equation and the wave equation.
This fact is reflected in the energy inequalities so that they correspond to the energy equality for the wave
equation. The proofs depend on the Fourier analysis and the probability methods.

Key words, energy inequality, Mittag-Leffler distribution, fractional derivative
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1. Introduction. Let n -> 1 be an integer and 1 =< a =< 2. We study the integro-partial
differential equation

tc/2
(IDE) u( t, x) c(x) /

r(1+(/2))
t(X) -F F() (t--s)-lAtl(S,X) as

(t> 0, x R"),

where F(x) is the gamma function and A=Yj= (O/Oxj)2 The integral appeared in
(IDE) is the Riemann-Liouville integral of order a defined by

if(t)=F(a) (t-s)-lf(s) ds.

The integro-partial differential equation (IDE) interpolates between the heat equation
(a 1 and ,--0) and the wave equation (c 2); (IDE) is interpreted as the integral
form of the formal Cauchy problem (O/Ot)u(t,x) Au(t, x). Several authors studied
the qualitative properties of the solution of (IDE) [8], [9], [12], however, about the
quantitative properties of it, only LP(Rn)-decay (p_->2) was studied for 0 -= 0 [10].

The aim of the present paper is to derive energy inequalities for (IDE) (1 -< a -< 2).
For the solution us of (IDE), these energy inequalities deal with the quantity

and its time average

(2) -m,c (/) /1/a e-ta’/Cm,(t at (A > 0).

Here I1" is the Sobolev norm of order m and Ilv b 2m E=I ]10th/0X 2m," D/2 is the
fractional differential operator of order a/2(l_-<a <2) and Dl=(o/ot) (see 2). As
far as we know, there exists no paper treating the quantities m,(t) and -m,(A) except
a 2. For a 2, the following energy equality is widely known"

(3) Cm,2(t)
The main results are as follows. In Theorem 1, we derive the energy inequality

for m.(t) (1_-< a <2). This inequality corresponds to the energy equality (3). In

* Received by the editors July 3, 1991; accepted for publication (in revised form) October 27, 1991.
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Ministry of Education, Science, and Culture of Japan.
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Theorem 2 we treat the asymptotic behavior of ,,,(t) as t for 1 =< a <2. In
Theorem 3, we show that -,,(h) is a continuous and strictly increasing function of
a 1, 2]. Thus the time average -,,(h) interpolates monotonically and continuously
between -,,1(h) and -,,2(h).

There exist many papers about the estimates for the solutions of (Volterra)
integro-partial differential equations. (Cf. [3], [4], [5], [11].) As compared with these
estimates, our energy inequalities are unique in the sense that they correspond to the
energy equality for the wave equation. It seems, however, to be difficult to generalize
these inequalities to other equations.

The present paper is organized as follows: we state the main results in 2 and
prove them in 3.

2. Main results. Let H(Rn) be the Fr6chet space consisting of C-functions b
such that b and all its derivatives belong to L2(Rn); H(R") is equipped with the
sequence of norms {11" I1,,}=o defined by

where is the Fourier transform of h in L2(R)
1 f _ix.th L(:) Alirn (27r),/2 . e (x) dx in (R).

Ixl<=a}

Throughout this paper we assume that b and q of (IDE) belong to H(Rn).
DEFINITION. The function u in C([0, o)-H(Rn)) is said to be a solution of

(IDE) if it satisfies (IDE) for every > 0 and x Rn.
PROPOSITION. For 1 a _<--2, (IDE) has a unique solution u.
Now we consider the energy inequalities for (IDE). These inequalities deal with

m,(t) and -m,(A) defined by (1) and (2), respectively. For 1 a <2, the fractional
differential operator D/2 of order a/2 is defined by

1 fo _/D/f(t)= I-/f’(t)=F(l_a/2) (t-s) :f’(s) ds.

For a 2, put D/2= D= (O/Ot). The following inequality for the quantity ,,,,(t)
corresponds to the energy equality (3).

THEOREM 1. For 1 <= a <--2, the function D/2u is well defined as an element of
C([0, c)- H(R")). In addition, for each integer m >-O, we have

(4) m,(t) <-- q’ 2 + [iV 4 ]12, (t> 0).
The inequality (4) reduces to the equality for all ok, H(R") if and only if cr 2.

Theorem 2 below treats the asymptotic behavior of *,, (t) as - o for 1 <= c < 2.
THEOREM 2. Let m >= 0 be an integer. Suppose that there exists X H(R’) such

that q(:)= I:[(s) almost everywhere. Then, for each 1 <- c <2, we have

1
(5) ina t"m,(t)=r(a_(a/2))2 ([Ixll m / II ll ).

Remark 1. As an example of q satisfying the assumption of Theorem 2, we give
q(x) =Ej_-I ajO/Ox(x) for some constants a and qH(R") (l <-j <_- n). In this
case () is so chosen that

/(:)==, a*j(:) (#0), =0 (so=O).

Clearly this X belongs to H(R).
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Next we consider the time average S’,.,s(A). As for g,.,s(t), we cannot answer
whether it is a monotonic function of a because we know no method comparing
g’m,s(t) with g’m,0(t) for 1 =< a </3 _<--2. However, as for the time average, the Laplace
transforms enable us to show the following.

THEOREM 3. Let m >-- 0 be an integer and A > O. Unless ck d/=- O, then S-,.,s (A is
a continuous and strictly increasing function of c. That is, S,,,,s(A) is continuous in
cr 6 1, 2], and the following inequalities hold whenever 1 < a </3 < 2:

(6) -,,,,,(A) < ffm,s(l) < -rn,(i) < ffm,2(/)---Ill]tilL --IIV(IIL.
Thus, there exists a one-to-one correspondence between the two intervals (1, 2) and
(’m,1 (/), "m,2(/ ),

Theorem 3 shows that the time average S-.,,s(A) interpolates monotonically and
continuously between S-,., (A) and .,,2(A).

3. Proofs. In the following, let Ys(t)= Ys(t, co) (1-<_a-<_2) be the stochastic
process on a probability space (f/, , P) with the Mittag-Leffler distributions of order
c/2:

(_st/)
(7) Eexp{-sY(t)}=2 Re s>_-0, t>=0,

F(1 + (ka/2))’k=0

where E stands for the expectation. Then Ys (t) has the continuous path with probability
1. That is, for almost all w f, the functions Ys (t, w) are continuous for all >_- 0.
These facts were proved in [1] (see also [9]). The use of the stochastic process Ys(t)
enables us to simplify the proofs.

Proof of Proposition. For -> 0, put

(8) Us( t, :) (:)E cos
E sin

The nction Us(t, ) is defined, except : benging to a null set. Since b and q are
in H (Rn), their Fourier transforms th and q belong to L(R"). Thus, Us(t, ) also
belongs to L(R") for each t->0 because we have by (7) and (8) for almost every sc,

ts/2
(9)

r(l+(/))

Now define us(t,x)(t>-O,xR") by

1 fa" eix’(10) us(t,x)=(27r)./-- Us(t, ) d.

We show that us is a unique solution of (IDE). For each integer m _>- 0, it follows from
(9), (10), and Parseval’s theorem that

2t
u(t)ll - 2114, II% + r(1 + (cz/2)): II.

Further, since Ys (t) has the continuous path, we get u (t) u 0 as It s 0
by (8) and the dominated convergence theorem. Thus, u belongs to C([0, ): H(R")).

Next we show that u satisfies (IDE). By (7), we have for every R" and 0,

(_llt)
(11) Ecos (II Y(t))

=o
E
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and

(12)
(_llt,),

E sin (14:l g(t))= Ilt/- o r(1 + ka +(,/2))"
Thus we can rewrite (8) as

It is easy to see that Us(’, ) is a unique solution of the integral equation

(13)
tal2

F(I+ (c/2))

for almost every : R"; therefore, the inverse Fourier transform shows that us defined
by (10) satisfies (IDE) for every t>0 and xR", so that us is a solution of (IDE).
The uniqueness of the solution of (IDE) follows from the fact that the integral equation
(13) has a unique solution for almost every sc R. This completes the proof of the
Proposition. [3

Remark 2. Let w(=u2) be the solution of the wave equation. By (8), we have
Us(t, so)=E(Y(t), :). Thus the solution us (1--<a_-<2) is expressed by

u(t,x)=Ew(Y(t),x).

This expression was given by [9] for n 1. Another expression was given by [12] for
0=-0.

Proof of Theorem 1. For each r > 0 we remark that

D"/2[ 1 O, D/2 tr F(1 + r) r-/2

F(1 + r- (a/2))

Then, we get, by (11) and (12),

D’/e[E cos (l:lg(t))3- X 2It]
k=l F(1 -d) DI

(14) ,
r(1 +(k- 1)a + (a/2))

t(k-1)+(a/2)

We have, by (8), (14), and (15),

D uo(t, ) -lel, ()E sin (1 1 Y(t))+ (:)E cos (Iscl Y(t)).
By (10), it is easy to see that D/:u is well defined as an element of C([0, oe). H(R")),
and given by

D/2u,(t,x)=(27r),/2 e’X’eD/2U(t, ) d.

Similarly

Ou 1 IaOxj
t’ x) (2r),/’---- e

-IIE sin (11Y(t)).
The interchange of D/ and in (14) is permitted, since the third term of (14)
converges absolutely. Similarly we get, by (11) and (12),

(lS) D’/2[E sin (11Y,(t))] IIE cos (11Y(t)).
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It follows from Parseval’s theorem that

(16)

+ cos sin (1 1
Since

[E cos (ll Y(t))[=/ IE sin (l[ Y(t))l=
(17) =<Ecos2 (1:[ Y(t)) + E sin2 (]:] Y(t)) 1 (t>0, : R"),
we obtain the inequality (4). It remains to show that the inequality (4) reduces to the
equality for all b, 6 6 H(R") if and only if a 2. The "if part" is the energy equality
(3). The "only if part" is proved as follows. In order that (4) reduces to the equality
for all b, q, H(R"), it is necessary that (17) reduces to the equality for all
which is clearly equivalent to

cos ([[ Y(t)) E cos (l l r(t)),
for all : R" with probability 1. Thus,

sin (1:1Y (t))
lim limY(t)
I1-,o [[ lel -->o

sin(l:]Y(t))--Esin(]lY(t)) (t-->0)

E sin (ll Y(t)) ’/

[:[ EY’(t)
F(1 + (a/2))"

To complete the proof of Theorem 1, we need to show that if Y(t) t/:/F(1 + (a/2))
(t _-> 0) P-a.s., then a 2. This follows from the following lemma. This completes the
proof of Theorem 1.

LEMMA 1. If there exists a nonrandom continuous function f on [0, c) such that
Y(t)=f(t) on [0, c) P-a.s., then a=2 and f(t)= t.

Proof By (7) and the assumption, we have

(_st/) (-sf(t))
k=O F(: -Y 7 7--’7"))=Eexp{-sY(t)}=exp{-sf(t)}=+/-ttcc/z k=O k!

Thus

f(t) k k/2

k! r(l+ (kc/2))
(k=0, 1,2,...).

Then it is easy to see that a 2, so thatf(t) t. This completes the proof of Lemma 1.

Proofof Theorem 2. Let 1 -< a <2. By (11), (12), and [6, chap. 18, 1 (21), p. 210],
we have

(18) lim r2 E cos (rY(1))

and

r(1 -c)

1
(19) lim r E sin (rY,(1)):

F(1 (a/2))"
For a 1, we interpret that 1/F(1-a)=0. In this case the equality (18) still holds,
since r2Ecos (rYl(1)) r2 exp {-r}. Since Y(t) t/ZY(1) (t>=O) in distribution,
we have, by (16) and the assumption of Theorem 2,

t’,(t): j. [[;()12+ I()lz](1 + 112)

[[lt[E cos ([lt=/2y(1))12+[[2t[E sin ([]t/2y(1))]2]
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Then the desired result follows from (18), (19), and the dominated convergence
theorem. This completes the proof of Theorem 2. rq

To prove Theorem 3, we need a lemma, which was established in [9].
LEMMA 2. Let 1 <= <-- 2. For every bounded and continuousfunction v( on [0, oo),

it holds that

e-atEv( g(t)) dt A("/2)-1 e-yawl2v(y) dy (A> 0).

Proof of eorem 3. First we show that if 1 2, then ff,(X) ffm,0(A)
for each integer m 0 and A > 0. Let

c(t, )= E cos (11Y(t)), S(t, )= E sin (11Y,(t)).
By (2) and (16), it holds that

(20) m,(a) [. (1 + I1=)[111()1+ [()l=]a(a, ) de,

where

A,(A, so) A ’/’ e--tA1/’[C(t, )+ S2(t, sc)] dt.

On the other hand, using Lcmma 2, we get, for every > 0 and R,
I0 if0 (

-1 )e-’c(, ) = e-’ c(v/(), ) +
where Yz/(t) is the stochastic process with the Mittag-Leffier distributions of order
/ (see (7) above). The uniqueness of the Laplace transform leads to

c (, () c /(), ).

Similarly we get

S(t, ) ES(Y2/(t), ).

Thus, by the Cauchy-Schwarz inequality

A(, )

=al/ e-,"’"[(EC( y/(t). ))+(ES( y2/(t). ))2] dt

(2)
al/- e-."’[C(g,/(t).)+S(g/(t).}]at

(22)

/(/)(/- exp {-y(a/)"/}[C(y, )+ S(y, )] dy

A(a, ).

so that

(23) A(a, ) A(a, ).

Here, in (22), we used Lemma 2. Then the inequality ffm,,(a)N ff,(a) follows from
(20) and (23).



1188 YASUHIRO FUJITA

Next, we show that if 3-m,(h) 3-m,(h) (a --</3), except the trivial case 4 q’ -=0,
then a =/3. Here h>0 and m_->0 are fixed arbitrarily. The case 3-m,,(h)= 3-m,(h)
occurs if and only if (21) reduces to the equality. In order that (21) reduces to the
equality, it is necessary that the following equalities hold with probability 1"

Ct( Y2/t( t), ) EC,( Y2//( t), ) >= O, Rn),
(24)

So(Y2/o(t), )=ESo(Y/o(t), ) (t>=O, Rn).

Remark that

lim
S( t,

Thus we have, by (24),

E sin (lYl (t)) /2

lim EY (t)
I1-o Isl r(1 +(/3/2))

(v/,(t))/ (v/,(t))=E
r(1 +(/3/2)) r(1 +(/3/2))"

By Lemma 1, we find that 2a/,8 2, so that a =/3. This means that if a </3, then
3-m,(A) < 3-m,Z(A), except the trivial case b q --- 0.Finally, we show that 3-m,(A) is continuous in a e [1, 2] for every rn -->_ 0 and > 0.
For every => 0 and s e R", Ca (t, s) and S (t, s) are continuous in a e 1, 2] because
the series (11) and (12) converge uniformly in a e 1, 2]. Then the desired result follows
from (20) and the dominated convergence theorem. This completes the proof of
Theorem 3.
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THE GENERALIZED RIEMANN PROBLEM FOR THE MOTION OF
ELASTIC STRINGS*

LI TA-TSIEN?, D. SERRE$, AND ZHANG HAO

Abstract. It is proven that, except in certain critical cases, the generalized Riemann problem for a
nonstrictly hyperbolic system of elastic strings admits a unique local solution in the class of piecewise C
functions and in a neighborhood of the origin this solution possesses a structure similar to the similarity
solution of the corresponding Riemann problem.

Key words, generalized Riemann problem, elastic strings, nonlinear stability
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1. Introduction. Consider the following system for the motion of an elastic string
on a plane (cf. [1]-[5])

(1.1)

Ut--) --0,

Vt tl O,

where u (u, u2)r, v (Vl, v2)T are unknown vector functions of (t, x), r lul
x/u + u, and

T(r), r >- 1,
(1.2)

0,

in which T(r) is a regular and strictly increasing function on r_-> 1 and T(1)- 0.
In this paper, for the special but important case

(1.3) T(r)-r-1,

we study the generalized Riemann problem for system (1.1) and prove that, except in
certain critical cases, the generalized Riemann problem admits a unique local solution
in a class of piecewise continuous and piecewise smooth functions, and in a neighbor-
hood of the origin this solution possesses a structure similar to the similarity solution
of the corresponding Riemann problem. Since system (1.1) is strictly hyperbolic only
for r > 1, this shows the nonlinear stability of the solution to the Riemann problem
for a system that may degenerate.

The same result can be obtained in a similar way for the motion of an elastic
string on a n-dimensional space, n >_-3.

The case when T(r) is a nonlinear function can be similarly treated: see [8].

2. Preliminaries. In the domain 0<= r_< 1, system (1.1) simply reduces to

/’/t Vx 0,
(2.1)

Vt =0.
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Hence, if the initial data

(2.2) t= 0: u Uo(X), v Vo(X)

have a bounded C1-norm and

(2.3) Sup ro(x) Sup lUo(X) < 1.

We immediately obtain the explicit solution

(2.4) u Uo(X)+ try(x), v Vo(X)

for > 0 suitably small. We point out that system (2.1) is not hyperbolic.
In the domain r > 1, system (1.1) is strictly hyperbolic. There are four distinct real

eigenvalues depending only on r:

r-1 r-1
(2.5) A =: 1 < A2 --: </ =: < /4 "-: 1,

r /"

with the corresponding left eigenvectors

l, (u, u) (rp, rp),

l= w, w (/r(r- 1) q, rq),

(.

w, -w (r(r- 1) q, -rq),

/4 (U,--U)=(rp,--rp),

and the corresponding right eigenvectors

r’=(u, u)r=(rp, rp)

r2= w, w (rq,(r(r-1) q)
(2.7)

r3= --w, w (--rq, r(r-- 1) q)

r4= (-u, ) (-rp, rp) L
where

(2.8)
u=rp, P=(Pl, P2), IPI=I,
w=(-u2, u,), q=(-Pz,Pl).

Both the left eigenvectors and the right eigenvectors depend only on u. Moreover, all
eigenvalues are linearly degenerate in the sense of P. D. Lax.

On a discontinuous curve x= x(t) (x(0)=0), we have the Rankine-Hugoniot’s
conditions

(2.9)
[u] dx+[v] dr=O,

r)
[v]dx+ u dt=O,

where [u] u+- u- is the jump of u, etc.
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There are several possibilities.
(1) 0< r <= 1.
Noting (1.2), it follows from (2.9) that x(t)=-0 and

(2.10) v+=v-,
while u may have an arbitrary jump.

(2) r+_-> 1 (except r+= r-= 1).
By means of (1.2), (1.3) we get the following.
(2a) Either

(2.11) r/= r-=: r,

(2.12) dx_ + -1dt r

(2.13) [v]=a[p],

where

v/r(r- 1),
(2.14) a=

/r(r- 1)
for the sign "+" in (2.12),
for the sign "-" in (2.12).

In this case, x x(t) is a contact discontinuity of the second or third kind, i.e.,
corresponding to the second or third (transverse) characteristic family, respectively.

(2b) Or

(2.15) p/ p-=: p,

(2.16) --=4-1,
dt

(2.17) [v]=ap,

where

-[r] for the sign "+" in (2.16),
(2.18) a=

Jr] for the sign "-" in (2.16),

when r+> 1, x x(t) is a contact discontinuity of the first or fourth kind, i.e., corres-
ponding to the first or fourth (longitudinal) characteristic family, respectively; while,
when one of r is equal to 1, x x(t) is only a lateral contact discontinuity, i.e., a
contact discontinuity on only one side.

(3) r/> 1 > r->0.
In a similar way, we get (2.15), (2.17) with

(2.19) a =/(r+- r-)(r+- 1)

and

dx [ r+- 1
(2.2O)

dt r+- r-
In this case x x(t) is a lateral shock of the first kind on the right side, which satisfies
the P. D. Lax entropy condition

dx /r/ i
(2.21) Al(r+)--1 <-<A2(r+) 7

(4) r-> 1> r+>0.
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Similarly, x x(t) is a lateral shock of the fourth kind on the left side. On x x(t)
we have (2.15), (2.17) with

(2.22)

and

a =4(r-- r+)(r--1)

(2.23)
dt r- r+"

Moreover, the following Lax entropy condition is satisfied"

./(2.24) Aa(r-)
r--1 dx

/-V-< d-5 < ,(-)= .
3. The Riemann problem. In this section we recall the result (cf. [1]-[4]) on the

Riemann problem for system (1.1) with the initial data

x-<O,
(3.1) t=O" U=(u,v)= r, X ->O,

where U (fi, v) and U (fi, v) are constant vectors with # Ur.
Case I. Suppose that

(3.2) 0 < r"/= la, < 1, 0 < --larl < 1.

Case IA. If

(3.3) v 3,

then the solution to Riemann problem (1.1), (3.1) is

t_>0, x<_--O,
(3.4) U=(u, v)-- 8r t>--O, x>=O,

and x 0 is the unique discontinuity.
Case lB. If

(3.5) v5 r,
then the solution to Riemann problem (1.1), (3.1) can be indicated in Fig. 1, where
/]- (-, -), Uo (o, o) and U/ (u/, /). Moreover,

(3.6) OA" x =: 8
F

A

A2 A 3

Uo
A A

A

^ A 4A
^ ^

0

FIG.
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is a lateral shock of the first kind on the right side, on which we have

/L =p,
$_= +x/(_- 6)(r_ 1)

(3.7)
(3.8)
and

(3.9) r_>l>rl,

(3.10) 0,2: x
/ Po

t=: 2

is a contact discontinuity of the second kind, on which we have

(3.11) ro _> 1,

(3.12) o =/3_ +X/o(ro 1) (o--);
lr%- 1

(3.13) OA3: x= t=: 3to
is a contact discontinuity of the third kind, on which we have

(3.14) r= r> 1,

(3.15) Bo B++o(o- 1)(+ -o);

(3.16) ON4: X t=: 4
+- r

is a lateral shock of the fouah kind on the left side, on which we have

p+ =p,

+ r--4(L-- ;)(L-- 1) fi
(3.17)
(3.18)
and

(3.19) r% > 1 > r).
In this case, system (1.1) is strictly hyperbolic only for the solution on the angular

domain between OA1 and O.4.
Case II. Suppose that

(3.20) Pl -la, > 1, 0 < r [/rl ( 1.

Case IIA. If

(3.21)
then the solution to Riemann problem (1.1), (3.1) can be shown in Fig. 2, where
O1" x -t is a lateral contact discontinuity on the left side and t_ (a_,/3_) (/31, r).

AI ^

A

U. A

X

FIG. 2
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In this case we have two discontinuities x--0 and x---t; moreover, only for the
solution on the left side of OA1, system (1.1) is strictly hyperbolic.

Case liB. If

 3.22 v +
then the solution to the Riemann problem can be still indicated in Fig. 1. Different
from Case IB, however,

(3.23) O" x -t

is a contact discontinuity of first kind, on which we have (3.7),

(3.24) - l -[- L rl fil
and

(3.25) r

_
> 1.

In this case, system (1.1) is strictly hyperbolic only on the left side of O,4.
Case III. Suppose that

(3.26) 0 < r la, < 1, r larl > 1.

In this case, the situation is completely similar to Case II.
Case IV. Suppose that

(3.27) la, > 1, --la l > 1.

Case IVA. If

(3.28) 31 + 1 rl)Pl 3r- (1 rr)r,
then the solution to the Riemann problem can be shown in Fig. 3, where OAt" x =-t
and 0,3,4"x are lateral contact discontinuities on the left side and on the right
side, respectively; moreover, _=(t_, 3_)=(p/, l+(1-l)fil) and t+=(a+, 3+)=
(fir, r--(1- r"r)ffr).

In this case we have three discontinuities x 0 and x +/- t. System (1.1) is strictly
hyperbolic only on the left side of 0, and on the right side of 0A4.

Case IVB. If

(3.29)

then the solution to the Riemann problem can be still indicated in Fig. 1. Different
from Case IB, however, not only OA is a contact discontinuity of the first kind, on
which we have (3.7) and (3.23)-(3.25), but also

(3.30) OA4" x--

A A

A

U.

FIG. 3
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is a contact discontinuity of fourth kind, on which we have (3.17),

(3.31) +-- r-(r+ r"r)fr

and

(3.32) r+ > 1.

In this case, system (1.1) is strictly hyperbolic on the whole upper plane t->_ 0.

4. The generalized Riemann problem---Case I. We now consider the generalized
Riemann problem for system (1.1) with the following initial data

g(x), x<_-0,
(4.1) t=O: U=(u,v)= Or(X), x>--O,

where U(x) (a(x), 3(x)) and Ur(X) (a(X), O(X)) areregular vector functions
with bounded C norm, fl(X), f(x)>O, and U (a, 3) U (a, 3), where

(4.2) U!-- UI(O), Ur--- Ur(O).

In this section we first study the following case.
Case I. Suppose that

(4.3) Sup fl(X) Sup < 1, Sup r(X) Sup Ifr(/)l < 1.
xO xO x-->O xO

Case IA. If (3.3) holds, then, by means of (2.4), the solution to the generalized
Riemann problem is

v)=.(fl(X)+t(x), l(X)), t>=O small, x-<0,
(4.4) U =(u,

(fir(X)+ t’r(X), r(X)), t>=O small, x>=0.

x 0 is the unique discontinuity, and (4.4) possesses a structure similar to (3.4) of the
corresponding Riemann problem in a neighborhood of the origin.

Case lB. If (3.5) holds, we still hope to prove that the generalized Riemann
problem (1.1), (4.1) admits a unique local solution in a class of piecewise continuous
and piecewise smooth functions, and in a neighborhood of the origin this solution has
a structure similar to that of the corresponding Riemann problem. In other words, we
want to obtain a unique local solution to the generalized Riemann problem (1.1), (4.1)
as shown in Fig. 4, where

(4.5) OAi" x xi(t) (x(0) 0) (i 1, 2, 3, 4)

are free boundaries.

A

A A

u. uU u+

UX
0

A4

FIG. 4
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By (2.4), on the domain

(4.6) DI(8) {(t, x)10<_- <_- 8, x _-< Xl(t)}

(8 > 0 small), the solution is known"

Ul(t, X): (Ul(t, X), Vl(t, X)) (rlPl(t, x), Vl(t, x))
(4.7)

--(//(x)--t(x), l(X)).

Similarly, on the domain

(4.8) Dr(8) {( t, x)10 < :< 8, x _-> x4(t)}

(8 > 0 small), the solution is

Vr(t, x): (ur(t, x), Vr(t, X)) (rrpr(t, X), vr(t, X))
(4.9)

(tL(x) + t’(x), er(X)).

Obviously, we have

(4.10)

On the domains

(4.11)

(4.12)

(4.13)

u,(o,o)=ul, u(0, 0) u.

D_(8) {(t, x)10 <= 8, xl(t) x x2( t)},

Do(8) {(t, x)10 _-< =< 8, x2(t) _-< x _-< x3(t)},

D+(8) {(t, x)10_<- t=< 8, x3(t <= x <= x4( t)}

(8 > 0 small), the solution is denoted, respectively, by U_(t, x)= (u_(t, x), v_(t, x))--
(r_p_(t,x), v_(t,x)), Uo(t,x)=(Uo(t,x), Vo(t,x))=(roPo(t,x), Vo(t, x)), and U+(t,x)--
(u+(t,x), v+(t,x))=(r+p+(t,x), v+(t,x)). All U_(t,x), Uo(t,x), and U+(t,x) are
unknown regular solutions to system (1.1); moreover,

(4.14) U_(0, 0)--/_, Uo(0, 0)= o, U/(0, 0)=

where _, /o, and /+ are furnished by the solution to the corresponding Riemann
problem.

Furthermore, OA(x x(t)) is a lateral shock of the first kind on the right side,
on which we have

(4.15)
dXl(t fr_- I

x(O) =0,
dt r_-rl

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

V_-’- V +v/(r_ r,)(r_-1)

r_> 1 > rl>0.

OA2(x x(t)) is a contact discontinuity of the second kind, on which we have

dxz(t) /rOo 1

dt
x(0)=0,

ro r_> 1,

Vo v_ + x/ro(ro- 1)(po-P-).



THE RIEMANN PROBLEM FOR MOTION OF ELASTIC STRINGS 1197

OA3(x--x3(t)) is a contact discontinuity of the third kind, on which we have

(4.22)
dx3(t) fro 1

dt
x3(0 --0,

(4.23) r/ ro> 1,

(4.24) Vo v+ + v/ro(ro 1 )(p+ Po).

OA4(x x4(/)) is a lateral shock of the fourth kind on the left side, on which we
have

(4.25)
dx4( t) ./ff__+ ! x4(0 0,
d l l4 l"

(4.26)

(4.27)

(4.28)

P+ Pr,

V+-- Vr--x/(r+-- rr)(r+-- l) pr,

r+> 1> rr>0.

Noticing (4.10) and (4.14), it follows from (4.15), (4.19), (4.22), and (4.25) that

dxi
(4.29)

dt
(0) (i- , 2, 3, 4),

where ti (i 1, 2, 3, 4) are also furnished by the solution to the corresponding Riemann
problem.

Since Ul(t, x) and Ur(t, x) are known, in order to get the solution we have to
solve the free boundary problem (1.1) and (4.14)-(4.28) on the fan-shaped domain
D() D_(6) U Do(6) U D+(6)(6 > 0 small). According to the result on the Riemann
problem, by continuity system (1.1) is strictly hyperbolic on D(6) and the inequalities
in (4.18), (4.20), (4.23), and (4.28) are always satisfied for 6 > 0 suitably small.

Let

12(4.30) L=
13
14

be the 4 x 4 matrix composed of the left eigenvectors, and denote

v- L(a_) U_ V-i, V, V;, V-d),

(4.31) V L(ao) Uo V1, V, V, V4)
+ +V+ L(/+) U+ V;, V2, V3, V-).

Noting that U(t, x) and U(t, x) are known, we can verify that boundary conditions
(4.16), (4.17) on x=x(t), (4.20), (4.21) on x= Xz(t), (4.23), (4.24) on x= x3(t), and
(4.26), (4.27) on x x4(t) can be rewritten, respectively, as

(4.32) V7 =f(t, x, V-) (i 2, 3, 4) on x x,(t),

V,=f,(V V; V- V V2)
(4.33) on x= x2(t),

V=gi(V, V;, V, V, V) (i=3,4)
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V0 + +v4 v+
1, V2, V3 (i= 1,2)

(4.34) on x Xa(t),
V- h4(V, V + + V-)4, V1, V2,

(4.35) Vf=h,(t,x, V]), (i= 1,2,3) on x--x4(t).

At the point t= x 0, V-= Q-=: l(t_)_, Vo Qo=: l(ao)Uo, and V+= Q+=:
1(+)/)+, we form the following Jacobi matrix:

(4.36) 19
O(fl, f4, gl, g4, h,,..., h4)

a(Vl," ", V4, Vl, V4, V,---, V-)

Set

(4.37) 0 /i(l0) 2 0 ’i(0) 3
ri (i= 1,2), "ri,i(0) 3 Ai(O) 2

(i =3, 4),

+ /i(fi+) 3 + /4(+) 4
T (i= 1, 2,3), 7"4

Obviously, we have

o --<1 (i=1 2,3,4)(4.38) O=< ’rT, Fi,

and

(4.39)

Let

(4.40)

where

(4.41) ’= diag (’T ,’’’, 7"4, "/’01,""" "/’04, 7"-,""", "/’}.

According to the result in [6], [7], if

(4.42) ]lO1 ]]min < 1,

then the free boundary problem under consideration admits a unique piecewise C
solution on D(8) (8 > 0 small), and this solution has the desired structure. Here, for
an n n matrix A (a0) define

(4.43) IIAII= Max L laijl
i=1,’-" ,n j=

and

(4.44) IlAllm= Inf{llyAT-11l; T diag {’)/i}, ’)/i Y0, i= 1,..., n}.

Noting that at the point x 0, V- ,.-,Vo QO, and V+= V^ +, we have

(4.45) of2 of Oh2 Oh3 Ofl Og4 Og Oh4
aV, aV4 aV4 or20 aV20 aV or30
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By dropping the row (or column) composed of null elements and the corresponding
column (or row) in O1, we obtain the following 6 x 6 matrix:

(4.46) (R)z

0 7"4 0 0 0
av av

OV
0 0 0 0 0

Og___L1 + Ogl
0 0 0 roV rl + 0

OV1
Og4 0 Og4

0 7"4 7"1 0 0 0ov ov
+0 0 0 0 0 7"4 4-OVa

Oh4 + Oh40 0 0 7"04 a V-4 7"1 aV +1
0

By definition (4.44), it is easy to see (cf. Lemma 5.4 in Chapter 2 of [6]) that (4.42)
is equivalent to

(4.47) [[O2]]min < 1.

Moreover, noting that all elements except a nondiagonal element are zero in the
second and fifth rows, by definition (4.44), it is easy to see (of. Lemma 5.5 in Chapter
2 of [6]) that (4.47) is equivalent to

(4.48) [[O3[]min < 1,

where

(4.49) 03

Set

(4.50)

and

oAof4 oOf,
7"1 7"4 7"1

OV4 0V OVl

7"1 7"4

0 0

Og4 of4 0 Og4
7"1

oV-d av, av
0 0

e-- 7,
t"o

0 0

Og___L + + Ogl Ohl
a V40 7"1 7"4 a V+ +10V4

0 0

0 Oh4 + + Oh4 Ohl
7"4

t9 1/’4"tO 7"1 7"4
19 V+ +10V4

r"o- ?t’ fr r"o- r"r

(4.51)
C+/- Po P+/-

A+/-=2+(1- C+)
(l-e)2

2e

By (3.9), (3.11), (3.14), and (3.19) we have

(4.52) 0<e<j<l, 0<e<f<l
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and

(4.53) Ic l -< 1, a: _-> 2.

Through a direct calculation we can determine the following quantities in 193"
of (1- C-)(1 + e) of 2

OV 2A_e 0 Vl A_’

(4.54)

094 2C_ Og4 A_-2

O V- A_ O VI A_

0gl A+-2
OV A+
Oh4 2 Oh4

0gl 2C+
OV+ A+

(1- C+)(1 + e)2

O V4 A+ O V+ 2A+e

of4 (1 _j)2 Oh (1 -f)
OV (1 +f)2, OV (1 +fr)2"

Hence, noticing (4.38), (4.52), and (4.53) we obtain

(4.55) I1%11 < 1,

which implies (4.48). In fact, we have

of of4 of of of4
rl r4 + 7"1 <or; ov,

+ + Ogl Oh
7"1 7"4 ov ov 

1 [ (l-f)2 ]--< +2-a_ (1- C_)
2

1[ (l-e)2 ]--< (l-C_) +2 =1
-A_ 2e

(1-e)Z+2lC+l!l-f)2]
2e i-l I-ff J

1[A+
(1- C+)

(1 --e)2 ]+2 =1
2e

and similarly

Og4 of4 Og___L4 Oh4 + + Oh4 Oh1
7"1 7"4 + 7"l o v? <1, 7"40V04 Al" 7"1 7"4 <1

O V - O V O V O V4+
Thus, for Case I we reach the desired conclusion mentioned in the Introduction.

5. The generalized Riemann problem---Cases lIB (IIIB) and IVB. We now consider
the following case.

Case II. Suppose that

(5.1) Inf l(X) Inf [til(X)[ > 1, Sup ?r(X) Sup [tL(x) < 1.
x=0 x=<0 x0 x-->0
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Case IIB. If (3.22) holds, we still hope to get a result similar to that in 4.
However, it is different from Case IB that in this case

(5.2) OAI" x x( t) -t

is a given contact discontinuity of first kind, on which, instead of (4.16)-(4.18), we have

(5.3) p_=p,,

(5.4) v_ v, + (r_- r,)p,,

(5.5) r, r_> 1.

On the left side of OA the solution U(t,x)=(u(t,x), v(t,x)) can be obtained by
solving the Cauchy problem for system (1.1) with the initial data U(x) ((x), F(x))
on x=<0. Boundary conditions (5.3), (5.4)on OA1 can be also rewritten in the form
of (4.32), and at the point x 0, V[ V- we have

of,
(5.6) OV_-O (i =2, 3, 4).

Moreover, we have

(5.7) rl =0.

Thus, the matrix 03 introduced in 4 reduces to a simpler form, in which the first
column is composed of null elements; then we still have (4.55). Case III is completely
similar.

Case IV. Suppose that

(5.8) Inf F(x) Inof I ,(x)l > a, Inf er(X Inf la,(x) > 1.
xO x0 xO

Case IVB. If (3.29) holds, then it is different from Case IB that not only OA1 is
a given contact discontinuity of the first kind, on which we have (5.2)-(5.5), but also

(5.9) OA4: x x4(t)

is a given contact discontinuity of the fourth kind, on which instead of (4.26)-(4.28)
we have

(5.10) p+=p,

(5.11) V+=Vr--(r+-rr)pr,

(5.12) rr, r/ > 1.

On the right side of OA4 the solution U,( t, x) u,( t, x), v,(t,x)) can be obtained by
solving the Cauchy problem for system (1.1) with the initial data U,(x) (ftr(x), Fr(x))
on x->_0. Boundary conditions (5.10), (5.11) on OA4 can be still rewritten in the form
of (4.35), and at the point t= x 0, V-= V- we have

-0 (i= 1 2, 3).(5.3 ov
Moreover, we have

(5.14) ’- =0.
Thus, the matrix 193 introduced in 4 now reduces to a much simpler form, in which
the first and fourth columns are all composed of null elements; then we still get (4.55).

The desired conclusion is then obtained also for Cases IIB (IIIB) and IVB.
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6. Remarks on Cases IIA (IliA) and IVA. In general, the preceding result is no
longer true for the critical Case IIA (IliA) and IVA, unless the initial data (4.1) satisfy
certain conditions of compatibility.

We take Case IIA as an example. In this case (3.21) holds, If the generalized
Riemann problem under consideration admits a unique local solution that has a
structure similar to that given in Fig. 2 in a neighborhood of the origin, then the
solution should be shown as in Fig. 5, where

(6.1) OA: x =-t

is a lateral contact discontinuity of the first kind on the left side, while x 0 is another
discontinuity.

A1
U.

0

FIG. 5

U r

On the left side of OA1 the local solution Ul(t,x)=(Ul(t,x), Vl(t,x)) is still
obtained by solving the Cauchy problem for system (1.1) with the initial data U(x).
On the right side of the t-axis the local solution is given by (4.9). Furthermore, on the
domain

(6.2) D_(t3) {(t, x)]0_-< t<= t3,-t<-x<=O},
the solution U_(t, x) (u_(t, x), v_(t, x)) should satisfy

(6.3) r_(t,x)=lu_(t,x)l<=l V(t,x)eD_()

and the following boundary conditions:

(6.4) v_ r on x 0,

(6.5)
u_ p

on x -t.
v_ v + 1 r)p

Then it follows from system (2.1) that on the domain D_(6),
v_= v_(x) =: v(-x,x)+(1-r(-x,x))pl(-X,X),

(6.6)
u_ u_(t, x) =: pl(-X, x) + v’_(x)( + x).

Thus, in order to satisfy (6.3), certain conditions of compatibility for Ul(x)= (l(x),
3(x)) should be demanded. In fact, noting that

r2_( t, x) 1 + 2pl(-x, x) v’_(x)( + x) + v’__(x)}2(t + x)2,
by means ofsystem (1.1), it is easy to see that ifthe initial data Ul(X) satisfy the condition

(6.7) /31(0) 3(0) (0) < 0,

then we have (6.3), provided that > 0 is suitably small.
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If (6.7) does not hold, it still might be possible to construct a solution with four
waves x xi(t) (i 1, 2, 3, 4), some of which are tangent to x 0 at the origin. In this
situation we guess that the solution to the Riemann problem may be still stable in the
L1 norm.
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Abstract. The existence of global attractors and estimates of their dimensions have been investigated
by various authors for a number of dissipative nonlinear partial differential equations which are either
autonomous or are subject to time-periodic forcing. In the presence of more general forcing (e.g., almost
periodic but not periodic), the usual estimates of the dimensionality of global attractors in terms of uniform
(or global) Lyapunov exponents are not valid. This article investigates the estimation of Hausdorff and
fractal dimensions of invariant sets corresponding to differential equations of the above type, subject to
time-dependent forcing of a quite general class. Working in the framework of skew-product semiflows
associated with these equations, the authors consider invariant sets defined in terms of global attractors of
semigroups determined by these semifiows. In autonomous situations these invariant sets coincide with the
usual global attractors. Upper bounds for the Hausdorff and fractal dimensions of these sets are given in
terms of uniform Lyapunov exponents for a large class of dissipative nonlinear partial differential equations
with time-dependent forcing terms that include the case of almost periodic functions.

Key words, global attractors, skew-product semiflows, Hausdorff and fractal dimension estimates, time
dependent forcing, dissipative nonlinear partial differential equation
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1. Introduction. The existence of global attractors and estimates of their Hausdorff
and fractal dimensions have been investigated for numerous dissipative nonlinear
partial differential equations (DNLPDE) that are either autonomous [4], [32], [9], 15]
or are subject to time-periodic forcing [15]. With suitable conditions on the non-
linearities of such equations on bounded domains, it has been proved that global
attractors exist and that they have finite Hausdorff and fractal dimensions. Bounds on
these dimensions have been obtained in terms of uniform (or global) Lyapunov
exponents (to be distinguished from the corresponding pointwise exponents [1]).

In the presence of more general forcing (e.g., almost periodic but not periodic)
the usual dimension estimates of these attractors are not valid because the proofs make
essential use of the fact that the solutions of the Cauchy problem for the relevant
nonlinear differential equations have a semigroup structure. It is well known that
solutions of equations do not have this structure when forcing terms are present that
are almost periodic but not periodic, or even for periodic forcing for continuous times.
The inadequacy of the customary description of global attractors in nonautonomous
situations is evident from recent discussions in the literature. Thus, in the case of
periodic forcing, Hale [16] and Haraux [19] have advocated the use of a different
definition of global attractor than the usual one in terms of discrete semigroups.

In this article we consider the problem of estimating Hausdorff and fractal
dimensions of invariant sets for DNLPDE on bounded domains of a Hilbert space
subject to time-dependent nonperiodic forcing, including the case of almost periodic
forcing. Our main result is that, for a large class of such equations, the types of estimates
of Hausdorff and fractal dimensions of invariant sets usually made in autonomous
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0038.
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cases can also be carried through in this more general situation. Since the solution-maps
of the Cauchy problem do not form semigroups in nonautonomous cases, we use the
concept of skew-product semiflow to define appropriate invariant sets. These reduce
to the usual global attractors in autonomous cases. Working in the skew-product
semiflow framework associated with the given system of equations, we consider
invariant sets defined in terms of global attractors of semigroups determined by these
semiflows.

One of the principal conditions that we require in order to prove the results
indicated above is that, for sufficiently long times, the solution-maps for the DNLPDE
are invertible on the invariant set. This is true, in particular, if these maps are invertible
on the whole space, and our discussion in 4 involves a class of nonlinear wave
equations and systems of such equations for which this condition is satisfied. There
are cases, however, in which the semiflows are not invertible on the whole space but
are, nevertheless, defined and invertible on the invariant set. In 5 we discuss a class
of reaction-diffusion equations that have this property. In the cases treated in these
two sections, all the hypotheses required for the proof of our dimension estimates are
satisfied.

We begin in 2 by defining skew-product semiflows in the context of abstract
DNLPDE and outlining the program that we follow in 3 in order to obtain our
results on Hausdorff and fractal dimension estimates of invariant sets for DNLPDE,
and systems of such equations, with time-dependent forcing. Section 4 is devoted to
the discussion of a class of nonlinear wave equations with nonlinear dissipation, and
in 5 we give a similar discussion for some reaction-diffusion equations with polynomial
growth nonlinearities.

2. Skew-product semiflows. Preliminary remarks. The following discussion ofskew-
product semiflows is analogous to, but different from, the recent discussion by Raugel
and Sell [28] in the context of the Navier-Stokes equations.

Consider a solution of a DNLPDE; i.e., a continuous map from R to a separable
Hilbert space K such that (t/s) represents a solution of the equation at time
+ s(t E R+, s ), corresponding to specified initial data ,(s)= b K at time s. We

assume that , satisfies the following nonlinear stability condition.
Assumption 2.1. For each R>0 there exists a positive constant K(R) such that

(2.1) II (t+s)ll, <-K(R) for all t=>O whenever

We will consider forcing functions f Cb(, K), where Cb(, K) denotes the
Banach space of all bounded continuous functions from to K. For f Cb(R, K), we
define the translate off by

(2.2) f(t)=--(r(z)f)(t)=f(t+z), ’.

Then f Cb(, K) and f defines a (two-sided) flow on Cb(, K). The positive hull
H+(f) off Cb(, K) is defined as

H+(f) C1osurecb(R.K) {f, " ----> 0},
and the hull H(f) as

H(f)=Closurecb(R.i() {f, rR}.

Note that H/(f), H(f)c Cb(R,K) if fCb(,K). The to-limit set to(f) of f
Cb(, K) is defined by to(f)= >-_o H/(f). Note that to(f) is an invariant set in
Cb(, K) relative to the translation group {tr(z), rER}.
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To guarantee that to(f) is nonempty, we restrict consideration to forcing functions
for which H(f) is compact. Then to(f) is compact as well as nonempty. We list some
cases for which this condition is satisfied (other examples can be found in [28]).

(1) Take K L2(f), f a bounded subset of Nn, with fe L2(fl) independent of
e N. Then H(f)= {f}.

(2) Let feCb(N,K) be T-periodic, f( + T) f( t) for all teN. Then H(f)=
f, [0, T)}.

(3) Let f be asymptotically almost periodic from N to K; i.e., f= g+ h with g
almost periodic from N to K [ 18], and h (t)II - 0 as - +.DEFINITION 2.1. We will say that f is admissible if H(f) is compact in C(N, K).

Given a solution p of a DNLPDE defined as in the second paragraph of this
section, we define a two-parameter family of maps W(t, s) (t e N+, s e N) by

(2.3) W(t, s)ch d/(t + s), d/(s) d e K.

Then we have W(0, s)th b(s e N, b e K), and

(2.4) W(t + 0, s)4 W(0, s + t) W(t, s)4 (s, 4 0 +),
where denotes composition. This is an example of a process in the sense of Dafermos
[10].

Given a process W, we define its translate W in an analogous manner to the case
for functions in (2.2).

DEFINITION 2.2. Given a process W and z e N, the z-translate of W is the process
W defined by

(2.5) W(t, s)qb =- (tr(’) W)(t, s)d W(t, ’+ s)qb,

DEFINITION 2.3. A process W on a Hilbert space K is called almost periodic if
tAR W(t, s)c is precompact in Cb(N,K) (as a function of the parameter seN) for
each e N+ and each b e K.

Thus, if W is almost periodic, for any sequence {trn} c N there exists a subsequence
{tr,m}C {or,} and a map V:N+xxK-K such that

(2.6) [IW.m(t,s)b-v(t,s)dllK-O as m-+o

uniformly in s e for each e N+ and each b e K.
DEFINITION 2.4. Let W(t, s)b be an almost periodic process from / x N x K to

K. The closure in Cb(N, K) of the set of translates of W relative to the above sense
of convergence is called the hull of W, denoted by H(W).

We will prove later that W is almost periodic if H(f) is compact, and W depends
on f in a Lipschitz continuous manner. See Proposition 3.1.

To define a skew-product structure, we let W denote an almost periodic process
corresponding to a globally defined unique solution of a given differential equation
as in (2.3), and we define the mappings

(2.7) 7rs(t)(dp, V)=(V(t,s)6, o’(t)V), Veil(W), cheK, seN, ten+.
It is easily shown formally [16, p. 44] that {or(t), te} is a group on H(W) and that
{ rs (t), _-> 0}, with s fixed in N, is a semigroup on K x H(W). We will prove later that
they are CO if certain conditions are satisfied. As we shall see, {Try(t), >-0} (s fixed
in ) defines a semiflow on K x H(W) if global solutions of the DNLPDE exist for
each h e H(f). In addition, we will state sufficient conditions such that there exists a
one-to-one correspondence between processes in H(W) corresponding to a given
admissible forcing function f and the distinguished almost periodic process W with
a forcing function h e H(f). See equations (2.10)-(2.12) and the associated discussion.
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For ordinary differential equations, it has been more conventional to define a
skew-product structure in terms of translated forcing functions, rather than in terms
of translated processes. Thus, consider the system of equations u, =f(t, u), where
f(.,,):R x R" - E". Then, under appropriate continuity conditions, we define a skew-
product structure on R" x n(f by "ks(t)(x,f)= (u( t, s)x, cr( t)f ), where u(s, s)x x. For more details of this approach, we refer the reader to [16], [29], [30].

Let s be fixed in R. A compact set A in K x H(W) is said to be an attractor if it
is invariant under the action of 7rs (t), rs (t)A A for , and if there exists an open
neighborhood U of A such that 7rs(t) B converges to A as +, where B denotes
any bounded subset of U. If these properties remain true when U is replaced by the
whole space K x H(W), then A is called the maximal or global attractor. At the end
of the present section we will state conditions under which the global attractor is
independent of s.

Given an almost periodic process W, let sA(W) denote a global attractor (if one
exists) of the semigroup {Trs(t), t->0} (s fixed in E) and, following the discussion in
[16], consider the set

(2.8) Es {X K (X, V) sA=(W), V H( W)}.

Some insight concerning the relevance of the sets Es to the study of dynamical systems
can be gleaned by considering autonomous and periodic processes. For an autonomous
process, W(t, s) is independent of s, and H(W) consists of the single process W. We
find An(W)= E {W} and 7r(t)= S(t)/, where S(t), I, and E denote the usual
solution-map semigroup for an autonomous process, the identity map on processes,
and the global attractor for S(t), respectively. For T-periodic processes we have

(2.9)

It is known that the set

H(W)={W,, tre [0, T)}.

/
A(W)= LJ W(r, 0) fq ClosureK | U W(nT, 0)Bo|,

[0, T) m>’O k

with Bo a bounded absorbing set, corresponds to a set of the type (2.8) for T-periodic
processes [16]. Thus, for autonomous and T-periodic processes, the usual global
attractors correspond to sets of the form (2.8).

In the present work we will establish the following results for processes correspond-
ing to solutions of admissible time-dependently forced DNLPDE: (a) proof of existence
of sets of the type (2.8), (b) proof that these sets have finite Hausdorff and fractal
dimensions, and (c) derivation of upper bounds for these dimensions in terms of
uniform Lyapunov exponents. These results will be based on the idea that, for DNLPDE
subject to admissible time-dependent nonperiodic forcing, the Hausdorff and fractal
dimensions of sets of the form (2.8) can be estimated by consideration of the first
variational equations corresponding to equations in the hull of the given equation (or
system of equations). Here, an equation with forcing function h is said to belong to
the hull of a given equation with forcing function f if h H(f).

The fundamental result on the invariance of the sets (2.8) is the following.
LEMMA 2.1 (positive invariance of Es). Let W be an almost periodic process on K,

and let sA=(W) be a global attractor on K x H(W) relative to the semigroup { 7rs (t), >- 0}.
Then, for given s , ch Es implies that there exists a process Z H(W) such that
Z( t, s)qb 6 Es for all >- O.

For related results, see Hale [ 16, p. 46] and Dafermos 10], 11]. The first of these
references refers only to periodic processes. In that case the situation is simpler than
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for almost periodic nonperiodic processes because the hull of a periodic process has
the special structure (2.9).

We can readily give examples of processes V belonging to the hull of a given
almost periodic process W that are not translates of W. Examples of this phenomenon
are well known in the case of uniform (Bohr) almost periodic nonperiodic functions
13], and examples of almost periodic nonperiodic processes with the desired property
can be constructed in terms of such functions.

As noted in [16] and [19], under reasonable conditions we should be able to prove
that, when W is almost periodic, H(W) consists precisely of the set of processes in
the hull of the equation (or system of equations) under consideration. Take V H(W)
with W almost periodic. Then, by Definition 2.3, there exists a sequence (n c such
that W.(t,s)qb -n-,/ V(t, s)dp for each t/ and each bK uniformly in sR. For
the translated process we should have

(2.10) W.(t,s;f)c= W(t,s+zn;f)dp

(2.11) W( t, s; f.) b.

Modulo certain continuity arguments, it would then follow that V is given by

(2.12) V(t, s) W(t, s; h),

where h lim_+f. H(f) is the uniform limit of the f.. These continuity consider-
ations will be discussed in 3 for processes corresponding to solutions of a large class
of DNLPDE. In view of Lemma 2.1 and the above considerations, it is useful to
consider the maps (with s given in )

(2.13) Ss(t)c W(t, s; h)dp, h H(f).

In order to prove existence of sets of the type (2.8) and to obtain estimates for
their Hausdorff and fractal dimensions, we will prove the following statements, which
are analogous to the corresponding program in autonomous situations but contain
some additional requirements.

(1) For a distinguished almost periodic process W related to a globally defined
solution of a DNLPDE (or a system of such equations) as in (2.3), {tr(t), > 0} and
{Trs(t), t_>0, s fixed in } are. C-.semigroups in H(W) and K x H(W), respectively.

(2) For each => 0 and S R; S(t) exists, is unique, and is ditterentiable on K for
all initial data in K and for all h H(f).

(3) Proof of the relations between H(W) and H(f) indicated in (2.10)-(2.12).
(4) Nonlinear stability. (See Assumption 2.1.)
(5) Existence of bounded absorbing sets.
(6) Asymptotic compactness: for all bounded sets B c K, there exists a compact

set G c K such that

(2.14) supd(W(t,s)x,G)O as t+o
xB

for each s , where, for two sets X, Y K,

(2.15) d(X, Y)= sup inf II -xll .
X XY

(7) For each h H(f) and for > 0 sufficiently large, S(t) has an inverse on the
range of S(t)E that is Lipschitz continuous.
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Points (1) and (3) are, of course, specific to the framework of skew-product
semiflows, while the conditions in (2) and (4)-(6) require generalizations of correspond-
ing results already known for autonomous and periodic processes. In particular, proofs
are required for all h H(f). We will see in 3 that the validity of conditions (4)-(6)
implies the existence of global attractors sA.(W) for the semigroups {zr(t), t->0}
(s fixed in ).

Condition (7) is a crucial property which allows us to obtain estimates for the
Hausdorff and fractal dimensions of the sets (2.8) in an analogous manner to the
method used to obtain corresponding estimates in autonomous [32], [4], [7]-[9], [15]
and periodic 15] processes. It can be seen to be a natural requirement by the following
argument. Consider a semigroup {S(t), >_- 0} corresponding to an autonomous process.
Then, as is well known, a global attractor for this process is invariant under the action
of this semigroup,

(2.16) S(t)A=A, t>-O.

Lemma 2.1 can be thought of as a generalization to almost periodic processes of the
positive invariance condition for global attractors in the autonomous case, S(t)A c
A(t _-> 0), which is "one-half" of the invariance condition (2.16). However, it is known
for autonomous systems that the important condition required for estimates of Haus-
dorf and fractal dimensions of global attractors is that of negative invariance, S(t)A D
A(t >-0) [24], [32]. Returning now to the consideration of almost periodic processes,
we will see later that condition (7) allows us to transform the positive invariance of
Es under Ss(t), as described by Lemma 2.1 and (2.13), into the negative invariance of
E under (S (t) )--1o

Actually, while condition (7) only requires that S(t) be invertible and that its
inverse be Lipschitz continuous on the range of S(t), there are a number of DNLPDE’s
with admissible time-dependent forcing for which these maps are invertible on the
whole Hilbert space. We will discuss some equations of this type .in 4. We expect
that there are many situations for which the maps Ss(t) are invertible on their range
even though they may not be invertible on all of K. In 5 we will discuss a class of
parabolic equations with admissible time-dependent forcing that have this property.

As a result of condition (7), it can be shown that the global attractors A(W)
are actually independent of s. This follows from the previously noted result that
conditions (4)-(6) imply the existence of these attractors and a straightforward
modification of [19, Prop. 1.10].

3. General results. In this section our results will be formulated in an abstract
manner and then, in the following two sections, examples of DNLPDE’s that satisfy
our hypotheses will be discussed.

We first establish the continuity of the skew-product semiflow { 7r (t), >- 0}(s )
defined in (2.7). For analogous proofs in the case of ordinary differential equations,
see [29], [30], [6]. Consider the formulation of 2 in which K is a separable real
Hilbert space and W(t, s) a distinguished process associated as in (2.3) with a solution

of a given DNLPDE.
The following proposition establishes (2.10), (2.11), and related results.
PROPOSITION 3.1. Define a distinguished process W(t, s) in terms of a globally

defined uniformly bounded unique solution d/ of a system of DNLPDE’s that satisfies
(2.1) and, in addition, assume that depends on the forcing function f in a Lipschitz-
continuous manner: i.e., there exists a positive constant c( t), generally depending upon
t, such that for two solutions d/, d/ (with the same initial data) corresponding to two
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forcing terms fl, f2,

(3.1) Ilq,(t+s)-q,(t+s)l[K <--c(t) sup IIf(t’)-f(t’)][.
t’[s,t+s]

Finally, assume that the forcing functions f, f2 are admissible. Then
a For all

W(t, s;f)d/(s)= W(t, ’+ s;f)(’+ s)

W(t, s; f)d/(s),

and, more generally,
(b) Given V H(W), there exists h H(f such that

(3.2) W(t, s; h)d/(s) V(t, s; f)b(s).

Conversely, given h H f there exists V H(W) such that (3.2) holds.
Proof. By using the existence and uniqueness of the solutions of the system of

differential equations it is easy to establish (a). To prove (b), we first note that it
follows from (3.1) and (a) that W is almost periodic if f is admissible. To see this,
take a sequence { W.(t, s)b} from U. W(t, s)dp. Since H(f) is compact in Cb(, K),
there exists a subsequence {’nm} C {Zn} such that {fn } is convergent, and, therefore,
Cauchy; i.e., given e > 0, there exists N 6 [ such tha l, m _-> N implies that

E

c(t)
for all t’[s,t+s]. From (a) and (3.1) we then obtain ]IW. (t,s;y)tb-
w o, t, s; f) < for l, m >- N and e > 0 so that { W. t, s; f b } is a Caucy sequence
and, therefore, convergent. Thus, from an arbitrary equence in W(t, s; f)b we
have obtained a convergent subsequence from which we infer that Uu W(t, s)ch is
precompact in Cb(, K) for each +, s, b K, and admissible f.

Take V
such that

V(t, s; f)d/(s)(3.3) W (t, s f),(s)

for each 6 + and each O(s) b K, uniformly in s . From (a), this can be expressed
as

V(t, s; f)d/(s).W(t, s fn)b(s) ,--.+

To complete the proof, we obtain a relation between the convergence of translates
of the forcing functions and translates of processes. Let

h H(f),(3.4) fn _+

so that, by (3.1),

(3.5) II,(t+s,fo)-,2(t+s,h)ll<-_c(t) sup
t’e[s, t+s]

(3.6)

IlL(t’)-h(t’)ll,

lim W(t, s;f.)O(s)= W(t, s; h)d/(s)

so that, upon comparison with (3.3),

W(t, s; h)p(s)- V(t, s;f)g/(s).
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Conversely, take h H(f). Then there exists a sequence {T,}cN such that the
limit in (3.4) exists in the uniform topology. Then, from (3.6) and (a),

lim W,.(t, s;f)@(s)= W(t, s; h)O(s),
-t-

and, using (3.5), we easily show that this result holds for each tN+ and each
O(s) 4 e K uniformly in seN. We see that W(t,s; h)e H(W(t,s;f)), and the proof
is complete.

Poeosivio 3.2. Assume the hypotheses of Proposition 3.1 and further, assume
that the translation group {(r), zN} defined in (2.5) is continuous on H(W). en,
for each fixed s , (t) K x H(W) K x H(W) is jointly continuous.

Proo From (2.7) and (2.3) we have

(t)(O, W)=(W(t,s;f), (t)W)=(O(t+s; 6), Wt)

for ten+,seN, fe Cb(N, K), and O(s)= . Let {(,, W,.)} and {t,} denote sequences
in K xH(W) and N+, respectively, such that (,, W,.)- (, Y) and t,- as n+.
We must prove that, for fixed s e N,

m(t)(, W.) ,(t)(, Y) as n+, i.e., (W.(t,,s;f),, W.+t.)
(Y(t, s;f), )

or, using pa (a) of Proposition 3.1,

(w(t.,s;f.),, w.+,.)(Y(t,s;f), Y,).

We have W.+. by the continuity of the translation group (2.5) on H(W), and

W(t,, s;fi.), W(t, s; h), h H(f)

because of the Lipschitz condition (3.1), , , and that the solutions ff of the system
of DNLPDE’s are uniformly bounded for all e+ and are uniquely determined by
the initial data. The proof is concluded by noting that W(t, s; h) Y(t, s;f) by
Proposition 3.1.

LEMMA 3.1. Assume the hypotheses of Proposition 3.1. and, in addition, assume
that the translation group {(), e} is continuous and that {S(t), t0} possesses a
bounded absorbing set Bo K; i.e.,for each h H(f), W(t, s; h)x Bo whenever e+

is suciently large, and X belongs to any bounded subset of K. Furthermore, assume that
{S(t), 0} is asymptotically compact: there exists a compact set G K that attracts
all bounded subsets of K under S t);

(3.7) lim sup dr(S(t)(s), G)=0,
t+ (s)=eK

where d is defined in (2.15). en, the skew-product semow (2.7) has the following
properties. For fixed s ,

(a) ere exists a bounded absorbing set in K x H(W) for the semigroup {(t),
t0};

(b) t)-orbits of bounded sets are bounded;
(c) {(t), 0} is asymptotically compact: there exists a compact set in K x H(W)

which attracts all bounded subsets ofK x H(W).
Proo Since f is admissible, we see that W is almost periodic as in the proof of

Proposition 3.1.
(a) Let B x B be a bounded subset of K x H(W). Then B has the form

(3.8) B={W,,}
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for a sequence A= {r,}c R. By (2.7),

7rs(t)(x, V) V(t, s; f)X, tr(t) V)
for (X, V) B1 B2. So..from V B2 we infer from (3.8) that V tAr W, where F
denotes some subsequence of A. Thus,

(3.9) rs(t)(X, V) ( U W(t, s; f)x, or(t) U W,] U W(t, s; fi)X, W+,),
\

where we have used Proposition 3.1 and the continuity of or(t) to obtain the last line.
By assumption, {S(t), => 0} possesses a bounded absorbing set Bo c K. Take X Bo.
Then a bounded absorbing set for {re(t), t>-0} is BoX {W, all

(b) Again take (X, V) B1 x B with B1 and B as in (a). Then (3.9) holds and,
by (2.1), there exists K(R) > 0 such that

(3.10) W(t, s; fi)xlli <= K (R)
for all /. By Proposition 3.1,

W,+,(p, s; f)x W(p, s;

W(p, s + + z; f)x
is bounded in Cb(, K) with respect to s+ +- for each p+ and each X K.
Combination of this result with (3.10) proves assertion (b).

(c) We again use (3.9) with B1 and B as in (a) and (b). By hypothesis, there
exists a compact set Yc K which attracts all bounded subsets of K under S(t), and,
therefore, under W(t, s;fi) in (3.9). So, Yx H(W) attracts all bounded sets in
K x H(W) under Try(t). Finally, H(W) is compact (in Cb(,K)) so that YxH(W)
is compact in the product topology by Tychonott’s theorem, and the proof is complete.

We now consider the maps (2.13). Assuming that these are Fr6chet differentiable
on sets of type (2.8) and that the corresponding derivatives L(t, X) are bounded on
L(K), we set up an apparatus for estimating Hausdorff and fractal dimensions of
invariant sets in an analogous way to the treatment of autonomous equations [12],
[7]-[9], [32], [4].

Define

(3.11)

where

sa3(t)=supwi(L(t,X)) jM, teR+,
X Es

wj(L(t, X))= al(L). aj(L) with

aj(Ls(t,X))= sup inf IIt (t,x), ll, (j).
FK rlF

dim F=j

For noninteger cases we set toa(L)=(to,(L))l-(to,+l(L)) for d= n+s, n =integer>=
1,0<s<l.

Consider the composition property (2.4) for a process tA corresponding to a
function h in the hull of a forcing function f for a given DNLPDE:

U (t +p, s, X(S); h) (t, p+ s, t_J (p, s, X(S); h); h)

or

U (t + p, 0, X(0); h) U(t, 0, t.J (p, 0, X(0); hs); hp+)
using Proposition 3.2. Alternatively, in terms of the maps (2.13),

(3.12) Ss(t+p)x(s)= Sp+(t)o S(p)x(s).
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The relations corresponding to (3.12) for the derivatives Ls(t, X) (assuming that they
exist) are

Ls(t +p, X(S))=- S’(t +p)(x(s))
(3.13)

Lp..(t, S(p)(x(s)))o L(p, X(s)).

Corresponding to a DNLPDE, we have a first variationalequation (see [32], [4],
[9] for the corresponding autonomous situation). Let (t) denote a solution of the
latter equation subject to the initial value p K. Then, as is well known, we have the
following relation between L(t, X) and (t)"

(3.14) L(t, X(s))p (t), (s) p K.

We assume that the corresponding equation for (t) is independent of the forcing
term of the original DNLPDE. This is true for a large number of DNLPDE’s, and we
discuss some examples in the following two sections. In such cases, L depends on the
subscripts in (3.13) only through its dependence on Ss(t), and we can write

L( +p, X(S)) L( t, S(p)(x(s))) L(p, X(S))

in place of (3.13).
We now prove the important subexponential property for the quantities (3.11) for

DNLPDE with time-dependent admissible forcing functions.
THEOREM 3.1. Assume the hypotheses of Proposition 3.2 and, in addition, assume

that the derivatives L defined in (3.13) exist. Then the quantities (3.11) satisfy the
subexponential condition

aj( + p <- j( )sa(p t, p i+, j l%l,

where s is a fixed real number
Proof From Lemma 2.1, q E implies that, for given s , there exists a process

V H(W) such that V(t, s)b E for all >- 0. As in the proof of Proposition 3.1, f
admissible implies that W is almost periodic, from which we infer that V is almost
periodic, so that there exists a sequence {rn}c such that W,(t, s)ch --/o V(t, s)cb
for each R+ and each b K, uniformly in s . Moreover, from Proposition 3.2,
we see that V(t, s)b W(t, s; h)th with h H(f).

Consider the maps (2.13). These satisfy (3.12), and, therefore, also (3.14), if the
corresponding derivatives L exist. Thus we obtain

oa(L(t +p, ch)) <-ws(Lp+s(t, S(p)(ch)))oo(Ls(p,

by [32, Cor. 1.1, p. 267]. Following our earlier argument, which centered about (3.14),
we see that we can remove the subscripts on L so that

w(L(t +p, ch)) <=w(L(t, S(p)(ch)))wj(L(p, oh)).

The proof can now be completed as in the autonomous case.
We have proved that the quantities {,oSj,j e N} are subexponential even though

the maps (2.13) are not semigroups. This result allows one to prove that the limits

(3.15) lim (s)j(t)) 1/’

exist for each s R, and uniform Lyapunov exponents can be defined in an analogous
way to autonomous situations [7]-[9], [32]. We will discuss this in more detail at the
end of the present section. Before doing this, we obtain estimates of Hausdortt and
fractal dimensions of sets of the form (2.8).
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Generalizations will be given of [32, Thms. 3.1-3.3, pp. 282-289] to the case of
admissible time-dependent forcing.

THEOREM 3.2. Assume the hypotheses of Proposition 3.1 as well as the condition of
asymptotic compactness (3.7), and consider the maps (2.13 corresponding to an admissible
forcing function f. In addition, assume that the derivatives L exist. Assume also that

sup sup L(t, u)]] L(C) <---- m <+
t[O, 1] uE

for some m > 0 as well as the condition

(3.16) sup tOd(L(t, u))<l
t[o, 1]

for some d > 0 and all u Es for some fixed s R.
Finally, we assume that, for all h H(f), the maps Ss(t) are Lipschitz continuous

on E with inverses that exist as Lipschitz continuous surjective maps from S(t)E onto

E when > 0 is sufficiently large. Then the Hausdorff dimension of Es, d, E), is finite
and d,(E) <- d.

Proof. By hypothesis, the derivatives L of the maps (2.13) exist. From Proposition
3.2, Lemma 3.1, and 16, Thm. 3.7.2 there exists a global attractorA(W) for { 7r (t), =>
0} which, by the result stated at the end of 2, is independent of s. Moreover, E is
compact. Then, by the method of proof used in autonomous cases [12],
[7]-[9], [32], [4], it follows that the set Ss(t)Es has zero Hausdorff d-measure when
> 0 is sufficiently large:

(3.17) lzn(S(t)E, d)=O.

By hypothesis, for all h H(f), S(t) is Lipschitz-continuous on E with a Lipschitz-
continuous inverse when > 0 is sufficiently large. Then, since Hausdortt measure has
the property IZH(FB, d)=<(Lip F)dIzH(B, d) for Lipschitz maps F on metric spaces
[21], it is clear that tZH(Es, d)=<Lip ((S(t))-1)dIzH(S(t)E, d) so that, using (3.17),
tXH(E, d)=0 and dtq(Es)<=d.

As with corresponding autonomous situations, estimates of the fractal dimension
of sets of the form (2.8) proceed in a similar manner to the estimates of their Hausdortt
dimension in the preceding theorem, except that more stringent hypotheses are required.

THEOREM 3.3. Consider the same hypotheses as in Theorem 3.2 with the exception
that condition (3.16) is replaced by the following condition.

For some d n + s, n t with n > 1, s (0, 1], j(sn+l)d-j/n+l < l forj 1,’’’, n,
where a3j sup,E0,1 sj(t). Then the fractal dimension of Es, dv(E), is finite and
dv(E,)<=d.

Proof. The proof is similar to that of Theorem 3.2. From the method of proof
used in autonomous cases (see, e.g., [32, pp. 284-287]) we obtain a covering of the set
Y(t)- S,(t)Es by a minimum number n(e) of K-balls of radius e > 0 when > 0 is
sufficiently large. The assertion of the theorem follows from an estimate of the capacity
of the set Y(t) when is sufficiently large, obtained by the methods indicated above,
the compactness of the set E, and the result that the capacity of a compact set is
invariant under a mapping of the set by a Lipschitz-continuous homeomorphism with
a Lipschitz-continuous inverse [27].

With the results of the preceding two theorems in hand, we can define uniform
Lyapunov numbers and uniform Lyapunov exponents in an analogous manner to
autonomous cases [7]-[9], [32]. Let II. denote the respective limits (3.15). They exist
because of the subexponential property of the quantities {,o3}. We then define the
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quantities Aj,s(j 1,. , m) recursively by

(3.18) Al,s IIl,s,

The quantities A.,s and

Al,s A2,s II2,s, ", Al,s- "Am, II

(3.19) ix,,,s log A,,s, m >_- 1

will be called uniform (or global) Lyapunov numbers and exponents, respectively, for
the sets

Using these exponents, we can give alternative versions of Theorems 3.2 and 3.3.
THEOREM 3.4. Assume the hypotheses of Theorem 3.2, and consider the maps (2.13)

corresponding to admissible forcing functions. If, for some n > 1,

then ix,,+ 1,s

(i)

(ii) dF(Es)<=(n+ 1)lm_<a<_x (1+
where x/ max (x, 0).

The proof is analogous to that of [32, Thm. 3.3, p. 287].
As in autonomous situations, it is convenient to define auxiliary quantities (see

(3.21) below) from which Lyapunov exponents and also the Hausdorff and fractal
dimensions of invariant sets can be estimated. Thus, if we write the first variational
equation corresponding to the mapping (3.14) in the form

d
(3.20) d-- (t) F’()(t),

then we have, in the m-fold exterior product of the Hilbert space K,

where 0, (P) 0, (P, 4; 01, ",P,) is the orthogonal projection onto the subspace
spanned by 1(P)," ",m (P). We then define

(3.21 sq lim sup sqm

with

sq,,,( t) sup sup Tr F’(Ss(p)(x))o Q,,(p) dp
X Es picK

Ilpi ILK_-<_
(i= 1,...,m)

Then, for a given DNLPDE with time-dependent forcing by admissible functions, we
can obtain bounds for the uniform Lyapunov exponents in terms of the sq. We will
discuss this for a class of dissipative nonlinear wave equations in the following section,
and for a class of reaction-diffusion equations in 5.

4. Nonlinear wave equations with nonlinear dissipation. In this section we consider
equations of the form

(4.1) uttl-(ut)-mu41--g(u)---f on f x [s, )
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for particular classes of polynomial nonlinearities g, admissible time-dependent forcing
terms f, and nonlinear dissipation terms/3 for fixed s R. A number of authors have
considered equations of the type (4.1) with various assumptions on f, g, and/3. Our
results generalize investigations of autonomous [2]-[4], [15], [22], [16], [32] and
time-periodic 15] forcing with linear dissipation (/3 (u,) aut, a ).

We shall assume that is a connected bounded open subset of "(n >-3) with a
smooth (at least C2) boundary 0f. We consider processes W related to solutions u
of (4.1) as in (2.3) and assume Dirichlet boundary conditions

(4.2) u(x, t)=0 on01)[s, oo)
with initial conditions

(4.3) u(x, s) us(x), u,(x, s) (x), x 12.

Different linear operators in (4.1) and either Neumann or periodic boundary conditions
can also be considered, but wewill not discuss them.

For equations of the type (4.1)-(4.3), Haraux [18], [20] proved existence and
uniqueness of global solutions and existence of bounded absorbing sets in H(12)x
L2(I) for certain classes of nonlinearities g and dissipation terms /3. However, it is
clear from our discussion in 3 that more general results are required in order to
establish the dimensionality estimates in Theorems 3.2-3.4. In particular, it is necessary
that the system be asymptotically compact in the sense of (3.7) or some facsimile
thereof. We will establish results of this type in the present section for a class of
nonlinear dissipations/3.

In [19], Haraux announced asymptotic compactness results for equations of the
type (4.1)-(4.3) with almost periodic forcing and weak nonlinear dissipations/3 whose
derivatives are bounded from both above and below. We note that Haraux’s result
involves a concept of "uniform asymptotic compactness" that is different from our
asymptotic compactness conditions (2.14) and (3.7). We will verify that (3.7) and the
other hypotheses of Theorems 3.2-3.4 are satisfied for a large class of equations of the
type (4.1)-(4.3). We also require the same weakness condition on/3’ that Haraux uses.
It is recognized that this condition is excessively restrictive (see a similar remark in
[19]), but this defect is common to all studies of attractors for (4.1) at the present
time. We also extend our results to systems of equations analogous to (4.1)-(4.3).

We make the following assumptions concerning the nonlinearities g and/3:

(4.4) g is a C mapping from V1 =- H() into H L2(), Fr6chet ditterentiable
with differential g’, which satisfies

(4.5) Ig’(u)l =< C3(1 + [u[ r) a.e. on I

with a constant C3 > 0 and r 2 if n 3, r 0 if n _-> 4. Let G(r) denote the following
primitive of g"

(4.6) g(s) ds forall r.
d-

Then we also require that

for all s, G(s)>-(21+to)s2-C4 for to>0, C4_->0, and for all
(4.7)

sR;

sg(s)-G(s)>-(---_z+6]s2-C5 for 6>0, C5>_-0, where A1 denotes
(4.8) \ /

the smallest eigenvalue of-A.
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(4.9) /3 is an odd C mapping from R to R which satisfies the following conditions"
there exists a > 0 and C1 >-- 0

such that

(4.10) (V)VOllV]2--C1 for all v,

(4.11) It3(v)l<-c(l+lvl,) for all v

with O<=p<-(n+2)/(n-2), n>=3. Then we have the following.
THEOREM 4.1 ([20], [18]). Assume that (4.4), (4.5), and (4.7)-(4.11) hold. Let f,

us, s be given such that (forfixed s ) f Cb(, H), us V1, ts H. Then the problem
(4.1)-(4.3) has a unique solution u that satisfies {u, ut} Cb([S, o), VlXH=B). In
addition, for all >-_ O, the mapping { us, s} - {u + s), ut + s)} is a homeomorphism
from B onto itself. Furthermore, there exists a closed ball in B that is absorbing for
(4.1)-(4.3). Moreover, iff is admissible, then the above results are valid iff is replaced
by any h H(f).

The homeomorphic property of the solution-maps in Theorem 4.1 (not stated by
Haraux) is associated with the properties of (4.1) under time-reversal and the fact that
/3 is assumed to be an odd mapping. The proofs of Theorem 4.1 by Haraux use the
weaker formulation of (4.5) that 0<_-r< if n= 1 or 2 and 0_-<r_-<2 if n=3; but for
the proof of Theorem 4.2 (see below) and subsequent results, we require the stronger
assumption stated in (4.5).

For the proofs of the results to follow, it will be convenient to follow the customary
procedure in the treatment of hyperbolic equations and write (4.1) as a system of
first-order equations. Also, in order that exponential decay properties as t-+ can
be proved for solutions of the linearized equations, we decompose the dissipation term
fl(u,) into a linear part and a remainder:

(4.12) fl(u) yut + fl(ut),

and we use the renorming technique introduced by Haraux [17] and later generalized
in [15] (for a short discussion see [26]). Then we have the following:

(4.13) @t + A@+F(@)/ D(@) F,

where (u, v), v u, + eu, F(@) (0, g(u)), D(@) (0, fl(ut)), F= (O,f), A
(-v)-a v-l),0<e--<eoWith eo=min(y/4, A1/2y), and the initial data are expressed
in the form

(4.14) ,(s) , (u, v), v a + eu.

We will prove that the system (4.13), (4.14) satisfies the asymptotic compactness
condition (3.7). However, we first need a result analogous to Theorem 4.1 pertaining
to the domain of-A.

THEOREM 4.2. Assume that (4.4), (4.5), (4.7)-(4.10) hold and, in place of (4.11),
assume that fl(v) has a decomposition (4.12) with a C mapping with a Frdchet
differential fl’ such that, for some constant C6 > O,

(4.15) [/’(v)] C6, v .
Let f, us, and 6s be given such that (for fixed s )

(4.16) f, ftCb(l,H), usH2(O)CIH(l’) =- V:, s VI.
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Then, if

(4.17) C6 < min +2’ -1 + 1 + 16e +

the solutions of (4.1)-(4.3) obtained in Theorem 4.1 satisfy {u, ut} Cb([S, ), Vx V1).
Furthermore, there exists a closed ball in Vex V1 that is absorbing for (4.13), (4.14).
Moreover, iffis admissible, the above results are also valid iffis replaced by any h H f).

Proof. Except for the final assertion concerning the extension of the results to any
h H(f) when f is admissible, the proof is analogous to the proof of Theorem 2.2 in
[15]; therefore, we will not give the details but will just note that the proof involves
a liberal use of Young and Poincar6 inequalities, combined with Gronwall estimates
and the continuity of the imbedding

(4.18) V2 x VI V, x L2.
The condition (4.17) results from a requirement that the positive parameters e that
occur in Young inequalities of the form

a2 -1ab +(2e) b2, a,b>O

be chosen in such a way that we may conclude that (u, ut) Cb([S, m), V2 x V) from
the appropriate Gronwall estimate. Combining this procedure with the result that
(u, ut) Cb([S, ), B), which follows from Theorem 4.1, we infer the existence of a
bounded absorbing set in V2 x V1.

Now we have the following lemma.
LEMMA 4.1. Assume the hypotheses of eorem 4.2 and in addition that f

Cb(, V1). en,for all + and everyfixed s, the continuous mapping U(t) B B
defined by

(4.19) U(t) S(t) -exp (-At)

is uniformly compact; i.e., it satisfies the condition that, for all bounded sets B B and

for all +, the union Ut U(r) is contained in a compact subset orB. Moreover,
iff is admissible, this result is true iff is replaced by any h H(f).

Proo From (4.13), (4.14) we have

(4.0 (s+=(+ (-(F(s+-r((s+-(O(s+

with (s) , where () exp (-At) is the group associated with the corresponding
linear equation so that, upon comparison with (4.19),

(4.21) U(t+ s) (t-)(F(s+)-F(O(s+))-D((s+))) d.

We require the exponential decay of the group (t) in the space Vx
v: II()l(,exp (-(e/2)), ce0. This follows from the combination of an
energy estimate in V x V and a Gronwall argument as in 15]. Then we find from
(4.21), (4.5), (4.15), Theorem 4.2, and the additional hypothesis that f C(N, V):

IIU(t+s)611v:v,- 1-exp-

sup ([[f(s+)l[vl+C(R)(l+[lu(s+)[[2)
e[0, t]
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It follows from Theorem 4.2 that, for all bounded sets /c V x L2(f), U->_, Us(r)/
is contained in a bounded set Y in V2 x V1. Then, from the compactness ofthe imbedding
(4.18), Y is compact in V1 x L2(), and the proof is complete.

PRoPosrrioN 4.1. Assume the hypotheses of Lemma 4.1. Then, for given s E ,
(i) Ss(t) possesses a bounded absorbing set Bo c B;
(ii) For all bounded sets B B, there exists a compact set G B such that

(4.22) lim sup ds(Ss(t)qb, G)=0,
t+

where de is defined as in (2.15).
In addition, iff is admissible, (i) and (ii) remain valid when f is replaced by any

hEH(f).
Proof The proof is analogous to that of a corresponding result in [15]. (i) follows

from Theorem 4.1. To prove (ii), let B be a bounded set in B. By Lemma 4.1, there
exists a compact set Gc B such that U,>__o Us(t+ s)B= G. We then establish (4.22) by
using the exponential decrease with of the linear group Z(t).

We are now prepared to prove the continuity ofthe translation semigroup {tr(t), >=
0} relative to the system (4.1)-(4.3).

PROPOSITION 4.2. Assume the hypotheses of Theorem 4.1 and, in addition, that
ft Cb(, H) and that f is time-dependent admissible from to H. Then the translation
semigroup {or(t), => 0} is continuousfrom H(W) to itself, where W is the almost periodic
process associated as in (2.3) with the unique solution d/(u, v) of (4.13), (4.14) obtained
in Theorem 4.1.

Proof. Since 0(t + s) is uniformly bounded in B by Theorem 4.1, we may assume
that it is contained in a B-ball:

(4.23) ]ld/(t+s)ll<=Kl(g) if IlO(s)ll<_-R

for some R>0. From the mean value theorem for Banach spaces, (4.5), and the
well-known Sobolev imbedding theorem

2n
H(f),--> Lq(-) if 2<_-q<_- with n_->3,

n-2

we find

(4.24) IIr(o)-r()ll.--<

with a positive constant C(R), where q is another solution of (4.13), (4.14) that also
satisfies (4.23). Similarly, using (4.15) and the mean value theorem again, we obtain

(4.25) lID(O)- D(;) II.
Also, there exists a positive constant c such that

IlF(t + s+

uniformly in s and since f E Cb(, H) by hypothesis.
Since {tr(t), t-> 0} is a semigroup, it is sufficient to prove continuity at 0. The

solution $ of (4.13), (4.14) also satisfies (4.20), and we have the following estimate
for the linear group Z(t) [15, p. 278]:

(4.26) Ilx(t)ll()_-<exp-t, t-->0, 0<e<_--eo.
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Then, using the Schwarz inequality, we obtain (with to > O)

(4.27) +

+ IlE(t++)(F(s+)-F(@(s+))-D(@(s+)))lld.

To estimate the first norm, we use the fact that E(t) is uniformly bounded in by
(4.26), so that we can approximate in the B-norm by a sequence {} from the
domain of A, D(A), which is a dense subset of B. Given > 0, we choose no eN
such that

E
(4.28) + < when n e no.2(e+6)
We have the estimate

which is a general result for analytic semigroups (cf. [16, p. 71]). Using this result and
(4.26), we obtain

e6
(4.29) [lE(t)(E (w) 1) ], < +w][AO,[l,(nno, , D(A)).

e+6

Similarly, in addition to the uniform boundedness of Z(t), we use the fact that
F(ff(t+s)), D((t+s)), and F(t+s) also have this property, which follows from
(4.23) and the respective hypotheses (4.5), (4.11), and f C(, H). It immediately
follows that the second integral in (4.27) is bounded by C’w with C’ a positive constant.
Finally, to estimate the remaining integral in (4.27), we use the boundedness propeies
noted above to approximate F(s+), F((s+)), and D((s+)) by respective
sequences {F,(s+)}, {F,(s+)}, and {D,(s+)}D(A) to obtain a bound
analogous to (4.29). By choosing n0 large enough, we can use the same value of 6 as
in (4.28) for these approximations. Thus, by collecting the above results we have, with
0,

I1() wt, )- w(t,

(4.30) < + m(C’+ I[A[n)+ exp - (t-)

from which it follows that () is continuous at
In order to prove that W is almost periodic, we establish an estinaate of the type

(3.1). Thus, consider two solutions , @2 of (4.13), (4.14) with the same initial datum, but corresponding to two distinct admissible forcing terms f,f2. Then, from (4.13),
(4.14), the B-positivity of A((X, AX) 0, X e B), the Lipschitz estimates (4.24), (4.25),
Young’s inequality, and a Gronwall estimate, we obtain the inequality

6( + s) 6(t +

Nc-exp t sup
[0, t]

with c + 2C(R)+ 4c. It follows that W is almost periodic since f is admissible
by hypothesis.
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Take V c H(W). Then, for any sequence {zn}c , there exists a subsequence
{Znm}C {Zn} such that W (t,s)4 -->,-.oo V(t,s)d) uniformly in s for all t+ and
for all b B. In order to show that r(to) is continuous on Vb, consider the following
estimate:

I1(,o) v(t, s)- V(t, s)ll

(4.31) <=[[o’(to)W(t,s+z. )qb- W(t,s+z,.)d[ln+[lV(t,s+to)qb- W (t,s+to)bl[n

+ V(t, s)b W (t, s)b I1.
The first norm can be estimated in the same way as (4.30). Given ,/> 0, choose mo
such that each of the last two norms in (4.31) is less than r//2 when m >- m0. This can
be done uniformly in s for all / and all b H (see (2.6)). The assertion of the
proposition follows.

This proposition, together with the result in Theorem 4.1, establishes the hypotheses
of Proposition 3.1 for (4.1)-(4.3).

The first variational equation corresponding to (4.13), (4.14) has the form

(4.32) d,(t+s)+Ad(t+s)+F’(b)dP(t+s)+D’(d/)dP(t+s)=O,

(4.33) d(s) p B,

where $ $(t + s) is a solution of (4.13), (4.14). We see that (t + s) is independent
of the forcing term in (4.13) as required by one of our hypotheses in 3.

We proceed to the proof of existence of Fr6chet derivatives of the maps (2.13).
THEOREM 4.3. Let W be a process associated in the usual way (2.3) with a solution

d/ of (4.13), (4.14), assuming our hypotheses (4.4), (4.5), (4.7)-(4.10), f Cb(, .H),
us V1, s H and, in addition, that a decomposition (4.12) holds with fl satisfying (4.15).
Furthermore, assume that there exists v (0, 1] and, for every R > O, also a positive
constant C2 C2(R such that

(4.34) IIg’(p)-g’(.)ll(v... <- c=llp- nil .
for all p, VI with lip v. <--R. I1. v-<--R and. for the same value of v, there exists

c’2 2(R such that

(4.35) II/’(u,)- ’(a,)liL. <- ll U,- a. 7,

for all u,, a, H with u, II. --< R. 7,11- <- R. Then Frdchet derivatives L of the maps
(2.13) exist and are defined in terms ofappropriate solutions of (4.32), (4.33 as in (3.14).
Moreover, iff is admissible, this result is also true when f is replaced by any h H(f).

The proof follows the lines of that given in Appendix B of [15] and makes use
of the mean value theorem for Banach spaces, Young’s inequality, and a Gronwall
argument.

COROLLARY. For all > 0 and all s, the mapping Ss(t) is of class C l’v, where
v is the same as in (4.34), (4.35).

We have now verified that all the hypotheses in 3 are valid for (4.1)-(4.3). In
particular, we note that condition (7) of 2 is satisfied for this system because the
maps Ss(t) are Lipschitz homeomorphisms with Lipschitz-continuous inverses on the
entire Hilbert space B.

We now obtain more information concerning the Hausdortt and fractal dimensions
of sets of type (2.8) by deriving explicit estimates for the quantities (3.21). We note
that (4.32) is of the form (3.20) with F’(tp)=-A-F’(O)-D’(O). At a given time
p+s, let {X(p+s)=(pj(p+s), zj(p+s)) V1, j=l...,m} denote an orthonormal
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basis of B spanning an m-dimensional subspace Qm(p+s)B. Then, following an
argument in [32, pp. 360-364], we obtain

e 2( y2 + C62)(4.36) (F’(d/)Xj, Xj), <-- - (ll&ll:
8

v,,

where we have assumed that the initial data (4.14) belongs to a set of type (2.8), which,
according to Theorem 4.2, is a bounded subset of B1 V_ V1 D(-A) H(I). Then

(t+s) {u(t+s), u,(t+s)+ eu(t+S)}

belongs to a bounded subset of B, and u(t + s) belongs to a bounded subset M of
D(-A) for all /. The quantity 7 in (4.36) arises from the following additional
assumption concerning g"

(4.37) g’ is a bounded mapping from D(-A) to L(V,, H) for some 7 [0, 1).

It follows [15] that there exists Te[0, 1) such that g’ maps M into a bounded subset
of L(V, H). The constant y in (4.36) is defined by y supwo(-a)[Ig’(w)llL(v,,,). The
final form of (4.36) is obtained by two applications of Young’s inequality. Then, using
the fact that the {X}(J N) are orthogonal in B and a lemma in [32], we obtain the
following estimates for the quantities in (3.21):

-me 2(y2+C62)
(4.38) ,q,(t) <=+ z, A’/-,

4 e j=

-me 2(y+C)
(4.39) sqm<-----t /.., 2-,

4 e =
where the {aj} are eigenvalues of-Z. It follows from (3.11), (3.18), (3.19), and the
above results that we obtain the following estimates for the uniform Lyapunov
exponents.

THEOREM 4.4. Assume the hypotheses of Theorem 4.3 as well as the additional
hypothesis (4.37). Then

(i) The uniform Lyapunov exponents tx,, associated with sets of type (2.8) are

majorized according to

-me 2(y2+C62) 4’(4.40) [J, ,s -l" -ll- [lQ, z, A 7 j 6 IN
4 e i=1

(ii) The m-dimensional volume element is exponentially decreasing in the Hilbert
space B;

(iii) We have the upper bounds for the Hausdorff and fractal dimensions of
E,dH (E.) <-- mo, dF(E) <-- - mo, where mo is chosen in such a way that

,no e2mo(4.41) Y A- <_
,= 16(72 + C)"

Remark 4.1. (a) Note that the bounds (4.38)-(4.40) are uniform in s. (b) There
are some differences in the details of the proof of Theorem 4.4 compared with the
proof of the corresponding autonomous result that we now point out. (b l) As a

consequence of the fact that we include effects of weak nonlinear dissipation, the
constant C6 appears in the bounds (4.38)-(4.41). This has the consequence that the
allowed values of mo, defined to be those for which (4.41) is valid, are different from
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those for the corresponding linearly damped equation. (b2) The validity of (ii) follows
from the estimate

Tr F’(d/(p+ s)) Q,,,(p+ s)<- -moe
2(y2+ C)+

4 e 2=1

the choice of values of m0 being those allowed by (4.41).
To conclude our discussion of the system (4.1)-(4.3), we note that the consider-

ations of the present section can be extended to systems of equations of type (4.1).
Thus, in place of that equation, we consider the system of equations

(4.42) u.-k-fl(ut)-Au+ g(u)-- f,

obtained from (4.1) by letting u be an /-dimensional vector u =(ul,’" ", Ul) and by
replacing -A by -AA where A is a symmetric matrix, although we could also consider
linear unbounded elliptic selfadjoint operators L with smooth coefficients whose
inverses are compact on the Hilbert space H (L2(I))) l, where 12 is a bounded domain
on which we impose conditions analogous to those stated at the beginning of this
section in the case of (4.1). We impose Dirichlet boundary conditions (4.2) on each
component of u, although Neumann or periodic boundary conditions could also be
considered. The nonlinearity g(u) is of "potential type"; i.e., there exists a function
G(ul,’’’,Ul) (a generalization of the primitive (4.6)) such that gi(u)=
(O/Oui)G(Ul,... l,ll) (i= 1,’’’ ,1). We assume that the dissipative term /3 has a
representation analogous to (4.12) with the constant y replaced by a positive-definite
matrix. The hypotheses (4.4), (4.5), (4.7)-(4.12), (4.15), (4.16), (4.34), (4.35), and (4.37)
are replaced by their obvious vector analogues. Under these conditions, we can verify
all the hypotheses required for the proofs of the dimension estimates in Theorems
3.2-3.4, and analogous results to those in Theorem 4.4 can be obtained for the system
(4.42). These results generalize the work of Babin and Vishik [3], [4], who proved
existence and other properties of global attractors for autonomous equatons of the
above type with linear dissipation.

5. Reaction-diffusion equations. In this section we consider the nonlinear PDE,

(5.1) q&--Aq+g()=f(x, t) ingl[s, oo),

(5.2) q(x, s) b(x), x f, some

with Dirichlet boundary conditions

(5.3) q(x,t)=0, xOf, t>=s,

where 11 denotes a connected open bounded subset of n with a smooth (at least C2)
boundary 01). We consider the Hilbert space H L2(I)) and set V= H(fl). Global
attractors and estimates of their dimensions for the system (5.1)-(5.3) with suitable
restrictions on g have been considered previously without a time-dependent forcing
term f by Babin and Vishik [2], [4], Marion [25], and T6mam [32].

We assume the following conditions.
There exists a real number p_-> 2 and positive constants cl, c2, c3 such that

(5.4) C1S2p C Sg(S) " C2S2p + C

for all s . There exist positive constants C4, C5 such that

(5.5) g’(s)>--c4,

(5.6) g’(s) <= c5(1 + sp-2)

for all s .
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There exists a positive constant c6 such that

(5.7)

for all s .
The forcing term satisfies

Ig(s)l C6(1 +[Sl2p-l)

The following result gives basic local and global existence results for (5.1)-(5.3).
THEOREM 5.1. Assume that (5.4)-(5.8) hold. Then, for each 49 H, there exists a

unique solution b of (5.1)-(5.3) such that l, L2([s, T]; V) f’) L2p([s, T]; L2P(12)) for all
T> s and q, Cb([S, O0); H) for each s. The mapping 494,(t+ s) is continuous on
H. Furthermore, if ck V, then

d/ Cb([S, T]; V) f-1L2([s, T]; H2(II)) for all T> s.

Finally, iff is admissible, the above results remain valid iff is replaced by any h H(f).
The proof relies on classical arguments [23] and is an extension of the arguments

of Marion [25] and T6mam [32] to cases oftime-dependent forcing. We omit the details.
Remark 5.1. Hypotheses (5.4)-(5.7) are satisfied for the nonlinearities g(s)=

[slP-2s(p >= 4, s ) and g(s) as3 fls(ce, fl > O).
We now prove the existence of bounded absorbing sets for the system (5.1)-(5.3).

Since the proof only differs from corresponding considerations in [32] by the inclusion
of time-dependent forcing terms, many details will be omitted.

THEOREM 5.2. Assume the hypotheses of Theorem 5.1. Then
(a) There exists a closed ball in H that is absorbing for (5.1)-(5.3);
(b) If, in addition to the above hypotheses, f Cb(, V), then there exists a closed

ball in V that is absorbing for (5.1)-(5.3);
(c) If we construct a process W as in (2.3) in terms of the unique solution of

(5.1)-(5.3) discussed in Theorem 5.1, the maps Ss( t)rk W( t, s; f)rk, 49 H are uniformly
compact for >-to with to> 0 sufficiently large. Moreover, iff is admissible, the above
results are valid with f replaced by any h H(f);

(d) Asymptotic compactness holds; i.e., for all bounded sets ; c H L(), there
exists a compact set G c H such that

lim sup dn(Ss(t)d), G)=0
t--, +oo 4E/]

with dH defined as in (2.15). Iff is admissible, this result is true for all h H(f).
Proof (sketch). (a) By multiplying (5.1) by $ and using (5.4), the Poincar6

inequality for H(f), and Young’s inequality, we obtain an energy inequality in H
from which we obtain, by the standard Gronwall lemma,

(5.9) limsup C3[’1
2A,

[[fll=-R’

where ha denotes the smallest eigenvalue of-A on fl and is the volume of. Thus,
any ball in H L2(O) centered at zero with radius R> Ro is an absorbing set for
(5.1)-(5.3).

(b) Analogously, to obtain an absorbing ball in H(), we obtain a corresponding
energy inequality by multiplying (5.1) by -A and using (5.5) and (5.3) in conjunction
with Green’s theorem, Young’s inequality, and the Poincar6 inequality [32] Ilv[l
cv()tla II. for some positive constant C7 depending on, to obtain for any e, e2 > 0:

(5.8) fe Cb(N, H).
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First consider the case when C-2> C4o Then, setting el e2---21-(C-2-C4), a
standard Gronwall estimate yields the result

lim sup IIv g,(t / s) I1, <-- 4(c-- c4)-1(11f , / Ilvf ,) 1/=-- R1,

and a similar argument to the discussion following (5.9) yields the result that any ball
in H(O) centered at zero with radius R > R1 is an absorbing set for (5.1)-(5.3) when
C;: > C4.

For the remaining cases C-2_< Ca, we put e e2 C-2 and obtain from (5.10)
by a standard Gronwall argument,

IIv(t + s) ,--< exp (2Cat)llV(s)ll
(5.11)

/ C(2C4)-(11f11 / IlVfll )(exp (2C4t)- 1).

Then, from (5.10) and the uniform Gronwall lemma [32, p. 89], for an arbitrary fixed
r>0,

(5.12) IIV(t+s+r)ll<=(’(r)+c(llfll+llVfll)r)
where K(r)=1/2(1 + ;)llg,(s)ll +(AV +2r)(fll+(2A)-llfll). Thus, when C=_-<
Ca, (5.12) provides uniform bounds for Ilvg,(t+s)ll, when t+s>=r while (5.11)
provides uniform bounds when + s =< r. Any ball of V H(O) centered at zero with
radius R> R2 is absorbing for (5.1)-(5.3).

(c) The proof of the uniform compactness of the maps (2.13) now follows as in
the proof of the corresponding result for the solution semigroups in autonomous cases
[32, p. 86].

(d) The proof of asymptotic compactness is analogous to the corresponding proof
for nonlinear wave equations in Propositions 4.1.

This completes the proof of the theorem.
The translation semigroup {tr(t), t->0} is continuous relative to the system

(5.1)-(5.3).
PROPOSrrION 5.1. Assume the hypotheses of Theorem 5.1 and, in addition, that

ft Cb (R, H) and thatf is time-dependent admissible from to H. Then the translation
semigroup {tr(t), t->_0} is continuous from H(W) to itself, where W is the process
associated as in (2.3) with the unique solution d/ of (5.1)-(5.3) obtained in Theorem 5.1.

Proof. The proof is analogous to the proof of Proposition 4.2.
This proposition, together with the result in Theorem 5.1, establishes the hypotheses

of Propositon 3.1 for the system (5.1)-(5.3).
The first variational equation corresponding to (5.1)-(5.3) has the form

(5.13) d,( + s) AdP( + s) + g’(d/)( + s) O,

(5.14) d(s) p H,
where p= p(t+ s) is a solution of (5.1)-(5.3). We see that (t+ s) is independent of
the forcing term in (5.1) as required by our hypothesis in 3.

We now prove existence of the Fr6chet derivatives of the maps (2.13) for the
system of equations (5.1)-(5.3), (5.13), (5.14).

THEOREM 5.3. Let W be a process associated in the usual way (2.3) with a solution
d/ of (5.1)-(5.3) assuming the hypotheses (5.4)-(5.8) as well as the additional condition
that there exists v (0, 1), and for R > 0 there exists C8 C8(R) > 0 such that

(5.15) Ilg’(x)-g’(;)ll(H c811x-;117
for every X, ; H such that IIx[I R, II;11- R. Then Frdchet derivatives L of the maps
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(2.13) exist and are defined in terms ofappropriate solutions of (5.13), (5.14) as in (3.14).
Moreover, if in addition to satisfying (5.8) f is also time-dependent admissible, then these
results remain valid iff is replaced by any h H(f).

Proofi The proof is analogous to the proof of Theorem 4.3.
COROLLARY. For all > 0 and all s R, the mapping Ss( t) is of class C 1", where

, is the same as in (5.15).
With the exception of condition (7) of 2, we have now verified that all the

hypotheses of 3 are valid for (5.1)-(5.3). The validity of this condition follows from
the following result.

THEOREM 5.4. Assume the hypotheses of Theorem 5.3, and let Es denote a set of
type (2.8) corresponding to a global attractor sA( W) for the distinguished process W.
Then, for each s and each +, S(t) is invertible on the range ofS(t)H, and the
surjective map (Ss t))-I Ss (t)E - E is Lipschitz continuous.

To prove this result, we need the existence of backward extensions in of the
maps Ss(t). This follows from a generalization to almost periodic processes of some
results on periodic processes due to Slemrod [31], which we now discuss.

DEFINITION 5.1. Let V be an almost periodic process on a Banach space B, and
consider r/ B. A function U(., r/) N x R - B is said to be an extension of the process
V from r/ if

(i) U(O, s; q) is continuous in 0;
(ii) U(t+O,s;q)=Z(t,s+O; U(O,s;r/)) for tee+ O,sN, and some Z

H(V);
(iii) U(O, s; r/)=

Then we have the following.
LEMMA 5.1. Let V be an almost periodic process on B. Assume that the positive orbit

0/( s, X)= t-Jt>_o V(t, s; X) through X B lies in a compact subset A B. If q belongs to
the to-limit set tos(X)= f)>--o ClosureB t_lt>_ V(t, s; X) of the orbit of V originating at

(X, s) B x , then Vpossesses an extension U( O, s; r1) from rI.
Proof. The proof is similar to that of Slemrod for periodic processes, the essential

points of difference being (1) the places in Slemrod’s proof where periodicity was
used, and (2) the verification of condition (ii) for the extension candidate U. We will,
therefore, skip some of the details. There exists a sequence {tn} c N+ such that tn
as n - +oo with

(5.16) V(t,, s; X) r/ as n +.

Then choose a > 0 and pick no > 0 sufficiently large so that tn >_- 2a when n >_ no. Then,
following an argument similar to that of Slemrod, it can be shown that the sequence
{ V(t, + -, s; X)} is an equicontinuous family of functions of "re[-a, a].

From Ascoli’s theorem, there exists a subsequence {Tm}C {t,}, such that
V(T,, +’r, s; X) converges uniformly to a continuous function of ’ [-a, a]. Call it
U(’, s; r/). That is, we have

(5.17) V( T,, + z, s; x)- U(’, s; )IIB-0 as rn-+

uniformly in z for z [-a, a], and (i) is satisfied.
For z=0, V(Tm, s;x)rl by (5.16) so that (iii) is satisfied for all s6 and it

only remains to establish (ii). We have

IIVT(O,+’; V(-r.,,;X))-V-(O,+’; u(, ; ,))11-0
by continuity. But

v:.(O,s+-; V(-+ T,.;s;X))= V(-+ T,.+O,s;x) U(-+O,s; ),
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U(’+O,s; r/)= lim VT.m(O,s+-; U(r,s; rl))=Z(O,s+r; U(’,s; 7))
-I-

for some ZH(V). It follows from (5.17) that U(-,s; q)to(x) for all -[-a,a],
and hence for all - , and the proof is complete.

Proof of eorem 5.4. For given s , the existence of S(t) for each 0, and
each h H(f) follows from Theorem 5.1 and its Lipschitz continuity follows from
Theorem 5.3 (see the statement of the corollary to that theorem). Then, using the facts
that E () (with the same as in (2.13)) and that S(t) possesses backward
extensions in from E (which follows from Lemma 5.1), we easily see by a slight
generalization of the usual argument [32], [5], [14] that the injectivity of S(t) is
equivalent to the backward uniqueness propey for the system (5.1)-(5.3). In fact,
with our hypotheses, the proof of backward uniqueness given by T6mam [32] is also
valid in the present case. Thus, (S(t))- exists on the range of S(t)H. By Theorems
5.1 and 5.2 and an argument in the proof of Theorem 3.2, there exists an s-independent
global attractor A(W) for the skew-product semiflow {(t), t0} associated with
the distinguished process W, and the corresponding set Es defined by (2.8) is compact.
Consider the restriction of S(t) to E. Since S(t) is continuous and E is compact,
S(t)E is a compact set. Then, by a result due to Tikonov [4, Lemma 3, p. 98], (S(t))-is continuous as a surjective map (Ss(I)) -1" S(t)E E. From the relation (S(t))-=
S+,(-t) and (3.12), we obtain (with a fixed real number to) (S(t))-=
SS_to(tO (s_to(t + to)) -1, from which the Lipschitz continuity of (S(t))- follows due
to the continuity of (S_,o(t+to))- and the Lipschitz continuity of S_,o(tO). This
completes the proof.

We now obtain additional information about the Hausdorff dimension of sets of
type (2.8) by estimating the quantities (3.21). We note that (5.13) is of the form (3.20)
with F’(@)=A-g’(@). Then, using the condition (5.5) that g’(s) is bounded from
below and the procedure in [32, pp. 299-301], we obtain the following estimates, which
are uniform in s:

 5.18) m

-C;’ l+n 5.19 21nl /.
m

where C depends only on n and the shape of , and C depends only on n. If m is
sufficiently large so that the right-hand side of (5.19) is negative, then the m-volume
element is exponentially decaying in H and d,(E) m. Similar estimates can be
obtained for the fractal dimension of E by using techniques discussed in [32].

To conclude the paper, we note that the considerations of the present section can
be extended to systems of equations of type (5.1). Thus, just as we generated the system
of hyperbolic equations (4.42) from the single equation (4.1), we obtain the system of
parabolic equations

(5.20) ,-a+g()=f(x, t)

from (5.1) by replacing the scalar by an/-dimensional vector (,. , ) and
by replacing by a where a is a positive symmetric matrix, although we could also
consider ceain other linear operators L as in our discussion at the end of 4 for the
dissipative nonlinear wave equations. We consider the Hilbea space H =(L2()) t,
where is a bounded domain on which we impose conditions analogous to those
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stated at the beginning of this section in the case of (5.1). We impose Dirichlet boundary
conditions (5.3) on each component of , although Neumann or periodic boundary
conditions could also be considered. There exists a function H(@I," , @) such that
gi(d/) (O/O,)H(d/,..., ), i= 1,..., l; and the hypotheses (5.2), (5.4)-(5.7), (5.15),
and conditions such as f Cb (R, V), f Cb(R, H), f is time-dependent admissible,
are replaced by their obvious vector analogues. Under these conditions, we can verify
all the hypotheses required for the proofs of the dimension estimates in Theorems
3.2-3.4, and analogous results to those in (5.18), (5.19) and the succeeding discussion
can be obtained for the system (5.20).
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CHAOTIC DYNAMICS OF QUASI-PERIODICALLY FORCED
OSCILLATORS DETECTED BY MELNIKOV’S METHOD*

KAZUYUKI YAGASAKI’

Abstract. Nonlinear oscillators that have the form of quasi-periodic perturbations of planar Hamiltonian
systems with homoclinic orbits are studied. For such systems, Melnikov’s method permits determination,
up to the leading term, whether or not the stable and unstable manifolds of normally hyperbolic invariant
tori intersect transversely. In a more general setting it is proven that such intersection results in chaotic
dynamics. These chaotic orbits are characterized by a generalization of the Bernoulli shift. An example is
given to illustrate the theory. The result is also compared with the results of Wiggins [1988b], Scheurle
[1986], and Meyer and Sell [1989].

Key words, chaos, Melnikov method, quasi-periodically forced oscillator, Bernoulli shift
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1. Introduction. Chaotic dynamics of periodically forced oscillators have been
extensively studied in the past decade (cf. Thompson and Stewart [1986] and Moon
[1987]). For many cases, the chaotic dynamics result from transverse intersection
between the stable and unstable manifolds of hyperbolic periodic orbits. The Smale-
Birkhof homoclinic theorem provides a mechanism for this type of chaotic dynamics,
and these chaotic orbits are characterized by the Bernoulli shift. Using Melnikov’s
method, we can also detect such intersection in a class of periodically forced systems.
See Guckenheimer and Holmes [1983] and Wiggins [1990] for details of these ideas.
Using the theory of exponential dichotomies and the shadowing lemma, Palmer 1984]
also described Melnikov’s method and proved the Smale-Birkhoff homoclinic theorem
in the context of periodic differential equations.

Recently, Wiggins [1988b] generalized Melnikov’s method to a class of quasi-
periodically forced systems. This version of Melnikov’s method permits us to detect
transverse intersection between the stable and unstable manifolds of normally hyper-
bolic invariant tori. His result is also applicable to systems with frequencies depending
on the state variables and involves many of other versions of Melnikov’s method, such
as those of Holmes and Marsden [1982a], [1982b], [1983] and Wiggins and Holmes
[1987]. It is also important to detect such intersection in three or more degrees of
freedom Hamiltonian systems since their existence gives a mechanism for the Arnold
diffusion (Arnold [1964], Lichtenberg and Lieberman [1983]). See Holmes and
Marsden 1982b] and Wiggins 1988b, 4.1] for the exposition of the Arnold diffusion
in terms of the Melnikov theory.

Furthermore, Wiggins [1988b] proved a generalization of the Smale-Birkhoff
homoclinic theorem: if the stable and unstable manifolds of a normally hyperbolic
invariant torus intersect transversely in a torus satisfying a certain condition (see 3),
then the Bernoulli shift flow can be imbedded into the dynamics of the quasi-periodi-
cally forced system. A similar result had been obtained by Silnikov [1968]. Wiggins
[1987], [1988a], [1988b], and Ide and Wiggins [1989] also applied these techniques
to several types of quasi-periodically forced oscillators and obtained criteria for the
existence of chaos, although their proof was not complete (see 3).

Yagasaki [ 1990a], [ 1990b], 1991a] studied chaotic dynamics of quasi-periodically
forced oscillators with weak nonlinearity. He used the averaging method and the

* Received by the editors January 28, 1991; accepted for publication (in revised form) January 9, 1992.
Department of Mechanical Engineering, Tamagawa University, Machida, Tokyo 194, Japan.
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standard Melnikov technique to show that the stable and unstable manifolds of a
normally hyperbolic invariant torus intersect transversely in a torus, and then applied
a generalization of Smale-BirkhotI homoclinic theorem by Wiggins [1988b] to obtain
the regions in parameter space where chaos may occur. See also Yagasaki, Sakata,
and Kimura 1990].

Scheurle [1986] and Meyer and Sell [1989] studied almost periodically forced
systems extending the idea of Palmer 1984]. Scheurle 1986] showed that the existence
of random-like solutions can be detected using a Melnikov type analysis and the
shadowing lemma. Meyer and Sell [1989] used the concept of the skew product flow
and generalized Melnikov’s method, the shadowing lemma, and the Smale-Birkhott
homoclinic theorem to describe a mechanism for chaos in almost periodically forced
systems. They showed that the chaotic behavior is also described in terms of the
Bernoulli shift.

Consider nonlinear oscillators having the form of quasi-periodic perturbations of
planar Hamiltonian systems:

JDH(x)+ eg(x, 0),

0=to, (x, 0)2x T,
where H(x) is a Hamiltonian function and Tl-- I-II:l S1 is an l-torus with S g/2zr
the circle of length 2zr and

We assume that when e 0, (1.1) has a homoclinic orbit 2o(t) to a hyperbolic fixed
point Xo. When e is sufficiently small, (1.1) has a normally hyperbolic invariant torus

T. Using the version of Melnikov’s method due to Wiggins [1988b], we can determine
the behavior of the stable and unstable manifolds WS(T), WU(T) of the normally
hyperbolic invariant torus T. More precisely, we can state this result as follows. Let
M(0) be the Melnikov function for 2o(t), i.e.,

(1.3) M(O)= f’ DH(go(t)) g(g,o(t), cot+O)dt.

If there exists a point 0 0o T such that

(M1) M(Oo) =0,

(M2) DM(Oo) is of rank one,

then W (T,) and W (T) intersect transversely.
The Smale-Birkhott homoclinic theorem guarantees the existence of chaos when

the stable and unstable manifolds of a hyperbolic periodic orbit intersect transversely;
however, the generalization of the Smale-Birkhott homoclinic theorem due to Wiggins
[1988b] does not always do so when the stable and unstable manifolds of a normally
hyperbolic invariant torus intersect transversely. In general, there exist wide parameter
regions in which conditions (M1) and (M2) are satisfied, but Wiggin’s theorem does
not apply (see 7).

In this paper we obtain a more general condition for the existence of chaos in
(1.1). Specifically, we prove that if there exists a point 0o T satisfying (M1) and

0
(M3) j=l to- M Oo O,
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then there exists an invariant set on which orbits are characterized by a generalization
of the Bernoulli shift. Precisely, condition (M3) is different from (M2), but their
difference is very little (see 7). Our condition is also very similar to that of Scheurle
1986] for the existence of random-like solutions in almost periodic systems. Further-
more, if (M3) holds for all points 0o T satisfying (M1), then we can apply the result
of Meyer and Sell [1989]. See Appendix A for their results in the quasi-periodic
perturbation case.

This paper is organized as follows. In 2 and 3 we discuss the behavior of the
stable and unstable manifolds ofnormally hyperbolic invariant tori in quasi-periodically
forced oscillators, using Melnikov’s method. In 4 we present a generalization of the
Bernoulli shift to be used to describe chaotic dynamics of quasi-periodically forced
oscillators. In 5 we study a class of diffeomorphisms instead of ordinary differential
equations. This class of diffeomorphisms contains the Poincar6 maps for quasi-periodi-
cally forced oscillators. We prove that ifthe stable and unstable manifolds of a normally
hyperbolic invariant torus intersect transversely in a certain type of manifold, then
there exists an invariant set on which the diffeomorphism is topologically conjugate
to the generalized Bernoulli shift. In 6 we provide a criterion for the existence of
chaos in quasi-periodically forced oscillators using Melnikov’s method and the result
of 5. In 7 we give an example to illustrate our theory. Our result is also compared
with the previous results of Wiggins [1988b], Scheurle [1986], and Meyer and Sell
[1989].

After this paper was written, the author learned of the related work of Beigie,
Leonard, and Wiggins 1991a], 1991b] and Stoffer [1988]. Their results also improved
the generalization of the Smale-Birkhoff homoclinic theorem by Wiggins [1988b]. In
particular, Stoffer [1988] described chaotic dynamics in general nonautonomous sys-
tems by the "extended shift map," in which the concept is similar to that of our
generalized Bernoulli shift. However, in quasi-periodically forced systems, our descrip-
tion of chaos seems to be more suitable than theirs, since it takes a recurrence property
of chaotic attractors into account. See Yagasaki 1991b] for more details.

2. Melnikov’s method. In this section we briefly review Melnikov’s method for
quasi-periodically forced oscillators. This version of Melnikov’s method is due to
Wiggins [1988b]. Although we only deal here with single-degree-of-freedom systems
with constant frequencies, this technique has been developed for multi-degree-of-
freedom systems with nonconstant frequencies depending on the state variables. See
Wiggins [1988b] for the general theory of this method.

We consider systems of the form

2 2DH(x)+ eg(x, O)
(2.) 0=,,, (x, o)ex T,
where T H ii=l S is an/-torus with S

H"

is C r+l (r >-- 2), and

g" O TI-> $2
is C with some open set O c RE; J is a 2 x 2 matrix given by (1.2) and 0 < e << 1. For
e 0, (2.1) becomes a Hamiltonian system

(2.2) 2 JDH(x), 0 to.

We make the following assumption on (2.2).
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(A1) The x-component of (2.2) has a homoclinic orbit go(t) to a hyperbolic saddle
point Xo. We denote F {go(t) lt I}.

In the full phase space R2x Tt, (2.2) has a normally hyperbolic invariant/-torus

To {(Xo, 0)10 T’} {Xo} x

whose + 1-dimensional stable and unstable manifolds W(To), W(To) coincide along
the + 1-dimensional homoclinic manifold given by

WS(To)CI WU(To)={(go(t), O)ltl O TI}=Fx TI.
See Fig. 1 for the phase space of the unperturbed system.

Here "normal hyperbolicity" means that the expansive and contraction rates of
the flow generated by (2.2) normal to To dominate those tangent to To. For (2.2) this
is clear since Xo is a hyperbolic fixed point ofthe first equation of (2.2) so that trajectories
approach To exponentially fast in positive or negative time, but the flow on To only
indicates a rotation with the frequency vector to. See Hirsch, Pugh, and Shub [1977]
for precise definitions of normal hyperbolicity.

ROLES

FIG. 1. The unperturbed phase space of (2.2).

We will reduce the study of (2.1) to that of the associated Poincar6 map. We make
the section to the phase space 2x T by fixing any element of 0, say 0,, as follows:

E,-- {(x, 0) TtlO,=O}, i= 1,..., I.

Let us denote

and

i__ (01, Oi_l 0i+1, Ol TI-1

oi (tol, toi-1, toi+l, tol) l-1.
The Poincar6 map P., :E,--> E, generated by the flow of (2.1) is given by

P," (x(0), 0’) x +
toi

where (x(t), tot + 0) is a solution of (2.1). We denote the Poincar map associated with
the unperturbed system (2.2) by

The unperturbed Poincar6 map Po., has a normally hyperbolic invariant
(l 1 )-torus

fro,, E, f-1 To {Xo} Tl-1,
whose/-dimensional stable and unstable manifolds WS(-o.,), W"(-o.i) coincide along
the /-dimensional homoclinic manifold

WS(-o,i)j"-1 WU(’o,i)--Fx T’-1.
See Fig. 2 for the phase space of the unperturbed Poincar map Po.,’E,--> E, when

2 and I. These structures ofthe unperturbed phase space persist for the perturbed
phase space as follows.
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w(Yo.) fl w’(Yo.

FIG. 2. The stable and unstable manifolds for the unperturbed Poincard map Po, in the case of 2.

PROPOSITION 2.1. For e sufficiently small, the perturbed system (2.1) has a C
normally hyperbolic invariant l-torus T, whose C r, + 1-dimensional local stable and
unstable manifolds Woo( T), Woc( T) are C, e-close to W (To) and W (To), respec-
tively. Equivalently, the Poincard map P,i of (2.1) has a C normally hyperbolic invariant
l- 1)-torus if. whose C 1-dimensional local stable and unstable manifolds WlSoc(
Wlo(-,i) are C e-close to WS(-o,i) and W’(lo,i), respectively.

Proof These are immediate consequences of the invariant manifold theorem. See
Hirsch, Pugh, and Shub [1977].

The manifolds W(T) and W"(T) (or WS(-,) and W"(-a)) may not coincide,
but can intersect transversely. Computation ofthe Melnikov function provides informa-
tion on the behavior of these manifolds.

In Wiggins [1988b], it was shown that the distance between WS(T) and W"(T)
near the point

is given by

where

(x, 0)= (o(-to), 0o)eR2x T

M w’o+ Oo)
d (to, 0o) + c(e2),

K(to)

(2.3) M(O)=I_DH(o(t)).g(o(t),wt+O)dt,
K(to) is a nonzero (1) quantity and "-" denotes the usual vector dot product. The
function M(0) is called the Melnikov function. We have the following theorem.

THEOREM 2.2. Suppose that there exists a point 0 Oo T such that

(M1) M(Oo) =0,

(M2) DM(Oo) is of rank one.

Then, for e > 0 sufficiently small and to , W (T) and W (T) intersect transversely
near the point ((- to), Oo-wto). Equivalently, W (-.) and W (-,) intersect trans-
versely near the point

(2.4) (x, i) (:o(-to), 0-- a3’to)
where Wto 0o mod 2

Proof The first part is a special case of Theorem 4.1.10 of Wiggins [1988b]. The
second part is easily proved by noting that W(ff-,)= W(T)(qZ and W"(/%,)=
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Suppose that a point 0o T satisfies (M1) and (M2). Then, the local implicit
function theorem (cf. Chow and Hale [1982]) implies that the zero of the Melnikov
function M(0) can be continued to an l- 1-dimensional set in Tt. Hence, from Theorem
2.2 we see that there exists an l-1-dimensional manifold y,, in which W(ff..) and
WU(-,i) intersect transversely. We refer to this manifold y,i as a transverse homoclinic
manifold.

In the next section we will discuss the structure of the transverse homoclinic
manifold y, and describe how W(-,) and WU(-,) intersect transversely, using
the Melnikov function M(0).

3. Behavior of stable and unstable manifolds. Ide and Wiggins [1989] stated that
if M(0) has a zero at 0 0o and DM(O) has rank one for all 0 T1, then the zero 0o
can be continued to an (l-1)-torus. More generally, suppose that (M2) holds at any
point 00 T satisfying (M1). Then, using the global implicit function theorem (Chow
and Hale [1982]) and modifying arguments given in Wiggins [1988b, p. 464], we can
take an (l-1)-torus as the zero set of M(0). We denote this torus by to.

Let us fix the value of and discuss the phase space for the Poincar6 map
P,,’E--> Xi. We first consider the case in which condition

(M2i) M(0o) # 0.

holds at any point o T satisfying (M1). Note that (M2i) is stronger than (M2). In
this case, the global implicit function theorem implies that there exists a C" function
h"--, such that ro is given by

(3.1) ro={O=(O, ", O) Tl]o,=h(g), Oj=sjmod2rr forsj,l<-j#i<=l}.

where g=(s,..., s_, s/,..., Sl). Moreover, we can assume that for each j# i,
there are two integers jl and j2 such that jl > 0 and

(3.2) h(Sl,-.. sj + 2jlrr,’’’, Sl)= h(Sl,’", sy,..., Sl)+ 2j2rr,

since ro is an (l-1)-torus. Choose j as the minimum positive one such that (3.2)
holds. Then j2 0 implies that j 1, since ro cannot intersect itself.

Let Yo, be the set of all points given by (2.4) with 0o e to, i.e.,

(3.3) 3’o,, {(:o(-to), O-o-ta’to)il(Oo, 01o) to, to,to= 0io mod 2rr}.

By Theorem 2.2. W*(3-.,) and W(-.) intersect transversely in an 1-1-dimensional
manifold y, near yo.i.

DEFINITION 3.1. Consider the product space R" x TI. Let r be an/-torus given by

(3.4) r={(x,O)lmxTlx=.(s1,...,Sl),O=h(sj)mod27r, s_lR, j=l,...,l},

where " R -+ R" is C and 2rr-periodic in s, j 1, , l, and h "R - R, j 1, , 1,
are C and satisfy Iha(2rr)- hj(0)[- 2nrr for some integer n. Choose h for j 1,. .,
such that n is the minimum nonnegative one, and let n- (n,. ., nl). Then we refer
to r as a toms of n-cycle.

Ifj2 0 for allj # in (3.2), then 30., is an (1 1)-torus of (1,- ., 1)-cycle. However,
if j2 # 0 for some j, then

:go(-h(Sl, ", sj + 2j17r’, ", Sl)/to,) : :o(-h(Sl, ", sj, .., Sl)/Oo,)

and hence Yo, is not a torus. Since y, is e-close to Yo,, Y, is an (1-1)-torus of
(1, , 1)-cycle if j2 0 for all j # i, but ),,i is not a torus otherwise. These situations
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are shown in Fig. 3(a) and (b) for the Poincar6 map Pe,l’.,l ---) 1 when 2. (Fig. 3(a)
corresponds to the case of j2 =0 and Fig. 3(b) to the other case.) When we can take
a torus as the transverse homoclinic manifold, as shown in Fig. 3(a), we call the torus
a transverse homoclinic torus.

We next consider the case in which there is a point 00 T that satisfies (M1) but
does not satisfy (M2i), i.e., M 0 and OM/OOi 0 at 0 0o. Then, in general, there is
not a function h satisfying (3.1) and (3.2). Furthermore, there may exist C functions
hi:Rl--R, hj:R, 0<j# i<-_l, of 27r-period in each of the arguments, such that

(3.5) ’o={0=(0, ...,01)Tl10i--hi(g’),0j=hj(s))mod27r,sRl<-j#i<=l}.
From (3.3) we see that Y,i is an (l-1)-torus of (0,..., 0)-cycle since Y, is e-close
to Yo,. See Fig. 3(c).

Suppose that as shown in Fig. 3(a), there exists a transverse homoclinic (l 1)-torus
of (1,..., 1)-cycle ’,. This is the case when the stable and unstable manifolds of
normally hyperbolic invariant tori intersect transversely in a class of quasi-periodically
forced oscillators with weak nonlinearity (Yagasaki [1990a], [1990b], [1991a]). In this
situation, Wiggins [1988b] proved that the dynamics of the Poincar6 map normal to
the transverse homoclinic torus is chaotic. More precisely, we can state his result as
follows.

THEOREM 3.1. Suppose that W(-,) and W"(-,i) intersect transversely in an
l- 1)-torus of (1,. ., 1)-cycle. Then, for some k >-_ 1, pk. has an invariant Cantor set

w"(.7"e.)

FIG. 3. Transverse intersection between the stable and unstable manifoldsfor the Poincar. map P, in the
case of l= 2. (a) y, is a 1-torus of 1-cycle. (b) /, is not a torus. (c) /, is a 1-torus of O-cycle.
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of l- 1)-tori, . Moreover, there exists a homeomorphism h taking tori in .. to bi-infinite
sequences ofN symbols such that the following diagram commutes

pk.

BN BN

where BN is the space ofbi-infinite sequences ofNsymbols and tr BN - BN is the shift map.
Proof. This is a special case of Theorem 3.4.1 of Wiggins 1988b]. The assumption

that the transverse homoclinic torus - is of (1,. ., 1)-cycle is essential in his result,
although he did not explicitly state it. In fact, his proof requires that the transverse
homoclinic torus - can be expressed as

-= {(x, ) P,((0, x2), )I 0- e

with some x2
is an (l-1)-torus of (1,..., 1)-cycle. See, e.g., 4 for the definition of the shift
map

Remark 3.1. The pair (BN, tr) is referred to as the Bernoulli shift. This is a simple
dynamical system displaying stochastic behavior. If the hypothesis of Theorem 3.1 is
satisfied, then the dynamics of pk

,i on E is chaotic like the Bernoulli shift. See also
4 for the Bernoulli shift.

Remark 3.2. The hypothesis of Theorem 3.1 does not always hold even if WS(-,i)
and WU(ff,i) intersect transversely, i.e., there exists a point 0o T satisfying (M1)
and (M2). In particular, Theorem 3.1 has nothing to say about situations such as those
shown in Fig. 3(b) and (c). Wiggins [1987], [1988a], [1988b] and Ide and Wiggins
[1989] overlooked this fact.

Using Theorem 2.2, we obtain the following result as a corollary of Theorem 3.1.
THEOREM 3.2. Suppose that there exists a continuous function h(gi) of period 27r

in each of the arguments such that for all sj , j # i, (M1) and (M2) hold at Oo T1,
where Oio h (gi) and Ojo sj mod 27r, j i. Then the statements of Theorem 3.1 hold.

Proof. Suppose that the hypothesis holds. Then, the zero set of the Melnikov
function M(0) is an (l-1)-torus given by

o { Oo e T*I O,o h (gg), Ojo sj mod 27r for sj e , 0 <j _-< l}.

It follows from Theorem 2.2 that WS(-,) and WU(-,i) intersect transversely near

"to, { (x, i) e2 T,-I[ x )(- to), w,to 0,o, Oj Ojo- ojto mod 2zr forj and 0o e ’o}.

We can easily show that Zo, is an (1-1)-torus of (1,..., 1)-cycle. Hence, W(-e,i)
and W"(,) intersect transversely in an (l 1)-torus ’,i ’o,i + (e) of (1, , 1)-
cycle. Applying Theorem 3.1, we obtain the desired result. [3

We will give a more comprehensive criterion for the existence of chaos in quasi-
periodically forced oscillators in 6.

4. The generalized Bernoulli shift. In this section we present a generalization of
the Bernoulli shift for the precise description of chaos in quasi-periodically forced
oscillators. We begin with the definition of the Bernoulli shift.



1238 KAZUYUKI YAGASAKI

Let SN { 1, 2, , N} for N ->_ 2. We define BN H---o SN, i.e., BN is a collection
of all infinite bisequences of elements of Sr. Thus, if s eBN, then s=

{" , S_l, So, Sl, "} where si SN, 7/. Let o’: BN BN be the shift map defined by
((s)b s+,.

DEFINITION 4.1. The discrete dynamical system (B, r) is called the Bernoulli
shift, or the full shift on N symbols.

It is clear that B is invariant by r. For two sequences s, s’e BN, define the
distance between them by

(4.1)
1 Isi- s[d(s, s t) i=E-oo 21’--3 1 +l s, s’il"

It is easy to show that d(., .) is a metric on B. Moreover, cr is continuous and BN
is compact. See Wiggins [1988b, 2.2a, b], [1990, 4.2] for the details. We also call a
sequence s BN an orbit in BN.

The Bernoulli shift contains important features of randomness. In particular, when
N 2, it provides a model of a completely random process, coin tossing. The shift
map tr has a countable infinity of periodic orbits, an uncountable infinity of nonperiodic
orbits, and a dense orbit. The Bernoulli shift is often used to describe chaotic behavior
in deterministic dynamical systems. See Guckenheimer and Holmes 1983] and Wiggins
[1988b] for such examples; see also Theorem 3.1.

For descriptions of chaos in some dynamical systems, it is necessary to restrict
the domain of the shift map cr to a subset of BN. This is accomplished as follows.

Let A be an N x N matrix all of whose elements are 0 or 1. The matrix A is called
a transition matrix. We denote the set of all N x N transition matrices by Mn.

DEFINITION 4.2. For any A MN, let BN(A) be a subset of BN given by

Bs(A) {s BN (A),,/, 1 for all i}.

The pair (BN(A), r) is called a subshift offinite type. We also say that the transition
matrix A is irreducible if there is an integer k > 0 such that (Ak)ij # 0 for all i, j SN.

It is easy to show that BN(A) is tr-invariant and compact with the metric (4.1).
We call a sequence s BN(A) an orbit in BN(A). If A is irreducible, then for any
i, j 6 SN there is an orbit s BN(A) such that So and (trk (S))o j for some k > 0.
Moreover, the subshift of finite type (Bn(A), tr) has such properties as the Bernoulli
shift (BN, 0"). For example, there exist a countable infinity of periodic orbits, an
uncountable infinity of nonperiodic orbits, and a dense orbit. See Wiggins
[1988b, 2.2c] for the details.

Now we generalize the concept of the Bernoulli shift so that we can describe
chaotic dynamics of quasi-periodically forced oscillators.

Let R(O), 0 (01,’’’, 01) T be a rigid rotation through an angle ui in the 0
direction for i= 1,..., l:

(4.2) R(0) 0 + u,

where v (tq,. ., Vl)e TI. Let O c T be an/-dimensional invariant manifold for R,
i.e., R(O)=O. Define a set N(u) as follows" if seu(u), then s=
{. ., s_, so, s, .} where s (si, 6i) with s S and 4 e O, 7/, such that

(4.3) i+l-- Rv(ti

for i’. We also denote s={ --1, 0, 1,"" "} N(/) with s (s,, b) by (s, th)
with s {" -, s_, So, sl," "} and b {. ., th-1, bo, ba,. .}. Given the metric

(4.4) d(s, s’) d(s, s’) + [bo- thai,
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between sc= (s, ) and sc’=(s ’, ’), N(V) becomes a metric space. We can identify
=(s,) N(v) with (s, o) Bv x0, so that N(V)B X0. We define the shift
map r" N(V) - v(v) as

It is clear that is continuous in Ydv(v) with the metric (4.4). Moreover, u(v) is
compact if O is closed. Let M ={A(0) MNI 0(R)} be an /-parameter family of
transition matrices. For 0 19, let

Su(O)={iSul(A(O)),=l for some j Su}

and

S’(O)={jSu[(A(O))ij= 1 for some iSu}.

DEFINITION 4.3. We say that is consistent with R ifthe two following conditions
are satisfied:

(1) For any Su there are 0, 0’ 19 such that Su(0) and Sv(0’);
(2) SN(R(O))=S’(O) for any
DEFIYITION 4.4. Let be consistent with R, and let u(s, v) be a subset of

u(v) given by

(4, v)={=(s,)N(V)l(a(i))s,s,+,=l for all i}.

We call the pair (N(, V), cry) the generalized Bernoulli shift.
It is clear that v(, v) is tr-invariant. Let A(O) be independent of 0, i.e.,

A(O) A const. Then N(, V) BN(A) x O. Moreover, if19 is closed, then N(, v)
is compact. However, in general, N(s, v) may not be compact even if 19 is closed.
In fact, let 1 and 19= S1, and suppose that A(O) is not continuous but only right
continuous at 0 0o, and for some e > 0 there is a pair of integers i, j Su such that
(A(Oo))o=O and (A(0))0 1 for 0(0o-e, 0o). Let k=(sk, ), k= 1,2," ", be a
sequence of elements of N(, V) such that So i, s l=j, 0o e<ok<0o,andlimk_,
ok=0o. Then :k converges to an element =(g,) 3u(V) with fo 0o, but
3N(, V) since (A(0o)),o, =0. Thus, (, v) is not closed and hence not compact.

We call an element : N(, V) an orbit in IN(g, v). Let us denote

ak(o)=a(o)a(R(O)) a(Rk,-(O)), k= 1,2, .
DEFINITION 4.5. An /-parameter family of transition matrices

is called irreducible if for 0 19 there is an integer k > 0 such that

(Ak(o))O#O
for all i,j e S(O).

If is irreducible, then for any pair i,j Su(0) and some k > 0 there is an orbit
k k: YJu(, v) such that :o= (i, 0) and k=(tr())o=(j,R(O)). In order to describe

the dynamics of the generalized Bernoulli shift, the following definition will be useful.
J2DEFINITION 4.6. We say that a finite or infinite sequence {s}=l with s Su,

i=jl,’’’,j2, is admissible for N(, V) if there is a point 0 19 such that

(4.5) (A(R,,(O)))Sm+l#O, i=j,,. ,j2-1.

In particular, when sB is admissible for 1(s, v), we call the sequence s an
J2admissible orbit for (, v). We also say that a finite sequence {.i}=Jl with

is admissible for (, v) when {s J2 J2}i=, satisfies (4.5) and {}= satisfies (4.3).
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Example 4.1. Consider the case in which SN {1, 2}, 1, u 1 and O S1. Let
1 {A(0) MNI 0 S1} be given by

A(O)

0) for 0[0, 7r-l),

It is easy to show that 4 is irreducible. We also see that there is no periodic admissible
orbit. If :=(s, &)N(4, 1), then si=l or 2, depending on whether bi (=i+
bo mod 27r) [0, 7r) or not, for 7]. Hence, every orbit in N(S4, V) can be completely
determined by the value of &o, and is trivial.

Thus, we will require the following property for 4.
DEFINITION 4.7. An /-parameter family of transition matrices

={A(O)MN[OO}

is called nontrivial if card (SN(O)) >_-- 2 for any 0 O.
The dynamicsof the generalized Bernoulli shift (N(, V), cry) are similar to

those of the standard Bernoulli shift (BN, or) if is nontrivial and irreducible. The
generalized Bernoulli shift (N(4, U), r) may have

(1) a countable set of periodic admissible orbits,
(2) an uncountable set of nonperiodic admissible orbits,
(3) a dense admissible orbit in an adequate meaning, although this is not the case

in general (see Examples 4.1 and 4.4). We present two examples.
Example 4.2. Let A be an N x N irreducible transition matrix. Then, 4

{A(0) A] 0 O} is irreducible for any rigid rotation R, and nontrivial since SN(O)
SN for all 0O. Since s Bn is an admissible orbit for (, u) if and only if
s BN(A), there exist (1), (2), and (3), where "dense" means "dense in Bu(A)."

Example 4.3. Let the ith element of u have the form u 27r(p/qg) with a pair
of relatively prime integers p, qi for 1,. .,/. Then, R yields a rational flow in O
and there is an integer k such that Rk is an identical map. In particular, for any 0 O
there are k different points bo 0, (DI," )k-1 O with bi R()i_I), 1, , k 1,
and bo R(b_l). Suppose that 4 {A(0) MnlO O} be irreducible and nontrivial.
Let (zd, u) be a subset of n(M, u) given by

(M, u)={sr 3N(M, u)l,=O for some integer i}.

If ={}_(d, u), then : {:+g}_ (d, ku). Since Rg=R is the
identical map, *(,ku)=Bn(A(qb))x[I=_{qb}. Hence, every orbit in
B(Ae(ci)) is also an admissible orbit for n( ku). Since this statement holds for
b, i=0,..., k-1, and M is irreducible, there exist (1), (2), and (3) for 3(M, u),
where "dense" means "dense in the set of all admissible orbits for 3(d, u)."

We present an example which can be used as a model describing the stochastic
behavior in some quasi-periodically forced oscillator as shown in 5.
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Example 4.4. Let 1, u 3, and N 3. Let ag {A(0) MNI 0 S1} be given by

A(O)

0 1

0 1

1!t
1!/
11/1 1

1 1

for O

for 0

for 0 r-2, 27r-2

1,rr-3 U 2rr-3,cr-2

( 7)U 2rr-2,rr
We can easily show that ag is nontrivial and irreducible. Moreover, there is no periodic
admissible orbit except {..., 1, 1, 1,...}.

In general, the generalized Bernoulli shift (v(a, v), o-v) exhibits stochastic
behavior if ag is nontrivial and irreducible, like the standard Bernoulli shift (B,, tr):
suppose that ag is nontrivial and irreducible, and let 0 19 be fixed. Then there is an
integer k>0 such that for all i,jSN(O) there is an orbit sc 3rv(ag, v) with :o (i, 0)
and 7k (j, R k(0)). Let card (SN (0)) > 2, and let &v (0) {jr SN, 1, }.
Consider an orbit sc {s, 4} with So =jl and bo 0. Then, even though the values of
si and bi are known for all i<_-0, the value of Sk cannot be determined; it can be any
of jr, r 1," ", . Thus, if s is nontrivial and irreducible, then we cannot completely
predict the future (i> 0) for each orbit in the generalized Bernoulli shift from its past
(i <- 0), as in the Bernoulli shift.

5. Detection of chaos for diffeomorphisms. In this section we consider a C (r -> 2)
diffeomorphism f" R" x R" x T -" " T of the form

(5.1) f(x, y, 0) (gl(x, y, 0), g2(x, y, 0), R(0)), (x,y, 0)eN"xl’x Tt,
where gl" n m T

_
1", g2" ln ilm T -+ t" are C and R" T - T is a rigid

rotation with ve T (see (4.2)). The Poincar6 map P,i for (2.1) has the form (5.1) with
m n 1. We assume that f has a C normally hyperbolic invariant /-torus of
(1, , 1)-cycle - with C, n +/-dimensional stable manifold Ws(-), and m + l-
dimensional unstable manifold WU(). Furthermore, is assumed to be the graph
of a function z: Tl-+nm, i.e., -={(x,y, 0)eN" xN" x Tl (x, y) z( O), O T}.
These assumptions are satisfied for P, when e is sufficiently small.

We begin with a lemma concerning rigid rotations.
LEMMA 5.1. For any e > 0 there is an integer k > 0 such that

(5.2) IR(O)-O]<e for 0e T’.
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Proof. If for some integers k > k2,

R’(O)=Rk(O),

then we have

Rk’-k( O) O,

which implies (5.2) with k kl- k2. Let us assume that there is not a pair of integers
(kl, k2) such that (5.3) holds. Then, for 0e T fixed, RJ(O), jeT/ are different from
each other. The sequence {R(O),je7} consists of infinitely many points and hence
has an accumulation point since T is compact. Thus for any e < 0 there are two
integers kl > k2 such that

Since R is an area-preserving map, we obtain (5.2) with k kl- k2. l"i

Remark 5.1. Lemma 5.1 is a special case of Poincar6’s recurrence theorem (see
Abraham and Marsden [1978] or Arnold [1989]).

Remark 5.2. If the components of the frequency vector v are incommensurable,
i.e.,

(5.4) (, v) 2r7/ for ;l\{0},

then we have a stronger statement; for any e > 0 and 0, 0’ e Tl, there is an integer k > 0
such that

(5.5)

i.e., each orbit of R is dense in TI. See 3 of Cornfeld, Fomin, and Sinai [1982] for
a proof.

From Remark 5.2, we obtain the following.
LEMMA 5.2. Let 19 c T be an l-dimensional manifold. Then we have

(5.6)
j=0 j=0

Moreover, there is an integer No such that if N >-No, then for any integer jo,

N N

(5.7) U R+(19) U R-J+J(19)=_).
=0 =0

Proof. First, let us assume that v satisfies (5.4). It follows from Remark 5.2 that
we have (5.6) with = TI. Let c(O) be the/-dimensional cube with sides of length e

centered at 0. For N > 0 sufficiently large, 19 contains a cube c4/r(Oo) with 0o 19.
Let N cubes c2/N(O), j= 1,..., Nl, cover TI. From Remark 5.2 we see that there
exist integers k > 0, j- 1,. , Nl, such that

27r
N

Hence, letting No max kj, we obtain (5.7).
Next, let us assume that condition (5.4) does not hold. Then, by permuting the

components of v if necessary, v can be written as
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b,a b bwhere u =(Ul, ", Ulo) satisfies (5.4) with u= and l= la, and u (ub, Ulb)
has the form

pb qija qi
vj +27r--, i= 1,. .,

j= Pij Pi

with Pij, q0, Pi, qj e 7/, and both (pij, q0) and (p, q) are relatively prime. For 0 e Tl, we
write 0 (0", 0b), where 0 Tlo and 0b e Tlb. Let 7r denote the projection from
Tl= Tlo x Tlb upon Tlo. Let Po be the least common multiple for pi, 1,..., l, and
let

f
27rr

q +Or n(O) (0, 0)10 (0 0]o) + 0b0,
PO P

7ra(Rr(o)), (0g, 0oh) e O} r7/.0

Since the components of u" are incommensurable, there is an integer N such that for
any r ,

N N
O(R(Or))= (R(O))= TI.

=0 =0

On the other hand, for any j, r ,
qi+Ro(O)= (0", O)lo=q(o -0o)+2r 0o,

Po P

0- o 0)O(R (O)), (0o,

since 2rpoqi/Pi 0 mod 27r. Thus we have

0 T’., (0, Obo) 0}, r=l," ",po-1.

It is clear that

Po-
Or C U Oj for any r e 7/.

j=O

Hence, we have

Po-1

U R(O)= U g;J(O) U lr,
=0 =0 r=0

and

N Po- N Po-- Po--
U R(O)= U R-J(O) U l
=0 =0 r=O

Letting )= U o- Or and No N1 (Po-1), we have (5.6) and (5.7). F1

We now state the main theorem of this section. Let ro be the projection from
l" x I" x T upon TI.
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THEOREM 5.3. Suppose that WS(3-) and WU(3-) intersect transversely in an l-
dimensional manifold y with dim ro(y)= I. Then there exist an integer N>=2, an l-
dimensional manifold )c T1, and a nontrivial and irreducible l-parameter family of
transition matrices 1 {A( O) MN 0 )} such thatfor some k >- 1, fk has an invariant
set A on which it is topologically conjugate to the generalized Bernoulli shift
try N(M, kv)- Y3u (s, kv).

Proof The proof is similar to that of the Smale-Birkhoff homoclinic theorem (see
Smale [1963] and Newhouse [1980]).

Without loss of generality, we can assume that 3- is given by

3-= {(0, 0, 0)"" T’Io TI},

and that in a neighborhood U of 3-, WS(3-) and W"(3-) are locally straightened, i.e.,

and

W(3-) ("1 U= {(x, O, 0) U 0 6 Ti},

WU(3-) U= {(0, y, O) U[ 0 Tl}.

See Wiggins [1988b, pp. 322-325].
Let 0 Zro(y), and let

)= U R(O).
j--O0

From Lemma 5.2 we see that there is an integer No such that

No
U R((R)) 6.
j=O

Since is invariant by R,.,, N2 x is also invariant by f. Hence, we have only to consider
the restriction of f on R2x ), which is denoted by jT. Thus j7 is a C diffeomorphism
from R2x onto N2x. It is clear that -= {(x, y, 0)e 3-1 0e} is a normally hyper-
bolic invariant manifold for f. For j 0,. , No, let

and let

(R). R(O),

Since limv_]"3"c -, we can assume that 3’ is close to - and hence 3"c U.
Replacing 3’ with a subset of 3" if necessary, we can assume the following"
(H1) O is an open, simply connected, /-dimensional submanifold of Tl, and 3’ is the
graph of a C function x:O --> N", i.e.,

3’ {(X, 0, 0) Rn Xm X Tll x xr(0), 0 (R)}.

1-12) v I3 , 4, for e j.
It follows from (H1) that there are C functions x’Oj-N",j=O,..., No, such that

30 {(x, 0, 0)eN" xNm X TIx=x.(O), 0 e O}.
We also see that for any O< N’< No and O<=jr <= No, r= 1,’’., N’, the intersection
fq -’10jr is a nonempty open subset of if it is nonempty.
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Let IS cR be a closed n-disk such that Ds=IsxO is an n+/-dimensional

manifold in WS(-), and -, U=OoyjC(IS-olS)x). For 6>0 small, N=
{(x, y, 0) e N" x R x T x e Is, y e [-6, 6 ], 0 e } is a neighborhood ofD and contains- and Uo yj. See Fig. 4. If 6 is sufficiently small, then ]k(N) accumulates along
WU() when koe, as shown in Fig. 5. Hence, we can choose k large such that
N C? ]k(N) contains y, j 1, , No, and has No+ 2 connected components contain-
ing - or y, j 0, 1,..., No. Let us denote the connected component containing -by V1 and those containing 39 by V+2 for j =0,..., No. See Fig. 6.

FIG. 4. The set N.

//I /
///

FIG. 5. N, f(N), and f(N).

N

FIG. 6. Construction of V, 1, 2, 3.
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Let us set N No+ 2. For each 0 e , define a N x N transition matrix A(0) as
follows" if (1) i=j= 1, (2) i-1 and 0e R-1

k (Oj-2) for j _--> 2, (3) j 1 and 0 O,_2 for
i>-2, or (4) 0 e Oi_2f3 R(Oj_2) for i,j>-2, then

(A(O))ij= l,

and, otherwise,

(A(O)) o =0.

We notice that if 1, No 1, S1, v 1, k 3, and O (0, (7/4)zr), then we have
the one parameter family of transition matrices M in Example 4.4. Since

SN(O)={2<--i<--_N[ 0 Oi_2} {1}

and

S(0) ={2_-<j < N] 0 R-’
we have SN(Rk(O))=S’N(O) and card (SN(O))>--2 for any 0eO. Hence, the /-para-
meter family of transition matrices M {A(0) eM 0 e } is consistent with Rk and
nontrivial. Let SN(0) {1,jl jN’} for 0 e ) fixed. Since Oj,.. q,,-- ’--10jr_2( 0)
is a nonempty open subset of by (HI), it follows from Lemma 5.1 that there is an
integer K > 0 such that R :(0’) Oil.. q,,. Thus,

(AK(o))ij>=(A(O))il(AK-2(Rk,(O)))ll(A(R,)-’(O)))lj>= 1,

for i,j 1,jl,""" ,iN’, and hence M is also irreducible.
Let

V,o={(x, y, 0)eN" xN’ x T* (x, y, 0) V}, for 0 O and SN (0).

By (H2) we can choose S small such that V,o V,0= 4 for i#jeSN(O). For any
admissible sequence {_j, , )} for Nn(M, kv), let

J
(5.8) V_j...j N -ik( Vi)"

i=-j

Noting (H1), we can prove that there are constants C > 0 and h > 1 such that Ve_...e
is an m+ n-dimensional ball of diameter less than CA -j, as in the proof of the
Smale-Birkhoff homoclinic theorem (e.g., Newhouse [1980]). Hence, for C e
NIn(M, kv), Ve is a single point. Let

A= nf] v,
j7/

We define a map h" NN(s, kv)-)A as

h(s) V.
Since V V, for : # ’ N(M, kv), h is a 1-1 map of N(M, k) onto A. It follows
from (5.8) that h and h -1 are continuous when N(, /]) has the metric (4.4). Thus,
h is a homeomorphism. Furthermore, f(h()) V for all j, and hence

]Jk(fk(h())) V+ V(crk()).
Thus fk(h())= h(O’k,()) SO that h conjugates (r with f[. This completes the
proof. [3
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Remark 5.3. Suppose that W (3-,i) and W (3-,i) intersect transversely in a torus
of (1, , 1)-cycle satisfying (H1). Then we can take N 2 in Theorem 5.3. Moreover,

A(O)=A=( 11 11) for all 0Tl,

and /32( b’) B2 T. Thus, the dynamics off on A can be described by the standard
Bernoulli shift, as stated in Theorem 3.1.

Remark 5.4. The Smale-Birkhoff homoclinic theorem was stated in different forms
in Smale [1963], Moser [1973, 3], and Guckenheimer and Holmes [1983, 5]. Hence,
its generalization to a class of maps (5.1) can have some different versions. In Theorem
5.3 we adopted the formulation corresponding to that of Smale [1963].

6. Detection of chaos in quasi-periodically forced oscillators. We now return to the
Poincar6 map P.i" - : of the quasi-periodically forced oscillator (2.1).

Suppose that (M1) and (M2) are satisfied at 0i Wto, i= 3ito+ 0-o mod 2rr. Then,
the zero of the Melnikov function M can be continued to an 1-dimensional manifold
in T1, as shown in 2. Moreover, the stable and unstable manifolds WS(W.,,.), W (3-,,.)
of the normally hyperbolic invariant (l-1)-torus 3-, intersect transversely in an
l-1-dimensional manifold %,i containing a point near

(6.1) (x, 0’)= (go(-to),

We can denote %,i by

(6.2) y,={o(-t),)[t=h-o(s),Oj=(s)mod2zr, s}+(e),
where /" -* R,, 0-<_j(# i)<-1 are C and satisfy h-o(0)- to and /(0)- 0jo with some
neighborhood U of 0 in Rl-1. Moreover, (M1) and (M2) are satisfied at 0 wh--o(S),
0j hj (s) + who(s) mod 2 zr. Thus we have

(6.3)
0 M((to, 0o))

O

/(0)+,
0 0

/’(0)=0,7 M(&to, 0o))

r-- 1,..., 1-1,

where s (Sl,- Sl-1) and

O(t, O)--(Ol +O)lt, Oi_l +oJi_lt, tOit Oi+l +O),+lt, Ol+OJlt).

From (6.2) we see that y, is tangent to 1-1 vectors

o
tre,

0 o(O)JDH(X(-to)), --OSr hi-l(0),
OSr

OSrO h+l(0)", "’’osrO/(0))+(e), r=l,...,l-1,

at a point near (6.1). Hence, if

(6.4) O__Ot M((to, 0o))
=1

co M((to, 0o)) # O,

then dim rro(y,)= 1-1 since DH((-to))#O holds and (6.3) does not hold when
Oho(O)/OSr 0 and Oh(O)/OSr =0 for all j # i.

Noting that (6.4) implies (M2) at 0 0(to, 0o) and applying Theorem 5.3 to the
Poincar6 map P,i of (2.1), we obtain the following theorem.
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THEOREM 6.1. Suppose that there exists a point 0o T satisfying (M1) and

(M3) . toj- M( Oo) O.
j=l

Then for some k > 1 pk has an invariant set A on which it is topologically conjugate to,i

the generalized Bernoulli shift on a finite set of symbols.
Remark 6.1. For the existence of chaotic solutions in almost periodically forced

systems, Scheurle [1986] obtained conditions similar to those of Theorem 6.1, using
a functional analytic method. From the proof of Theorem 5.3 we see that our result
also gives a geometrical interpretation of his result, although it is limited to quasi-
periodically forced systems. See Theorem A.2 of Appendix A.

7. An illustrative example. We consider a two-frequency perturbation of Duffing’s
equation

(7.1)
O1 0.)1

)) X-- X -- e(’y COS 01 -" 72 COS 02 6y),

b2-- (’027

where 6, yi, toi>0, i= 1, 2, and 0< e<< 1. The phase space of (7.1) is R2x T2. See
Yagasaki [1991a] for more detailed analyses. Chaotic motions near resonant tori are
also described there.

When e 0, the (x, y)-component of (7.1) reduces to a planar Hamiltonian system

2=y, --2--23,
which has a hyperbolic saddle at (0, 0) and a symmetric pair of homoclinic orbits

(7.2) (x(t), y (t)) + (x/ sech t, -x/ sech tanh t).

By substituting (7.2) into (2.3) and integrating the resulting equations, the Melnikov
functions M(t) for (7.2) become

(7.3)
M+(01, 02)= +x/’n’tOlyl sech (-’2"-) sin01

(_) 4
+/-x/rw2",/2 sech sin 02 6.

We see that there exists a point (01o, 020) satisfying (M1) and (M3) if

(7.4) 6 < to1Yl sech + to22 sech
4

By Theorem 6.1, (7.4) gives the region in parameter space (6, ")/1, ’)/2, tO1, 0-)2) where
chaos may occur. Note that (7.4) is also the necessary condition for (M1) and (M2)
to hold. Thus, in this example, transverse intersection between the stable and unstable
manifolds of a normally hyperbolic invariant torus implies the existence of chaotic
dynamics.

We next apply the result of Wiggins [1988b] (cf. Theorem 3.2). Suppose that

3x/r (__!)(7.5) 6 < tOl Yl sech o-)22 seth
4

Note that if (7.5) holds, then (7.4) also holds. Moreover, let us assume that
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Then

1
cosh / 7rto171 3 "" 092 72 sech < 1.

Hence, we can define a periodic function hi(s), given by

h(s) sin- 1
cosh 3-7sech sin s

Here the range of sin- is [-/2, /2]. We see that h(s) satisfies the hypothesis of
Theorem 3.2 when i= 1. Similarly, if

then we can define a periodic Nnction h(s), given by

3 ’’ sech sins

which satisfies the hypothesis of Theorem 3.2 when i= 2.
On the other hand, let us assume that (7.4) holds but (7.5) does not. Then

1 < cosh
w% 3 jTj sech < 1, 1, 2,

where if 1 then j 2 and otherwise j 1, and we set

sech
11 3

where the range of cos-1 is [0, 7r]. Let

h(s) al sin s +-
2’

and let

h’(s)
+/-zr- h2(h(s)), s ,- Tr

Then the zero set of M+/- is given by

7"0 {(01, 02) T2I 01 h(s), 02 h(s), s (0, 27r]}.

This is a special case of (3.5). Hence, we can only take a 1-torus of 0-cycle as the
transverse homoclinic manifold for P.I and P,2. Thus (7.5) represents a condition for
the existence of chaos given by Theorem 3.2.

Figure 7 shows the regions given by (7.4) and (7.5) in 8 71 plane for fixed 72, to1,

and to2. In this figure

’1 ’)/2 cosh sech
(.o

4
7./’W2)’2 sech
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Tt/T1
prosont

;

7Moyor
W2 and So 1’ s

5/5
2

FIG. 7. Regions in 6- 2,, planefor the existence of chaos in (7.1), with fixed 2’2, 0)1, and 0) (a) 0)1 > 0)2"

(b) 0), <

and

1
o)

We also show the regions given by the result of Scheurle [1986] and Meyer and Sell
[1989] (see Appendix A). Note that Scheurle [1986] only provided a condition for the
existence of random-like solutions (see Remarks A.1), although his condition gives
the same regions as ours.

We close this paper with a remark on the extension of our result to a more general
class of systems with frequencies depending on the state variables.

Consider systems of the form

(7.6)
:i JDH(x) + eg(x, 0),

O=ro+eG(x, 0), (x, 0)(R2X T’,
where G:R2x TI--) R are C and 0 < e << 1. We assume that condition (A1) of 2 is
satisfied, so that there exists a normally hyperbolic invariant torus T To+ if(e) whose
stable and unstable manifolds W (T), W"(T) are close to the unperturbed homoclinic
manifold F x T1. In this case, T may be subjected to phase locking.

Let us assume that the invariant torus T is not subjected to phase locking. If G
is independent of x, then we can show that transverse intersection between the stable
and unstable manifolds of the invariant torus yields chaotic dynamics in (7.6), modify-
ing the arguments given in 5. It is natural to conjecture that this is the case in the
general systems. However, if T is subjected to phase locking, then we cannot immedi-
ately determine whether or not chaotic dynamics may occur since we do not have
statements similar to those of Lemma 5.2 in general, and hence such arguments as
given in 5 do not apply. In a forthcoming paper (Yagasaki 1991b]) we will consider
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a perturbation of Duffing’s equation with two frequencies depending on the state
variables and perform the necessary analyses to detect the existence of chaos.

Appendix A. Other versions of Melnikov’s method. Scheurle 1986] and Meyer and
Sell [1989] extended Melnikov’s method to study almost periodically forced systems.
In this appendix we outline their results in the context of quasi-periodically forced
oscillators.

Let Z be the zero set of the Melnikov function M, i.e.,

Z={O Tt M(O)=O}.

Suppose that Z is nonempty and

d
M(wt + 0)l,=o oo M(O) # O,(A.1) d-

for all 0 Z. Then R2 x Z is a global cross section for the flow of (2.1), and the Poincar6
map "2 x Z R2 Z is defined as follows"

* (x(0), 0o) --> (x(T), rt(0o)),

where (x(t), wt+Oo) is a solution of (2.1),

q Z --> Z, Oo -> oT Oo + Oo

and T(0) > 0 is the least time > 0 such that wt + 0 Z. We have the following theorem.
THEOREM A.1. Suppose that Z is nonempty and (A.1) holds for all 0 Z Then for

e sufficiently small, has an invariant set l-l. Moreover, for some integer n >= 2 and
irreducible transient matrix A, la is topologically conjugate to the product map cr

rl B,(A) x Z-. B,(A) x Z.
Proof. See Meyer and Sell [1989].
As stated in 2, (2.1) has a normally hyperbolic invariant /-torus T near To

{Xo} TI. Let (xo(t), Oo(t)) be an orbit on T such that 0(0) 0o. Even though not
every but only some zeros ofM satisfy (A.1), (2.1) has random-like solutions as follows.

THEOREM A.2. Suppose that there exists a zero 0- 0o T ofM satisfying (A.1).
Then, for e sufficiently small, (2.1) has a solution (o( t), Oo( t)) with ,o( t) xo( t) such
that

Io( t)- xo( t)l --> o as

Moreover, there exist positive constants T T(e), T T(e), and )t X (e) such that for
any interval Io with length and any sequence of real numbers ’k >- 0 (k 7), there
exists a sequence of real numbers tk with to Io and

T+ Tk k tk_

such that (2.1) has a unique solution (yo(t), Oo(t)) satisfying

(A.2)

for tk-,, tk] and

(A.3)

lyo(t) X( at- t- tk-,)l <: e,

lyo(t)-xo(t)l<:e,

for tk-1 q- T, k ]. Here we may take z az for some I.
Proof The proof follows from Remark 2.9 and Theorem 2.11 of Scheurle 1986].

Note that the hypothesis of Theorem A.2 is equivalent to that of Theorem 6.1.
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Remark A.1. From the proof of Theorem 2.11 of Scheurle [1986], we can take T
and T such that o(t) stays outside an e-neighborhood of Xo within an interval
I c [, + T]. Hence, from (A.2) and (A.3), we see that the solution yo(t) stays inside
a neighborhood U of Xo for some time, leaves U and then reaches U again, as o(t)
does. These excursions seem to occur quite randomly since ’k -> 0, k , can be chosen
arbitrarily. This implies that y0(t) represents a random-like solution. Thus Theorem
A.2 gives a condition for the existence of chaotic solutions. However, it has nothing
to say about the existence of an invariant set on which the dynamics are characterized
by Bernoulli shift or its generalization, in contrast with Theorems 3.2, 6.1, and A.1.

Now we apply Theorem A.1 to the quasi-periodically forced Duffing oscillator
(7.1). Note that from Theorem A.2 we have (7.4) as a condition for the existence of
chaotic solutions in (7.1).

Let

4
toiyi sech i= 1,2.

From (7.3), the zero (01o, 020) of the Melnikov functions M+/- is given by

(A.4) 6 +A1 sin 01o + A2 sin 020.

In this example, (A. 1) becomes

tolA1 cos 01o+ to2A2 cos 020 O.

Let us assume that there exists a point (01o, 020) satisfying (A.4) and

(A.5) WlA1 cos 01o+ wzA2 cos 020 =0.

Then the hypothesis of Theorem A.1 does not hold, although the zero set of M+ is
nonempty. Obviously, M: has a zero if and only if

6-Al+A2
From (A.4) and (A.5), we obtain

2 2 2 2 2(A.6a) (to2- to2)A1 sin2 010 + 26wA1 sin 010 WlA1 + w232 6-t022 O,
2 2 2 2__ 2 2(A.6b) (to-w)A2sin2 02o+26wA2sin 02o+tolAl-w2A2 6 to1=0.

We see that (A.6) has a solution (01o, 020) if and only if

1Al-tO2A2)+ 60,)ltO2 - 0

and at least one of the following conditions holds:

(i) 6>=max((to-w2)A,/toz,(w-to)A2/w) and

(ii) 6<(tOl-to)al/tO and a-a2<-6<-al+a2,

(iii) 6<(to-to)a2/to2 and A2-A<6<AI+A2
Hence, the hypothesis of Theorem A.1 is satisfied if and only if

(A.7a) 62 < 2 2 2 2WlAl-w2A2),
0.)1o) 2

(A.7b) max ((Wl-wz)al/w2, (to22-to)a2/wZl)<-6<lA-A21,
(A.7c) 6<min ((w-toZ)a,/w,Al-a2),
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or

(A.7d) 8 <min ((w 2 2-wl)A2/wl,A2-A1).
Thus, if at least one of conditions (A.7a-d) holds, then the Poincar6 map "2Z-
2X Z of (7.1) has a chaotic invariant set 1 stated in Theorem A.1. When 6 0, (A.7)
becomes

(A.8a) AI/A> max (w2/wl, 1),
or

(A.Sb) al/a <min (w/w, 1),
which is the same condition as given for the case of 6 0 in Meyer and Sell [1989].
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HOMOCLINIC BIFURCATION TO A TRANSITIVE ATTRACTOR
OF LORENZ TYPE, II*

CLARK ROBINSONt

Abstract. In this paper it is proven that there is a codimension two bifurcation of a double
homoclinic connection of a fixed point with a resonance condition among the eigenvalues to a transitive
attractor that is like that of the geometric model of the Lorenz equations. The two key parameters
are the variation of the eigenvalues from resonance and the amount that the homoclinic connection is
broken. Because of the need to work near resonance of two of the eigenvalues, one of the key steps in
the proof is to calculate the Poincard-Dulac map past a fixed point in this situation. Also indicated
is how bifurcation is realized for a specific cubic differential equation introduced by Rychlik, which
is closely related to the Lorenz equations.

Key words, attractor, Lorenz, homoclinic bifurcation
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1. Statement of main theorem. In our previous paper [8], following the work
of Rychlik [10], we proved that there is a homoclinic bifurcation to a transitive attrac-
tor. We also discussed the connection with the Lorenz equations and the geometric
Lorenz model. In this paper, we reconsider this same theorem, improve the proof
of the Poincard-Dulac map past the fixed point, and emphasize the fact that it is a
codimension two bifurcation.

As discussed in 3, both Rychlik and Shilnikov have discussed a bifurcation from
a double homoclinic bifurcation to an attractor of Lorenz type, but the assumptions
on the eigenvalues of the fixed point and the transversality of the stable and unstable
manifolds from which they bifurcate is different than the situation considered in this
paper. See [1], [11], and [10I.

We start by giving the general assumptions that the parameter must satisfy at
the bifurcation value, (A0)-(A5). Then, rather than give conditions that a curve of
parameter values must satisfy as in the earlier paper, we describe the part of parameter
space near the bifurcation value that has an attractor. This description is given in
terms of two key unfolding parameters. In 3, we will verify the assumptions for the
cubic equations in R3 that Rychlik considered.

The zeroth assumption introduces the general assumptions and notation on the
the symmetry about the z-axis, and the eigenvalues and eigenvectors for the fixed
point at the origin. In this paper we only consider the case when the equations have
a symmetry under reflection in the z-axis, (x, y, z) --, (-x,-y, z). In our previous
paper, we considered one type of nonsymmetric equations. The general situation for
nonsymmetric equations that allows this type of bifurcation has yet to be determined.
Assumptions (A1)-(A5) give the conditions at the bifurcation parameter value r/-- /0.

(A0) We consider a Cr vector field on R3 for r _> 2, X, which depends on
parameters } with a fixed point at the origin, Q (0, 0, 0), for all parameter values.
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We assume that the vector field is taken to itself under the action of the reflection in
the z-axis, (x, y, z) -- (-x,-y, z). Further, we assume that the eigenvalues of DX(Q)
are all real with Ass(r/) < As(r/) < 0 < A(r/), and with respective eigenvectors vss, vs,
and v, and that vs (0, 0, 1)r is along the axis of symmetry.

With these assumptions, there are several invariant manifolds for the fixed point
at the origin. We denote the one-dimensional unstable manifold tangent to vu by
Wu(Q, r/), and the two-dimensional stable manifold tangent to vs and vss by Ws(Q, r/).
Next, there is a strong stable manifold tangent to vss, which we denote by Wss(Q, r/).
This latter manifold is made up of points that converge to Q at an asymptotic rate
determined by the eigenvalue Ass: All of these manifolds are Cr if the vector field is
Cr, and are even real analytic if the vector field is real analytic. Finally, there is a
two-dimensional manifold tangent to the two most expanding directions, vu and vs,
which we denote by Ws(Q, r/). This manifold is local in the stable direction but can be
extended along the unstable manifold by flowing forward in time. We call this the weak
unstable manifold even though it is not expanding in all directions. This manifold is
at least C (and C2 with assumption(A3) on the dominance of the contraction toward
Wus (Q, r/) given by ess, in comparison with the greatest contraction within Ws(Q, r/)
given by e8). With this notation we can make the second assumption about the
existence of a homoclinic orbit. Because we are considering equations with symmetry,
if one branch of Wu(Q, r/0) is homoclinic, it follows that both sides are homoclinic.
Thus. within equations with symmetry it is only a codimension one condition to have
a double homoclinic connection.

(A1) There is a bifurcation parameter value r/0 for which there is a double ho-
moclinic connection with the unstable manifold of Q contained in the stable manifold
but outside the strong stable manifold, F =_ Wu(Q, r/0) c Ws (Q, r/0) \ Wss (Q, r/0).
Also, because of the symmetry, both branches of Wu(Q, r/0) are contained in the same
component of Ws (Q, r/0) \ Wss (Q, r/0).

(A2) For r/0, the two-dimensional weak unstable manifold Wus(Q, r/o) is trans-
verse to the two-dimensional stable manifold Ws(Q, r/0) along F. This transversality,
together with the fact that F c Ws (Q, r/0) \ Wss (Q, r/0), implies that Wus (Q, r/0) is
tangent to itself at Q (when it leaves and returns to Q). Let Pro(q) TqWus(Q, r/o)
for q E F. If the bundle {Pro (q) q E F} is orientable along F, we set 1, and if it
is nonorientable we set -1. (The orientability is the same over both branches of
F by the symmetry of the equations.)

This condition is generically satisfied and so does not add a codimension to the
bifurcation.

(A3) We assume that for r/0 the strong stable eigenvalue dominates the other two
eigenvalues in the sense that Ass (r/0) As (r/0) + A(r/0) < 0 and Ass (r/o) 2As (r/0) < 0.

This is an open condition and does not add a codimension to the bifurcation. The
second inequality in (A3) is what assures that the manifold Wus(Q, r/0) is C2. It is
also redundant with the following resonance assumption (but sometimes we want to
assume (A3), but not necessarily assume (Azl)).

(A4) There is a one-to-one resonance between the unstable and weak stable eigen-
values for r/0" Au(r/0) + As(r/0) 0, so 1 -[As(r/0)l/Au(r/0) 0.

This resonance condition is a codimension one and gives the second codimension
that the bifurcation parameter must satisfy. The final assumption on the bifurcation
parameter is the extent to which area is changed within the P(q) directions ("within
the attractor directions") during one loop around F.
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(Ah) For this assumption fix ] v]0. Let (Pro(q) q E r} be the continuous
bundle of planes given in (A2). Let q(t) be a homoclinic orbit along one of the two
branches of F, and let div2(t) be the rate of change of area within the plane field
Pvo(q(t)). Define Cvo > 0 by

h div2(q(t))dt =_ log(Cvo ).

We assume that the change of area Cv0 < 2. (Note, because the equations are sym-
metric, the integral is independent of which branch of F is used. Note also that if
Au(r]0) / As(y0) 0, then the integral would be =i=cx) and Cvo oc or 0.)

It turns out that Cvo has meaning in terms of a one-dimensional Poincar( map,
fro, from making one trip near one of the branches of F. We give a few definitions to
explain this fact more fully and which will also be used in the final assumption and
statement of the theorem. Let E be a fixed transversal to F out a short distance along
the local stable manifold from Q. Points in a neighborhood V of F on E \ Ws(Q, )
will return to E, defining a Poincar6 map

In the proof, it is shown that assumption (A3) implies that there is an invariant
continuous bundle of strong stable directions over F, (E(q) q e F} with E(Q)
(vss>. These conditions are open so this bundle exists not only over F for 0 but
also over a neighborhood of F for nearby . The stable manifold theory then implies
that there is an invariant strong stable foliation for these nearby . Each leaf of the
strong stable manifold of a point is one-dimensional, but if we take the union of these
for points on the same orbit we get two-dimensional strong stable manifolds of orbits
that are transverse to E. Projection along the leaves of the strong stable manifolds
of orbits defines a map rv E -- 511, where 5] can either be thought of as the
quotient space or a one-dimensional manifold in 5] passing through F and transverse
to the strong stable foliation. This projection can be used to define a one-dimensional
map fv yl \ (0} C E -- E by fv(%w) rvFv(w), where Y %(Y). We
use coordinates on E1 so that zero corresponds to the point on W(Q,), and the
symmetry gives fv(-u)--fv(u).

Let. a(r/) be the signed distance, as measured in E1 of the negative branch of
W(Q, ) from W(Q, ). This is equivalent to defining

a(/) limsup fv(u).
u<O,u--O

Thus the negative branch of W(Q,) intersects the positive side of E if a(?) > 0,
and it intersects the negative side if a() < 0. Because of the symmetry, and the
distance of the positive branch of W(Q, ) from W(Q, ) is -a(?). The interval
In [-la()l, la()l] corresponds to the interval in E between the intersections of the
two branches of W(Q, ) with the transversal after projecting out the strong stable
direction. With these definitions, Lemma 1 proves that fo (0) Cvo. The fact that
Cvo < 2 means there is hope for fv([0, la()l] c In. See Lemma 2 for details.

Let b(/) 1 -]As(r/)/A(/)]. This quantity measures the extent to which the
two eigenvalues are no longer in resonance.

Next, we discuss the relationship between the unfolding parameters a(r/) and b(/)
that must be satisfied as the homoclinic connection is broken in order for there to be
an attractor. For a small neighborhood Af of /0 in parameter space, let

Af’ { e a() > O, 0 < f,(a())

_
la()l, b() _> O, If,(+/-a(/))l

_
2/2}.
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Fig. 1. Graph of the allowable ran9e of b() versus aO?). (a) Graph for Cno 1.6. (Similar

ranges are valid for 21/2 < Cno < 2.) (b) Graph for Cno 1. (Similar ranges are valid for
0 < Cno < 21/2. This is the case we prove occurs for equations (R’) and (Rob).)

Lemma 2 proves that the boundary of Af’ is contained in OAf, 9’I, and 9’2, where the
latter two are given by

9’1 {7 e fv(a(w)) ua(w), b(w) > 0},
b( 7) 0 if Cvo < 21/2

if Cvo > 21/2.

The form of 9’2 when Cvo 21/2 is some combination of the two forms above. See Fig.
1. The condition related to 9’2 implies that for W E AP If(u)l > 21/2 for all points
u E interior Iv. This latter condition is what is used to imply that the attractor is
transitive.

In order to insure that AP q} and 70 closure Aft, we need to make the following
assumption on the ability to vary the parameters.

(A6) We assume that the parameter space for W is large enough so that a(w) and
b(w) can vary independently for W near

Finally, we can state the main result.
THEOREM 1. Assume that vector field in R3, depending on a parameter is C2

and satisfies the above assumptions (A0)-(A6). Then, there is a neighborhood Afo c Af
in parameter space such that Afo g AP , 7o closure Af, and for Afo N AP the
flow for has a topologically transitive attractor. The two pieces 9"1 and 9"2 of the
boundary of Afo AP satisfy the following equations:

7" log(2/Cno limsup{[(b(w)log(l/la(w)l)] W ---, wo, w e 9’1),
liminf{[(b(7)log(1/la07)l)] 7 70, 7 9’2} log(21/2/Cvo)

9’2" b(7) 0
if Cvo > 21/2

if Cvo < 21/2.

If the value of u is 1 (respectively, -1), then the attractor is orientable (respectively,
nonorientable), and the attractor appears for aO? positive (respectively, negative),
i.e., it appears before (respectively, after) the unstable manifold crosses over the stable
manifold. If the vector field is C3, then the resulting one-dimensional Poincard map

fv has an ergodic invariant measure with support equal to the whole interval Iv and
which is equivalent to Lebesgue on Iv.

2. Proof of Theorem 1. Throughout this section, we assume that the system
satisfies assumptions (A0)-(A3).
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The first step is to prove the existence of a C1+ for some 0 < # < 1 strong
stable foliation in a neighborhood of the homoclinic connection for a perturbation of
the flow. (Here C1+ means that the first derivative is /z-Hhlder.) The details of
this argument are carried out in [8] and follow the ideas of the earlier papers [6] and
[7]. The sketch of the proof is as follows. The existence of the continuous bundle
of planes {Pn0 (q) q E F} can be used to show the existence of a continuous strong
stable bundle by using cones that are complementary to the Pno(q). In fact, since
a trajectory in a small neighborhood of F spends an arbitrarily large proportion of
its time in a neighborhood of the fixed point where the eigenvalues give the desired
estimates, it is possible to prove the existence of a C1+ strong stable bundle, E88,
in a neighborhood of the homoclinic connection. These conditions are open, so for a
small perturbation such a strong stable bundle persists in this open set of phase space.

Then by stable manifold theory, there is a C1+ foliation whose tangent lines
are given by these strong stable bundles. See [6], which uses [3, Whm. 4.8]. A strong
stable leaf or manifold at a point 0 of radius r, W8(0, /) is characterized as being
the points within distance r such that the distance between the trajectories for
and 0 at time t converges to zero at an exponential rate of almost exp(tA).

Once we know that the strong stable manifolds form a C1+ foliation, we can
form the strong stable manifolds of orbits by taking the union of the strong stable
manifolds of points along an orbit:

Il/"rss’rbit(0, ?’/) (-J{WrSS(, (0,) for r < < }.

The tangent space to ll/’,,rSS’rbit (0, ?’/) at 0 is spanned by the strong stable bundle E
at 0 and the vector field Xv(0). Thus, these tangent spaces are C+ away from Q.
This implies that

As a consequence of (A1), the value of 1 (respectively, -1) if the
Poincar(! map Fv preserves (respectively, reverses) the orientation of the strong stable
bundle. Hence, 1 (respectively -1) if fv preserves (respectively, reverses) the
orientation within 5] 1, so fn is increasing (respectively, decreasing). In terms of the
flow, if 1, the "sheets within the attractor" return with either no twist or at least
multiples of full twists, so the same side is up. On the other hand, if -1, they
return with a half twist plus some multiple of full twists, so the sides are reversed.

We turn now to analyzing the Poincar( map for the flow. We need to find the
lowest-order terms for f and f in order to show that we have an invariant set and
an expansion on it. In the two-dimensional case, if the flow is linearized near a saddle
fixed point, then the Poincar map past the fixed points is given by g(u) CuE,
where E -IA8l/Au. In our present situation, we reduce to the two-dimensional case
by projecting along the strong stable foliation and use the weaker stable and unstable
directions near the fixed point. This quotient space can be thought of as projection
onto the invariant surface tangent to (v, v) at Q. The resulting one-dimensional
Poincard map past the fixed point has +CuE as the lowest-order terms, and the
following lemma makes this precise.

LEMMA 1. Assume (A0)-(A3) are satisfied. Let E Ev IAs(rl)l/A(l) 1-
b(). Let J C 1 be a fixed small interval about zero. For r in a small neighborhood of
rio, the induced one-dimensional Poincard map fv J\ (0} c 1

__
1 has continuous

derivative on J \ (0}, and fv and f have the following form:

fn(u) (-a(rl) +  CnlulE)sign(u) +
.E,C,I I -I +
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(b)
F,G. 2. Graph o/fT. (a) u= 1, a(r)=0.2, E= , andC= 1. (b) u=-l, a(r/) =-0.2,
2E -, and C l.

with u =h l, depending on whether the strong stable bundle is orientable or not,
Cvo >_ 0 is given by the integral in (A5), and Cv depending continuously on . The
remainder terms uniformly go to zero when divided by the terms indicated as u goes
to zero uniformly in . See Fig. 2. Note that .for o, fno(U) uCnou + o([ul), and
f(u) uCno + o(lu]) so fo(0) exists and equals uCno. Also, if En <_ 1 (e.g., .for
6 Af’), then the branches of (/-l)’(u) have gSlder extensions at fn(O:).

Remark 1. The proof of this lemma also works in the nonsymmetric case. The
delicate part of the argument about the Poincar4-Dulac map past the fixed point
is the same. The part of the return map outside the neighborhood depends on the
branch of the unstable manifold that is followed. Therefore, the form of the map is

+  /C +lulE) + o(lulE

+  -C lulE) + o(lul E)
for u > 0,
foru <0,

where a+(), +, and C all depend on whether u is positive or negative.
Remark 2. There are several ways to prove this lemma under a variety of more

or less restrictive hypothesis. In [8], an elementary but messy proof was given. The
equations are normalized near the fixed point with coordinates u in the unstable
direction, v in the strong stable direction, and z in the weaker stable direction. The
variable p uv, which is introduced, then satisfies the scalar equation

D AnP + A2p2 -5... -5 Ap,
where An Au(/) + As(). It is then necessary to prove the expansion of the solution
p(T) with initial condition p0 for a time T --A log IP0}, which are uniformly valid
for An > 0. (This value of T is the time it takes to flow past the fixed point to a
second transversal.) The method used only obtained estimates on an interval of initial
conditions in state space whose length decreases as the parameter b(r/) 1 En goes
to zero. A better proof of this general type was done earlier by Roussarie [9, Thm. F].
He obtained a higher-order expansion and showed that it was valid on an interval of
uniform size as the parameter varies, although it involves x log(x) terms which go to
zero slowly in the position variable x. We make further comments below about how to
use his theorem to obtain our result. Finally, it is possible to prove the lemma by Cl+a

linearizing within an invariant two-dimensional surface near the fixed point. Hartman
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showed that this was possible in two dimensions even with resonance. This proof is
also valid on an interval of fixed size and is more in keeping with other arguments
used in the proof of the main theorem. We give details of this proof below. We should
mention that both C. Chicone and C. Pugh suggested using this approach.

Proof using Hartman’s linearization. We want to prove that the one-dimensional
Poincar map is C1. The two-dimensional Poincar(! map Fv can be split into the
part Gu past Q from 5] to a second transversal S, and the part Hv from S back to
5]. Since there is a bounded amount of time for the trajectory to pass from S back
to ], Hv is C2. All that remains to check is the form of Gv past Q. Hartman’s
linearization proof works by constructing two invariant C1 foliations in the stable and
unstable directions. The difficulty is that the unstable foliation can only be shown
to be CO in the directions transverse to the leaves if we consider the flow in three
dimensions. To avoid this difficulty, we show there is an invariant two-dimensional
manifold W8(Q, 1) in the weak stable and unstable directions, and we show that the
foliations are C1+/ when restricted to this two-dimensional manifold. The proof of
this differentiability is very similar to the one we used above to get the existence of
the strong stable foliation. The difference is that everything must be restricted to
Wus(Q, rl) in order for the estimates to be true. The estimates for one-dimensional
Poincar( map gu is then determined using the linearization of the flow on Wus(Q,
using these two foliations. Then f(u) rvH o Gv(u).

The limit of fv(u) as u approaches zero from below (zero is the point that corre-
sponds to the stable manifold) is a() because r,Hv takes the negative branch of the
unstable manifold to a().

By (A3), A()- (2+()As() < 0 for small a > 0 and /near r0. By the invariant
manifold theorem of [4], there is a C2+a manifold Wus(Q, vl) tangent to the vu and vs
directions at Q. Its tangent space Eu8 is C+a. Thus the derivative of the time one
map of the flow D is C+a when restricted to Eus[Wus(Q, rl).

Turning to the invariant subbundles, if fl is chosen with 0 </ <_ a and As(/0)
/Au(/0) < 0, then there is a C1+ invariant subbundle Es C Eus[Wus(Q, 1) for /near
T0. The reason this is true is that D-1 contracts toward E within E by a factor
of almost exp(A(r/0)- As(y0)). The Lipschitz constant of is about exp(A(r/0)).
To prove the bundle is C1+/, the results of [4] say we need the product of the first of
these two numbers times the (1 +/) power of the second has to be less than one, so
0 > As(/0) Au(r0) + (1 + f)Au(r/0). Thus in a neighborhood of Q we will have the
correct domination of the contraction rate.

Next, by taking/ > 0 smaller so that -Au(r0)- As(r0) < 0, there is a C+
invariant subbundle Eu of EulWus(Q, for near v]0. This follows because the
contraction rate toward this bundle by D is about exp(-Au(0)+ As(0)). The
Lipschitz constant of --1 on Wus(Q,7) is about exp(-As(V/0)). Again, the above
estimate gives us that the product of the first of these number times 1 +/ times the
second is less than one. This gives the stated differentiability of the bundle.

Since each of these bundles is C+/, there are two C+/ foliations tangent to
them. These give coordinates on Ws(Q, 7) in terms of coordinates on Wu(Q, rl) and
Ws(Q, rl). Since these coordinates can C+f linearize the flow the Poincar-Dulac
map past Q in these coordinates is the same as that for the linear flow, g,(u) CuE
where E E(?) IAs()l/Au(). The map in the original coordinates can then be
written as kv o gv o hv, where kv and hu are the C+ change of coordinates which
vary continuously with respect to . This shows that the remainders go to zero as u
goes to zero, uniformly in ?.
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The connection of Cv with the integral in (Ab) is discussed in [8] and uses the
formula for the derivative of the Poincar map in terms of the integral of the divergence
given in [2, 28].

The comment about the branches of (f-1),() follows by looking at the flow for
negative time past Q. The above proof shows that the derivative of the inverse on
either branch has the form

(f-l)’() uE,C,I COT)l(11E)-1 + o(1 a(rl)lCllE)-l),
which has a Hblder extension at a().

Proof using RoussaNe’s expansion. To use Roussarie’s result, we again need to
put the equation in normal form, so we need to sume the vector field is C (or
we need to keep track of some higher differentiability, which is determined by the
eigenvalues). As is done in [8] and [9], by a "Sternberg differentiable linearization,"
there is a C change of coordinates that put the differential equations into the normal
form

AuU
z[ + 2p+ap2 +’"],

where p uz. The proof of the differentiable linearization is valid uniformly in
the parameter by using the form given by Takens in [13], w mentioned to us by
Roussarie. This also shows that the theorem is just valid in conjugating to a normal
form given above it is to conjugating to a linear system. All that is necessary is
for the two systems to have the same C jet at the fixed point.

As in the first proof, the only part of the Poincar6 map that needs to be checked
is the one-dimensional map pt Q. Using the normal form, this is calculated using
the u and z equations. Reference [9, Thm. F] proves the form of this map to any finite
order that is uniformly valid for a range of parameters near resonance. He considers
the two variables u and p and looks at the two equations

AuU,
# =[b()o + 2o +... 1,

where b() [A,(y)+ A()]/A() is before. (He rescales time by A(), which is
the reason that we have factored out this term.) Next, he defines

--1 for () 0,(b,u)
-og(u) fo (V) 0.

Then he proves that the following expansion is uniformly valid in y with C2 remainder:

() Cl- + =u=-(b,) + (),
where Cn(u) is C2 and C2 flat at u 0. Remember that En 1- b(). Since
uw(b, u)- uw(0, u) goes to zero uniformly on a fixed interval and uw(O, u) o(u), we
get the form given in the theorem. A direct calculation shows that

() CE-, + =(1 + E)-l(u) =-lu + (u);
so f6(u) h the form that is given in the lemma. The other part of the proof is is
done above in the Hartman’s linearization proof.

The following lemma proves the form of the boundary of ’.
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LEMMA 2. Assume that the systems satisfies (A0)-(A3).
(a) In a small neighborhood Afo of?/o, .for the system.for ?/ E Jfo to have a transitive

attractor with If(u)l > 21/2 .for all u interior Iv, it is necessary .for ?/ Af’. If we
assume ?/o closure Af so there are transitive attractors arbitrarily near ?/o, then (A4)
is true; so b(?/o) 0 or Evo 1, and (Ah) is true in the modified sense that Cvo <_ 2.

(b) Assume the system satisfies (A0)-(A6). Then, the two pieces of the boundary
of the set Af are defined by

e > 0},
0 if Cno < 21/2

if Cvo > 21/2.

Further, they satisfy the following two equations:

Proof. To obtain an attracting set for the flow that contains the fixed point at
the origin, fv must preserve the interval Iv [-la(?/I, la(?/)l] c Y1. For fv(u) e Iv for
small u, the form of fv given in Lemma 1 shows that it is necessary for va(?/) > 0.
The invariance of the interval also implies that fv(+a(?/)) e Iv; so fv(a(?/)) <_
i.e., that the second intersection of the unstable manifolds must lie between the first
intersection of the two branches after projecting out along the strong stable foliation.
(The reader can check the well-known result that if fv(Iv)\ Iv , then there is
horseshoe for Fv which is not an attracting set.) Also, for Q to be part of the attracting
set, we need zero to be an element of the image, fv(Iv), so 0 _< fv(a(?/)). Also, the
fact that fv is transitive on Iv implies that 0 < fv(a(?/)).

The condition that the absolute value of the derivative at all points of interior Iv is
greater than 21/2 certainly implies that it is greater or equal to 21/2 at -t-a(?/). Finally,
if b(?/) 1 Ev < 0, then If(u)l < 1 for small u. Thus it is necessary for b(?/) _> 0.
This completes the proof that it is necessary for ?/E Af.

If ?/0 closure Af’, the fact that b(?/) _> 0 for ?/6 Af’ implies that b(?/0) _> 0. To
get the opposite inequality we consider the ?/ Af that approach ?/0 and write a for
a(?/). (The reader may find it easier to just consider the case v 1.) For these
a > 0; so fv(a) <_ a, fv(a) + a <_ 2a, Ifv(a) + a <_ 21hi, and

Because of the form of the lowest-order terms of fv given in Lemma 1, taking limits
as ?/goes to ?/0,

limsup {b(?/)log (la(l?/)l))---limsup {log
_< limsup {log () }
lg (C--o)
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Since log(2/Cno is a constant and log(/la()l) goes to infinity, we also get that
b(y0)

_
0. Combining with the inequality that b(y0) _> 0, we get that b(r0) 0. Also

since b(y) _> 0 for y e Af’ and log(1/la()l goes to infinity, we get that Cn0 _< 2. This
completes the proof of part (a).

On one boundary of Af’ fn(a(7)) a(r]) as stated for "fl, and putting equality
in the above limit as - yo shows that these values satisfy

log
2

lim sup (b(?) log
la(r/)

as stated.
From the form of f(u) given in Lemma 1, it follows that the smallest value of

If(u)l occurs for u =t=a(). If Cno > 21/2, then the calculation below shows that the
r/with If(a(y))l- 21/2 occurs for b() > 0; so it forms the other boundary.

Along the with If(a(?))l- 21/2, the form of the derivative given in Lemma 1
gives the following:

1
lim inf { b(r/) lg ([a(7) [) ) ) 1

--liminf {logEn+b()log (,a(7)l) }
lim inf {lg ( ’f(a(?))’ ) }Cn

--liminf {log \ Cn ,]}(21/2’
/’ 2/2
t,

This gives the form of 2 for Cno > 21/2. If Cno < 21/2, then the calculation above
shows that If(a())[ > 21/2; so the other boundary is given by b(r) 0. This
completes the proof of Lemma 2. [:3

Using Lemma 2, for EAf’, Ifv(u)[ > 21/2 for u E interior Iv. This means that

fv satisfies the condition of R. Williams, which implies that fn is locally eventually
onto and so topologically transitive. See [14] and [7]. If the flow is C3, the fact that
f-l(u) has a Hblder extension at fn(0+) means that the the theorem of G. Keller
applies, and we get the existence of an invariant measure for the interval map. See
[7], which uses the results of [5].

This completes the proof of Theorem 1.

3. Verification of assumptions for specific equations. The Lorenz equa-
tions are given by the equations

(L)
-ax + o’y,

1 px y xz,

-z + xy.

They arise from modeling turbulence, and their numerical simulation exhibits chaotic
behavior.

Later, Rychlik showed that a slight variation of the Lorenz equation could be
proved to possess a transitive attractor immediately after a bifurcation from a double
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homoclinic connection. The equations that he considers are motivated by noting that
by a change of variables the Lorenz equations, (L), can be put in the following form:

(R) X 2X3 + y + x2y + 5XZ,
-/z + x2,

with 0, [10]. He then adds the x2y term, to be able to control the unstable
manifold of the origin while keeping 5 0. He determines the form of the resulting
two-dimensional Poincar( map, and proves that it has a C1+ strong stable foliation
immediately after a homoclinic bifurcation, but not at the bifurcation value. This
proof extends the type of proof in [6], where one of the approaches show how to verify
that the Poincar(! map had a C foliation. We also remark that Rychlik considers
a different bifurcation problem than the one considered in this paper and in [8]. In
particular, instead of (A2), he assumes that Wus(Q,/o) and Ws(Q,v/o) are tangent
along F. (This is his second codimension.) With this assumption, he is able to
take A(/0) + As(0) > 0. Shilnikov has also considered a bifurcation from a double
homoclinic connection, which is more like that of Rychlik with A(r/0) -t- A(r/0) > 0.
He and his coauthors show there is an attractor of Lorenz type in a neighborhood.
See [1] and [11].

In our previous paper we verified the assumptions for the set of equations

(Rob) x 2xa + ay + xy ,yz,.. _,.,l,z + (X2

with +/-1. These equations can be obtained from (R) by scaling z to shift the
coefficient 5 from the xz term in the equation to the x2 term in the k equation.
(This change is made because we treat a different type of perturbation problem than
Rychlik.) We also change the xz term in the equation to a yz term. Although this
makes the equations farther from the Lorenz equations, they are easier to analyze.

In this paper, we return to the equations (R) but scale the equations to shift the
coefficient 5 to the -equation; the y term is replaced by -cy so we can take > 0,
and we allow -xz in the equation with 1:

(R’) X 2X3 ay + x2y XZ,

-z + 5x2.

We can now state the theorem.
THEOREM 2. Equations (R’) satisfy assumptions (A0)-(A6) for correctly chosen

values of the parameters (in particular, for some co > 2-1/2 ).
Remark 1. It is not clear that the choice of in the equations corresponds to

the choice in assumption (A2); that is, it determines whether the one-dimensional
Poincar(-Dulac map is monotonically increasing or decreasing (or the tangent space
of W(Q, 0) is orientable or nonorientable along F). The difficulty is that the proof
only proves transversality by an argument that uses the fact that an analytic function
that is not identically zero must be nonzero in any interval.

Remark 2. It seems unlikely that any of these results, here [8] or [10], can be
applied directly to the actual Lorenz equations (L). The difficulty is finding parameter
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values that verify both the homoclinic connection condition (A1) and the resonance
condition (Ad) for the same parameter values. The addition of the extra parameter
f is what gives equations (R), (R’), or (Rob) the flexibility needed to satisfy these
simultaneously.

Proof of Theorem 2. The parameters are ? (0/, f, /, 5, v). The fixed point Q is
always the origin. The linearization of the vector field is given by

0 1 0 )DX(x, y, z) 1 6x2 + 2xy vz -0/+ x2 -x
25x 0 -/

At the origin, the eigenvalues are Ass (1 -t- 0/2/4)1/2, Au --/e + ( +
0/2/4)1/2, and As -’. By picking the parameter /0 Au -0/0/2 + (1 + 0//4)1/2
at the bifurcation, we can insure that As(r/0) + Au(r/o) 0, giving assumption (A4).

To obtain (A3), we need the combination of all three eigenvalues less than zero:

< 0,

[--0/0/2 (1 2[--0/0/2 (1 + 0//4)1/2]
-30/o/2 + (1 +

or
0/0 > 2-I/2-

Thus to obtain a C foliation, it is not possible to take a small perturbation of the
integrable case where 0/- 5 0. Given the resonance condition (A4), the second
inequality in (A3) follows from the first.

with 0/ > 1/(21/2), > O, ")’ -(0//2)+ [1 + ((0/o)2/4)]1/2, and 5o > O, but
near zero, for which the equations have a homoclinic connection and an invariant
continuous plane field, satisfying (A1)-(Ab).

Proof. The only difference in verifying this lemma for the equations (R’) and
(Rob) is in the verification of (A2). We repeat the other steps because they are easy,
and we give a different approach to verifying (A2).

First, taking a fl 5 0, we obtain a Hamiltonian system in the (x, y)-plane
with energy H (y: x2 + x4)/2; therefore, the origin has a double homoclinic
connection.

Now, we increase the value of 0/ to 0/0 > 1/(2) 1/2, keeping fl 5 0, and
choosing 70 -0/0/2 + (1 + 0//4)1/2. The xy-plane is still invariant; so z 0 along
the unstable manifold. The -ay term in the equation is a friction term; so the
unstable manifold W(Q, 7) stays on the same side of Ws(Q, rl) and spirals into one
of the stable fixed points. Next, increase the value of ft. The term x2y in the
equation is an anti-friction term for fl > 0. For large enough f, W(Q, rl) will cross
over to the other side of Ws(Q, r/); therefore, there is a value of ’ that will yield a
homoclinic connection. By the symmetry of the equations, it is a double homoclinic
connection.

Finally, we perturb 5 to 50 > 0, but keep the homoclinic connection. The deriva-
tive of z is given by -Tz + 5x2; so z is positive but small along Wu(Q, rl). Thus
the -xz term in is a slight inward or outward push (depending on the point) along
W(Q, 7). By adjusting the value of ’ to fl0 (or adjusting 0/0), we can preserve the
homoclinic connection, giving (A1). The choice of 0/0 and /0 gives (A3) and (A4).
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We are left to verify (A2) and (Ab). We can prove this directly for c, 0.
Then we use the analyticity of the manifolds to say that they cannot be identically
tangent for all s0 > 2-1/2. Thus there must be values that satisfy this inequality for
which the manifold are transverse.

Before verifying (A2) for small c and , we note more carefully the analyticity of
Ws(Q, rl) and Ws(Q, rl). The fact that W(Q, rl) is analytic and varies analytically
with parameters is completely standard. The proof for Wus(Q, rl) is not as standard.
To prove that this manifold exists locally it is necessary to make an extension that is
equal to the linear map outside a neighborhood of Q (or another such construction).
It is not clear how to do this construction analytically. However, the tangent space
of W(Q, rl) at points of Wu(Q, rl) is determined without any such extension and so
depends analytically on r/. By looking at Ws(Q, rl) and Wus(Q, rl) where they both
cross y 0, the angle between these two manifolds is an analytic function of r/. If this
is nonzero for small c, it cannot be identically equal to zero for c > 2-1/2; therefore,
we can choose an c0 > 2-1/2 for which these manifolds are transverse.

To verify the transversality given in (A2) for c and near zero, we let p(t) be the
covectors that are perpendicular to TqWs(Q) at points q on F. We write covectors
as rows and vectors as columns, so that the pairing between them is just matrix
multiplication. Covectors satisfy the adjoint equation to the first variation equation
that is satisfied by vectors. Remember that the first variation equation for vectors is
given by

i) DX(q(t))v,
where DX(q(t)) is given as above, and that it is satisfied by v(t) X(q(t)). The
adjoint equation for covectors is obtained by differentiating the equation C pv with
respect to t and obtaining 0 [gv + pDX(q(t))v for all vectors v, so

[9 -pDX(q(t)).

(Note, this is the equation with p written as a row. If ptr is the corresponding column
vector, then we get 15tr -[DZ(q(t))]pt.)

We first consider di 0, and c and/ both positive but near zero and chosen so
there is a homoclinic orbit. We take the parameterization of q(t) with y(0) 0. The
equations for i51 and 2 are independent of p3 and so can be solved independently for
a solution (l(t),2(t)), that is, perpendicular in the (x,y)-plane to the homoclinic
orbit. There is then a solution 3(t) and (t) ((t),2(t),3(t)), so that (q(t),(t))
lies on the unstable manifold of (Q, 0) in the space of positions and covectors.

We need to determine properties of 3(t) and (t) as t --. x). Since i53
.x(t)P2(t) + 7P3,

3(t) e(t-to)p3(to + e x(s)2(s)e- ds.

As to --* -cx, e(t-to)p3(to - 0 because 3(to) - 0 at least at a rate of e-Illtol
(because I/ssl is the most unstable eigenvalue for covectors) and 7- I,ssl < 0. Thus,

P3(t) e x(s)P2(s)e- ds.

We want to show that 3(t) -- cx, as t --. cx. It is easy to see that the integral
converges as t -- x). For , fl 0, x(-s) -x(s), and p2(-s) -p2(s), so we get

x(s)2(s)[e- e] ds,
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which is positive since x(s) is positive and p2(s) is negative for positive s. Since this
integral is positive for a,/ 0, it is positive for a,/ 0. Since it is multiplied
by et, 3(t) - c as t - cx). On the other hand, (l(t),2(t)) -. 0 (as seen by
the eigenvalues at (Q, 0)). This implies that the tangent plane to Wus(Q, ) limits
on the (x, y)-plane and is transverse to Ws(Q, ) for these values of ? with 5 0.
Transversality is an open condition and so is true for nearby small (,/, i > 0 (for
which there is a homoclinic connection), which proves (A2) for these parameter values.
By analyticity, as mentioned above, we get (A2) true for some a0 > 2-1/2.

As argued in [8], the rates of change of area near t :t:oc show that the integral
in (A5) is -x) for i 0. Thus for small i > 0, log(Co) << 0; so Co << 1. This
completes the proof of Lemm 3.

The fact that a(r]) and b(y) can be varied independently follows because increasing
(or decreasing a) makes the manifold W(Q,) cross over W(Q, y); so a(y) varies,

and varying - makes b(v/) vary. This completes the proof of Theorem 2.
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SINGULAR PERTURBATIONS OF HOMOCLINIC ORBITS IN R4.
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Abstract. A rigorous asymptotic method is developed for the study of a class of singularly perturbed
ODE’s which in the limit e $ 0 have a homoclinic orbit. It is shown that the homoclinic orbit does not
survive the perturbation and suffers an "exponentially small splitting."
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1. Introduction. In this paper we develop an asymptotic method of analysis for
the "model problem" arising in the theory of water-waves in the presence of surface
tension [2], given by the equation

(1.1) e:z d4y+ dY ydx--- dx--5- y + O,

and for the generalizations

(1.2) ea d4y d2y y2 2 ( dy d2y )"x4 +-x2- y + e y, --d-x, dx:Z
e

Here e is a small parameter. The perturbation terms will be specified in 6.
In the limit for e 0, we find an integral

(dY)=y2 2y(1.3) xx - +c,

and for c 0 we find homoclinic orbit sketched in Fig. 1.
The solution y(x) of the limit problem that corresponds to the homoclinic orbit

tends to zero for x-> +/-. In the context of water waves it is a solitary wave. In [2]
this question was asked: do there exist nontrivial solutions of the singularly perturbed
model problem (1.1) which tend to zero for x -> +/-?

Y+

FIG.
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Let us briefly look at the influence of the perturbation term in (1.1) on small
solution by considering the linearized equation. We then find

(1.4) y(x)-ex,

(1.5) 0)1.2--- q: 1 + o(e), w2.3 -+ 0(1).

The perturbation thus introduces fast oscillations. The existence question can hence
be rephrased as follows: does the homoclinic orbit survive the tendency to rapid oscilla-
tions ?

In this perspective, the problem appears to be linked to the phenomenon of
"exponentially small splitting of separatrices" [5], [8], which has recently drawn
attention. In these publications the break-up of homoclinic orbits under influence of
rapid external oscillations is studied. The mathematical analysis is highly nontrivial.
This is because the quantity that we attempt to determine, the "splitting distance," is
exponentially small. It is quite impressive to learn from the introduction to [5] that
Poincar6 already knew the phenomenon.

The nonexistence of solitary waves for the model equation (1.1) has recently been
proven by Amick and McLeod [1] and by Hammersley and Mazzarino [4]. This has
been done as follows.

Consider a half-orbit y_(x) that tends to zero for x- +, and let x--0 be chosen
such that y’_(0) 0. We can show that for a smooth continuation of y_(x) into a solitary
wave that tends to zero for x-- we need y"(0) 0. In [1] it has been shown that
y"(0) 0. This is achieved by a rather subtle excursion into the complex plane, and
no order of magnitude has been given. In [4] an ingenious combination of analysis
and numerical computation is used. The results show that y"(0) 0 and indeed is
exponentially small. In fact, the behaviour with e which we shall find in 4 if in precise
agreement with the results of [4].

The original question for the model equation (1.1) has thus been settled. However,
new questions arise. We list a few.

(i) For an analyst it is a challenge to establish the main result for (1.1), including
the exponentially small order of magnitude estimate, without recourse to numerical
computations.

(ii) What is the behaviour of the smooth continuation of y_(x) for x < 0?
(iii) How are we to deal with more general problems (1.2)?
In this paper we develop a method of analysis by which these questions can be

answered. The organization of the paper is as follows.
In the main body of the paper we study the model equation (1.1). The problem

is transformed into a second-order differential equation for the function z(y), defined
through

(1.6) z(y):= x
In 3 formal asymptotic expansions of z(y) for e small are constructed and analysed.
The proof of validity of these expansions is delayed to 5. In 4 we collect and discuss
the main results, including the analysis of the "exponentially small splitting."

Section 5 is the mathematical backbone of the paper. We prove the validity of
the formal asymptotic expansions by a contraction-mapping argument. This is a
nontrivial exercise. We have made an effort to explain and motivate the various steps
and tricks of the analysis in some detail. The reason is that the analysis of 5 is not
only a proof of results of 4, but outlines a method to deal with other problems.
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In 6 we show that the analysis can be extended to large classes of perturbed
model problems (1.2). On the other hand, in the companion-paper [3] we use the
method of 5 to answer question (ii), formulated above. We show there that there
exist solutions y(x) of (1.1) that can be called "quasi-solitary" waves. They look like
solitary waves over very large distances (-, X(e)), or (-X(e), ), or (-X(e), X(e))
with X(e)-oo as e $ 0 and y(X(e))= o(e"), m arbitrary positive. These solutions are
approximated (with an exponentially small error) by solitary waves that have an
exponentially small jump in the third derivative at x 0.

2. An integral and an equation for the trajectories. The perturbed problem (1.1)
also has an integral. We can find it by brute force, multiplying by dy/dx and performing
the integration. The perturbation term can be computed integrating by parts three
times. The result is

dx dx 2 \--x2] -- +- - y + c.

Further reduction follows by introducing y as an independent variable, using formulas
such as

We finally introduce

and find the equation for trajectories:

(2.4) E
2

Z dy2-- + z y2 2 y3- +o

One can find the integral in a more direct and elegant way by introducing y as an
independent variable in (1.1). Manipulations ofthe type (2.2) then produce immediately

(2.5)
dy Zdy--\dy] +z =2(y- ).

In (2.4) we have reduced the problem from fourth- to second-order. The price is that
the equation is highly nonlinear and degenerates at z 0. Nevertheless, the equation
(2.4) will be basic in all that follows.

Remarks. The integral (2.1) also occurs in [1] and [6], but does not play a
predominant role in the analysis. In [4], from (2.1) an equation equivalent to (2.4) is
derived and used as a starting point of the theory. We shall comment on this further
in 3.2.

3. Formal approximations. In a search for a homoclinic orbit we put in (2.4) c 0.
In this section we develop formal approximations for solutions of the basic equation

Z dy. - + z= y:z 1 - y3.1. Straightforward iteration. It seems natural to look at what happens close to
the unperturbed orbit

(2)(3.2) zo=y2 1-y
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We introduce the transformation

(3.3) z(y, e)= zo(y)+ e2pl(y, e),

and obtain the equation

d:Zp
(3.4) e 2 (Zo+ e2pl)

dy2

with

2 dy dy --d---ypl-- \-y]

f(y) =-o dy---r+- \ dy ]

But now it again is natural to repeat the operation, putting

(3.5)
pl(Y, e)= z,(y)+ e2p2(y, e),

zl(y) =f,(y).

The iteration-procedure can be pursued indefinitely, leading to a formal approximation
with a remainder term, in the form

m-1

(3.6) z(y, e)= E e-"z,,(Y) + e2"P,,(Y, e).
n=O

Introducing the definition

m--1

(3.7)

we find a quite transparent structure"

d:Zn_l 1 d,,-1 dz._l
(.8) z.=- 4. a a

1
Zn_ E

4
2(n-l)

where g,, is a polynomial in y without zeros on the interval [0, am]. am(e) can be
computed explicitly. In the first approximations, we find

l_E2(3.11) a,,,(e) =-[1 "4 -It-’" "]"

Let us now recall that z (dy/dx)2. Consider an orbit defined as a union of the curves
(dy/dx)+/-, given by the formal approximation

(3.12) -x +/-Y 1-g2(y’ e)"

(3.10) ,=y[1-Y]am(e)
g"(Y’ e),

The remainder term p,, satisfies

(3.9) e2{(dPm+eamp,n) dzpm l dmdpm d:,, l e2m(dpm2}dy 2 dy dy
t-

dY
pm - \ dy ]

+Pro=fro,

where f,, is defined in a formal way as Zm in (3.8).
Inspection of the formulas shows that the formal approximation m has the

structure
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It is easily verified that the corresponding solution y(x) has continuous derivatives up
to the fourth order (and beyond) at y= a,,(e). Hence, the formal approximation
for any m, has all the desired features of a homoclinic orbit of (1.1). This result is
encouraging, but will turn out to be misleading.

3.2. Power series. It is remarkable that we can also.compute a formal power series
expansion for z(y), which, at the same time, is an asymptotic expansion in e. To show
the structure, a small display of the algebra is needed. We abbreviate

{ d2z
dy---

1 (d-)
2} 2y(3.13) Lz := e 2 z + z- y2 +-

and introduce

(3.14) ,,(y) ay2_y3_ E a,,Y "+3.
n=l

Substitution produces the following result:

L,,,=(e:zce:z+ce-1)y:Z+ .-/3(1 + 5ea)

_y4 E a,,[l+e2a[(n+3)(n+2)+2]]Y"-1

n=l

(3.15)
+ :2y4{15 2 +y/3 a, (n+3) n+ +6

=1

+yZ Y a,(n+3) n+ y,-1 Y a,(n+3) n+ y"-

We can now determine , , and a,, n 1, , m by putting all coefficients of yP, p
2,... m + 3 on the right-hand side of (3.15) equal to zero.

The first requirement is that a should be the positive root of

(3.16) ez2+a-1 =0.

This means that a 2 is the exact value of w. in (1.5). Next we find

2 1
(3.17)

(3.18) a e
15 1

1 + e214
Fuher coefficients, a,, n 2,. ., m, can be determined recursively. A general recur-
sion formula is of little use to us. It is sufficient to observe (from the structure of the
right-hand side of (3.15)) that

(3.19) a,=O(e"), a,>0.

We summarize these results as follows:

(3.20)

(3.21)

(3.22)

(3.23)
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In a finalstep we write

(3.24) z )m + e2(m+2)m"
We can easily see that for the remainder ,, an equation similar to (3.9) is obtained.

On the other hand, the formal approximation cI),, is similar in structure to ,,, as
expressed in (3.10). Working with the power-series expansion may have some advan-
tages. This we shall see when studying the problem of splitting of the homoclinic orbit.

Remarks. In the work of Hammersley and Mazzarino [4] a formal power series
of a structure similar to (3.14) (with m ) is used as a basic step of the analysis. A
recursion formula for the coefficients is given, and convergence results are derived.
The authors do not recognize the asymptotic structure of the series for e small. As
already mentioned, Hammersley and Mazzarino use an ingenious combination of
analysis and numerical computations. Their final results are obtained at the expense
of a very impressive amount of both formula-manipulation and numerics.

4. Main results.
4.1. The solution for z(y). Let us state again our basic equation

(4.1) e 2
Z
dy2 - + z= y2 1 - yWe look for solutions z(y), which for y 0 behave as y2. To this end we introduce

the transformation

(4.2) Z-- y2

and obtain for the equation

dy2 -- +3y + (1 + e2) 1 - y.

Next we write

qm + e2m I]/m,

where , is the result of formal iteration of 3.1, or the truncated power series of
3.2, in both cases with y2 factored out. For the remainder ,, we get the equation

d2

e2y2(m+e2mm 2ay

(4.4) +e2[ ly2( 1 2,, ) :,,, ]db,,+- ’+e b’ +3y(,+e ,,)---y b

f,, (y)- e2{y2q + 3yq’,, + (2, + e2" ,)}ff,,

where f,,(y) is a polynomial in y. In the equation (4.4) we use both primes and d/dy
to denote the derivative. The reason for this will become clear in 5, where we shall
prove (by a contraction mapping argument) the following.

RESULT. There exists a unique solution ,,(y; e), which on an interval y6 [0, Yo],
is bounded for e , O, and the same is true for the derivative ’m(Y; e). Yo is such that

with c a constant and m >-_ 2.
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FIG. 2

Remarks. Note that m is an arbitrary integer. Hence we have the existence of a
solution z(y; e) of the basic equation (4.1), which starts out as y2 and ultimately gets
closer to zero than any power of e. The situation is sketched in Fig. 2.

It is further important to remark that yo> 3/2. This follows from the result (3.11).
What happens to the continuation of the solution? Obviously z(y) cannot just

stop at some positive value. Suppose that the function would like to turn upward and
escape to large values. This could only happen at y > Yo. At some z > 0 we would have
dz! dy 0 and d2z/dy2 >- O, and this leads to contradiction in the equation (4.1). Suppose
next that z-->0 as y-->yl > Y0; however, z’ also tends to zero. Since z’ comes from
negative values, and did not pass through zero, we must still have z">= 0, which again
gives contradiction in (4.1). The contradiction remains if we take yl +, or assume
that z tends to a nonzero positive value as y--> .

Hence the continuation of the solution z(y) must reach z 0 with a nonzero slope.

4.2. Splitting of the homoclinie orbit. We define two half-orbits y+(x), x
(-, 0], y_(x), x [0, ) as solutions of

(dY) =+/z(y),(4.5) xx
(4.6) y+(O)=y_(O)=y(e).

It is understood that

(4.7) z(y) =0.

We wish to investigate the regularity of the union of y/(x) and y_(x) at x =0. Since
the model equation is of fourth order we need continuity up to the fourth derivative.
First we compute

{d2y 1 1 dz(dy 1 dz
(4.8) \xZ,/+ =(+)/dyk 2 dy

Hence

ld2y {dy(4.9) \-x]+ \-x] at x 0.

From the equation (I.1), it follows that fourth derivative also match continuously.
Next we compute

{d3y. 1 d2z
(4.10) \-x ,1+

+ -V dy2
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We would have the continuity of the third derivative if we could show that d2z/dy2

is bounded as y- Yl. There is, however, no reason for such assertion. In fact, in our
companion paper [3, 4], we show that

z(y)’Cl(Yl--y)+c2(Yl--y)3/2+ asy’ y,.

On the other hand, from (1.1) we can deduce another representation of the third
derivative at x O, as follows.

First we "solve" for the second derivative and obtain

(4.11) d2y] 1 f sin
1
(x- :)[y(sC)-y2(s)] d.

Next, after differentiation, we get

(4.12) day+(o)=I(e),
dx

(4.13) I(e) :=-- cos- s. [y(:)-y2(s)] ds.
The idea is to compute the integral along approximate trajectories, which are obtained
by replacing z(y) in (4.5) by its asymptotic approximations.

We define y’)(x), x < 0 through

(4.14)
dy(m)

X/dPm y e)
dx

with ,, the asymptotic expansion defined in 3.1. Furthermore,

(4.15) Im(e) =- cos- [y,()_(y())2] d.

In the appendix, which is due to Temme, we have computed the integrals for m 1
and m- 2, which correspond to

m--1

(4.16) (I)m E eZ" z,,(Y), m 1, 2.
n-----O

The results can be summarized as follows"

(4.17) I(m)(e) --- c,.,, e [1 + o(1)],

(4.18) Cl =6, c2 3.6Cl

We see that a small correction of the trajectories does not result in a small change in
the constant c,,. Before further analysis, we shall compare the results with those of
Hammersley and Mazzarino [4]. Adjusting the notation of [4] to ours (e in [4] is e 2

here, and the quantity computed in [4] is d:Zy_/dx3(O)), we find

(4.19) I(e) -l)(e)
(1 + 62) 7/4 e-//e"

The function f(e) is positive. It has been computed numerically over a wide range of
e. For e small f(e) is of the order of magnitude of 102.
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It appears that the behaviour with e given in (4.17) is in precise agreement with
(4.19). We may venture that for large m the constants c,, will settle to a definite value,
but analytical determination seems beyond possibility. However, we are able to prove
that for all rn the integral I(’) is negative. This can be done using the asymptotic
expansion defined by the power-series of 3.2. The reasoning is amusing.

We recall some relevant formulas from 3.2:

( d-z l(dz]] y2 2y3,(4.20) Lz := e2 z dy---5- \ dy] ]
+ z- +-

(4.21) ,(Y):= aY2+flY3- E e2"gt,,Y "+3.
n=l

The coefficients a,/3, and a, can be determined in such way that

(4.22)

(4.23) f,,(y) y,,+4 y O.pyp,
p=0

(4.24) rp O(1), r > 0.

Let us look at )7(")(x), a solution for x < 0 of the equation

(4.25)
dx

Because of (4.22),)7(") satisfies a perturbed model equation

(4.26) e2 d4)7(m) d237(’) )(m)__[j(rn)]2_ eZ(m+l)fm(y(m)
dx4 t-

dx-with

d
(4.27) f’m(Y) -yf,, (Y).

Following steps analogous to (4.11), (4.12), and (4.13), we find

d3(+m) 12 fo 1 )(m) )] /
2(m+l(4.28)

dx3 (0)=-- d-oocs- s{ _[)7(,, 2+ )f’,,( "))} d.

However, the quantity on the left-hand side of (4.28) is zero because (’) is just a
finite polynomial, and hence the second derivative which appears in (4.10) exists. We
thus find

((=-m cos- ’f’( m( a
(4.29)

I 1
fi(=-e 2 (m+4+p) cos-[ ()] d.

p=O J-m
The next claim is that each of the integrals on the right-hand side of (4.29) is positive.
This is because fi(() is a monotone function. If we divide the interval ofintegration
into subinteals [-2/e, 0], [-4/e, -2/e], etc., we get positive contributions from
each subinteal. Finally, from (4.24), % > 0.

Hence

I(m)(e) < 0
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5. Construction of a contraction mapping. In this section we simplify notations by
dropping the subscript m.

5.1. Difficulties of the enterprise. Equation (4.4) is of the following structure:

(5.1) (q) =f(y)+ e2gl(y, b),

d d
(5.2) = eA(y, d/) dy---+ eB(y, d/, ’) -d-fy+ 1,

(5.3) A(y, ) y2(q + e2q),

(5.4) B(y, , q,’)=-1/2y2(q’+1/2e2"’)+ay(q+ e2"),

(5.5) g(y, )=-{yq"+3yq’+(2q+e"q,)}q/.

We wish to prove the existence of a bounded solution. A standard way to proceed
would be a decomposition of into

(5.6) : +

such that an inverse - could be defined and the problem reformulated into

(5.7) , -{-2(q) +f+ eZgl}.

The right-hand side of (5.7) should define a neat mapping in some Banach space, and
we should have sufficient knowledge of -1 to investigate and prove contraction
properties of the mapping.

In order to have sufficient control over =;1, we shall use for 1 a linear operator.
This means, however, that on the right-hand side of (5.7) nonlinear terms will appear
containing first and second derivatives of q. It turns out that the second derivative can
be eliminated (integrating by parts), but the first derivative cannot be avoided. It is
for this reason that we must also study the problem for the derivative q/. Differentiating
(5.1) we find

(5.8) (q,’) =f’(y)+ e2g2(y, , d/’),

d2 d
(5.9) . e2A y, q

dy---5 + e 2 y, q, q’) yy+ 1

with A(y, q) as in (5.3), and furthermore

(5.10) ff=5y(q:’+e2m@)+1/2y2(q’+e2mq/),

(5.11) g --(yZq’" + 5yq"+ 5q9’) qt

{5 p + e 2 + 6y q + e2 d/ + y2
tp - 2 I]l }

Decomposing with a linear operator we again face difficulties with nonlinear terms
containing derivatives in the equivalent of (5.7). The second derivative will be eliminated
by a special trick, and the first derivative will be eliminated by integration by parts.
This is possible because in (5.8) we do not have a term of the structure (dd/’/dy).

The first task now is to define a suitable operator .
5.2. An intermezzo on "exact WKB functions. Physicists are familiar with the

WKB approximation (Wentzel, Kramers, and Brillouin). In the context of equations
that are of interest to us, the procedure goes as follows.
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Consider a homogeneous equation

d20 dO
(5.12) e2a-y + e2b-d-fy+ O =O

where a and b are given functions. We introduce

(5.13) O- e1/Q.

We get

(5.14) aQ’2 + eaQ"+ ebQ’ + 1 O.

Next we introduce a formal expansion

(5.15) Q= qo+eql+e2q2+ ".

We readily find that

1
(5.16) (q)

a

la’ lb
(5.17) q’

4a 2a

The result is more transparent if we introduce a function v defined by

lb
(5.18) v’= v.

2a

This function appears in the well-known Liouville transformation for the equation
(5.12). We find, as a formal WKB approximation,

(5.19) Oo(y)-- l.’(y)[a(y)] 1/4 exp :-
/a(n)

If the coefficients a(y), b(y) are sufficiently regular, then we can prove for the linearly
independent solutions of (5.12) the result

(5.20) 0 0o{1 + o(e)}.

This is a very nice result because it gives an approximation with a relative precision.
In our case, (5.3), (5.4), (5.10), the coefficients vanish at y=0, and the proof of

validity appears difficult. Additional complication arises for the values of y such that
q(y) becomes small. However, we shall not need any proof of validity in the approach
that we shall follow now.

Let us ask this question: what is the differential equation that is satisfied exactly by
the WKB approximation ? We answer that question for the linearization of . In that
case we have

(5.21)

(5.22)

and we find

a y2qg,

b 5yq +1/2y2 ’,

(5.23) 0=)-Sexp :-e yTV/



1280 WIKTOR ECKHAUS

Next a straightforward computation shows that

{(5.24) e 2 a dy-----+ b + 0o e214q + yq 00.

Hence, 0o satisfies a very mildly perturbed original equation (5.12).
It is interesting to observe that very similar results hold for the full nonlinear

operator
is replaced by + e2. This result seems elegant; however, difficulties do arise if we
attempt to use it in the construction of a contraction mapping.

We now define, for fuher use, the operator explicitly:

(5.25) a=eydy+e 5y+y +[l+e(4+y’)] I.

The two linearly independent solutions of the homogeneous equation 0o=0 are
given by (5.23).

Remark 1. We can perform similar analysis on the linearization of the operator
of the problem for , given in (5.2). The equation satisfied by the corresponding

WKB approximations turns out to be less tractable. However, in the decomposition
of we can also use 1. This introduces first derivatives in , which are unavoidable
anyhow.

Remark 2. In the approach described above we introduce an additional peurba-
tion such that the resulting equation is satisfied exactly by the WKB functions. This
author found, to his surprise, no trace of this simple approach in the literature.

5.3. Transformation to integral equations. Let us consider an inhomogeneous
problem

(5.26) 1() g

with 1 given by (5.25). We ask for bounded solutions on some nonempty interval
y [0, Y0], Yo > 0.

Using the linearly independent solutions given by (5.23), we find, by elementary
manipulations,

(5.27) (Y)

To get a more explicit form we define

(5.28) a(n, y) g()
and obtain

(5.29) (y)= 1 1 /o [1e y sin -(’e y) R() d.

Let us first show that (y) indeed is bounded as y 0. By elementary estimate we get

1 1 ovd sup IR(y)l.

The estimate is valid on intervals y [0, Yo] such that (y)0.
From this it follows that

(5.31) Iq(Y)l =<c sup IRI.
E
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Next we show that if R is ditferentiable, then (y) is O(1) as e $ 0. For this it is
sufficient to observe that-- - r/x/q(r/)-dr/COS -f(r/,Y)e
It then follows that

cos

The integral on the right-hand side of (5.33) can be estimated as in (5.29) and (5.30).
Finally, if R() is twice differentiable, then

(5.34) (y) R(y)+ O(e).

In fact, explicitly,

(5.35) (y)= R(y)+ sin

With these results we now turn to the problems for and if’.
It will be convenient to have a compact notation for the integral operators that

occur in the analysis. We define

o sin [-"(, y)] R()d,(5.36) Sl[R](y)=-
y 1

(5.37) S[R](y)=- foV [ ] R()

For intervals y e [0, Yo] such that (y) 0 we have

(5.38) IS ,=[R]I c Sup Iel.
Fuhermore, if R() is twice differentiable, then

1
(5.39) S[R](y) R(y)+ O(e).

5.3.1. The problem for . Starting from (5.1)-(5.5) and using the definition of 1
given in (5.25), we find after some arithmetic exercises that

(5.40) oL’l() =f(y)+ e:ZG(y, , ’)- e2(m+l)y2ff

(5.42)

1=- Sl[f(r/)] + eS[G(n, q, q’)]

sin -e a(r/, y) qdr/2 dr/.

The fl’s and y’s are polynomials in y. We shall use the symbol G generically, to denote
expressions of the structure (5.41). Of course, the G’s occuring in different terms have,
in general, different polynomials.

Using the results the equations (5.40) is transformed to

where G(y, , @’) is an expression of the structure

(5.41) G flo(Y) + Yo(Y)’+ E2m[l(Y) -[- 3q(Y)ff’]’.
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Integrating the last term by parts, we find it to be equal to

7 sin l)(r/,y) - -- O’dB

cos

Separating out terms that are different in structure from $1[ G], we obtain the following
result:

(5.43)

where

1
(5.44) qo Sl[f] =f+ O(e).

E

The reason for separating out carefully terms of different structure lies in the fact that
we want to pursue the analysis as far as possible into values of y such that q(y)
becomes very small.

5.3.2. The problem for ’. We now turn to (5.8)-(5.11). The first step is to remove
the nonlinearity in the term with second derivative of q,’. This can be done by multiplying
the equation by the factor

and by using, whenever convenient, the identity

=1-
-b 8TM"The explicit result is

y dy--5 ’ + 5y +- 4,
dy "

(5.45) [1 e2m(q + e2"q,)-l](f’ + e2g2)+ e2’q(q + 82rnl//) -ll//t

_{.. 82m+2((
__
82m iII)-1

1 dl/ty2(q,, qq,,)
dy

with g2 given by (5.11). Next we introduce 1 by definition (5.25), and we use the
generic notation G for terms of the structure (5.41). This produces the equation

l(’)=f’+ e2Gl(y, t), ’)+ e2m(q+ e2md/)-la2(y, , ’)

ly212’ d’ d(5.46) + e+2( + e2)-l - (,)

When inveing the equation (5.46), we have to deal with the term

=+ 1 ,d’ d
tin.
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Integrating by parts, we find this term to be equal to

(, + ’,/,)-(2,#’q, ,,/,),/,

(qo q- 82m)-’[2q0’ qg’]’

The expression looks very complicated. However, all that matters is the structure. We
have to extend somewhat the structure defined in (5.41), and introduce for that purpose

/+q=3

(5.47) d(y, 6, 6’)= E e,,o(y)(6)’(6’),
/+q=l

where P.q(y) are polynomials in y, which depend on e in a regular way.
Inveing now fully the equation (5.46) and collecting terms of the same structure,

we get

(5.48)

where

(5.49) 6 =-1s,[f’ll =f’+ O(e).
E

5.4. The contraction mapping. We collect our result in the following form"

(5.50) q= o+ eSI[PI(’O, q, q/)]+ 8S2[P2(TI, , /’)],

(5.51 q,’ q+ eSl[ P1 "q, q’, q") + 8S2[ P2( 7, q’, q") ].

The expressions for P,2 and P.2 are explicitly given in (5.43) and (5.48).
Let 3- be an interval y e [0, Yo], and consider pairs of functions f, g e C (3-). We

define a mapping T, with components T(1), T(2), by the following formulas"

T(1)(f, g)= 6o+ eSl[Pl(rl, f, g)]q- eS2[P2(n,f, g)],
(5.52)

T(2)(f, g)= q,+ 8SI[/I(T], f g)]+ eS2[2(rl, f g)].

The operators S, $2 map continuous functions into continuous functions, so we must
assure that P1.2(r/,f g) and /3,2(rt, f g) are continuous functions. A glance at (5.48)
shows that for that purpose the interval 3- must be restricted so that

(5.53) ,#(y) >- ce2"-1, c > 0 for y e 3-.

We consider now T as an operator in the Banach space of pairs of continuous
functions (f g), equipped with the usual norm

sup Ifl+sup ]gl.
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In that space we consider balls Be that are centered at the pair o, and have a
radius e 1-, with/x positive and arbitrarily small, i.e., the radius is slightly larger than
e. We want T to map the balls into themselves. With the estimate (5.38) it follows that
we must have P1.2(r/, f, g) O(1) and/31.2(r/, f, g) 0(1). Analysis of the different terms
in (5.48) produces a further and more severe restriction on the interval 3-:

(5.54) (y)>-ce m, c>0 fory3-

and side condition

(5.55) m_->2.

It is now straightforward to show that T is a contraction mapping in Be, that is,
for any pair of pairs (fl, gl), (f2, g2) 2 we have

(5.56) T(1’2)(f1, gl)- T(1’2)(f2, g2)[ <= eC{sup (fl-f2) + sup (gl- g2)}

with C a constant independent of e.
Let us show how the analysis runs on a representative term of (5.48). We consider

ele2’nSl[ o-l(o + e2"fl) -1 t( rl, fl, gl) q-l(0 + e2mf2) -1(,f2, ga)]

E2m frOy n 1 ](n, f2, g2)l" 1 12mf2 dn"

In the first term it is sucient to remark that G(, g) of the structure (5.47) is
Lipschitz-continuous with respect to f and g. Hence this term is bounded by

1 Y 8
2m

e7 Jo d. sup
( + e2=f) C{sup[fl-f2[+supg, g2[}.

Due to condition (5.54) it follows that

sup
2m

0(1),qg+e2mf q

so that the term is finally bounded by

eC{sup If1 --f2l + sup

with C a constant independent of e.
The second term of the inequality that we study is straightforward. The term is

bounded by

llo r/ e4m
e7 G dr/" sup-

o
(( + E2mfl)-l(( "}- 82mf2)--I sup Ifl -f2l-

With the condition (5.54) we find a much stronger contraction, i.e., the term is
bounded by

l+me C.sup If2-fl
with C independent of e.
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The reader can easily be convinced that the term we have considered is indeed
representative, that is, that other terms can be analysed by a completely analogous
procedure.

Having demonstrated the contraction property of the mapping T, we have proved
that there exists a unique solution q(y),, q,’(y) of (5.50), (5.51) in an interval O- limited
by the condition (5.54) and that, moreover,

(5.57)
q, q,o + o(),

,’ ,+ o().

This concludes the proof of the result announced in 4 of this paper.

II. Generalizations: perturbed model problems. Let us call the problem (1.1) a
model problem and consider peurbations of it, which are of the structure

(6.1) e2 d4y+ d2y
y2 e2 ( dy d2y )dx dx-y + y,, dx2

8

More precisely, we shall look at peurbations given by

(dY) dY+ X3(y)(dY)
2 d2y+ X4(y) {d2y)a(6.2) Xl(y) +yX2(y)

dx dx ]
where X,z,3,4(y are polynomials in y. These functions may fuher depend on e, but
in a regular way.

The special structure of the coefficient of the d2y/dx2 is motivated by the consider-
ation that a coefficient that would not be zero at y 0 could be absorbed in the left-hand
side.

We shall follow in main lines the method of analysis of the proceeding sections
when applied to (6.1), (6.2).

Following } 2 we introduce y as an independent variable. The peurbation term
becomes

1 dz l dz+ X4(y) (;)
2

(6.3) (y, z, z’)= Xa(y)z+ yX2(y)+X3(y) z
Instead of the integral (2.4), we shall now have, as a basic equation,

l(dz]2 y= e2(6.4) e z dye- dy] J
+ z 1 - y + (, z, z’) d.

It is quite easy to convince ourselves that a straightforward iteration, staing with

o=y 1-y
produces a formal approximation of the structure

(6.5) * =y2[1-]()
gin(Y, )

with g=(y, e) a polynomial without zeros for y e [1-(y/a=(e))]. This can also be seen
from the reformulation of the problem

(6.6) z=y2,
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which produces the equation

e2 y2
dY2 -- 3y + ’(1 +

(6.7)

1-y +e n2(n,,’)

(6.8) l(y)+2(y)’+y3(y)U+ y24(y)(1)2.

Clearly, the peurbation term behaves well as y 0.
We can now introduce

(6.9)

and formulate the problem for the remainder 0- This will be the equation (4.4) with
additional peurbations, which are integrals over functions containing and

Suppose now that, as in the model problem, we can prove the existence of a
bounded solution 0(Y; e) on y [0, Yo], Yo being such that

[(y; e) ce.
Can an argument be made on the continuation of the solutions, as at the end of 4?

Essential for the argument is the sign of the right-hand side of (6.4) in the region
of continuation of solution. Let us look at the formal approximation"

(6.10) z Zo + ez]l+ e2z2,

l(dz)- Zo
dzz(6.11)

z is positive in the e neighbourhood of y 3/2. It follows that the approximation
is still valid for y such that z0+ ez < 0. Hence, the continuation takes place in the
region where the right-hand side of (6.4) is negative, and this is sucient for the line
of reasoning as given at the end of 4.

We now turn to the construction of a contraction mapping. The problem for is
not essentially changed by the addition of the peurbation integral. Crucial is the
problem for ’. In 5.1 we have formulated that problem by differentiating the equation
for the problem. However, we can also differentiate first the equation for and
introduce the formal approximation with remainder term (6.9) afterwards.

We obtain in this way the equation

e y yff,
d

+ ’) + +y ’)

(6.13)

+ (e’ + 5e’+- (e’) --+ ( e, e’
2 3 ’

For any pair of continuous functions , ’ the peurbation term is a continuous function
of y on an interval containing the origin. Fuhermore, and this is the essential point,
the peurbation does not introduce any new terms with the derivatives of ’. This
means that the construction of 5 can be carried out, the only complication being the
bookkeeping of more peurbation terms.
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We thus arrive at the conclusion that the main results of 4 holdfor the perturbed
problem (6.1), (6.2).

Let us finally look briefly at perturbations that affect the fourth-order derivative.
For example, let us consider

{ dZy’[d4y+d2y y2 2( (d2Y)2)(6.14) e 2 1 + e2Xo y -x j dx---5 dx----5 y + e Y’ \--dx ]
where Xo(y) again is a polynomial. Moving the new perturbation to the right-hand
side will certainly produce severe trouble in the course of the analysis. However, we
can get away with a trick similar to the one used in 5.3.2.

Multiplying by { 1 + e2Xo(d2y/dx-)} -1 and using, whenever convenient, the identity

( d2y- dY{l+eXodY-1 + eXo x2, 1 e2Xo dx---5 -x2l
we find

(6.15) e d4y+ d2y y2 dy d2y
dx----i dx--5-y+ =e l+eXo(y)-dx2J Y, dx,-d-x],

where is again an expression of the structure (6.2).
The equation (6.15) does not seem to introduce any new fundamental difficulty

into the problem, and the main line of analysis of this paper can again be followed.
However, bookkeeping may become extremely cumbersome, even on the level of
construction of formal approximations. The most efficient way to attack the problem
is probably to use (6.14) as a starting point for the construction of formal approximation
and (6.15) for the purpose of constructing the proof of validity. It is beyond the
ambitions of this paper to perform all the necessary calculations.

Appendix. Computation of oscillatory integrals. (By N. Temme, C. W. I., Amster-
dam.) In this appendix we evaluate two integrals that occur in the analysis of 4.2.
First we consider

(A.1)

where

(A.2) yl)(x) sech2 x
cosh x + 1

which is a first-order approximation of the reduced equation (1.1), that is, a symmetric
solution of the equation

(A.3) d2y(1)- y()(1-y(1)), X.
dx

Using (A.3), we can write (A.1) in the form

e d
d,

and integrating by parts we find

I<)(e)=-l-cs(’)Y<l)(’)d’:-l-I_e’/Y<’)(’)de’e2e4
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Integrals of this type can be evaluated by using residues. Here we express the integral
in terms of the Euler beta function. The substitutions :- In u, u t(1- t) yield

i(1)(e ti/( -i/

e e4
1 t) dt

r(2)

Using the reflection formula of the gamma function [9],

7rz
F(1 + z)F(1 z)

sin (Trz)’

we finally obtain

37/"
(A.4) I(l)(e) =-e sinh (Tr/e)"

The second integral to be evaluated is

(A.5) I(2)(e) =- cos : y(2(:)[1-y(2(sc)] d:

with

(A.6) y(2(x) 3A(1 e2)
A=

1

cosh(xx/1-e2)+a(1-Se2) x/1 +5e2+ 10e4"

The approximation y(2) is obtained by expanding the solution of the z-equation

[ lz,)2] y2 2y3 dy dz d2z
+z= z"-

dx’ dy’ dye’

in a series z-- Zo + e2z1 d- e4z2 d- which gives

zo=y2-y3, Zl=(Z’o)2-ZoZ=-y2(3-1Oy+5y2).

For y2(x) we obtain the equation

dy{2 /Zo+ e2z,
dx

with the symmetric solution (A.6). Observe that

lim y(2)(x) y(1)(X).
e$o

For the evaluation of (A.5) we need integrals of the type

fo cosax lI_ e’ax

(A.7) Jk(a, y)=
(coshx+cos y)k dx= (coshx+cos y)k dx, k-- 1,2,

where ), (-r, r), and a is a complex number in the strip IIm a < k. Let k 1 and
take in the second integral x In t; then

fo
ia

Jl(a, y)=
(t+eiV)(t+e_iv)

dt

_ei/IoXtia-1 "IO tia-1
2i si----- + e:w dt-

e-W oo
2i sin y + e- dt.
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Note that when a is real, two divergent integrals appear. However, to ensure conver-
gence in both integrals, we temporarily assume that -1 < Im a < 0. By putting
se iv, t- se-, respectively, and using standard methods for complex integrals, both
integrals can be combined into

Jl( a, Y)=
e-a_ ea j,o sia-1
2i sin y s + 1

ds,

which again can be expressed in terms of gamma functions. The result is

er sinh (ay)
(A.8) J,(a, y)=

sn y sinh (era)’
derived under the condition -1 < Im a < 0. Since both of these final expressions for
Jl(a, y) and the integral representation of Jl(a, y) in (A.7) are analytic functions of a
in the strip IIma] < 1, we conclude that (A.8) also holds in this strip. Especially, it is
valid for real values of a.

By splitting (t+ eY)-2(t+ e-iY)- into partial fractions, the evaluation of J:(a, y)
can be done in the same manner. However, by differentiating Jl(a, y) of (A.7) with
respect to y, we can derive the desired result in a straightforward way; it is easily
verified that the conditions for this approach are satisfied (see [9, par. 4.44]). In doing
so we obtain

1 OJl(a, y) er
J(a, y)- [a sin y cosh (ay)-cos y sinh (ay)].

sin y 0y sinh (ay) sin y

We return to the evaluation of (A.5), and we use the integrals Jk of (A.7):
1

(A.9) I-(e)=-53Ax/1-e [Jl(a, y)-3A(1-e2)J(a, y)],

where

1
(A.10) a cos y h(1 5e2).

e/1- e2

We prescribe that y is positive and tending to zero as e--> 0. Furthermore, sin y
eh/15(1- e:). It follows that

1 9Azer(1-- e2) 3/2

(A.11) I(-)(e) =5 sin y sinh (era)
[A sinh (ay) a sin y cosh (ay)].

It is interesting to compare this result with (A.4), since we may expect that I(Z)(e)
Il)(e) as e->0. Recalling that both a and y depend on e, we first consider a fixed
(i.e., independent of e). Letting e- 0 (and hence y--> 0), we have

1
(A.12)

A sinh (ay)-a sin y cosh (ay) 1 a3 +- a.
sin3 Y 3 6

Substituting this in (A.11), we obtain

(A.13) I(2)(e) 3aaer(1 -)
e - sinh (era)

which indeed resembles (A.4), when a 1/e, which, of course, is not allowed in (A.12).
When we consider (A.11) with the true value of a given in (A.10), that is, with
a sin y hx/, the representation of i(2 becomes

9A3er(1 e2) 3/2

(A.14) I2)(e)
e sin y sinh (era)

[sinh (ay)-x/ cosh (ay)],
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with ay-- x/-i- as e -0. It follows that the ratio I(2)(e)/I(1)(e) does not tend to unity
when e- 0. The limit of the ratio is about 3.6.
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UNFOLDING A POINT OF DEGENERATE HOPF BIFURCATION IN
AN ENZYME-CATALYZED REACTION MODEL*

BRIAN HASSARD’ AND KATIE JIANG$

Abstract. A point of degenerate Hopf bifurcation in an enzyme-catalyzed model previously studied by
Doedel [2] is rigorously analyzed by using techniques of singularity theory and interval analysis. A
computation using interval analysis proves the existence of a point of degenerate Hopf bifurcation, which
is a smooth function of additional parameters in the model system. Singularity theory as developed by
Golubitsky and Langford [J. Differential Equations, 3 (1981), pp. 375-415.] and Golubitsky and Schaeffer
[Singularities and Groups in Bifurcation Theory I, Springer-Verlag, New York, 1985.] is then used to construct
universal unfoldings of the degeneracy, to completely characterize the families of small amplitude periodic
solutions that arise for parameters near the degenerate values. Computations using interval analysis are
employed in this proof. Excellent agreement is found between the bifurcation theoretic unfolding and
(numerical) continuation results using pseudoarclength continuation.

Key words, singularity, Hopf bifurcation, enzyme model

AMS(MOS) subject classifications, primary 58F14; secondary 92A09, 58F22

1. Introduction. In this paper we study a mathematical model of an enzymatically
active system. Enzymes are molecules that catalyze the biochemical reactions in the
metabolic pathways of living organisms. The complexity of living cells is such that it
is difficult to model the whole system where so many phenomena take place, including
enzyme reactions and various types of transport, e.g., by diffusion, electrical migration,
and convection. In the model we consider, the enzymes are physically confined in one
compartment, i.e., the model is an "immobilized" enzyme system. Such models are
used to study the interaction of enzyme reaction and diffusion in a well-defined context.
The interaction produces oscillations.

The concentration oftwo chemical species in a single compartment can be modeled
by a system of two ordinary differential equations that describes the change of these
concentrations in the presence of an enzyme-catalyzed reaction inside the compartment
with transport from an outside reservoir called the S-A system:

(1)

ds
dt

da

-(So-S)-pR(s,a),

-a(ao-a)-pR(s, a).

Here s and a denote the concentrations of the two chemical species S and A inside
the compartment. S stands for "substrate" and A for "activator" though both are
substrates in a reaction where they are consumed. This reaction is catalyzed by an
enzyme with reaction rate proportional to

sa
(2) R(s,a)= :>0.

(1 + s + Ks2)
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t Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, 14214.
$ Department of Science and Mathematics, GMI Engineering and Management Institute, 1700 West

3rd Avenue, Flint, Michigan 48504.
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The parameter p is a ratio of characteristic times, p Or OR, where OR is the characteris-
tic time of diffusion of s from the outside reservoir into the compartment and 0r is
the characteristic time of the enzyme reaction; the terms (So- s) and a (ao- a) describe
the transport from the outside reservoir where the concentrations are held at a constant

So and ao. The parameter a represents the ratio of diffusion coefficients between the
reservoir and the compartment, the parameters So, ao, p, c, and K are all dimensionless
and positive as are the state variables s and a.

Doedel [2] used purely numerical techniques to demonstrate the birth of isolas
of periodic solutions in the S-A system as the two parameters p and So are varied.
With p as the bifurcation parameter, his results suggest that there is a value So

d such
that for So slightly less than So

d a branch of periodic solutions arises from the stationary
branch in a Hopf bifurcation, and returns to the stationary branch at a second point
of Hopf bifurcation. While for So slightly greater than So

d there is an isola (an isolated
branch of periodic solutions) and no Hopf bifurcation from the stationary branch. We
shall show that for So So

d the S-A system exhibits degenerate Hopf bifurcation.
The purpose of the present paper is to analyze the birth of isolas in the S-A system

by means of singularity theory and to compare the approximate bifurcation diagrams
obtained from unfolding the point of degenerate Hopf bifurcation with "actual"
diagrams obtained using Doedel’s code AUTO [2].

The technique we apply involves first a nonlinear change of variables taking the
S-A system into Poincare-Birkhoff normal form [6], followed by application of
Lyapunov-Schmidt reduction as was done in [3], [5]. The degenerate Hopf bifurcation
is classified using singularity theory [4], [5]. We then unfold the degeneracy with
respect to the parameter So.

2. Location of the point of degenerate Hopf bifurcation.
2.1. Selection of s, as bifurcation parameter. We choose to use s,, the s-component

of the stationary solution, as bifurcation parameter rather than p as in [2]. Then a,,
the a-component of the stationary solution, is uniquely defined by

a, ao+ s, So)/a,
and the parameter/9 is replaced by

p, (So- s,)/ R(s,, a,).
The advantage in selecting s, as the bifurcation parameter is that the stationary solution
is simple and uniquely defined as a function of s,, whereas with/9 as the bifurcation
parameter, there may be up to three distinct stationary solutions. We note that as a
function of s,,/9, has poles at 0 and So- cao. Since a, ao+ (s, So)/a, while s, and
a, are equilibrium values of concentrations of chemical species, for physical meaning
both s, > 0, and a, > 0; thus s, > max (0, So- aao), which avoids the poles of/9,. Also,
for physical reasons p > 0. Since K > 0, 1 + s, +s> 0 and R(s,, a,) > 0 for all s, > 0.
The inequality p, > 0, therefore, further restricts s, < So.

2.2. Linear stability analysis for stationary solution. The Jacboian matrix for the
S-A system at the stationary solution (s,, a,) is

[-1- p,OR/Os -p,OR/Oa ](3)
-p,OR/Os

whereOR a(1- s2)/ (1 + s + s2)2 and OR/Oa s/( 1 + s + s2). The linear stability
of (s,, a,) is then determined by the real parts of the eigenvalues X of this matrix,
which satisfy the characteristic equation

A2 + (1 + a + p,OR/Os + p,OR/Oa)A + (a + p,OR/Oa + ap,OR/Os) 0
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We are primarily interested in the case of complex eigenvalues A tr + iw, where

tr -1/2(1 + a + p,OR/Os + p,OR/Oa),
2oo (a + p,OR/Oa + ap,OR/Os)- r2> 0.

At points of Hopf bifurcation, critical values s of the bifurcation parameter must
satisfy o-(s,, So) 0, where

r(s,, So) -(1 + a + (So- s,)(1/a, + (1 :s2,)/s,(1 + s, + Ks)))/2
(A(s,)s+ B(s,)so+ C(s,))/D(s,, So),

where we define

A(s,) Ks- 1,
2 -lv S, nt- aoa,B(s,) -3s-(ao + 1)s,

C(s,) 2s+ (1 + (aoa+ 2aoa))s3, + (aoa+ aoa)S + aoaZs,
2 + s,)So- Ks4,-(aoa + 1)s-(aoa + 1)s- aoas,].D(s,, So) 2[(s + s,

d
Sod) (d for degenerate)Figures 4.5 and 4.6 of [2] suggest the existence of values (s,,

such that for So slightly less than So
a two distinct Hopf bifurcations occur at points
d(1), (2) close to s d and obey s)< s, < s(,2), that is,S, S, ,

(’> 0,(So), So)

and as So- So
a the points s(,(So) and s,-(Z(so) coalesce.

Assuming or(s,, So) is smooth in a neighborhood of the supposed degenerate point
(sa Soa) that is,,, Soa), we therefore expect both cr=Or/Os,=O at (s,,

A(s)(sdo)2+ B(s)sao + C(s) A’(s)(Sao)+ B’(s,)sao + a

dIn Lemmas 1 and 2 we shall prove the existence of such a degenerate point (s,, sod),
and justify the smoothness assumption by showing D(sd Sao) O.,,

d ofThe present work depends on numerical computations of degenerate value s,
the bifurcation parameter, and of various other expressions at this point. We state the
numerical results in the form of lemmas. In Lemma 1, s(500, 0.2, 0.1) is given to a
relatively high degree of precision because there will be loss of precision in the
subsequent computations leading to the coefficient a in Lemma 3. For the same reason,
the rectangle Ro is chosen small: we return to this subject in the discussion.

dLEMMA 1. There is a smooth function s,(ao, a, ) defined for all (ao, a, ) in
the rectangle Ro={lao-500l-<10-14, Ic-0.21-<10 -16, I-0.11_<-10-6} and obeying

dd 25.5087711861 < 10-9, such that s, s,(ao, a, is a simple zero of the polynomialS,

equation

P(s,; ao, a, K)= A’(A’C-AC’)2-B’(A’B-AB’)(A’C-AC’)+ C’(A’B-AB’)2=O.
Furthermore, s,d(500, 0.2, 0.1) is in the interval 25.50877118629661337716+/-0.5 x 10-2.

Proof MACSYMA was used to generate analytical expressions for the coefficients
of the powers of s, in P(s,; ao, a, ); see Appendix B. P is the numerator of the
rational function obtained by substituting -(A’C-AC’)/(A’B-AB’) for So in the
expression A’(so)2+ B’so+C’. At ao 500, a =0.2, =0.1, in particular

1+0.2436s9 +0.316s-10.78s-9.2sP(s,, 500, 0.2, 0.1)= 0.00004sl 0.0104s, ,
5920s- 480s,l14s-3616s,+ 178.28s,

where each coefficient is exact.
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The version of the Bairstow algorithm as implemented by Aberth in Precision
BASIC (program POLY [1]) then was used to compute all zeros of P(s,; 500, 0.2, 0.1).
Fixed decimal format with 20 decimal digits was specified. The program found four
complex zeros and seven real zeros, including the zero s, 25.50877118629661337716
correctly rounded to 20 decimal places. Since 11 distinct zeros were found and the
polynomial P(s,) is of degree 11, the zero given above is necessarily simple. Since
Aberth’s program, when it succeeds, gives correctly rounded results, the zero
d (500, 0.2, 0.1) is known to lie in the stated interval.S$

dTo show the existence of the smooth function s,(ao, re, K), we evaluated
P’(s,, ao, a, ) at the ranged values s, 25.508771186+ 10-9, ao-- 500+/- 10 -14, re

0.2-+-10 -16 and =0.1 + 10 -16 and found that P’<0, i.e. both ends of the interval
representing P’, were negative. We then evaluated P(25.508771185; ao, re,) and
P(25.508771187; ao, a, ) for the same ranged values of ao, re, and , and found that
P changes sign. Thus for all (ao, a, K) in Ro, P has a simple zero s(ao, re, ) obeying

dd_ 25.508771186[ < 10 -9. Smoothness of s,(ao, re, ) follows from the implicit func-
tion theorem.

LEMMA 2. There is a smooth function Sao(ao, re, ) defined for all (ao, re, ) in

Ro and obeying ISoa-l10.4747571=<3x10-6 such that (s d,ao,
solves the pair of equations o’(s,, So)=Or/Os,(s,, So)= O. At (s, Sao), w(s, s)
satisfies Io-0.929652871_-<9.5x 10 -7. Furthermore, Soa(500, 0.2, 0.1) is in the interval
110.474757085804325544 + 2.9 x 10 -17.

Proof. MACSYMA was used to generate analytical expressions for A’C-AC’,
A’B-AB’, Sao =-(A’C-AC’)/(A’B-AB’), and D, which were then evaluated using

d stated in Lemma 1. Output from this programa PBASIC program at the ranged value s,
gave

-(A’C AC’) 1.34023976253378865552 x 106 +/- 3.0 10 -14,
A’B-AB’-- 1.21316380129520596105 104+/-3.0 10 -16,

So
a 110.474757085804325544 + 2.9 10 -17,
D=-7.024057683184371861 104+/- 2.4 10-13.

In particular, Soa(500, 0.2, 0.1) is well defined. The polynomial equation of degree 11
d becomesin Lemma 1 divided by (A’B-AB’)2 at s,
’( C’a’(s,)(So) + B s,)sao + (s,) O,

which implies

aa’( sao )2 + aB’s ao + AC’ O.
dBy the definition of So,

thus,

Since a aA (s,) 2Ks, 0,

dAB’so + AC’= A’Bs + A’C;

AA’(so)2+ A’Bso + A’C O.

d d)2 d d dA(s,)(So + B(s,)so + C(s,) O.

But r(s,, So) is of the form

(A(s,)s+ B(s,)so+ C(s,))/D(s,, So),
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dd sod)O, sor(S sdo)andOr/Os,(s, sod) are both well defined:where from above, D(s.,
d

Sod) 0 then follow immediately.tr(s, Sod) =0 and Otr/Os.(s.,
To show existence of the smooth function sdo(ao, a, K), we evaluated the analytical

expressions for A’C-AC’, A’B-AB’,sdo, and D at the ranged values s,=
25.508771186+ 10-9, ao 500+/- 10-14 a =0.2+ 10-16, and K =0.1 + 10-16 as in Lemma
1. We found that A’B-AB’>O, so sdo(ao, a, ) is well defined and smooth for all
(ao, a,) in Ro. We found the ranged value 110.474757+3x10-6 for So

d so
]sdo(ao, a,r)--llO.474757[<--3xlO -6 for all (ao, a,) in Ro. Also, we found D<0,
which implies as above that r=Oo’/Os,=O at (s(ao, a, ), sdo(ao, a, )).

The formula w=(1-a)((So-S,)/a,)-a2 was derived from the equations for o-

and w2 in 2.2 and the condition r 0. A separate PBASIC program was written to
d given above. Outputevaluate this formula at the ranged values of ao, a, Soa, and s,

from this program gave to =0.92965287 +9.5 x 10-7. []

3. Nonlinear analysis.
3.1. Transformation to Poincar6-Birkhoff normal form. First we perform a linear

change of variables such that in the new variables Yl, Y2, the Jacobian of the S-A
system is in real canonical form. Define

1
P=

-(1 +r+p,OR/Os)/(p,OR/Oa)
o ]to/(p,OR/Oa)

The columns of P are just Re(v) and -Im (v), where v is the eigenvector of (3)
corresponding to A tr + ito. Let

+P
a a, Y2

In terms of Yl, Y2, the S-A system becomes

+P s,,sodt Y2 a, Y2

where

F s,, So)
a a(ao-a)-p,R(s, a)

For this new system, the Jacobian at Yl Yz 0 is

d and V=So So
d and write the system inIt is convenient to let z Yl+ iy2,/x s.- s.,

the form . (tr + ito)z + g(z, , I, 9).

The derivatives of g at z 0 are related to those of f at Yl Y 0 by

gjk (O/Oz)J(O/oe)kg(z, e, I,

(( O__y iy)) ((+i)) (fl(Yl, Y, , )+ if2(Yl, y, , )).
0
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Next, we perform a nonlinear change of variables. Let

z +Xo:12+ Xl1--- Xo::12 + X3o:/6 +x:+Xo16,

where

X:o &o/ h,

Xl g/h,

Xo go/ 2x a ),

X3o 3 (g2oX2o + &a,o2 + g3o/3)/2A,

X,2 (g2oXo2 + g,, (,2o + 2X,,) + 2go2,, + g,2)/2.,

Xo3 3(&,Xo2 + go222o + go3/3)/(3-A).

In terms of new (complex) variable so, the S-A system assumes the Poincar6-Birkhoff
(P-B) normal form

(0-+ ito)+ c(, ),

where

C(:, )--CI(jtZ /2)72’- 0(4)

and

C, (/Z, t.’) [g2og11(2A + .)/[A[2 q- 2191,[2/A + 1go2[2/(2A X)+ g2,]/2.

(The coefficients X2o,//11, and Xo2 were chosen to make the quadratic terms of c(sc, sc)
vanish, and g3o, ,12, and go3 were chosen to make the coefficients of sc3, sc2, and 3
in c(sc, sc) all vanish. The evaluation of el does not involve X30, X2, or X03.)

3.2. Lyapunov-Schmidt reduction. Letting : s + i:2 and c al + ibm, where all
of :1, 2, a and b are real, the P-B normal form becomes

al L2(2+ ,) -’t"0(4)"

When Lyapunov-Schmidt reduction is applied to this form, the results are simple.
There are periodic solutions corresponding to solutions of a bifurcation equation

r(u, tz, v)x O,

where u x2, r(O, O, O) O, and the derivatives of r at (u, , v) (0, O, O) are as follows

-00- -00-
ru(0,0,0)=-a,, ru(O,0,0)- r(O,O,O)-

Os, OSo

--020
r,.,(o, o, o) 02s,

The numerical evaluation of these derivatives is the subject of Lemma 3.
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LEMMA 3. For all (ao, a, K) in Ro, at (s,, So)- (s(ao, a, ), Sdo(ao, or, )) the
derivatives Ocr/OSo and 02orlOn-s, obey IOtr/Oso/O.O3053031<- 2x 10 -6, 102cr/O2s, /
0.003699261_-<3 10-7, and the coefficient al obeys lal-0.0002121-<_2x 10 -5. Further-
more, for (ao, a, ) (500, 0.2, 0.1), at (s,, So) (s(ao, a, K), Sao(ao, a, ()),

00"
0.03053033009081196358 + 1.8 x 10-19,

0So
020

0.00369926340818817971+/- 1.1 x 10-19

al 0.0002126442280682+/- 2.4 x 10 -15.

Proof. Differentiating the identity

D(s,, So)O’= A(s,)s+ B(s,)so+ C(s,)
with respect to So gives

D(s,,so)Oo’/Oso+ r=2soA(s,)+B(s,).
e sg),o’( e so)=O,andsoAt (s,, so) (s,, s,,

d dOtr 2soA(s,)+ B(s)
OSo

(st’s)= D(s,s)
Similarly, differentiating the identity twice with respect to s, and using

So 0,os,
gives the formula

d dA"(s)(sdo)2 + t tS,)Sdo + tS,)
O2so (s*’ D(s,,

MACSYMA was used to generate analytical expressions for Otr/Oso and 020"/02S, at
(s, Sod) based upon these two formulas. An analytical formula for al(0, 0) Re c1(0, 0)
was derived as follows: expressions for the partial derivatives fjk =ozfi/OyjOy, and
fig,, 03fi/OyjOy,OY,,,, i, j, k, rn 1, 2 were obtained; in terms of these derivatives,

gll---[f11 + if211]/4,
go2 [fill- 2f2 / i(f211 / 2f12)]/4,
g2o [/11 + 2f2 + i(fl- 2f112) ]/4,
g21 [f11 +/212 + i(f111--f12)]/8.

d sod), the eigenvalue A tr + iw is pure imaginary, and the formula forAt (s,, So) (s,,
Cl simplifies, giving

( 1 )2iglll2 Ig02[2 /1/2g21CI(0 0)
2Wo

g20gll

where Wo p,OR/Oa + ap,OR/Os) 1/2. Then

al(0, 0)= Re 1(0, 0)=
1 1

2w-- (-Im (g20gll))/ Re g21

(Re g2o Im gll / Im g2o Re gll)/1/2 Re g21.

The formulas leading to a are given in more detail in Appendix B.
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A PBASIC program was then used to evaluate the above formulas, first for
(ao, a, K)= (500, 0.2, 0.1) and then for all (ao, a, K) in Ro, as in Lemmas 1 and 2. The
bounds for Ocr/OSo, 020"/02S,, and a stated above were output from this program.

3.3. Unfolding the degeneracy. From Lemmas 1, 2, and 3 we get the following.
THEOREM. For each ao, a, in Ro, for So sg ao, a, the S-A system has a

ddegenerate Hopfbifurcation at s. s.(ao, a, ). Theform -X + A2X is the normalform
for the degeneracy. There is a neighborhood of (s, sdo) such that if So< Sdo in this

(1) d (2)neighborhood, there exist Hopf bifurcations at points s), (2) obeying s < s < IfS , : S
d in which two distinct familiesSo sdo, there is a degenerate Hopf bifurcation at s, s,

ofperiodic solution arise. If So > sdo, then for an interval of values ofs,, there is a branch
ofperiodic solutions, locally isolated from the stationary solution. All the local periodic
solutions are unstable.

Proof. By Lemma 3, the bifurcation equation

g(x, A,’)= r(u, A, ,)x =0

satisfies

r(0, 0, 0)--o-: 0,

(o, o, o)
-___ o)=o,
Os,

(s,,

ru(O,O,O)---al(O,O)<O,

r(O, O, O)
-0o s s ao > O,
Oso

-oo So)>O.rx(O, O, O)= 0s24 (s.,

From the solution of the recognition problem for Z2-symmetric bifurcation problems
[5, p. 257], it follows that for u=0, the singularity at x=0, A =0 is strongly Z-
equivalent to the normal form -X + A2X. According to [5, p. 275], a universal unfold-
ing for this normal form is

G(X,A,A)=R(X2, A,A)X,

where R U, A, A) U2 + A2 + A and A is the unfolding parameter.
By the strong Z-equivalence of g(x, A, 0) and G(X, A, 0) there exist smooth

functions So(X, A) and Xo(X, A) such that So(-X, A) So(x, A), Xo(-X, A) -Xo(X, A),
So(O, O) > O, (Oxo/Ox)(O, 0) > 0, and G(x, A, O) So(X, A)g(xo(x, A), A, 0); therefore,
So(X, A)g(xo(x, A), A, u) is an unfolding of the singularity G(x, A, 0), and as such, may
be factored through the universal unfolding G(X, A, A). That is, there exist smooth
functions S(x, A, u), X(x, A, u), A(A, u), such that

So(x, A)g(xo(x, A), A, u)= S,(x, A, ,)G(X,(x, A, u), A(A, u), A(u)),

where S,(x, A, O) 1, Xl(X, A, O) x, A(A, 0) A, A(0) 0, Sl(-X, A, ,) S,(x, A, u), and
X(-x, A, u) -X(x, A, u). The next task is to show that the map , - A(,) is locally
invertible.

Let x(x,A) denote the inverse of the map XXo(X,A); let X2(x,A,u)=
X,(Xl(X, A), A, ), and let S2(x, A, u)= S,(Xl(X, A), A, )/So(Xl(X, A), A). Since
S2(x, A, ,) is even in x and is smooth, it may be written as S2(x, A, u)= S3(u, A, u),
where u x, and $3 is smooth [5, p. 248]. Similarly, X2(x, A, u) may be written as
X(x, A, v)= X(X2, A, v)x, where X is smooth. Then

g(x, i, 1)’- S3(u,/, b’)G(,(lg, ,/,t)x, A(/,/), A(,)),
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which implies that

r(u, A, v)= S(u, A, v)R(x2(u, A, v)u, A(A, v), A(v)),

where S(u, A, v) S3(u, A, v)x(u, A, v).
On taking first- and second-order partial derivatives of this equation for r(u, A, v)

at u a v 0, algebraic equations relating partial derivatives of r, S, R, X, A, and A
are obtained. We find that

X(0, 0, 0) -2ru> 0,

A.(0) 2r
raa

so that the map , --> A(,) is locally invertible; A > 0 corresponds to u > 0 (So> Soa), A 0
corresponds to t, 0 (So Soa), and A < 0 corresponds to , < 0 (So < Soa). There are then
three cases to consider.

(i) If So< So
a and ,= So-Sao is sufficiently small, then the only small positive

solutions of the bifurcation equation g 0 are images under the inverse of the map
(X,/)-’>(X(X2, I, ,)x,A(A, ,)) of solutions of R(XZ, A,A)=-XZ+A2+A=O. Since
A=A(,)<O,R(O,A,A)=O has two roots AI<A2. For A<A1 and for A>
A2, R(X2, A, A)--0 has exactly one positive solution; but for A1 < A < A2, there are
no (real) solutions. Let A1 and A correspond to A and A2, respectively. Then
r(O, A,, ,) O, r(O, A,, ,) < O, ru(O, A,, ,) <0, r(O, A2, ,) O, r(O, Az, ,)>
r,(0, A, ,) < 0, which shows the existence of points -,"() s.a + A and s.(2) sd +/2 of
Hopf bifurcation.

(ii) If So So
a then , 0 and A 0. For each A < 0, X -A is the unique solution

of the equation R 0, and for each A > 0, X A is the unique solution. These solutions
correspond to two families of solutions of g(x, A, 0)=0, which meet at the point
(x, (o, o).

(iii) If So> So, then ,>0 and A>0. The equation R(X, A,A) =0 has just the
branch of solutions X (A2+ A)1/, A arbitrary. Therefore, g(x, A, ,)= 0 has a local
branch of periodic solutions, locally isolated from the stationary solution.

By Theorem 4.1 of [5, p. 360], a periodic solution of the ordinary differential
equation corresponding to a small positive solution x of g(x, A, ,)=0 is unstable if
gx(x, A, ,)< 0. By direct computation, for sufficiently small (x, A, ,),

sgn g,(x, A, t,) sgn Gx(X, A, A) sgn Ru(X2, A) -1,

so all of the small periodic solutions found are necessarily unstable. [3

3.4. Comparison of unfolding with numerical results from AUTO. Figures l a and
lb are bifurcation diagrams containing curves that represent the families of periodic

dsolutions of the S-A system for So So-0.01 (curves 1 and 1’), So
d (curves 2 and 2’),

So
d +0.01 (curves 3 and 3’); all for (ao, c, K) (500, 0.2, 0.1). The vertical axis is the

peak-to-peak value

Sp, max s(t) min s(t)

of solutions s(t; s., So), and the horizontal axis is the bifurcation parameter s.. Curves
1, 2, and 3 were obtained by pseudoarclength continuation with Doedel’s code AUTO.
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60-
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24.5 25.0 25.5 26.0 26.5

S

FIG. 1. Bifurcation diagram ofpeak-to-peak value for s solution component versus bifurcation parameter
s,, for So s0a-0.01 (curves 1, 1’), So Sao (curves 2, 2’), and So sg +0.01 (curves 3, 3’). Curves 1,2, and 3
are from pseudoarclength continuation (AUTO) Curves 1’, 2’, and 3’ are from unfolding.

Curve 1 was computed by using AUTO to detect Hopf bifurcation from the stationary
branch, and then to generate the Hopf branch by continuation from the left (smaller
s, value) bifurcation point.

Limit point continuation in the two parameters (s,, So) was used to compute the
left limit points (points of vertical tangency) in curves 2 and 3, starting from the
solution corresponding to the left limit point in curve 1. One parameter continuation
in the parameter s, was then used to compute the other points on curves 2 and 3:
since AUTO was observed to cycle when computing these curves, it was modified to
stop once the value of s, had changed direction twice. (AUTO was also modified so
as to output the peak-to-peak value of s as a measure of the amplitude.)

Some angularity is visible in curves 1, 2, and 3 because discrete sets of periodic
solutions are used to approximate smooth branches of solutions.

Curve 1, as computed, does not return precisely to the right point of Hopf
bifurcation, so the data was "touched up" by including results of computing the branch
starting from the right bifurcation point. Similarly, as computed, curve 2 does not
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touch the horizontal axis; rather, it approaches the axis and then jumps to the
"outgoing" set of periodic solutions. This data was "touched up" by inclusion of the

dstationary solution for s.- s..
In Fig. lb, curves 1’, 2’, and 3’ were obtained by plotting the zero set of

This is a Taylor expansion of the factor r(x2, A, v) of the bifurcation equation, retaining
terms that correspond to terms in the factor R(X2, A, A) of the universal unfolding,
and with x approximated by Spp/2. The Lyapunov-Schmidt reduction approximates
the periodic solutions so(t) of the P-B form as x eit’+ O(x2), where t’ is a scaled time
variable. From this approximation it follows that Spp 2x + O(x2).

The agreement between the bifurcation theoretic curves 1’, 2’, 3’ and the numeric
a Curves 1,curves 1, 2, 3 is excellent. Curves 1,2, and 3’ are symmetric about s,- s..

2, and 3 are approximately symmetric, with the deviations from symmetry becoming
d 0). Curves 1 and 1’ each indicate Hopfbifurca-larger further away from (s., ;pp) (;:,

tions at approximately the same values s and s.-(2). Curve 2’ consists of the two
tangents to Curve 2. On curves 3 and 3’, the minimum value of Spp is approximately
the same. All of these features support the correctness of the values computed in
Lemma 3.

4. Discussion. The main point of the present paper is to establish rigorously the
existence of certain families of periodic solutions of the S-A system, both for a specific
set of parameter values (ao, t, K) and for a nontrivial region Ro of such values. This
was accomplished by using symbolic manipulation to perform algebraic manipulations
more complicated than we would normally perform by hand, and interval analysis to
perform numerical computations "precisely" in the sense of Aberth’s monograph [1].
We had hoped to obtain results valid for a larger region in the parameters. For a 0.2,
and K 0.1, we have performed traditional numerical computations that indicate that
al =0 for ao 330, i.e., a higher-order degeneracy is present in the model. In future
work, we intend to use a continuation argument to extend Lemmas 1 and 2 to a region
including this degeneracy, and to construct an unfolding of this degeneracy as well.
For application of a continuation argument to be practical, however, the individual
overlapping regions in parameter space must be larger than the present region Ro,
which means that a different type of interval arithmetic must be employed.

The loss of precision in the computed quantities as we proceed from Lemma 1
through to the theorem is normal for computations using the type of interval arithmetic
implemented within PBASIC. In PBASIC, floating point centenary (base 100) arith-
metic is used. An arbitrary number of centenary digits is used for the mantissa of the
midpoint, but only a single digit is used for the range; this digit is a bound on the
error in the last mantissa digit. Whenever the range of a computed expressions exceeds
the capacity of a single centenary digit, the number of mantissa digits is decreased
and subsequent computations are in reduced precision. This design economizes on
storage space for intervals and on computational effort. The design works well to find
individual computable numbers (such as s(500, 0.2, 0.1)) to "arbitrary" precision: to
compensate for loss of precision during a computation, a higher degree of precision
is used at the start. The design is less satisfactory when the object of a computation
is to establish inequalities such as al(S, Sod) > 0 for all (ao, a, r) in Ro. In this case,
compensating for loss of precision during the computation requires additional restric-
tions on the parameters is the reason that the region Ro in the present work is so small.
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To minimize such restrictions on the parameters, a type of interval arithmetic must be
used that exhibits less loss of precision during the computation. We expect that this
could be accomplished by representing both the midpoint and range of the intervals
as arbitrary precision numbers.

To contrast the present work with more traditional numerical computations, we
d

So
d and a at (ao, a, K (500, 0.2, 0.1) could have beennote that values for s.,

calculated to arbitrary precision using either MACSYMA or Mathematica. By recom-
puting with successively higher precision arithmetic, digits that stop changing as the
precision of the arithmetic is increased would be taken as "correct." This procedure
for roundoit error estimation does not, however, establish true error bounds. Although
relatively unsophisticated in some respects, the language PBASIC used in the present
study does provide arbitrary precision interval arithmetic as required to make
mathematically rigorous statements.

The work [3] outlines several alternate derivations of Hopf bifurcation theory,
and presents formulas for bifurcation coefficients derived by application of Lyapunov-
Schmidt reduction without preliminary transformation to P-B normal form. To relate
our al(s ,a Sod) to the coefficient Ploo of [3], consider the slopes of the right and left
tangent lines to curve 2 of Fig. 1 for s.=s.,Spp=O. These slopes are +

(-2(02tr/Os.)/al)1/2. Based on results in [3], these same slopes are
+/-lcll(-2(02tr/Os2.)/Ploo) 1/2, where c the first component of the eigenvector c. (In terms
ofthe approximate periodic solution in 3 ], Spp 2)[ c 11 + 0()2), where ) is the coordinate
on the kernel.) Because the geometry of curve 2 is independent of the particular
derivation of bifurcation coefficients, it follows that al =Ploo/ICll2. It should also be
possible to establish this algebraically, but the geometric argument is simpler. We
verified the relationship numerically. In this application, the choice of technique in
deriving Hopf bifurcation seems to be a matter of taste.

Appendix A. Terms from singularity theory.
Z2-equivalence. Let g(x, A) and h(x, A) be bifurcation problems with Z2_ symmetry.

Then g and h are Z-equivalent if

h(x, A)= S(x, A)g(X(x, A), A(A)),

where the triple (S, X, A) is an equivalence transformation (i.e., S is nonzero and
positive and (X, A): (x, A)--> (X(x, A), A(A)) is a local diffeomorphism that preserves
the orientation of x and A; that is, X,(x, A)> 0 and A’(A)> 0) such that X is odd in
x and S is even in x. If this relation holds with A(A)- A, then g and h are strongly
Zz-equivalent.

Factors through. Let G(x, A, c) and H(x, , ) be unfolding of a germ g. We say
that H factors through G if there exist smooth mappings S, X, A, and A such that

H(x, A, fl)= S(x, A, fl)G(X(x, A,/3), A(A, fl), A(fl)),

where for /3 0 the following hold: S(x, A, 0) 1, X(x, A, 0) x, A(A, 0) A, and
a(0) =0.

Unfolding. Let g be in ex,a [5, p. 56]; a k-parameter unfolding of g is a germ
G ex,a,, where a (al," , ak) R k, such that for a 0, G(x, A, O) g(x, A). Here
G is a germ in all variables: x, A, a 1," ak. Thus G is defined and C on a neighbor-
hood of zero in R k+2.

Universal unfolding, codimension. An unfolding G of g is versal if every other
unfolding of g factors through G. A versal unfolding of g depending on the minimum
number of parameters possible is called universal. The minimum number is called the
codimension of g.
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Appendix B: formulas. The polynomial P(s; ao, a, ) is given by the expression

P(s; ao, a, K)=4KSs 11 +(-16aoaEK5-Saoar5+8r4)s1

+ (-2aa45-2aa35+ 4aoa2K5 16aoa24_ 8aoa4
44+ 4K3)s9 + (48aoa2:4+ 24aoa4- 20:3)s

+ (16aa44 + 16aa34 20aa2K4+ 80aoa23 + 40aoaK 3

03-eo +a4 +a-4-+ 16aoa2 + 8aoa + 16aoa22 + 8aoaK2- 322-4)s6

+-e84 s +e8 4o- e4ao

122 8r)s + (-32aa4K2 32aa32+ 8aa22
48aoa2r2- 24aoa2- 16aoa2r 8aoa -4K )s4

+ (--16ao2a42- 16aa3/2__ 12aa22_8aa4 8aa3K
16aoa2 8aoa )s + (--Saa4 8aa3 4aa2)s2

+ (--2aga4 2aa3:)s.
a

Sod) formThe formula for the coefficient al is as follows: at (s, So)= (s,,

a,=ao+(a/a)(S-So),

R sa,/(1 + s +/$2),

Rs a,( 1 s2)/ 1 + s + s2)2,

Ra s/(1 + s + s2),

p,=(So-S)/R,

too (a + p,R,, + ozp, R,)1/2,

Os/Oyl 1,

Oa/Oyl -(1 + p,R)/(p,R,),

Oa/Oy2= tOo/(p,Ro),

P3 p,R,,/ too,

p4= (l + p,R)/tOo,

P=P3+P4,

R (1 Ks2)/( 1 + s + s2)2,

R, a,(-2-6s + 22s3)/(1 + s + s2)3,

Rs= a,(6- 6K +24s+36Zs2-63s4)/(1 + s+ Ks2)4, and

Rssa R/a,.
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The partial derivatives of f are then given by the formulas

fill (-p,)(Rss(Os/Oyl)2 + 2Rs,(Oa/Oyl)(Os/Oyl)),

f12 (-p,)Ra(Oa/Oy2)(Os/Oyl),

f211--PAll,

A12 PAl2,

f111 (-,,)(g(os/oy) +

flll (-O,)Ro(Oa/OY)(s/Y)

f21 pf1111, and

AI =pfl.

The coefficient a is then given by

1 1
al -2o---- (Re g2o Im

where

Re gll--flll/4,

Im gll =f211/4,

Re g2o (f111 + 2f212)/4,

Im g2o (f211- 2f112)/4, and

Re g21 (f,l,, +f2112)/8.
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OPERATOR ON THE SPHERICAL BANDS IN S2.

CHAO-LIANG SHENt AND CHUNG-TSUN SHIEHf

Abstract. On the unit sphere in the three-dimensional Euclidean space, among all spherical bands with
a given area 27rA, the spherical band which is symmetric to the equator has the largest first Dirichlet eigenvalue.
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1. Introduction. In this paper the subject under investigation is the first eigenvalue
of the vibrating membrane equation with Dirichlet boundary condition over those
spherical bands with parallel boundary circles on the unit sphere Sa in 3. We prove
that among all spherical bands with a given area 27rA, where 0 < A < 2, the one which
is symmetric to the equator has the largest eigenvalue. We also find a monotonicity
property of the first eigenvalue when the spherical bands move on the unit sphere.
These results are stated and proved in Theorem 1 of the next section.

2. Main results. We express points on the unit sphere S- by the Euler coordinate
(0, qg), where 0 -< 0 _-< 27r, 0 -< o <_- 7r. For 0 <- s < r/<_- 7r, 0 < A < 2, if the spherical band
bounded by o and o r/has area 27rA, then r/can be expressed in terms of : and
A as follows:

r/= cos-1 (cos A).

We denote this r/by f(:, A), or f(:) if A is fixed. From now on we shall fix A.
Let As denote the Laplace operator on S2. For 0_<- < 7r, let B() denote the

spherical band on Sa with area 27rA and bounded by sc and q =f(:). Let AI()
denote the first eigenvalue of the following eigenvalue problem:

(1)
Asu + ,Xu 0 in B(:),

u=O onOB(),

where OB() {(0, )" 0-< 0<-27r, q : or f(:)} denotes the boundary of B(sC), and

1 0
(sin u.) +- sin p

UoAsu(O, p)
sin p

Since B(:) is rotationally symmetric in 0-variable, and the first eigenvalue of (1) is
nondegenerate, we see that the first eigenfunction u of (1) is independent of the
variable 0, and (h(), u) is the first eigenpair of the following eigenvalue problem:

(2)
[sin v’()]’+ h sin Cv() 0,

v() v(f())=0.

sc < q:’ <f(),

* Received by the editors June 25, 1990; accepted for publication (in revised form) January 21, 1992.
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Recall that f()---cos-l(cos-A), where A is fixed, 0<A<2. For :<_-p<=f(:),
introducing the new variable

a a (q) sin dr,

and letting

w(a)= v(p),

(2) can be written as follows"

(3)
{[1 (cos -a)2]w’(a)}’+Aw(a)=O,

w(O) w(A) O.

0<a<A,

We shall use the notation /1() to denote the first eigenvalue of (3) and w(, a) to
denote the positive first eigenfunction of (3) that is normalized, i.e., JAo W2(, a) da 1.
Then it follows from the results in 2.6, Chapter VI of [2] that Xl(:) is continuous
on the interval [0, zr-cos-1 (I-A)]. Furthermore, by [1, Lemma 3.15], both w(:, a)
and dw(, a)/da are real analytic in :; hence the function AI() is real analytic in sc.
Now we present our main results in the following theorem.

THEOREM 1. As a function of on the interval [0, zr-cos- (l-A)], the first
eigenvalue Al(sc) of (1) attains its maximum at sC=cos-l(A/2), i.e., when B() is the
spherical band symmetric to the equator. Furthermore, thefunction A l(Sc) is monotonically
increasing on 0 <- <-_ cos-1 (A/2).

Proofi By the equatorical symmetry of the spherical bands B() and B(r-
cos- (cos so- A)), we have AI()= Al(Tr- cos- (cos :- A)). Thus A(cos-1 (A/2))=0,
where A(sc) dAl()/d. For the proof of Theorem 1 we need to compute A(:). Let
w’(:, a) denote dw(, a)/da, and recall that JAo W2(, a) da-- 1.

By using w(+ A:, a) (respectively, w(sc, a)) as a testing function to estimate AI(:)
(respectively, A(:+ A:)), it follows from the Rayleigh quotient of (3) and the minimum
principle that we have the following inequalities:

(4) [1 -(cos sc- a)2][w’(:+ Asc a)]2 da >- A(:),

(5) [1 (cos (:+ A:)- a)][w’( a)]- da >__ Al(sc+A:).

By (3)-(5), we have the following inequalities:

"
{[1 -(cos (+A)- a)] -[1 -(cos - a)]}[w’(+ a, a)] da

(6) _<- x(+a)-x()

_-< {[1- (cos (:+A) a)]- [1- (cos :- a)]}[’(, a)] da.

The inequalities in (6) imply

2[(sin )Z:] (cos :- a)[w’(+ A:, a)] da+o(z)

(7) --<A(sc+Asc)-A(:)

_--< 2[(sin :)Asc] (cos-a)[w’(,a)] da+o(A).
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By (7) and [1, Lemma 3.15] we have

(8) A() 2 sin (cos - a)[w’(, a)]2 da.

Thus

A (COS-1 ())= 2 sin (cos-1 ()) f: (-a)[w’ (cos-1 (), a)]2
which implies

A A 2

(9) f0 -- [W’ (COS-1 () a)]
Let

do.

H()= [1-(cos-a)2] w’ cos-1 da.

da --0,

We also have

(10) A,(:) _<-- H(:), 0 COS--1 (")

Io(11) H’(:)=2sinsc (cos:-a) w’ cos-1 ,a da.

By (9) and (11), for 0<_- :_-<cos-1 (A/2), we have

(12) H’(:)_-> 0

since cos >-A/2. By (10) and (12), we have

This proves the first part of Theorem 1.
To prove the second part of Theorem 1, by the result of the first part and the fact

that AI(0) is the minimum of A(:) (see [3]), it is sufficient to prove that AI(:) does
not have any critical point in the open interval 0<<cos-1 (A/2). We prove it by
contradiction. Assume 0< :o < cos-1 (A/2) such that

(13) A(o) 2 sin o (cos :o- a)[w’(o, a)]2 da=O.

Since 0< A <2, cos is strictly decreasing in the interval 0<_- <-cos-1 (A/2). Thus by
(13) we have

(14) (cos so-a)[w’(o, a)]2 da<=O

for o---: <=cos-1 (A/2), where the equality holds only when sc sCo. Define

Ho(sc) [1-(cos s- a)2][w’(o, a)]2 da.

Then by the assumption JoA [W(COS-1 (A/2), a)]2 da= 1, we have H(cos-1 (A/2))
AI(cos-1 (A/Z)) and
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Then it follows from (14) that Ho(:) is strictly decreasing in the interval
[:o, cos-1 (A/2)], i.e., Ho(sCo)> Ho(cos-1 (A/2)) if :o cos-1 (A/2). But, as Ho(so)=
hl(:o), Ho(cos-l(A/2))>----hl(COS-1 (A/2)), we have hl(Sco) > hi(cos- (A/2)), which is
absurd. Thus hl(:) is strictly increasing in the interval (0, cos-1 (A/2)). The proof of
Theorem 1 is complete. Z]

The proof of Theorem 1 generalizes to certain surfaces of revolution. Let f(x) be
a smooth strictly increasing function on the interval [0, c). Suppose f’(0)= 0. Let Ss
denote the surface obtained by revolving f with respect to the y-axis. Let A be a fixed
positive number. For each so=>0, define F(sc, A) by the identity

X/1 "-1-[f’(x)]2 dx A,

and let Sy() denote the band on Sy bounded by x= : and x= F(:, A). Let
denote the first Dirichlet eigenvalue of the Laplace operator on the surface Sy(). Then
the proof of Theorem 1 can be generalized to show that/x1() is an increasing function
of :. We leave the proof to the reader.

Acknowledgment. The authors wish to thank one of the referees of this paper,
whose suggestions made this paper shorter than its original form.
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SUPERRESOLUTION VIA SPARSITY CONSTRAINTS*

DAVID L. DONOHOt

Abstract. Consider the problem of recovering a measure supported on a lattice of span
A, when measurements are only available concerning the Fourier Transform (w) at frequencies
lwl

_
t. If is much smaller than the Nyquist frequency r/A and the measurements are noisy,

then, in general, stable recovery of is impossible. In this paper it is shown that if, in addition, we
know that the measure satisfies certain sparsity constraints, then stable recovery is possible. Say
that a set has Rayleigh indez less than or equal to R if in any interval of length 4r/f/- R there are at
most R elements. Indeed, if the (unknown) support of/ is known, a priori, to have Raylegh ndex at
most R, then stable recovery is possible with a stability coefficient that grows at most like A-2R-

as A 0. This result validates certain practical efforts, in spectroscopy, seismic prospecting, and
astronomy, to provide superresolution by imposing support limitations in reconstruction. The results
amount to inequalities for interpolation of entire functions of exponential type from values at special
point sets which are irregular, yet internally balanced, uniformly discrete, and of uniform density 1.

Key words, inverse problems, spectroscopy, diffraction-limited imaging, Rayleigh criterion,
Nyquist rate, superresolution, nonlinear recovery, entire functions of exponential type, interpolation,
balayage

AMS(MOS) subject classifications. 42A70, 30D15, 94A12

1. Introduction. Let # k=-o akSA be a signed measure supported on
the lattice {kA}k=_o with signed mass ak attached to the point kA. We think of
the lattice span A as a small number A << 1. The measure # may be interpreted
as a caricature of certain scientifically interesting objects" for example, a polarized
spectrum in a spectroscopy problem; or, in exploration seismology and in medical
ultrasound, as the sequence of reflectivities of a layered medium with layers of constant
width A.

Suppose we obtain noisy measurements on # in the frequency domain, with fre-
quency cutoff

Here

_
ke is the Fourier transform of , and

z(w) represents noise. Our objective is to recover (or, equivalently, the coefficients
k) from the data (1).

To make the phre "recovery of " precise, we adapt some notions from the
theory of optimal recove (compare Micchelli and Rivlin [21]). We suppose first of
all that the noise z can be any function in L2[-,] satising ][Z]]L[_n,n] e.
Let (y) be a method of recovery. We meure the recovery error with respect
to the quadratic "Wiener" norm ]](y) ]2, where, for a discrete signed meure
u, we define ]u]2 (tesupp(P)u((t})[2) 1/2" We record our a priori information
about by saying that , where is a cls of meures. For example,
if our prior information is that is a lattice meure, i.e., a member of the set
(A) { k:- kkA}, then we set (A). In general, we meure
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the difficulty of recovery with a priori information by the minimax error over

E* (e; dr/I, fl) inf sup sup

In particular, we say that stable recovery of # is possible, with a priori information
A4, if

E* (e; A/l, fl) _< Const e,

which indicates the stability property

Error < Constant Noise Level.

1.1. The stability threshold fl > r/A. r/A is the usual Nyquist frequency
for samples taken on the lattice {kA}k=_oo. This frequency pops up in our problem:
if the frequency cutoff fl exceeds r/A then stable recovery of t is possible. Indeed,
motivated by the Fourier inversion formula

A frlix

one is led immediately to the rule

(3)
A frllx

eiklXy(w)dw.

Parseval’s relation implies that the reconstruction formula/5 ___oo &’,,x has
error

A fr/A a e2IID( )- vll Iz( )l d -<

Consequently, if J/[ :(A) we get

and an extra argument shows that in fact equality holds. Hence, in the case fl > r/A,
stable recovery is possible, and in fact optimal recovery requires only the simplest of
linear reconstruction formulas.

The case fl << r/A is more interesting. In this case data on (w) are not available
on the whole range [-Nyquist, Nyquist], and formulas like (3) are not immediately
applicable. Indeed, formula (3) suggests that, if fl < r/A, reconstruction will require
some sort of process of extrapolation of the noisy measurements inside [-fl, fl] to
produce quasi measurements over the whole of the fundamental interval

However, such extrapolation is evidently impossible in the absence of special prior
information. Indeed, if # can be any lattice measure, then (ak) can be any square
summable sequence. We could therefore let 12(w) be a nonzero function, periodic
of period 2r/A, belonging to L2 on the fundamental interval (-r/A, r/A), and
vanishing on [-fl, fl]. The sequence (ak) obtained from (2) would give a nonzero
lattice measure t whose transform agrees, over the low frequency band Iwl _< fl, with
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the zero measure. Even at noise level e 0, our observations could not distinguish this
# from the zero measure, nor from its sign-reversal -#. Consequently, if

E*(e, (A), f) > sup{l] ]I2" , e (A), (w) (w), Iw] 5

Stable recovery is not possible under the condition fl < r/A if all we know a priori is
the lattice constraint

1.2. The yleigh threshold fl r/A. A mathematically equivalent refor-
mulation of our problem occurs in the theory of optics. The frequency-domain data
(1) are equivalent to the spatial-domain data

(4) Y(t) (gn * ,)(t) + Z(t), t e (-, ),

where gn(t) is the sinc-gernel sin(t)/(rt) and * denotes convolution; and Z is
bandlimited noise with Fourier transform

2(w) 0 else.

Hence, one observes not the meure # directly, but instead a noisy version which is
blurred by convolution with the kernel Kn. In this form, Y is a noisy diffraction-
limited image of #, a superposition of point-sources.

The study of diffraction-limited imaging for such superpositions of point sources
goes back a long way. Lord Rayleigh studied it, and formulated a "resolution limit"
[28, pp. 33-35]" if a meure # consists of two point sources of equal strenh separated
by a distance A, a visual inspection of the Y(t) curve will suggest the presence of
two point sources provided A 1.22/fl and of one point source provided that
A < 1.22/. Rayleigh’s constant 1.22 is rather arbitrary, and Rayleigh’s argument
could, with minor modifications, yield instead the constant 1.0. This replacement
would lead to the criterion: pointlike sources separated by at least A can be resolved
into separate sources, using data diffraction-limited by Kfl, provided /A

This modified Rayleigh limit coincides with the threshold /A fl for stable
recovery mentioned earlier. In this sense, if we were able to recover stably the lat-
tice meure from data satising fl << r/A, we would have exceeded Rayleigh’s
resolution limit. Therefore, the problem of stably recovering from noisy data with
parameters in the range fl << r/A below the Rayleigh threshold may be called the
problem of supeesolution.

1.3. Empirical superresolution via spsity. Despite the mathematical fact
that stable recovery of the cls (A) is impossible when the data satis fl << /A,
there h been considerable effort to develop superresolving algorithms for specific
problems. The idea is essentially that additional a priori information about the sup-
port of the meure # should be exploited in the recovery process.

1. Hhgbom [11] and others, working in radio tronomy, have developed the
method CLEAN, which involves finding a small set of delta-functions
such that K, (where K is a sinc-like kernel) nearly reproduces the original mea-
surements. As Schwarz [27] says, "... some extra information about the brightness
distribution must be used. The CLEAN method is designed for the ce that the
brightness distribution contains only a few sources at well-separated, small regions,
i.e., the bghtness distbution is essentially empty."
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2. Papoulis and Chamzas [23] have proposed a nonlinear iterative method which
assumes implicitly that the underlying measure is sparse, attempts to identify adap-
tively the regions where coefficients might be nonzero, and recover an object supported
only in those regions. They describe an application in medical ultrasound [24]. They
point out that the Rayleigh limit is exceeded, in some examples, by their method,
and that the actual limit of resolution depends on noise and signal in some yet-to-be
determined fashion.

3. Working in seismic prospecting, Levy and Fullagar [15], Santosa and Symes
[26], and Walker and Ulrych [33] describe methods which attempt to exploit the fact
that the underlying object is a "sparse spike train" to recover wideband data from
measurements over a limited frequency range. The Levy-Fullagar and Santosa-Symes
work exploits special support properties of l-norm penalized reconstruction--namely,
that for large values of the multiplier attached to the penalty, the algorithm tends to
employ very few nonzero elements in the reconstruction. Walker and Ulrych exploit a
method based on low-order autoregressive extrapolation of the Fourier data away from
the measured frequency band. The low-order autoregressive model for the Fourier
transform may be justified by an assumption that few elements in the spatial domain
representation of the object are nonzero. Wang [34] recently introduced a method
which constrains the reconstruction so that in any segment of a certain length there
are only a few nonzero elements.

4. Working in Fourier transform spectroscopy, Kawata, Minami, and Minami
[14], [20] and Mammone [18], also exploit parsimony. Kawata et al. use low-order
autoregressive extrapolation away.from the measured frequency band, and Mammone
uses parametric linear programming to get reconstructions which nearly reproduce the
data with minimal numbers of nonzero elements. In later work Minami, Kawata, and
Minami refined their technique by using the singular value decomposition to improve
the choice of order in autoregressive extrapolation.

5. Working in NMR spectroscopy, Barkhuisen et al. [1] use autoregressive ex-
trapolation, combined with singular value decomposition (LPSVD); Newman [22] pro-
poses the use of/-norm penalized reconstruction. Tang and Norris [29] and Mazzeo
et al. [19] divide the signal into segments and treat individual segments by sparsity-
enhancing methods (e.g., LPSVD) mentioned above.

All these researchers seek to recover wideband objects from narrow-band data;
all proceed by in some way imposing sparsity limitations on the recovered object;
and all have achieved successes in certain computational experiments. Implicitly or
explicitly, these successes amount to a claim that a certain sparsity of the unknown
object enables recovery.

At first glance, the computational work just mentioned seems to conflict with the
Rayleigh and stability criteria developed above. In fact there is no conflict, since the
Rayleigh and the stability criteria do not seek to describe the impact of sparsity.

1.4. Theoretical results. We now develop theory that sheds light on the pos-
sibilities, and difficulties, of superresolution via sparsity constraints. We will show
that, if the support of #, though unknown, is known to be sufficiently sparse, then
even in the case f << r/A, stable recovery is possible. On the other hand, the quan-
titative degree of stability might be disappointingly poor if we must recover objects
that possess a high degree of complexity.

We do not exhibit a practical method for achieving stable recovery, but instead
exhibit inequalities which show that, in the sense of the theory of optimal recovery, the
object admits of stable reconstruction. Any stable reconstruction scheme is necessarily
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highly nonlinear. It would be interesting to know whether stability of the kind we
establish below holds for the nonlinear methods [1], [11], [14], [15], [20], [22], [26], [33],
[24] mentioned above.

Before developing stability results, we discuss uniqueness. Let S be a discrete set.
Following Beurling [3], we define the upper uniform density

u.u.d.(S) lim r-1 sup #(S N it, t - r))

and the lower uniform density

1.u.d.(S) rlim r-1 inf #(S N It, t / r)).

Both limits exist.
THEOREM 1.1. (a) Let J4<I(A) denote the class of finite signed lattice mea-

sures E E.(A) which have density u.u.d.(supp(#)) < 1. If 12 >_ 2r, # is uniquely
characterized among [<I(A) by the transform f(w),

(b) Let $1 and $2 be any two disjoint sets with 1.u.d.(Si) > 1, i- 1, 2. Let #1 be
any finite signed measure supported on $1. There exists 2 with support $2 such that

< #
(c) There exist disjoint equispaced sets Si, with 1.u.d.(Si) u.u.d.(Si) 1, i

1, 2, and measures # supported in the Si, such that fl
> 0, yet #l #2.
The proof, which relies on Beurling’s theory of interpolation and balayage [3], [2],

is given in 7.
We conclude that u.u.d. < 1 and _> 2r ensures uniqueness; l.u.d.

ensures nonuniqueness; and 1.u.d. u.u.d. 1 and E (r, 2r) may, in some cases,
lead to nonuniqueness. Hence in searching for stability results, we confine attention
to the case u.u.d. < 1 and 2 > 2r.

By rescaling, this pair of conditions is equivalent to the single condition u.u.d.
/2r. Now compare this uniqueness condition with the modified Rayleigh criterion
A > r/. For a typical nonsparsely supported measure # e (A), u.u.d.(supp(#))
A-l; hence Rayleigh’s criterion is comparable to u.u.d. < /r. Our uniqueness
criterion therefore demands exactly twice the frequency-domain measurement band
(or half the spatial domain density) as the Rayleigh criterion. Our stability estimates
will demand at least four times as much as the Rayleigh criterion.

We now return to the scaling convention u.u.d. < 1.
DEFINITION 1. Let S be a discrete set of upper uniform density less than one.

The Rayleigh index of S is

R*(S)=min R R _> sup#(St [t,t / R)) I
The class of lattice measures # with (ck) 11 and Rayleigh index R*(supp(#)) _< R
will be denoted 8(R, A).

The Rayleigh index measures, for sets which have on average, no more than
one element per unit cell, the maximum number that can be clustered very closely
together. We aim to show that the clustering of many elements together in one cell
makes superresolution difficult; we will see that the degree of clustering, as measured
by the Rayleigh index, enters directly into our bounds on the stability coefficient.
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DEFINITION 2. The modulus of continuity for the recovery of measures in ,(R, A)

A(e; 8(R, A), ft) sup(][# 2112 , e S(R, A),

This modulus of continuity measures the extent to which two lattice measures,
both satisfying the sparsity condition R* (supp(#)) <_ R, can differ, if the bandlimited
data (fti(w), Iwl <_ ) differ by at most e in L2-norm. Its relevance comes from the
following.

LEMMA 1.2.

E* (e, S(R, A), gt) _< A(2e, S(R, A), Ft).

The proof is given in 7. (For arguments relating a modulus of continuity to a
minimax error in other contexts, see [21], [25], [30], [31], [6].)

Our main result bounds the modulus of continuity directly.
THEOREM 1.3. Let gt > 4.

(6) A(e, S(R, A), ) <_ A-2R-1 /(R, gt) e, e > 0.

is a positive finite constant defined below.
The raw materials on which this result depends are developed in the body of the

paper, 2-6 below. They are assembled to give a formal proof in 7.
The following lower bound shows that our upper bound is nearly sharp. It is

proved in 7 below.
THEOREM 1.4. Let Ao (0, 1). If A < Ao then

(7) A(e, S(R, A), ) >_ A-2R+1 b(R, , A0) e, e > 0.

b(R, , Ao) is a positive finite constant defined below.

1.5. Interpretation of the theory. To interpret these results, we introduce
some terminology. We speak of the stability coefficient as the noise amplification
factor in the relation

Reconstruction Error--- Noise Amplification Noise in Data.

We speak of the ratio /A as the superresolution factor. Our results indicate that
noise amplification increases polynomially with the superresolution factor. Hence, to
achieve reconstructions with a fixed degree of reconstruction error requires data of
increasingly low noise level as the superresolution factor increases. Moreover, the rate
at which the noise requirement imposes itself is directly tied to the Rayleigh index,
and hence it may be extremely difficult to recover an object with a high degree of
clumping or irregularity.

Hence superresolution is possible if the object is known to contain, on average, less
than one pointlike event per cell of size 4r/t; but this may require extremely precise
data, particularly if we cannot rule out the possibility that a few cells contain many
more than one pointlike event. These relations, rather than the Rayleigh criterion,
determine the ultimate limits of resolution.
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2. Balanced (R, A)-sets.
DEFINITION 3. A balanced (R, A)-set is a countable set of points {tk } on the real

line which may be obtained from the union of two bilateral sequences (ui)i_o and
(vi)_o satisfying these conditions:

(8) (Internal Symmetry) u i +

(0)
(10)
(11)

vi i Si,

(Uniform Density) 15il N R,
(Uniform Discreteness)Irk tzl >_ A,

(Unicity) ui uj,

iEZ,
iEZ,
iZ,

k#l,
iCj.

We note that no assumption is made that vi 7 vj for i 7 j. Nor is there an
assumption that ui vj for every i, j. Consequently, the multiplicity

+ #{i:

may be greater than 1, in fact, as large as 2R + 2. Also, no assumption is made that
the points tk belong to a lattice, although this is not excluded, either.

These four conditions describe a set which is allowed to be locally irregular, yet
must be globally regular. A long interval, of length N, say, contains roughly 2- N
elements of the set {tk}, counting with multiplicities ink. The internal symmetry
condition is also important; it implies that even though the points are not equispaced,
they may be arranged in pairs whose centers of gravity are equispaced.

Obviously, balanced (R, A)-sets are quite special, and do not occur "naturally";
our interest is in sets which can be "filled out," by the addition of new elements, to
become balanced (R, A)-sets.

DEFImTION 4. {sk} is a pre-(R, A)-set if it is a subsequence of the (u) sequence
associated to an (R, A)-set. A measure # is an (R, A)-measure if its support {sk} is
a pre-(R, A)-set.

We prove the following in 8.
LEMMA 2.1. The measures in ,(R,A) are all (R,A)-measures.
(Elizabeth Gassiat, of Universit de Paris-Sad, has shown the author in personal

correspondence that the above lemma may be improved, with this conclusion: the
measures in ,(R,A) are all (R/2, A) measures. Her work, which is used further
below, answers a question raised in the preprint of this article. Her argument is given
in [10].)

Our introduction of balanced (R, A)-sets is geared to the development of certain
interpolation schemes based on entire functions. Entire functions with real zeros have
zeros which are roughly equispaced (compare [5], [12], [13]) and possess a certain
symmetry (compare the discussion of LindelSf’s theorem in [13]). The conditions (8)-
(11) serve to guarantee that there is an entire function of exponential type 27r with
{tk} as its set of zeros. We prove the following in 8.

LEMMA 2.2. Let {tk} be a balanced (R, A)-set. Define

a=(t) H-n(t u)(t v) sin2(rt

Then (G,) is a sequence of entire functions of exponential type 2r, uniformly bounded
on the real axis. This sequence converges uniformly on compacts to a limit function G,
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entire of exponential type 27r. The (tk are the zeros of the function G; the multiplicity
of tk is mk.

The representation as a limit of the sequence (Gn) seems nonstandard; we use
it for the purpose of bounding IG]lo and related quantities. We record now several
important bounds, all of which only involve the parameters R and A rather than the
detailed properties of the set {tk }. The proofs are given in 8.

LEMMA 2.3. Let (tk} be a balanced (R, A)-set. Then

sup IG(t)l <_ AI(R)

where A1 (R) is defined below.
LEMMA 2.4. Let (tk} be a balanced (R,A)-set.

multiplicity mo. Then

<_ A(R)sup
it_t01mIt-tol_<l

Let G have a zero at to of

where A2(R) is defined below.
LEMMA 2.5. Let {tk} be a balanced (R, A)-set. Let G have a zero of multiplicity

mk at tk. Let

g lim G(t)/(t t)m.
t--t

Then

gk >_ A3(R)A2R+1,

where A3(R) is a strictly positive constant defined below.
These bounds on the entire function G, although stated as lemmas, are in fact the

"hard analysis" on which our main result depends; in succeeding sections we reduce
the question of superresolution to these inequalities by the use of "soft analysis."

3. Superresolution for (R, A)-sets. Let Bq(ft), 1 <_ q <_ oc, denote the space
of entire functions of exponential type 12 belonging to Lq on the real axis [4], [5], [16],
[17]. For a sigma-finite signed measure u, define

Ilullr,,a sup {/ fdu f Bq(ft), llf[lq < 1}
where lip + 1/q 1 as usual. In the case where p 2, Parseval’s relation implies
that

Also, for u a discrete measure, let

tsupp(u)

liP

Thus, for example,, the case where p 1 gives the total variation norm of u.
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We call any inequality of the form

when valid for all finite signed (R, A)-measures u, a superresolution inequality. Besides
the case p 2, the main case of interest to us is the case p 1, or

Variation(u) < C1 (R, A, )llulll,.

The rationale for calling (12) a superresolution inequality is that, ordinarily,
bounds on the norms IlUllp would seem to require knowledge of the transform (w) at
all frequencies up to the Nyquist r/A; but the norm IlUllp, involves only knowledge
of frequencies in the smaller band, since, by Parseval, we have

f(t)d(t)--

for f E Bq(), 1 < q < oc.

4. Duality with interpolation. Consider the following interpolation problem
for the sequence (ui)_ associated with a balanced (R, A)-set. Given constants
(ci)___, (c) e lq, find a function f e Bq() satisfying

(13) f(u,) ci, i e Z.

Suppose that for every sequence (ci) lq, and every (ui) associated to a balanced
(R, A)-set, we have a solution to (13) satisfying

(14) ]]fl]Lq Kq(R, A, )llcl]la,

where Kq does not depend on the details of the (ui), but only on the parameters R
and A. We claim that then, if p and q are conjugate indices lip + 1/q 1,

(15) K (R, > C (R,

This expresses a certain duality between the superresolution inequality (12) and the
interpolation problem (13).

To prove (15), let u be any (R, A)-measure. Then, by definition, supp(u) c (ui}
for some sequence (ui)=_ associated with a balanced (R, A)-set. Let (c)_o be
aligned with (u(ui}) in the usual sense that

c Asgn(p{ui})lu{ui}lp-l,

with the scalar chosen to make ]]clll 1. Then

as supp(u) C {ui}. Now, if f solves the interpolation problem (13), we have
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and as f
_
Bq(t),

fdt/ <_ IlfllLqllllp,a.

Thus, II llp _< IlYlIL II IIp,", so by (14),

II llp <- Kq( , A,

Relation (15) follows.
As a result of (15) we now turn our attention to problems of interpolation in

Bq(Ft).
5. Pointwise bounds on interpolation. As indicated in 2, a balanced (R, A)-

set generates a function G, entire of exponential type 27r. By convention, G has a
zero of multiplicity mk at tk; defining as before

(16) gk lim G(t)/(t- tk)TM,
t--t

the function

(17) k(t)

satisfies formally

G(t)

1, k l,(18) k(tt) 0, k # 1.

Actually, k is a well-defined entire function of type 27r which belongs to L2 on the
real axis. Therefore, formally, the "Lagrange interpolation series"

(19) f Edkk
k

gives a solution of the interpolation problem

(20) f(tk) dk, k e Z.

However, regularity conditions would be needed on (k) in order to be sure that such
sums converge and define elements of Bq(ft). (For discussion of Lagrange interpolation
for sets where the corresponding function G has only simple zeros (mk =-- 1), see [3],
[351.)

Regularity is easier to establish if we mollify the k. We record, without proof,
the following essentially obvious technical fact.

LEMMA 5.1. Let > O. There exists a smooth function h(x) satisfying
(a) h(w) is a smooth function supported in (-r/,
(b) h _> 0;
(c) h(0)= 1;
(d) h(x) < C()/(1 + x2) for some positive finite constant C(y) and all x.
The mollified functions k(t)h(t- tk) again formally satisfy the Lagrange

interpolation conditions

1, k l,
0,
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However, they also have good decay at oc, and so belong to B(2r + ).
The interpolation problem (20) at the (tk) is somewhat more general than the

problem (13) at the (ui), so it is convenient to work with a subsequence of the (k).
By (11), each ui occurs exactly once in the set {t}. Hence, a one-one mapping k(i)
exists so that t() u. Define the function

k() k() h(.- t()).
Then (i)=-o is a sequence of functions in B1 (2r+), satisfying the formal Lagrange
interpolation conditions

1, i--j,(u)= 0, i#j.

Let (t) (1 / t2) -1 and i(t) (t i). It turns out that the functions i are
effectively not worse behaved than i.

THEOREM 5.2.

Ii(t)l _< Ai(t), t e (-oc, oc)
where

A(R, A, 7) A-2R-la(R,
and c(R, rl) is a positive, finite constant specified below.

The theorem follows from earlier estimates on G and gk, on the mollifier h. To see
how, put for short k k(i). Property (d) of the mollifier h gives h(.- ui)/(.- u)
C(y). Hence

sup
(t)] < C(y) sup

G(t)
(t-) t-t"

Now

sup
gklt-- tkl

say. It follows that

<--9k max sutPlG(t)l sup It tklm]t-t]_<l

<_ A--Aa(R)- max[A(R),&(R)]
Ah(R)A-2/-,

Iil <- C(r)Ah(R)A-2R-I(" -ui).
Note that, by (9), lui- i N R. Simple algebra gives the following lemma.
LEMMA 5.3. /f 151 _< R,

(t :t= 5) <_ A4(R)(t), t e (-oc, oc)
where

A4(R) (R + 1)2.
It follows that (.- ui) _< A4(R)(.- i). Hence

say, where

(R,r]) C(r]). Ah(R). A4(R).
This completes the proof of Theorem 5.2.
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6. Operator norms for interpolation. Let Z(c) ’i-o cii denote the
Lagrange interpolation operator formally "solving" the interpolation problem (13).
We now show that this operator is a bounded linear operator from lq into Lq(R), and
so 27 rigorously solves the interpolation problem.

LEMMA 6.1. (1,1)-Boundedness. Suppose that I1 <- A, i E Z. Then

LI(R)

[l sup

The result follows from [lllL<l) f_(1 + t2)-ldt r.
LEMMA 6.2. (CX, c)-Boundedness. Suppose that I1 <- Ai, i Z. Then

Proof. Using positivity of ,
Lob(R)

_< supE
<_ A sup Il

_< A Ilcll supE (t).

Using the Poisson summation formula [35, p. 105], the formula () re-Il, and
the relation Ii(w)l (w),

2 re-2
1 e-2"

0

These lemm combine to prove that the operator g(c) i cii gives a bounded
mapping from lq into q(N) for each q e [1, ]. Indeed, with 0 1/q we get, from
the Ries-Thorin Interpolation theorem [a6, p. 9],

Lq(R)
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Combining these bounds with Theorem 5.2 gives the following theorem.
THEOREM 6.3. Let > 2r 4- 1. Then for each q E [1, oo] the interpolation

problem (13) has a solution in Bq() satisfying the interpolation inequality (14) with

K (R.

where

27r
a(R, )

1 e-2
a(R, 1).

7. Proofs for 1.

7.1. Main result. Suppose that #1, /2 are lattice measures with support of
Rayleigh index <_ R. For a set A, let A/2 denote the dilation {t" (2t) E A}. Define
the measure by

Note that is supported in the lattice of span A 2A, and that

u.u.d.(supp()) 1/2 u.u.d.(supp(#l) U supp(#2))
l (u.u.d.(supp(#l)) 4- u.u.d.(supp(#2))) < 1.

Moreover, R*(supp()) _< R*(supp(#l))+ R*(supp(#2)). Hence, C S(2R, A’). Ap-
plying E. Gassiat’s improvement of Lemma 2.1, we conclude that is an (R,A’)-
measure.

Applying the superresolution inequality (12), the interpolation inequality (14),
and Theorem 6.3, we have for any > 2r,

(At) -2R-I (R, ’)ll’,’[lu,’.

Now we observe that I1-11 lip1 .11. Also z(w) (fl f2)(2(M) Hence, making
the particular choice /2 we have

Upon combining these relations, (6) follows once we set

Remark. If we used Lemma 2.1, rather than Gassiat’s improvement, the argument
above would give a proof of a result like Theorem 1.3, only with a factor A-an- rather
than A-2R-1. This was the result given in the preprint of this article.
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7.2. Proof of Theorem 1.1. Part a. Let #1 #2 be two distinct measures,
and s be a point of S supp(ttl) t_Jsupp(tt2) such that d ttl{s}- #2{s} - 0. As the
# are lattice measures, S is a separated set: any two distinct elements of S differ by
at least some strictly positive amount. Moreover, u.u.d.(S) < 2. Hence by Theorem
1 of Beurling [3], for all sufficiently small 5 > 0, there exists a function in Bo(2- 5)
solving the interpolation problem

sgn(d), t s.

Pick a mollifier h e B1(6) satisfying (i) h >_ 0, (ii) h(0) 1. Set

(t) f(t) h(t s).

Then, by construction,

d(ttl tt2) Ittx{s} {}1 > 0.

On the other hand, as e B1 (2r), (w) exists, and by Parseval,

d(# tt2)
2

As the integrand of the right side is continuous and as the integral on the left side is
strictly positive, we conclude that

1 (w) : t2(w) for some w e [-2r, 2r].

Part b. This is an application of Beurling’s theory of balayage [2]. Say that
S admits balayage if the restriction to [-t, ] of any Fourier transform of a finite
signed measure supported in R can be represented as the restriction to [-t, t]
of the Fourier transform of a finite signed measure supported entirely in S, and
if the ratio I1’111/11111 is bounded above independently of . Beurling shows that
a necessary and sufficient condition for S to admit balayage is l.u.d.(S) > r/t; see
Theorem 5 [2, p. 346].

To apply this, simply set #1 and S $2. By assumption, 1.u.d.(S2) > 1 >
r/gt and so we may perform balayage. Let #2 be the result. The measure 2 is
supported on $2, which by assumption is disjoint from $1, and yet ftl (w) --/22(w) for

1 and let f(w) be a nonzero, smooth function, periodic ofPart c. Let A
period 4r, vanishing on [-2r + 5,2- 5], and satisfying the Hermitian symmetry
f(-w) f(w). Set

and define

k odd
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and

#2--- Z lkkA"
k even

This defines a pair of finite signed measures; the first supported at the half-integers;
the second at the integers. These measures have Fourier transforms and

(f$1 ((M) #2(03)) f(w) 0,

and so the two measures, although supported disjointly, have Fourier transforms which
agree throughout the band Iwl _< 2r- 5. In addition, note that 1.u.d.(supp(#i))
u.u.d.(supp(#i))-- 1.

7.3. Proof of Lemma 1.2. In this proof, let N(y, e) N(y, e; R, A, ) {:
II--ylli2[_,] <_ , E ,(R, A)} denote the set of all lattice measures with Rayleigh
index R which are within an e-distance of y. This set contains # by assumption.
Hence it is nonempty. Consider any "feasible reconstruction" rule (y), i.e., any rule
with

ft(y) e N(y,

Such a rule selects, from among all measures which could have generated the data, one
which satisfies the assumed sparsity. (It is possible to select from the set N(y, ) so
that (y) is a measurable function of y in the topology generated from L2 [-, ]-norm
balls.)

The triangle inequality implies that any such formally has

Hence, by definition of A,

I1 -  (u)ll _< A(2. e).

The lemma follows.
Remark. The idea of "feasible reconstruction," i.e., of selecting any reconstruction

matching known constraints on signal and noise, while of practical value in other
contexts [32] is not necessarily practical here, because "projection" onto the set of
sparse objects is not a contraction, and so certifiably convergent iterative algorithms
are lacking, notwithstanding [23].

7.4. Proof of Theorem 1.4. We make a simple computation. Let r,h
-]k=O(--1)kC(r, k)hkh, where C(r, k) is the standard combinatorial factor

r
C(, k) k!( k)!"

Then IIr,hll2 (-]=0 C(r, k)2) 1/2 independent of h. On the other hand, we recognize
that r,h * f D[f, where D[ is the rth-order finite difference operator of span h.
From the fact that

h-Df --+L2(l) f() as h -- 0,
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for every smooth f of compact support, we get

h-2r/_ Ir,h(W)12dw --. w2,’dw_

Hence, as h 0,

(21) IIv,.,hll2,a h"
+ 1)

Let now

k odd
O<k<2R

k even

Then the #i belong to ,S(R, A) and #2 #1 r/v2R-1,zx. Hence if we choose y so that

[1#1 #2[[2, e, then

Now, evidently,

Define

By (21), b(R, f, Ao) > 0 and, as Ao -- 0,

a, -- v/r (4R 1)

Hence if A < Ao,

and so, by (22) the theorem follows.

8. Proofs for 2.
8.1. Proof of Lemma 2.1. Let S supp(#) (sk}. Partition the line into

intervals Im [mR + 1/2, (m + 1)R + 1/2), m ,-1, 0, 1,.... In Im there are by
assumption rm <_ R elements of S. We pair up these elements of S N Im with integer
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elements of Im from right to left (say). For an integer i paired with an element s E S
in this way, set u{ s. Some integer elements of I, may remain unpaired after this
step; we simply set u{ to be the closest element of the lattice {kA} to i which has not
been previously assigned to a u and which does belong to Ira. In this way we get a

U OObilateral sequence
Defining v 2i- u{, gives (8). Since for i I,, u Im, we have lu- i _< R,

hence (9). Now any two distinct points in {u} U {v} are separated by at least the
lattice span A, hence (10). Also, by our pairing convention, we never assign a u{

to a value which has been previously assigned. Thus all four properties (8)-(11) are
verified.

8.2. Proof of Lemma 2.2. If f e Bo(f) has a zero at to, then g(t) f(t)(t-
so)/(t- to) is again in So(f). Compare, for example, [35, pp. 126-129]. Now,
sin2(rt) S(2r); hence, we have Gn So(2r) for all n _> 1. Moreover, as sin2(rz)
has only real zeros, Gn(z) has only real zeros.

We show that {Gn} forms a Normal Family. Indeed, by the Theorem on page 47
of Koosis [13], an entire function of exponential type with only real zeros satisfies, for

> o

(23) log If(z)l + - Iz tlZ
log If(t)ldt,

where

log If(iy)lA+ lim sup

A parallel relation, employing

logA_ limsup

holds in 9(z) < 0. We note that for f- Gn, A+ A_ 2r. Indeed, G,(z)
Q,(z) sin2(rz), where Qn is a rational function of degree (n, n) which satisfies

Q,(z) ---, 1 as Izl
because the numerator and denominator polynomials both have coefficient 1 on the
highest order term z. Moreover,

for each nonreal z, and so the second term on the right side of (23) is never larger
than log IlfllLo,,(P,.). Combining these facts we have

(24) log IG.(z)l 2 rlzl + log

The proof of Lemma 2.3 below shows that Ila llL ( ) <_ A1 (R) for all n. Hence
(24) shows that {Gn(z)} is uniformly bounded in each bounded region of the complex
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plane. Hence, {G} is a normal family of entire functions. By Montel’s theorem, an
entire function G exists as a cluster point of {Gn}; it must obey, because of (24),

log IG(z)l <_ 2rlz + log Ax (R)

and so G must be entire of exponential type 2r. However, a calculation based on
the definition of Gn shows that for each fixed t, Gn (t) converges to a definite limit as
n -+ x so there can only be one cluster point of Gn, and hence the sequence actually
has G as a proper limit. The limit function G must satisfy the same relation (23) as
the Gn, so G has only real zeros. The following lemma allows us to see that these
zeros are at the points tk and have the same multiplicity as the ink.

LEMMA 8.1.

sin2(rt) r2-- as n--. c(n!) l-i?=_(t_ i)2

uniformly on compact sets of t in (-cx, c).
8.3. Proof of Lemma 2.3. We now arrive at the key estimates. It is enough to

show that for large n, IIGll < AI(R), as G is the limit of the Gn. We may assume,
without loss of generality, that t e [-1/2, 1/2] and n R.

I]in=_n ]i + 6i t li 5i tl sin2 (rt).

Now, for lil > R, the inequality of the Arithmetic-Geometric mean gives

li + tl ]i 5 tl < li tl.
On the other hand, for Iil-< R,

li + 5 tl li 5 tl < (2R + 1)2.

We also note that

R

sup 1-I it- il- 1-I i: 1/41-.
te[--l12,112] lil _< n i=1

Combining these estimates,

IG,,(t)l <
l-Ln=_a li + 5 tl li 5 tl sin2(rtRFii=_n li- tl:_
((2R + 1)2)2"+1 sup H

t6[-1/2,1/2] Ill <_ R
0

R

((2R-- 1)2)2R+l H ie 1/41-
i--1

A(R).

sup
sin2 (rt)

t2
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8.4. Proof ofLemma 2.4. Without loss of generality, let k 0, let to e [-1/2, 1/2)
and let io io(t) denote an integer closest to t. Let ai 1 if ui = to, and zero
otherwise; and let bi 1 if v to, and zero otherwise. Pick n >> 2R.

It tol" YL==- li- tl z
sin2 (Trt).

Note that if lil > 2R then necessarily a bi 1. We again have

li / 5 tl li & tl < li tl for Iil > 2R,

and so

IG,(t)l < YIII<2 li + tl’ [i tl b’

It tolm YI I1 < 2 It il -2
iio

sin2 (rt)
It- iol2"

Now

2R-1

sup II It- il-z <- HIi -1/41-
te[-1/2,1/2] lil < 2R i-1

i#io

and also,

li + tl a’ li 8 tl b’ < (3R + 1)2 for lil < 2R.

Hence

It tO ]mo

2R-1

< ((3R + 112)4R+l H li2- 1/41- 7r2
i=1

A2(R).

8.5. Proof of Lemma 2.5. Without loss of generality, let k 0, and suppose
that It01 < 1/2. Set

n

a.(t) II(t u,)(t ) H.(t).

By Lemma 8.1, (n!)aHn(to) --* 7r2 as n -o cx3. Let n be so large that (n!)4Hn(to) >
7r2/2. Then set xi lui- tol and yi Ivi- tol. Define ai and bi as in the previous
section. The convention 0 1 will simplify notation below.

Now
n

Igo,,l IH,(to)l H x’y’

and so, by our choice of n,

1F_. 7,’(25) Igo,nl > -- [I1 ia
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We need two estimates. First, for a constant E0(R),
R

Yi >-- Eo(R) A2T/+x

To see this, note that at most 2R / 2 of the xi and yi can be less than 1/2. Indeed,
if i 0 at most one member of each pair (ui, vi) can be in the interval [-1, 1]; and
if lil > R, neither member of a pair can be in the interval. On the other hand, by
hypothesis, at least one of the (xi) or (Yi) must be zero, as to belongs to
Therefore, the product on the left side of (26) contains at most 2R + 1 terms of size
less than 1/2. Such terms, by (10), must be at least A in size. Hence,

(27)
2R+I

Thus (26) holds, with Eo(R) 2-2n-x. (Much larger values for E0 may established
with more effort.)

Our second estimate concerns the terms omitted by (26). We wish to show that

n a-i b_

(28) > El(R) > 0.
R+I

The key point is that for lil > R, ai bi 1. Now

xiyix-iy-i

i4 4

I(i to)2 5J ](-i to)2 52_i1

1

ei,

4

2

(1+ t-) 2-
1 2 2

say (the inequality step is justified by additional calculations, which we omit). Now
ei _> [((2R + 1)/(2R + 2))2 (R/(R + 1))2]2 > 0. A little algebra shows that for
i > 2R, ei > (1- (2R/i)2). Hence, defining

l]
i=R+I

we have

Ex(R)_> H ei" II 1- > 0,
i=R+I i=2R+l

and (28) holds. Again, this is only a very crude estimate; much larger values of E(R)
can be established.
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Combining the inequalities (25), (26), and (28), we have

Igo,nl > A2n+I"-" Eo(R) El(R)" (R!)-a
2

which, by a limiting process, yields the sought-for inequality

Ig01 >- A2R+ A3(R)

with the (very crude) value

7v2

A3(R)----. Eo(R) E(R) (R!)-a

9. Discussion. A few final remarks may clarify issues raised by the above.

9.1. The optimal exponent. Theorems 1.3 and 1.4 together suggest that for
certain exponent e(R) we have, for gt > f0, and all small A

E* (e, R, A, ) A-e(R) Const(R, ) e.

If such a relation holds, we must have, by Theorems 1.3 and 1.4,

2R- 1 <_ e(R) <_ 2R + 1.

What is the value of e(R)?

9.2. Relation to other work. A number of papers treat the problem of re-
covering a signal from data which are missing information about a whole band of
frequencies, by exploiting support limitations: compare results in [26], [7], [8], [25].

The closest result in those papers to the present one may be stated as follows [8,
6]. Suppose that (xt) is a discrete-time signal, and that we have noisy information
9(w) &(w)+ (w) about the Fourier transform of x; only now the high frequencies
Iwl e [, r] are observed, m an integer greater than 1. Then, despite the missing
information about the low frequency band [-, ], we can stably recover
provided that in every interval of length m, a fraction less than 1/r of the samples
are nonzero.

The present paper covers the complementary case, where information for the low
frequency interval [-, ] would be observed, and information for the high frequency
band Iwl e [, r would be missing. For stable recovery of (xt), Theorem 1.4 would
require that for each interval of length 4mR, fewer than R samples are nonzero.

This considerably more restrictive sparsity condition expresses the fact that the
problem of missing high frequencies is much more ill-posed than the problem of missing
low frequencies.

In another direction, one might compare the interpolation results developed here
with other work on interpolation of entire functions. Both in Boas [4] and in Duffin and
Schaeffer [9] there is discussion of sets which are uniformly discrete and of uniform
density 1, so that conditions (9) and (10) hold. However, the internal symmetry
condition (8) seems different from earlier work and figures significantly in the key
Lemmas 2.3, 2.4, and 2.5. It would be interesting to know whether this internal
symmetry condition is in some sense necessary.
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9.3. Removing the lattice constraint. We consider it plausible that a more
general family of superresolution inequalities holds, in which the lattice constraint

# E (A) is removed. Such an inequality would be of the form

where ) > 1 is the superresolution factor, and the inequality is suppposed valid for all
finite signed measures with support of Rayleigh index R. Such an inequality would
express superresolution by the fact that the norm on a larger frequency band would
be controlled by the norm on a smaller frequency band. For comparison, if # E (A),
and gt r/A, then

2

SO we get the inequality proved in this paper as a special case. Evidently ) plays the
role of A-l; it seems plausible that the stability coefficient Ap would grow with ), like
Ae(R), where e(R) is the optimal exponent in the lattice case.
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Abstract. As a half space moving perpendicularly to its border crosses a given density distri-
bution, it may be stopped when it contains exactly half of the total mass of the distribution. Any
point in common with the boundaries of all such stopped half spaces is called a "halfway point"
for the distribution. One may regard it as a multidimensional extension of the "median" of one-
dimensional distributions. A context in which such points arise is discussed, and some characteristics
of distributions that have halfway points are considered.
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Introduction. Suppose two-dimensional cakes come in various shapes and mass
distributions. Suppose we buy only those cakes such that there is a unique point on
the cake (that we shall call the cake’s halfway point) such that a sufficiently long knife
cutting through that point divides the cake into two pieces of equal mass, independent
of the orientation of the cake. What kinds of shapes and mass distributions of cakes
are we limited to buying? What about n-dimensional cakes?

This problem was suggested by work concerning interface reconstruction in com-
putational hydrodynamics and edge reconstruction in image enhancement [8]. We
outline these contexts--a more complete statement is given in 1 below and in [8].
Suppose we are given a characteristic function c(x) of an open subset of the plane
(say), with the boundary of being sufficiently regular. Blur c(x) using a convolution
with a scaled measure distribution function p (of total mass one) as in (1.4) below.
Call the blurred function (x)--it depends on the scale h, on the function p, on , and
on the location z of the origin for p. If the scale h is sufficiently small and z is inside
p’s support (here assumed compact), then 5(x) will be 1 inside and zero outside,
except that there will be a narrow strip containing ’s boundary on which assumes
values strictly between zero and 1. This is the reason that is called a blurring of c.

The paper [8] analyzes three algorithms for approximately reconstructing the
boundary of from discrete data about its blurred image. When the scale is small
(relative to the boundary’s curvature), and when the data are taken at a comparable
scale, then algorithms designed to recover linear boundaries exactly will have "second-
order" accuracy for curved boundaries (assuming the algorithms also have a certain

stability property [8]). Such accuracy is useful for efficient interface reconstruction in
numerical hydrodynamics when it involves the "volume fractions" of computational
cells in two-dimensional calculations. (Second-order accuracy is even more important
for three space dimensions.) And the "sub-pixel-size" accuracy associated with the
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second-order accurate reconstruction of curved "edges"would also be useful in (two-
dimensional) image processing.

Thus, the creation of second-order accurate algorithms depends on understanding
the details of the behavior of the blurring of linear boundaries. It turns out that if the
point z in the blurring (1.4) is the halfway point of the function p, then the blurring
has the property that, for the case of an unblurred linear boundary with an arbitrary
orientation, x lies exactly on the unblurred boundary if and only if (x) has the value
1 This is the property of the halfway point that gives it significance for us. But we2"
may also regard it as locating a "central" point of the distribution--in particular, as
a multidimensional extension of the "median" of one-dimensional distributions. Also,
suppose a solid convex body, of uniform density, has a halfway point and displaces
twice its weight when fully immersed in a fluid. Then, if allowed to float in the fluid,
the sea-level plane will contain the halfway point. Indeed, the body’s "surface of
buoyancy" as it is called in naval architecture (i.e., the envelope of all candidates for
the sea-level plane) reduces to the halfway point.

In 2 we explore some characteristics of mass distributions that have halfway
points--cf. Propositions A and B there.

1. The blurring of boundaries; cumulative distributions. Motivation for
this note arose in the following context. The plane is decomposed into two regions,
fl0 and 121, separated by their common boundary . We assume that has bounded
curvature, does not cross itself, and consists of one component only. Associate with
this setup the color function (essentially, characteristic function) c, defined by

0, x in f0,
(1.1) c(x) := 1, x in

, xin.

1 under the map c.In particular, and somewhat artificially, is the inverse image of
The following example of a scaled blurring of c is used in computational fluid dynamics
(see, e.g., references in [8]). Let S(x, h) be the square of area h2, centered on the point
x, and with sides parallel to the coordinate axes. Associate with c and S the "average
color" function

(1.2) (x) := ff c() dA()/h2, x in 2.
JJS(x,h)

For h sufficiently small (relative to ’s curvature), the set 5-1(1/2) is one-dimensional
and approximates . Given a uniform mesh of points Xi :- (iih, i2h) of grid-size
h--the same h as in Swwe can and do consider the use of meshpoint values 5(Xi)
(sometimes called "volume fractions") in approximately reconstructing . For example,
[8] discusses local approximate reconstruction using the locations of a few adjacent
"gray" values of the average color (5 e (0, 1)). Reconstruction that is "first-order
accurate" in the blurring’s "scale" h (i.e., has O(h) accuracy as h --+ 0) is relatively
easy, since the Hausdorff distance from/ to the set of gray meshpoints does not exceed

h/. But for O(h2) accuracy, the localized algorithm must essentially reproduce
linear boundaries. To do this it is important to know how the local averaging smears
the boundaries of half spaces.

Observe that the level curves of the average color function 5L, of the color function
CL associated with the h x h square S(x,h) and the two half planes bounded by a
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common line L (with unit normal u pointing into Ftl), are lines parallel to L. Moreover,
L(X) is only a function f,(a) of the (signed) scaled distance a :- s/h from x to L,
with s, say, as measured along u. Ambiguity is removed by choosing s > 0 in tl.
With this and no matter how L is oriented, (1) f is strictly monotone increasing
where it is neither zero nor 1; (2) the symmetry of the square S means that f 5
exactly when a 0, i.e.,

(1.3) L 5-1 (_) for arbitrary lines L;2

and (3) the graph of f is symmetric under reflection through the point (0, 1/2). f
has been called the cumulative distribution function for u-normal lines (with respect
to the unit square centered on the origin)--cf. [8], where it is also expressed more
analytically.

The blurring (1.2) is a special case of the following. Assume we are given a
probability density p defined on the plane. Let pz be its translate to an "origin" z,
i.e., pz(x) :-- p(x + z). Redefine the "average color" of a color function c to be the
scaled convolution

(1.4) 5(x) :: /Jfplane p(( x)/h) c() dA()/h2

it bears the origin z and the scale h as parameters.
Consider what needs to be imposed on p so that, for arbitrary lines L, the property

(1.3) of the associated L holds true. To fix ideas, suppose p were the characteristic
function of an equilateral triangle T of unit area. Is there some z so that (1.3) holds?
There is for fixed L--it is any z on the line parallel to L that contains half of the
area of T on one side and half on the other. But if (1.3) is to be independent of L, then
the envelope of such lines must reduce to a point, x0, that we would then label the
point that divides p in half, or, the halfway point for p (the phrase "p’s center of mass"
having been preempted by ff p()dA, and "midpoint" being less dynamic). To see
that T has no halfway point, it suffices to observe that, while the three altitudes each
bisect T and intersect - of the way down an altitude from its corresponding vertex,
the corresponding relative distance to the line that both bisects T and is parallel to
a side of T is x//2. A fixed affine map taking T onto a given general triangle maps
these altitudes onto medians and bisecting lines onto bisecting lines (since its Jacobian
is independent of location). It follows that no triangle has a characteristic function
that has a halfway point. (That is to say, the envelope of the bisecting lines is a curve,
not a point. See, e.g., [2], [3], [4, 253, p. 382], [5, p. 190], or [6, Ex. 3, p. 232].)

For what densities do halfway points exist? In terms of polar coordinates centered
on p’s halfway point, the quantity

+o r p(r, O) dr dO

must be constant (namely, 5). Differentiating it, we see that x0 divides p in half if and
only if (in these same polar coordinates and for all ) f r p(r, O)dr f r p(r, r +
O) dr. In particular, a halfway point for p, if it exists, need not coincide with p’s center
of mass. The following statements are justified in the next section. An equivalent
characterization of a halfway point for p (should it exist) is that opposite sectors,
bounded by two lines through it, have the same mass. p has at most one halfway point.
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If p is symmetric under reflection through a point x0, (i.e., if p(xo + x) p(xo x)
for all x), then x0 divides p in half. On the other hand, if p is nonzero only on
an open set S and has a halfway point x0 with respect to which S is star-shaped,
and if p(xo + x) p(xo x) when x0 x and x0 + x are both in S (for example,
if, on the S-part of each line through x0, p were constant), then both S and p are
symmetric under reflection through x0. In particular, x0 is the halfway point for the
(normalized) characteristic function XK of a bounded open convex set K if and only
if K is symmetric under reflection through x0.

For L Lv to coincide with the associated .,1(1/2) (and not be just a proper
subset), we must also assume, with z being p’s halfway point, that pz’S associated
cumulative distribution function for v-normal lines [8], namely,

(1.5) fv(a) := p(z + s + tw) dtds, w. O, Ilwll I111 1,

is strictly monotone at (0, 1/2); indeed, it is useful to impose a wider extension of this-
see (2.3) ft. below. And recall that points into g/l, i.e., towards that side of the line
L where c- 1, so that EL(X) f(a), with ha, the signed distance from the line to x
as measured along , being negative for x in 0 and nonnegative, otherwise.

Examples of probability densities having halfway points include (1) the (normal-
ized) characteristic functions of parallelograms or ellipses; (2) normalized, azimuthally
symmetric densities (which are functions only of r in polar coordinates centered on
some point, i.e., functions called "radial functions" in recent literature concerning scat-
tered data approximation); and (3) the following two structures: Suppose two circular
discs each have mass one and uniform but different densities. Interchange a sector
0 _< 0 < a of one disc with a similar sector of the other, matching up (former) centers
and bounding radii, this last as far as is possible. For either of the new structures, its
halfway point--namely, the discs’ former centers--is not its center of mass.

It is worth noting that, for distributions over one space dimension, halfway points
always exist--they are called "medians" of the distribution. Recall that, as in more
dimensions, they needn’t coincide with the distribution’s mean, but that for one space
dimension they needn’t be unique.

2. Halfway points in n dimensions. Let g, a nonnegative integrable function
on n-dimensional Euclidean space Stn, be not identically zero and sufficiently smooth--
we take this to mean that (a) the support of g (i.e., the closure of the set on which
g is nonzero) is the closure of its nonempty interior, and (b) the amount of rn-lg on
half lines, namely,

a(x, 12) :: rn--lg(x + ru) dr,

is, for each x in Nn, an integrable function on the unit sphere Ilull 1 in Nn.
We shall say that the point xo in a k-dimensional hyperplane Hk C_ divides g

in half on Hk means that for any (k- 1)-dimensional hyperplane Hk-1 C Hk through
xo, the amount of g in Hk on either side of Hk-1 is the same; more precisely,

fH g(x) dkx /H g(x) dkx’
+(Hk-1) (Hk-1)

where the H+(Hk_I) are the sides of Hk with respect to Hk-1. Such a point will be
called a halfway point for g on H. With this, we have the following.



1336 w.A. BEYER AND BLAIR SWARTZ

PROPOSITION A. (1) Suppose G(xo, is continuous on the unit sphere. Then if
for some k, 1 <_ k <_ n, xo is a halfway point for the function IIx xolln-k g(x) on

every k-dimensional hyperplane in ]n containing xo, then this is so for all such k.
(2) If xo is a halfway point for g on ]Rn, G(xo, is continuous on the unit sphere,
and H is any (n- 1)-dimensional hyperplane through xo, then xo is the center of mass
of the H-section of g, i.e., of the density distribution glH" (3) A halfway point for g
on ]n is unique .for n > 1. (4) If g is symmetric under reflection through a point xo,
then xo divides g in half. (5) If g is nonzero only on an open set S and has a halfway
point xo with respect to which S is star-shaped, and if g(xo + x) g(xo x) when
xo x and xo + x are both in S, then both S and g are symmetric under reflection
through xo. In particular, xo is the halfway point .for the characteristic function XK
of a bounded open convex set K if and only if K is symmetric under reflection
through xo.

For these results we need a lemma and its corollary.
LEMMA. That xo divides g in half on a k-dimensional hyperplane Hk (k > 1) is

equivalent to the following. Let $1 $2 be (k- 1)-dimensional hyperplanes in Hk and
through xo. Then the amount of g between opposing sectors (bounded by $1, $2, and
their intersection) is the same.

Proof. Sufficiency is clear. (Let the two hyperplanes coalesce.) For necessity,
identify four regions in H, X+=, by the signs of- Ai(x0) for two appropriate linear
functionals Ai (i.e., such that Si is the null space in Hk of Ai- Ai(x0)); and let the
four numbers g+: be the amount of g in X+. Then, the difference between the two
relations,

g+++g+_=g__+g_+ and g+_+g__=g_++g++,

yields the desired relation g++ g__.
In this Lemma, let $1 $2 =: Hk-2 be fixed, and let $1 approach $2 --: Hk-1.

Then we are led to the following.
COROLLARY. If XO divides g in half on Hk, some k >_ 2, and G(x0, is contin-

uous, then for all Hk-2 C Hk-1 both containing xo,

H+(Hk-2)
IIx xoll g(x) dk-lx /H-(gk-2) IIX XOII g(x) dk-lx.

Proof. Let $1 $2 Hk-1 be (k 1)-dimensional hyperplanes in Hk, each
containing x0, with $1 N $2 Hk-2. Let W+ be the opposite sectors of the regions
bounded by $1 and $2 with interior angle . Then from the Lemma,

w-
g(x) dkx --/w+ g(x) dkx.

Recall from, e.g., Sommerfeld [7, pp. 227-228] that the volume element in k-dimensional
spherical coordinates, namely (for r > 0, -r < 01 < r, and 0 < Oi < r when i > 1),

(2.1) dkx sink-2 Ok-1 sink-3 0k-2""" sin 02 rk-1 dr dO1.., dO_l

satisfies dx sin-2 Ok-1 (r dk-lx) dOk-1. Place the origin at x0, and place the polar
axis normal to Hk-1 and oriented so that all points in W+ satisfy Ok-1 r/2 :l: +,
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some + E [0, ]. Let C+() be the cone with vertex x0 that is defined by k--1
constant r/2 =t= . By Fubini’s theorem,

The conclusion of the Corollary is obtained by letting -- 0 and by using the mean
value theorem for integrals, which may be done by the continuity of G(xo, ).

To prove (1) in Proposition A, we suppose that for some k, 1

_
k

_
n, x0 is a

halfway point for IIx- xolln- g(x) on all k-dimensional hyperplanes Hk containing
x0. If k > 1, apply the Corollary successively to the functions

Thus, x0 is a halfway point for the restriction of IIx-xolln-1 g(x) to any line L through
x0, so that G(xo,-) G(xo, ) for all v on the unit sphere. Placing the origin for
spherical coordinates at x0 with the polar axis normal to a given but arbitrary (n- 1)-
dimensional hyperplane containing x0, we see that x0 is a halfway point for g on ]Rn.
We may now replace k by n in this argument to complete the proof of (1).

To prove (2) in Proposition A, restrict g to the (n- 1)-dimensional hyperplane H,
and let n-dimensional spherical coordinates be centered on x0 with polar axis normal
to H, so that a line L in H through x0 is determined by fixing 0 < 1,’" On-2 < r
and

_
r/2. Then, taking k 1 in part (1), the amount of r-1 glL on either

side of the origin is the same: fr>0 r’-I g(r,. )IL dr =fr<0 r’- g(r,. )IL dr. It follows
that the component of the center of mass of g lH along any unit vector u parallel
to H vanishes, since it is proportional to fg glH r cos a dx"-1, i.e., (using (2.1) with

k-n-l), to

,./:) cos.

r’-2 sinn-3 On-2 sin’-4 0,-3 sin 02 dr dO.., dO,-2,

in both of which a, the angle (in Rn) between u and the radius vector, is independent
of r.

To prove (3) in Proposition A, suppose n > 1 and that xo - x are both halfway
points determining a line L; and let x not lie on L. We want to show g(x) 0; for
then, x being arbitrary, g would be zero or concentrated on L, cases we do not allow.
For this, let H(0) and H(1) be two parallel (n- 1)-dimensional hyperplanes with
x strictly between them, and (b) xo in H(0) and x in H(1). Then, the amount of
g on the side of H(0) not containing x is the amount of g on the side of H(1) not
containing xo. Hence, the amount of g between H(0) and H(1) is zero. Since x lies
strictly between these two hyperplanes, g(x) --O.

The proof of (4) in Proposition A is clear.
To prove (5) in Proposition A, choose a line L through xo; and let xo- w and

xo + z be the endpoints of the open line segment L N S, choosing Ilwll
_

Ilzll. Then,
with a(y) the amount of the function IIx xolln-lg(xo / x) between xo and xo + y
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on L, a(w) a(-w). But, since x0 is the halfway point for g, a(z) a(-w). So,
since x0 q- w and x0 -b z lie on the same side of x0, the amount of g between x0 q- w
and x0 q- z is zero. Since S is star-shaped with respect to x0, this amount would be
positive if ][w[[ < [[z[[. So, [[w[[ ---[[z[[; and, as L was arbitrary, the boundary of S
is symmetric under reflection through x0. As S is star-shaped with respect to xo, S
itself has the same symmetry. Hence, so does g. It remains to show that if, instead,
S K is bounded, open and convex, and if g :- X/fX has halfway point xo,
then xo K (for then K is star-shaped with respect to x0). But if xo K, then there
is an (n- 1)-dimensional hyperplane H with x0 H, but with K completely on one
side of H--say, the side in the direction of H’s unit normal vector . But, then, the
"cumulative distribution function f for -normal hyperplanes" associated with the
density p := g ((2.3) below, with z :- 0) satisfies (a) f(0) 1/2 and (b) f(a) 1 for
a > 0. But this contradicts the continuity of f, so x0 E K after all.

In Proposition A, (1) fails to characterize halfway points in some easy cases--for
example, G(xo,. fails to be continuous for the open, azimuthally symmetric, two-
dimensional "butterfly" {(r, 0)" 0 < Jr[ < 1, 0 < 0 < a0 < r/2} or its partly open,
unsymmetric sibling, {(r,0) 0 < r < 1; 0 _< 0 < a0 or zr < 0 <_ r + a0}. It might
prove amusing to explore the extent that (1) (and the definition of halfway point)
could be weakened to: (i) If for some k, 1

_
k <_ n, xo is a halfway point for the

function I[x- xol[n-k g(x) on almost every k-dimensional hyperplane in Rn containing
xo, then this is so for all such k.

Remark. The conclusion of (2) in Proposition A--namely, that a distribution’s
halfway point in Rn is also the center of mass of every (n- 1)-dimensional (hyper)plane
section containing it--is also a consequence of the first of a sequence of results in
the hydrostatics of floating bodies. This connection goes as follows (here in three
dimensions but with no loss in generality)" Suppose one is given a body B (say, a
convex body) along with a prescribed fraction in (0, 1). Let E be the envelope of
those planes that divide B into two parts having relative volume and 1- . (If
the body B had specific gravity / and were floating in some orientation, then its
sea-level plane section would be tangent to E independent of that orientation.) The
result of particular interest in this context states that the point of tangency of each
of the dividing planes to their envelope E is the (two-dimensional) center of mass of
the corresponding plane section of B. This result is the simplest of a sequence of
conclusions concerning the orientation and stability of the equilibrium positions for
floating bodies; a sequence generally attributed (by Bouasse [4], Appall [1, 651, p.
196ff], Greenhill [5, p. 160], and Lamb [6, pp. 227ff]) to Bouguer (1746) in part and
to Dupin (1814)--although Bouasse [4, 220, p. 324] attributes this particular result
instead to Lacroix, one of the early (1797) calculus textbook writers. All justify the
result in much the same way that our Lemma and its Corollary were proved (but
no author clearly states the hypotheses he assumes). The typical argument goes as
follows. Two nearby planes of the type mentioned intersect in a line L; the amount
of B in each of the two narrow sectors between the planes on either side of L must
be the same, but this is also closely approximated by the product of the small angle
between the planes with the plane section’s first moment in either of the directions
orthogonal to L. Let the two planes and the lines L converge. Then the limiting line
contains the section’s center of mass along with the limiting plane’s point of tangency
to the envelope.

A similar argument indicates that the result should extend to higher dimen-
sions and to the division by hyperplanes of relatively general mass distributions into
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two parts having fixed but not necessarily equal masses. (L, then, is an (n- 2)-
dimensional hyperplane.) We see no difficulties with such extensions in the case of
interest here---namely, when the entire envelope reduces to a point. But there do exist
counterexamples in more general situations--see, e.g., Beyer and Swartz [2, Ex. 10.3].

To complete this Remark we reconsider part (2) of Proposition A in our three-
dimensional context. So we suppose above that B c ]13 has a halfway point x0. Then,
taking 1/2, the envelope E reduces to x0. Thus the result above implies, as desired,
that every plane section of B containing x0 has center of mass x0.

In the context of boundary reconstruction in n dimensions, the average color of
a color function c is the analog of the scaled convolution (1.4):

:= Lo p:(( x)lh) c() d/h;

it again bears the "origin" z (of the given probability distribution p) and the "scale"
h as parameters. With the z the halfway point for p (-: g above) assumed to exist,
we would also like to ensure that each (n- 1)-dimensional hyperplane boundary H
coincides with the inverse image 5 (1/2) under the average coloring H of Rn associated
with H, and is not just a proper subset of that inverse image. For this, define, for each
unit vector (regarded as the normal for an associated (n- 1)-dimensional hyperplane
H() through the origin), the cumulative distribution function fv of p for t-normal
hyperplanes, namely,

(2.3) fv(a) := i_iH p(z + st + x,-l d’-ix,-i ds.

Then, H 51(1/2) for all H if and only if each f is strictly increasing on a neigh-
borhood of f-l(1/2); that is to say, there exists no pair of distinct (n- 1)-dimensional

In fact,-normal hyperplanes that separate the support of p into two pieces of mass .
[8] imposes a further restriction on p that ensures the even more desirable property
that each df/da is bounded away from zero where f is bounded away from both
zero and one: If, for some t and some ao # O, fH() p(z + ao + xn-1) dx"- O,
then p vanishes on the whole open half space on the side of H(t) + ao away from p’s
halfway point z.

Two examples of cumulative distributions f (2.3) associated with particular
probability densities p in n dimensions are presented in [8]. The first is the construc-
tion of the univariate nth degree polynomial spline that is the cumulative distribution
associated with a (mass one) union of interiorly disjoint tetrahedra (simplices)--of
course, such objects need not have halfway points. The second involves the determi-
nation of the azimuthally symmetric probability density p on the n-ball (of diameter
one) whose cumulative distribution function is linear where it is neither constantly
zero nor constantly one.

The analog H /1(5 of (1.3) has led us to the notion of a halfway point
for the probability distribution p occurring in the scaled blurring (2.2), i.e., to a
generalized "median" whose existence imposes a sort of symmetry restriction on p.
Other properties of the blurring can lead to other sorts of restrictions. For example,
the cumulative distribution function f for -normal hyperplanes (2.3) specifies the
behavior of the average color as the moving density distribution crosses the boundary
of a half space from its black (0) side to white (1) side. We could ask that identical
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behavior be obtained if black is interchanged with white and we cross in the opposite
direction. That is to say, we could insist that

(2.4) for each normal u, f-v(a) fv(a) for all a.

This is equivalent (using the consequence f_(a) 1-f(-a) of invoking a probability
density p) to insisting that the graph of f be symmetric under reflection through
(0, 1/2).

(2.5) for each normal ! f(-a) f(a)- 1/2 for all a2

In particular, this insists that, for each u, f(0) 1/2; i.e., that the associated density p
have a halfway point. But (2.5) must restrict p even more, since, for either structure
constructed at the end of 1, the associated f does not satisfy (2.5) except for u
normal to the line that cuts the structure into two mirror images.

And, indeed, (2.5) is equivalent to p being almost everywhere symmetric under
reflection through its halfway point.

PROPOSITION B. Let p be a probability density on R". Then p’s cumulative
distribution function f (defined by (2.3) with z O) is symmetric under reflection
through (0, 1/2) for all unit vectors u--i.e., (2.5) holds--if and only if p is symmetric
under reflection through the origin almost everywhere. Either condition means that
the origin is p’s halfway point.

Proof. Such symmetry for p is clearly sufficient. On the other hand, suppose that

f (2.3) (with z 0) satisfies (2.5). Then the cumulative distribution function f(R)
for the "reflected" density

:=

is the same as f"

(the last using (2.5)). Differentiating, now, the amount of A := p(R) p on any
(n- 1)-dimensional hyperplane is zero. In other words, the Radon transform of A is
zero. But it now follows--from a nice argument described to us by L. Sheppmthat
the n-dimensional Fourier transform z of A is zero. For with -oc < a < oc, and
since Ilull-- 1 with u normal to H(u),

But the inner integral is the Radon transform of A at (s, u). Thus/ 0; so A 0
almost everywhere.
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ROTATION INVARIANT SEPARABLE FUNCTIONS ARE
GAUSSIAN*

PL. KANNAPPAN AND P. K. SAHO05

Abstract. In digital image analysis, edge detection, line detection, texture classification, and so

forth are basic to image understanding and interpretation. Since a typical image is void of predeter-
mined directions of edge, line, or texture, rotation invariant filters are important for their detection.
In designing such filters the concept of rotation invariant separable function is often used. Here it is
shown that every rotation invariant separable real valued function of two variables is either Gaussian
or identically zero. This justifies the use of Gaussian filters in image processing. Furthermore, while
deriving this result, the authors obtained the general solutions of two functional equations considered
by Swiatak in 1975. Swiatak found the solutions when one of the unknown functions is continuous
at zero. No regularity assumptions were made and all the general solutions that contain the solution
obtained in [Aequationes Math., 12 (1975), pp. 39-64] were determined.

Key words. Gaussian function, separable function, functional equation

AMS(MOS) subject classifications. 39B40, 82A15, 68U10

1. Introduction. Let R be the set of reals and R+ {x E R Ix > 0} be the
set of positive reals. Let (0 E R I0 nr/2, n 0, 1, 2, 3, 4,...}. A function

f Rn --, R is said to be Gaussian if and only if

(1.1) f(xl,x2,’.. ,xn) keA(x+x+’’’+x), (XlX2’’" Xn) Rn
where k is a real nonzero constant and A" R --, R is a function satisfying

(1.2) A(u + v) A(u) + A(v)

for all u, v R. In the literature, A is often referred to as an additive function.
The probability density function of a normal distribution is an example of a Gaussian
function. A function G R2 -+ R is said to be separable if there exist functions
g, h" R -, R such that

(1.3) O(x, y) g(x) h(y)

for all x, y R. A function G R2 --+ R is said to be rotation invariant if

(1.4) G(x, y)- G(xo, yo) for all O ,
where

Y0 sin 0 cos 0 y

*Received by the editors June 12, 1991; accepted for publication (in revised form) January 21,
1992. This work was supported by grants from the College of Arts and Sciences of the University of
Louisville and the Natural Sciences and Engineering Research Council of Canada.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1,
Canada.

:Department of Mathematics, University of Louisville, Louisville, Kentucky 40292.
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If a function G :R2 -- R is rotation invariant and separable then

(1.5) g(x) h(y) k(xe)l(ye) for all x, y e R and for all

where g, h, k, R R. The introduction of functions k and is just to give a general
aspect to the functional equation. It is not imposed by separability. In digital image
processing edge detection, line detection, texture classification, and so forth are basic
to the problems of image understanding and interpretation. Since a typical image
does not have predetermined directions of edge, line, or texture, rotation invariant
filters are used for their detection. In designing of such filters (see [2]) the concept
of rotation invariant separable function is used. Also, in many problems in optics
and quantum mechanics we encounter such functions. For instance, two independent
particles in quantum mechanics whose wavefunction is a product of function of indi-
vidual coordinates is also a product when expressed in the center of mass and relative
coordinates. In this paper we show that rotation invariant, separable functions satisfy
the functional equations (FE) and its analogue considered in 2 are either Gaussian
or zero function. In [4], the authors study bifactorizable quantum wave functions.
While proving if two quantum systems are prepared independently and if their center
of mass is found to be in a pure state, then each of the component systems is also in
a pure state, which in the coordinate representation is a Gaussian wave function, the
authors of [4] come across the functional equation (FE). They established their result
assuming the functions are infinitely differentiable. We establish this result without
assuming any regularity conditions on the unknown functions. Our approach is from
the functional equation point of view and it is simple, direct, and interesting.

2. Auxiliary results. We give the motivation for considering the functional
equation (FE) in the next section. In this section we determine the most general solu-
tion of the functional equations (FE), (GFE), (SE), and (GSE). Since the identically
zero function is always a solution of our functional equations, we consider nontrivial
(that is, not identically zero) solutions. First we prove the following theorem con-
cerning the equation (FE). We require the following theorem to establish our main
result.

THEOREM 1. Let f, g :R -- R satisfy the Junctional equation

(FE) f(x + y) f(x) f(y) g(xy), x, y e R,

where f and g are not identically zero functions. Then the general solution of (FE) is
given by

f(x) ce1/21
eA1AI()+A2(x)() I x E R,(2.1)

g(x)--
c

where Ai :R --, R (i 1, 2) are additive functions and c is an arbitrary nonzero real
constant.

Proof. If there exists a real number Xo such that f(xo) O, then replacing x by
x Xo and y by Xo in (FE), we obtain

f(x) f(x Xo) f(Xo) g((x Xo) Xo) 0

for all x E R. But f is not identically zero, and hence f is nowhere zero. If g(xo) 0
at some Xo R, then from (FE) with y- 1, we get

(2.2) f(xo + 1) f(xo) f(1)g(Xo) O.
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But f is nowhere zero, and hence g is also nowhere zero.
From (FE), we obtain

f(x + y + z) f((x + y) + z)
f(x + y) f(z)g((x + y)z)
f(x) f(y) f(z) g(xy) g((x + y)z).

Similarly,
( + (v + z)) () .(v) (z) (vz) ((v + z))

and
f(y -+- (x + z)) f(x) f(y) f(z) g(xz) g(y(x + z)).

Thus from the above equations, we get

(2.3) g(xy) g((x + y)z) g(yz) g(x(y + z)) g(xz) g(y(x + z))

for all x, y, z E R. Now we restrict f and g to R+ (positive reals). It is easy to see
that (FE) and (2.3) hold for x, y, z E R+. For u, v, w e R+, let

(2.a) v *

Then (2.3) becomes

a() a( + ) a()a( + ) a() a(u + v).

Since g is nowhere zero, we rewrite the above equation as

a( + ) a( + )
a() a(u)

for all u, v, w e R+. Hence for fixed w R+, we get g(u + w)/g(u) constant for
u R+. So we have

(2.5) g(u + w) g(u) h(w), u, v e R+,

where h R+ --, R. The left side of (2.5) is symmetric in u and w. Using the symmetry
of the left side of (2.5), we obtain

(2.6) g(u) h(w) g(w) h(u), u, v e n+.
Letting w Wo in (2.6), we get

(2.7) h(u) cg(u),

where c :-- h(wo)/g(wo) is a nonzero real constant. Now (2.7) in (2.5) yields

(2.s) a( + ) a()a(), , e

Hence (see [1, Thm. 5, p. 29])

(2.9) g(x) _1 eA (x), X > 0,
c
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where A1 R --, R is an additive function.
Inserting (2.9)into (FE), we obtain

(2.10) f(x + y) f(x) f(y) 1_ eA (xy), x, y e R/.
c

Define

i
(2.11) F(x) :-- e- A(x2) f(x), x e R/.

c

Then (2.10) and (2.11) yield

(2.12) F(x + y) F(x) F(y), x, y e R+.

Hence (see [1, Thm. 5, p. 29])

(2.13) F(x) eA2(), x e R+,

where A2" R --, R is an additive function. Now from (2.11) and (2.13) we obtain

(2.14) f(x) ce1/2 A(x2)+A-(x), x > O.

Thus we have shown that f and g have the asserted form (2.1) if x > 0. Next we
show (2.1) is also the asserted form of f and g for x

_
0.

Let x < 0 and choose y > 0 such that x + y > 0. Then from (FE) and (2.14) we
get

(2.15) g(xy) f(x) e1/2 A(x2)/A(x)/A (xy)

for all x < 0 and x + y > 0. Now for x < 0, choose z > 0 such that x / z > 0. From
(2.3), we have

+ +
and since xz + yz > 0 and xy + yz > 0, using (2.9) in the above equation, we get

(2.16) g(xy) e-At (xY) g(xz) e-A(z)

for all x < 0 and y > -x, z > -x. From (2.16), we see that

g(xy) e-A() r(x),

where r(x) is a nowhere zero function of x. Thus

(2.17) g(xy) r(x) eA (xY)

holds for all x < 0 and x + y > 0. Inserting (2.17) into (2.15), we get

1 A1 (x2)/A2 ()(2.18) f(x) (x) x < O.

Next let us choose x < 0 and y < 0. Using (FE), (2.9), and (2.18), we obtain

(2.19) + u)
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for all x, y < 0.
Let f(0) b (a nonzero constant). With y 1, (FE) gives

(2.20) f(x + 1) f(1) f(x) g(x), x e R.

Letting x- -1 in (2.20) and using (2.18) and (2.14), we get

1
br(-1) eAl(-1)g(-1)-

in (FE) for x > 1, we getSubstituting y

Using (2.14) and (2.18)in (2.22), we obtain

I ii eA(-1)(.a) (-1)
x

for all x > 1. From (2.21) and (2.23), we see that

(2.24) r(y) d (constant)

for -1 < y < 0. Now we choose x,y in the interval]-l,0[withx+y < 0 and
x / y > -1. Then (2.19) yields

1
d---

c

For x < 0 and y el- 1, 0[, we obtain from (2.19) and (2.24)

+

for all x < 0 and all y El- 1, 0[. Hence r(x) is a constant function. Again using
(2.19), we see that

(2.26) r(x) _1 for x < 0.
c

Now using (2.26) in (2.18), we get

(2.27) f(x) ce1/2 A’(x2)+A2(), x < O.

From (2.20), (2.14), and (2.27), we get

(2.28) g(x) _1 eA(x), x < O.
c

Hence f and g have the form (2.1) for x < 0. Now y -x in (FE) yields b c, that
is, f(0) c. This completes the proof of the theorem.

Now a few remarks are in order.
Remark 2. First the solution of (FE).is obtained without assuming any regularity

condition whatsoever on f or g. Furthermore, this solution is obtained without using
the substitutions x 0 or y 0.
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Remark 3. If we assume some regularity condition on f, say f is measurable, or
continuous or continuous at a point, say, at zero, then we obtain as in [6], f(x)
cel a x +bx and g(x) -1 ea x. The measurability or continuity on f implies (use
(2.20)) the same of g, and (2.18) and (2.12) yield continuous additive functions A1
and A2. As for continuity at zero of f, as in [6], we can show that f is continuous
everywhere.

Our next remark is the following. We can easily obtain the general solutions of
the functional equation

(GFE) fl(X / y) f2(x) f3(y) g(xy), x, y e R,

where f,/2, f3, g are not identically zero by reducing it to (FE).
COROLLARY 4. The general nontrivial solution of (GRE), where fl, f2, f3, g

R -- R is given by

x

where Ai R --. R (i 1, 2) are additive functions and a, b, c are arbitrary nonzero
real constants.

Proof. The assumption that either f2 or f3 is zero at some point would imply f
is identically zero. Suppose g(xo) O. Then (GFE) first gives f(Xo + 1) 0 and
then with x Xo / 1, y 0 gives g(0) 0. This would imply fl is identically zero.
So, all f, f2, f3, and g are nowhere zero. The reduction of (GRE) to (FE) can be
accomplished as follows. By substituting into (GFE), first y 0 and then x 0, we
have f (x)- a f2(x) and f(y)= b f3(x) so that (GFE) becomes

1 1 1
a- f (x + y) -- f (x) -- f (y) g(xy),

which is the functional equation (FE).
Next we prove the following corollary to establish another result in [6]. Again we

make no regularity assumptions on the unknown functions. Again, as before we solve
it by reducing it to (FE).

COROLLARY 5. Let f, g :R --, R satisfy the functional equation

(SE) f(x y) f(x) f(y) g(xy) (x, y e It),

where f and g are not identically zero. Then the general solution of (SE) is given by

f(x) ce1/2 Al(a2) )
xR,(2.29) _1 eA(_z

where A1:1 ---, 1 is an additive function and c is a nonzero real constant.
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Proof. It is easy to verify that (2.29) satisfies (SE). We assume f and g are
nowhere zero. Then interchanging x with y in (SE), we get

(2.30) f(x y) f(x) f(y) g(xy) f(y x)

for all x, y E R. Thus f is an even function in R. Replacing y by -y in (SE), we get

(2.31) f(x + y) f(x) f(y) g(--xy)

for all x y E R, which is the same as (FE). Hence from Theorem 1, we get

(2.32) f(x) ce1/2 A()+A()

and

(2.33) g(x) 1_ eA(_).
c

Since f is even, (2.32) yields A2 0. Thus (2.32) and (2.33) yield (2.29). This
completes the proof.

Remark 4. Note (2.31) is a special case of (GFE). Use Corollary 4 to obtain
(2.29).

Finally (FE) can be used to solve another functional equation

(GSE) fl (x y) f2(x) f3(y) g(xy), x, y e R,

where fl, f2, f3, and g are not identically zero functions. We will use this equation in
the main theorem in the next section.

COROLLARY 6. Let fl, f2, f3, g :R -- R satisfy the functional equation (GSE).
Then the general nontrivial solution of (GSE) is given by

fl(X) abce1/2 Al(x)+A2(z)
1
fl (x)f2(x)-

1
f3(x)-

g(x) _1 ea (_x)

x R,

where Ai R -- R (i 1, 2) are additive functions and a, b, c are arbitrary nonzero
real constants.

Proof. As before we can show that none of fl, f2, f3, g is anywhere zero. Putting
y 0 in (GSE) and then x 0, we obtain f(x) a f2(x) and f (y) b f3(-y) so
that (GSE) can be rewritten as

1 1 1
a b

fl(x y) -- fl(X) - fl(-y) g(xy).

Now changing y to -y in the above equation, we see that it reduces to (FE) (also to
(GFE) and then use Corollary 4).

3. The main result. We prove our main result by first deriving the equation
(FE).
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THEOREM 7. If G :R2
-* R is rotation invariant separable function, then G is

either identically zero or Gaussian.
Proof. If G is the zero function, it is obviously rotation invariant and separable.

So, we assume G is not identically zero. Suppose G(xo, yo) O. Then by using
separability and rotation invariance, we can show that G(x, y) 0 for all x, y E R.
The separability condition (1.3) gives g(xo) k(yo) O. Assume g(xo) O. Then again
(1.3) gives G(xo, y) 0 for all y. Given any (xl,yl), it is possible to find a suitable
(Xo, y) or a rotation of it, so that (xl, y) is obtained as the image of (xo, y) by a
suitable rotation. Hence, G(x,yl) 0. So, G is nowhere zero. Then from (1.5) we
obtain

(3.1) k(#x / vy) l(-vx + #y) g(x) h(y) for all x, y e R

for all (#, ) not equal to (0, 1), (1, 0), (0,- 1), (-1, 0), where # cos 0 and v sin 0.
Since G is nowhere zero we conclude that k, l, g, h are also nowhere zero. Letting
x 0 in (3.1) we get

(3.2) h(y) a k(y) l(#y),

where a is a nonzero constant. Similarly, letting y 0 in (3.1) we get

where b is a nonzero constant. Using (3.2) and (3.3) in (3.1), we obtain

k(, + u)(- + ,u) a b k(,)(-) k(u)(,U),

which is

k( +) (-)()(3.4) k(#x) k(,y)
a b

l(-,x + #y)"

Replacing x by x and y by y in (3.4), we get

(.) ( + ) (-)()
k(x) k(y)

a b
l(- x + y)"

Letting x any nonzero real (recall cot , it is possible to choose x, any
nonzero real) in (3.5), we see that the right side of (3.5) is a function of xy. Hence we
have

(3.6) k( + U) k() k(u) (xu)

for all x, y R with x 0. By Theorem 1 and Remark 2, we obtain

k(x) ce1/2 ()+-(),
(3.7) 1

() ().
c

Letting (#, )= (22’ 2) in (3.5), we get

( + ) (-) ()(3.s) k() k() (- + )"
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Using (3.7)in (3.S), we see that

t(_ + u) z(_)t(u)-A().

Thus, by Corollary 6 (could use Corollary 4 and Corollary 5), we have

(.) z()=
1 e1/2 A1 (xg)+Az(x).

Using (3.7), (3.9), (1.4), (1.5), and (3.1), we obtain

(3.10) v(, u) k( + u) Z(- + ,u) a

Since G is rotation invariant for all 0 e D, G in (3.10) remains the same for different
choices of (,, u). By choosing (,, u)= (, ), we get

(3.11) G(x,y)=exp A(xe+yz)+A2 x+y +A3 -x+y
Similarly, choosing (,, u) , ), we see that (3.10) becomes

1 (1(3.12) G(x, y) exp A1 (x2 + y2) + A2 + A3

Hence from (3.11) and (3.12), we obtain

for all x, y R. Now from (3.11) we have

1 A(xZWy2)a(z, y) e

This completes the proof of the theorem.
We conclude this paper with the following remark. A function G R2 R is

circularly symmetric if G(z,y) f(x2 + y2) for some real valued function f. It
w shown in [5] that circularly symmetric separable functions are Gaussian. Circu-
larly symmetric functions are precisely rotation invariant; and not the converse. In
harmonic analysis, such functions are generally called radial functions [3]. Thus our
Theorem 7 can also be deduced from [5]. However, here we accomplished our tk by
solving a quite different and interesting functional equation (FE) and the related ones
considered by others in different contexts [4], [6]. rthermore, this approach allows
us to study linear transformation invariant separable functions. For similar results,
refer to [7], [8].

Acknowledgments. We are thankful to the referee for suggestions that im-
proved the presentation of this paper.
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GLOBAL LINEAR INDEPENDENCE AND FINITELY SUPPORTED
DUAL BASIS*

KANG ZHAO

Abstract. Relating the global linear independence of an arbitrary locally finite family of func-
tions to the basic fact that a linear map is onto if and only if its adjoint is 1-1, it is shown that
any locally finite and globally linearly independent family of functions has a dual basis consisting of
finitely supported linear functionals.

Key words, global linear independence, locally finite, finitely supported dual basis

AMS(MOS) subject classifications. 41A05, 41A15, 41A63

1. Introduction. Call the (indexed) family of distributions on ]R8 locally
finite in case, for any test function, i.e., any compactly supported C-function f,
(, f) 0 for all but finitely many E . For such a locally finite family, the sum

(1.1)

is a well-defined distribution, regardless of what the coefficient "sequence" c E C
might be, if we define the sum pointwise, i.e., set

We assume that no confusion will arise from the use of the symbol for both the
indexed family and the linear map (1.1) naturally associated with it. Call such a
locally finite family globally linearly independent in case c 0 implies that c 0.
In such a case, there is a dual basis for , i.e., a corresponding collection (A)e of
linear functionals on ran , given by the rule that

c)

Therefore (A)e satisfies that

1 if ;(1.2) V e , {A’} ():=
0 otherwise.

Recently, Ben-Artzi and Ron [BR] published the surprising and useful result that
if is locally finite, then the elements of this dual basis are local, in the sense that,
for each , there exists a ball B B (of finite radius) so that {c, f/= 0 for all

f with supp f C B implies that c() 0.

*Received by the editors June 18, 1991; accepted for publication (in revised form) January 9,
1992.

Mathematics Department, Univeristy of Wisconsin, Madison, Wisconsin 53706. The work of
this author was supported by a research assistantship from the National Science Foundation grant
DMS-9000053.

1352



GLOBAL LINEAR INDEPENDENCE AND FINITELY SUPPORTED DUAL BASIS 1353

It is the purpose of this paper to show that this result is a direct consequence of
the basic fact that the adjoint of a linear map is 1-1 if and only if the map itself is
onto. By this fact, the above-mentioned result of [BR] is improved and generalized to
the case that (I) is a locally finite family of functions defined on any domain X. Their
result is recovered by considering distributions as functions on the collection of test
functions.

2. The results. In linear algebra, an infinite subset of a linear space is called
algebraically linearly independent if any finite subset of it is linearly independent. In
approximation theory, a locally finite family (I) of functions defined on IR8 is called
globally linearly independent if

--0 == c--0.

In other words, the (indexed) family (I) is globally linearly independent if and only
if the corresponding map c - YeTc() is 1-1. In this section, we derive
a condition equivalent to global linear independence of O, which gives a geometric
meaning to the global linear independence of (I). We rely on the following basic fact.

PROPOSITION 2.1 (IT, p. 52]). Let U and V be two linear spaces, with duals U
and Vp, respectively, and let M U -- V be a linear map. Then M is onto if and only
if the adjoint M V --, U - AM of M is 1-1.

Let IF be a field. Denote by IFX the linear space of all functions from X to IF
and by IF0X the subspace of IFx of all finitely supported functions. Here, we say that
g E IFx is finitely supported if the support of g, i.e., the set

su,, a := e x: # 0}

is finite. We want to stress that we make no assumptions concerning the domain X.
In particular, the case that (I) is a collection of distributions in T)P(IR8) is covered
because, for this case, X is the space of all test functions.

If X is finite, then IFx is known to be its own dual space. For arbitrary X, the
following is well known.

PROPOSITION 2.2. For any domain X, IFx represents the (algebraic) dual of IFox
with respect to the natural pairing IFoX IFx

__
IF (, g)

_ -xx (x)g(x).
Let be a locally finite family in IFx, i.e., only finitely many entries of are

nonzero at any particular x E X. Then the corresponding linear map (I) is well defined.
If we think of it as a matrix, its rows indexed by x X and its columns indexed by

(I), then its "transposed" is the "matrix" :-- ((x));xx, with its rows
indexed by (I) and its columns indexed by x X. We cannot hope to apply this
"matrix" to an arbitrary g E IFx. But we can apply it to any g IF0X, since, for any
such g,

://:{ (I): supp supp g : q}} < oc.

Therefore,

is a well-defined linear map, where
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is the "x-column" of 9; hence

xEsupp g

For any c E ]F and any g E ]FoX,

oE(I) xsupp g xsupp g

This proves that
r :]F

_
]Fx c (I)c.

Consequently, by Proposition 2.1, is 1-1 if and only if is onto. Now note that,
since (I) is locally finite, ran -span (x, with

’I,x := { :x X}.

Thus we obtain the following geometric description of the global linear independence
of (I).

THEOREM 2.3. A locally finite family in ]Fx is globally linearly independent if
and only if

span (I)x IF0,
with (x {(I) x e X} and ( lF - (x).

Since ]F0 contains, in particular, the "unit sequence" /i (defined in (1.2)), the
following corollary is immediate.

COROLLARY 2.4. If the locally finite family ( in ]Fx is globally linearly indepen-
dent, then, .for each , there exists h ]FoX so that

()()= (), e .
xX

This shows that the dual basis (A)e for (I) is finitely supported in the sense
that each A has a representation in the form.n -’ ()()

xX

for some finitely supported h.
THEOREM 2.5 [BR]. Let ( be a collection of distributions in T)’(IRS). If is

locally finite and globally linearly independent, then the elements of its dual basis are
local.

Proof. The local finiteness of the family (I) of distributions implies that it is also
locally finite as a family of functions on the set X of all test functions. Therefore, with
this choice for X, for each e (I), we can find h e IF0 so that -ex h(x)(x)
5(). It follows that

B := [2xesupp h supp x

is a bounded set. Also, if ((I)c, f) 0 for all f with supp f c B, then, in particular,
(Oc, x) 0 for all x supp h; therefore,

0 ()(,) (v).
xEX
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In the following, we compare the global linear independence with the algebraic
linear independence of (I) geometrically. By Theorem 2.3, a locally finite (I) is globally
linearly dependent if and only if span (I)x is a proper subspace of IF0. We claim that
if (I) is algebraically linearly independent, then span (I)x cannot be too small.

Equip IF with the topology of pointwise convergence as follows. For each E (I),
let

:= v e

It is clear that (p E (I)} is a separating family of seminorms on the linear space
IF. By JR, Thm. 1.37], this family produces a locally convex linear topology for IF.
With this topology, for ck IF, ck converges to c 6 lF as k -- cx if and only if for
each (I),

lira ck() c().

We can verify that IF0 is the topological dual of IF. Furthermore, IF0 is a dense
subspace of IF. Thus, ]F is its own topological dual.

PROPOSITION 2.6. A locally finite c IFX is algebraically linearly independent
if and only if spanx is dense in IFo

Proof. The span of (I)x is not dense in IF0 if and only if there exists a nontrivial
continuous linear functional (]F0) IF0, which vanishes on span (I)x, i.e., if and
only if

0 v x,
Esupp

for some E IF0, and this holds if and only if (I) is (algebraically) linearly depen-
dent. D

Acknowledgment. The presentation of this paper reflects discussions with Carl
de Boor.
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Abstract. The Galerkin method is studied for solving the boundary integral equations associ-
ated with the Laplace operator on nonsmooth domains. Convergence is established with a condition
on the meshsize, which involves the local curvature on certain approximating domains. Error esti-
mates are also proved, and the results are generalized to systems of equations.
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1. Introduction. The Dirichlet and Neumann problems for the Laplace operator
in a Lipschitz domain C In are of fundamental interest, both from a theoretical
and applied point of view. It is well known that these boundary value problems can
be solved by using the boundary integral method, involving the appropriate layer
potentials. The basic facts concerning this approach are contained in the papers by
Dahlberg [D], Jerison and Kenig [JK], Verchota IV], and Dahlberg and Kenig [DK].

To be able to use the boundary integral method on Lipschitz domains numeri-
cally, we must first study the solvability properties of discretized versions of the layer
potentials in nonsmooth domains. The study of the theoretical foundation for such
a numerical implementation was initiated by Dahlberg and Verchota [DV]. They es-
tablished the convergence of the Galerkin method for solving the integral equations
associated with layer potentials of the Laplace operator on Lipschitz domains. In
particular, they proved the optimal Lp-solvability of the Galerkin procedure for the
Neumann and Dirichlet problems in Lipschitz domains. A first step in their approach
is to approximate the domain by appropriate smooth domains h, h > 0, so that,
among other things, the h’S have uniformly bounded Lipschitz constant as h --+ 0.
On each h it is then required that there is a finite-dimensional subset Xh of the
bounded functions on Oh satisfying certain quite general, but technical, conditions.
The Lp convergence of the Galerkin procedure is then proved under the condition
that limh-0 p(h)(h) 0, where p(h) corresponds to a uniform meshsize on O-h, and
gh denotes the maximum curvature of Oh. So, roughly speaking, the meshsize is
determined by the maximum curvature of the approximating domains. (More detail
and precise conditions will be presented below.)

The main purpose of this paper is to extend this result in the following respects.

*Received by the editors April 14, 1991; accepted for publication January 6, 1992. The authors
were partially supported by ONR grant N00014-90-J-1343.

tWoods Hole Oceanographic Institute, Woods Hole, Massachusetts 02543.
$157E Oakland Avenue, Columbus, Ohio 43201.
Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208.

This author was also partially supported by National Science Foundation grant DMS 8803585 and
Air Force Office of Scientific Pesearch grant 89-0455.

Department of Mathematics, Chalmers University of Technology, S-412 96 Goteborg, Sweden.

1356



LOCALIZED GALERKIN ESTIMATES 1357

(1) We will show that we may allow variable meshsize and still obtain the
convergence of the Galerkin method. The product of the meshsize and a
measure of the local curvature on h is required to go to zero uniformly.

(2) Let Eh be the error between the solution of the boundary integral equa-
tion and the solution of the corresponding discretized equation. We shall
prove that we have the error estimate

as long as f is in the Sobolev space L.
(3) We will also establish corresponding results for certain systems of equa-

tions. In particular, we will consider the Dirichlet problem in elasto-
statics, Stokes’ system of hydrostatics, and the boundary value problem
modeling the stresses exerted on a body inserted in a Stokes flow.

In the interest of brevity we shall only consider in detail the Dirichlet problem
for an unbounded domain ((x,y):x e Rn-l, y > (I)(x)}, where (I): Rn-1 -- Ris a Lipschitz function with Lipschitz constant M. Such a domain is usually called a
Lipschitz graph domain. The Neumann problem and the bounded case require some
minor modifications for which we refer to [DK].

A brief outline of the content of this paper is as follows.
In 2 we write down the precise conditions that the finite element spaces must

satisfy. We also make some related, simple observations. In particular, we show that
if the domain is sufficiently nice, then we may, at least theoretically, work directly
with and avoid the approximating domains h.

In 3 we give the criteria that the approximating spaces -h must satisfy and
establish the convergence of the Galerkin procedure. We assume that we are given
approximating domains h, h > 0, and a finite element space Xh on each of these. We
then show the invertibility of IIhAh on Xh, uniformly in h > 0, and the convergence
in the Lp-norm of the approximate solutions fh E Xh, solving IIhAhfh 1-Ihg, to the
solution f of Af g.

The conditions that the finite element spaces Xh, h > 0 have to satisfy are not
entirely simple. In 4 we discuss a simple and efficient way to construct them.

For the Galerkin method to be of any real practical use, we need some error
estimates. This is the subject of 5. As we mentioned above, we prove that if the
function and its first derivatives are in Lp, i.e., f E L, and if the meshsize is O(h),
then the rate of convergence of the approximate solutions fh to the exact solution f
is at least (9 (h).

In 6 we discuss systems of equations in Lipschitz domains and the modifications
of the scalar case necessary to use the Galerkin method for systems.

2. Finite element spaces. Let us start by reviewing the boundary integral
method in the case of the Dirichlet problem in a nonsmooth domain . Let (I)

Rn- -, R be a Lipschitz function with Lipschitz constant M, and let {(x, y)
x Rn-, y > (I)(x)}. For f defined on , and P , the double layer potential of
f is defined by

(2.1) 7)f(P) :Dnf(P)
1 9f f(Q)

(p- Q, n(Q))
da,

where da denotes the surface measure of Of, wn is the surface area of the unit sphere,
and n(Q) the inward unit normal to Of. By formally allowing P Of in the definition
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of :Dr, we obtain a principal value operator that we denote by Tn or just T. In local
coordinates, the kernel of T is

() () v(). ( u)k(,)
(l I / (() (y)))/

The boundary values of :Dr from the interior of f are given by Af (1/2I / T)f.
The boundary integral method uses I)(A-lg) to solve the Dirichlet problem in with
boundary values g.

To apply this method two basic facts must be established. First we need to prove
the boundedness of A. In the case of Lipschitz domains, this follows from the Lp

boundedness of the Cauchy integral on Lipschitz curves, cf. [CMM] and [C], and the
method of rotations. We thus have

(2.3) IIAfllao
for 1 < p < cx). We must then prove the invertibility of A. In the case of smooth

1I + T with T compact, which means that thedomains it is easy to see that A
invertibility follows from Fredholm theory. In the case of general Lipschitz domains, T
is not compact and Fredholm theory does not apply. Instead, the invertibility follows
as a consequence of certain Rellich type identities and estimates using these identities.
It follows that there exists an GM > 0, depending only on the Lipschitz constant M,
such that A is invertible on Lp(Of) for 2- GM < p < x), and

(2,4) IIAfllp cp Ilfllp

for this range of p (see [DK]).
To discuss a discretized version of this and the Galerkin procedure we need certain

finite element function spaces X. We shall assume that the space X satisfies the
following conditions.

(1) X C L(Of), X closed under uniform convergence.
(2) There are pairwise disjoint sets Eyc 0f whose union equals 02, points

Py E Ey, and positive numbers py, K, co, and G0 such that each point in
0f lies in at most K of the sets Bj B(Pj, pj

(2.5) E c B,

and

co(2.6) IlfllLoo(E) < a(By)
sup fw da

where the supremum is taken over all w E X with Ilwll 1 and w
supported in By. Here, B(P, r) denotes the ball in ]1n with center P
and radius r.

(3) All constant vectors belong to X.
We shall call such an X a localized space with variable scale. We say that the

covering {By } has the finite intersection property, and we will sometimes refer to (2.6)
as the localization property.

The conditions on X imply the existence of a projection operator H.



LOCALIZED GALERKIN ESTIMATES 1359

PROPOSITION 2.1. With X and 0, set Xp Lp(O) N X. Then Xp is a closed
subspace of ip(O) .for p E [1, oc]. If H denotes the 52 projection onto X2, then H
has a bounded extension H Lp(O) - Xp with IlIIfllp <_ C Ilfllp, 1 <_ p <_ oo, with C
independent of f.

Proof. The localization property implies that if f E X, then for x Ey

co iB Ill da <_ Cp(n-1)/p IIflILP(Bj) <-- C(n-1)/p [IfIILp(Bj)IS(x)l <_ a(B )

From this estimate it follows that if a sequence in Xp converges in the Lp sense, it also
converges in the maximum norm. X is closed under uniform convergence, so Xp is a
closed subspace of Lp(Of). Similarly, if f Lp(Of) L2(0f) and w X, supported
on By, satisfies Ilwlloo _< 1, then for x e Ey

cO wHf da or(By) wfda

Using the variable scale localization property, we now have that

This is the step where we use the finite intersection property of the By’s. The proof
is complete. [3

When the domain is sufficiently smooth and bounded, then, as we have remarked
earlier, the operator T is compact (cf. [FJR]). Hence, the following elementary obser-
vation proves the solvability of the Galerkin equations for a family of finite element
spaces Xh, h > 0, and corresponding projections IIh, on such domains. Note, however,
that we obtain no estimates on the norms involved.

PROPOSITION 2.2. Let A 1/2I + T, as before, and suppose that f is Lipschitz.
Suppose T L2(0) -- L2(0) is compact. Let Xh, h > 0 be a family of closed
subspaces of L2(Of), and let Hh be orthogonal projections ofL2(O2) onto Xh. Further,
suppose IIHhf fl12 0 as h 0 for f e n2(0f). Then, there exist ho, co > 0
such that if 0 < h < ho,

IIIIhAHhfll >_ co IIl-lhfll yor f e L2(0f ),

and HhA" Xh --. Xh is invertible.
Proof. Suppose this is not so. Then, there is a sequence fk L2(0f) and {hk},

hk 0+, with IIHhkfkll2 1, and

1
(2.8) lln:h,<AHh Y ll . _<

Without loss of generality, by compactness, TIihkfk g L2(02). Now, IIhAIIhf
ll-I" hk fk q-IIhTIIhkfk Since TIIh fk ---* g, using our hypothesis, IIhTIIh fk g,
and using (2.8) ,7Hhfk ---* --g, so Hhkfk --, --2g. Note that g 0 since IIHhfkll2
1. Since TIIhfk g, and IIhfk --2g, and T is bounded, we obtain -2Tg g.
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This implies Ag 0, i.e., g =_ 0 since A is one to one. This is impossible and (2.7)
thus follows.

The inequality (2.7) shows that HhA Xh 4 Xh is one to one and has closed
range. To show that HhA is onto, suppose (HhA9, ) 0 for all g E Xh, for some

Xh. Taking g HhA*, and noting that Hh, we obtain HhA*IIh O.
Applying the same proof we used to prove (2.7) to A* and T*, we obtain _= 0. This
finishes the proof of Proposition 2.2. []

For general Lipschitz domains this result is of little help, since T is not necessarily
compact and also because we do not get much information about h0 and co. It is still
an open problem as to whether there is an analogous result for Lipschitz domains
which would allow us to establish the invertibility with interesting spaces Xh directly
on the boundary of the domain.

Following the approach of Dahlberg and Verchota [DV], we shall approximate the
Lipschitz domain f with smooth domains and prove a uniform invertibility result.
This essentially involves quantifying the compactness of T on each of these domains
in a suitable way.

Let us fix a domain and a finite element space X on 0f that is localized
with variable scale. We shall say that an operator T satisfies the local approximation
property with constant 5 if there are Cj X such that

(2.9) Z f_ ITf CJ In da < 6 Ilfll if f LP(Of).
j aB

Observe that the existence of some 6 in (2.9) follows immediately from the boundedness
of T and the finite intersection property of the covering (B), simply by taking Cy _= 0.

Remark 2.3. The local approximation property is closely connected with compact-
ness. Suppose that for each h > 0 we are given a decomposition 0f UB(P, p(h))fq
0f of balls with a uniform size p(h) and uniformly bounded overlap. Assume further
that the size tends to zero with h, limh-0 p(h) 0. Then it is an easy consequence
of the Frchet-Kolmogorov characterization of compact operators on Lp that T is
compact if and only if

ix
ITf(x)lp dx 4 0 as R 4 oc

uniformly in f Lp, and there are constants cj such that-f [Tf cjlp d 4 0 ash40
j (Pj ,p(h))fqOf

uniformly in f LP.
LEMMA 2.4. Suppose that f {(x,y) :y > (I)(x)} is a Lipschitz domain with

Lipschitz constant M, and that X is a localized space of variable size. Then, for each
p, 2 (M < P < x there is a 50 with the following property: if the operator T T
satisfies the local approximation property with constant 5 < 50, then

IIIIAIIfllp >_ C Ill-Iflip for f e Lp(O2).

Here C and o only depend on p, the Lipschitz constant M, and the parameters K
and co in the definition of X.

Proof. We let g IIAf and write

Af Af- Tf + Cj +Tf-
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Now, Af Tf + Cy 1/2f + Cy e X; so, by (2.6), for x

I(Af Tf + Cy)(x)l < a(By) supo n
(Af Tf + Cy)w da

_< a,()+ (f. ITY- 1,a(By)1)
I/p

where g* is the Hardy-Littlewood maximal function of g. Hence,

fE lAY TS + I" d <cf(g" (x)) + f ITS ,
and thus, from (2.10),

L IAflP<afo Iglp+c-fB ITf-lp.

Now, from (2.4) and (2.9), we obtain

(2.11) P < c tlgllp( c)Ilfllp p,

Thus, if ti is sufficiently small, i.e., so that CXpp- c5 > 0, we obtain the desired con-
clusion.

Remark 2.5. The localization property (2.6) can be replaced, here and also below,
by weaker conditions. For instance, let us consider Lemma 2.4 in the special case
p 2 and assume a priori that H is the (bounded) projection of L2 on X. By a
slight modification of the proof above, we may establish the lemma in this special
case, assuming instead that

(2.12) IIflIL(E) < c0sup

where the supremum is taken over all w E X with Ilw]12 1 and w supported in By.
Suppose, for example, that X is the closure of the linear span of the (real) functions
((I)y}. Then the following is a sufficient condition for (2.12) to hold:

UEinsupp (I)#0 supp (I)y C Bi.

To see this, let f y Ai(I)i. Clearly,

sup

since supp -supp(I,nEj#0 i(i C By.

3. The Galerkin method on Lipschitz domains. We will next prove the
solvability of the Galerkin equation, i.e., show that HA Xp -- Xp is invertible. In
order to prove this, we first recall the following standard continuation lemma (see [DV]
or [DK1]).
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LEMMA 3.1. Let Y be a Banach space and suppose St Y --* Y are bounded
linear operators for 0 <_ t <_ 1. Suppose, furthermore, that there are positive constants
c and C such that the following properties hold.

(i) For all t E [0, 1], and all f Y, IIStfll >_ cllfll.
(ii) For all t, s [0, 1], IIS8 -Stll <_ Cls- tl.
(iii) The operator So is invertible on Y.

Then $1 is invertible on Y.
Let At 1/2I + Tt, 0 _< t _< 1, where the kernel of Tt is given by (2.2) with

(I) changed to t(I). If Tt satisfies the local approximation property with a sufficiently
small i0, uniformly in t, then the Continuation Lemma applied to HAt, combined with
Lemma 2.4, immediately yields the invertibility of HA. (By an abuse of notation, we
consider At acting on functions defined on 012.) Next we shall give a condition on 12
that guarantees this uniform approximation property.

Let the surface 02 ((x, y) y (I)(x)} be given by the graph of the smooth
function (I)" Rn-1 - R. For a point P (x, (I)(x)) on the surface and p > 0, we define
the function a by

a(P,p) sup max
Ix-yl<p ’J OyOyj

The function a is a measure of the maximal curvature near P. This is clear if we recall
that the curvature in a direction ]n-1, I1 1, is given by

D(x)
(1 + (D(x))2)3/2’

where De(I) is the directional derivative of the function (I) in the direction and
D(x) (, V2(I)) with V2(I) the Hessian of (.

THEOREM 3.2. Suppose that f ((x, y) y > (x)} is a smooth domain and that
X is a localized space of variable size. For each p, 2 eM < p < cx there is a o > 0
and a " > 2 with the property that if supj a(Pi,/py)’py < o, then HA Xp Xp

is invertible. In particular, .for every g Lp(Of) there is a unique f X f3 Lp(Of),
such that

(3.1) Af wda fo gwda

for all w X with compact support. Here and 50 only depend on p, the Lipschitz
constant M of the function , and the parameters K and co in the definition of X.

Proof. We claim that for every j there is a constant cj such that for /> 2,

(3.2) ITf(P)- Tf(Py)l < c a(Py, /py)’py q- - (P), P e Bj,

where the constant c c(M).
This is easy to show. We write f aj + b, where ay f on B(Pj, /pj) f302, and

aj 0 elsewhere, and let bj f -aj. Then, by using Taylor’s expansion to second
order,

1
ITaj(P)I < a(Pj, 7Pj) IP QI- If(Q)l da < ce;(Pj, 7pj)Tpjf*(P).

(P,p)non
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The last inequality follows from the standard fact that if q is a nonnegative, radial,
decreasing function, then for a function h we have f qh <_ h*(0)f q. We now let
cj Tbj. Using this fact again, we see that

ITbj(P) Tbj(P:i)l <_ cpj /S(Pj 1 cf.If(Q)l da <_ (P).QI’

This proves the claim.
Note that the operators T T, 0 _< t < 1, satisfy the same inequality (3.2).

Hence, the uniform local approximation property, and the theorem, immediately follow
by picking ’7 sufficiently large. [3

As in [DV] we approximate a given Lipschitz domain t {(x, y)’y > O(x)} by
certain smooth domains fth. These domains must satisfy the following conditions.

(1) 12h {(x,y)’x e R-I, y > Oh(X)} for some Lipschitz functions Oh
with a uniform Lipschitz constant M.

(2) dist {Oh,O"}

_
Ch.

(3) a(h) _< C(1/h), where a(h) denotes the least upper bound of the absolute
values of the curvatures of Oth.

(4) The mapping Fh Oft Oh defined by Fh((X, O(x)) (x, Oh(X)) is
a Lipschitz diffeomorphism such that the Lipschitz constants of Fh and
its inverse Gh are uniformly bounded in h.

(5) The mapping h Oh(x), 0 < h < 1, is continuous almost everywhere
in x, and

lim
Oh(X) O(x)

exists a.e. in x.
h0 h

(6) IFh(P)- PI - Ch for all P E OFt.
(7) The Jacobian of Fh converges almost everywhere to 1.

Note that these conditions are not independent, and that the conditions are sat-
isfied by the following standard regularization. Let / E C(R-1) be radial, with

f vdx 1. Set ?h (1/hn-)r/(x/h) for h > 0. Let Oh(X ?h : O(X) with cor-
responding domains gth {(x, y) y > Oh(X)}. Note that the second derivatives of
Oh (differentiate r/h with one partial, with the second) are bounded by c/h. Oh
are Lipschitz, with Lipschitz constant bounded by M, and the others of the seven
conditions on Oh are satisfied.

Given the domain ft {(x, y) y > O(x)}, we let ’h, h > 0, be such approx-
imating domains, and for each h we let Xh be a finite element space on h that is
localized with variable size, with the constants K, and co independent of h.

If Pj,h denotes the pj’s corresponding to Xh, we let ,Oh maxi Pj,h. Suppose now
that ,Oh 0 as h O. Then it is an easy consequence of the localization property
that for q e Lp(Ot),

(3.3) [lIIh(q o F-1)-qoF;l[Ip 0 as h O.

Let A be the operator giving the interior boundary values of the double layer
potential on f, and Ah the corresponding operators for fh. As a consequence of the
conditions on the fh’S we also have

(3.4) liAr Ah(f o F-I) o F.II o o.
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The proof of this is similar to that in [DV, Lemma 2.4], so we only give a very
brief outline. By a change of variables, Ah(f o F[1) o Fh Thf(P) / 1/2f(P), where

(3.5) Thf(P) Thf(P)
1 fo (Fh(P) Fh(Q), nh(Q))
w-- iFh(P) Fh(Q)I

Jh(Q)f(Q) da.

Here nh(Q) is the unit inward normal to Ol2h at the point Fh(Q), and Jh is the
determinant of the Jacobian of Fh. So we need to show Thf converges to Tf in LP(O).
This is a rather straightforward exercise about singular integrals, using properties of
Oh. We add and subtract 1 from uh(Q)Jh(Q). The difference converges to zero in
Lp(O) using uniform boundedness of Th in Lp(O). For the other term, we estimate
the difference of this new singular integral and Tf, truncated on a ball of radius rh
around x, by looking at the parts close to P, distance at most rh, far away from P,
distance at least Rh, and in the middle. The near part has a factor of r coming out,
and the far part a factor of 1/R. For the middle part we use condition (5), satisfied
by the approximating domains, to see that it is bounded uniformly by an Lp function
and converges pointwise to zero. Letting h go to zero, to estimate the limsup in terms
of r and l/R, and then letting r go to zero and R go to x), finishes the proof of (3.4).

These observations and Theorem 3.2 easily yield the next result. We shall assume
that {(x, y) y > (I)(x)} is a Lipschitz domain, and that (I) has Lipschitz constant
M. We let h {(x, y) y > Oh(X)}, h > 0 be approximating domains as defined
above, and for each h > 0 we let Xh be a finite element space on h that is localized
with variable size, with the constants L, K, and co independent of h.

THEOREM 3.3. Suppose that limh-.0 Ph O. Then, given p, 2- M
there are ho > 0 and / > 1 with the property that if

lira ah lira sup a(Pi,h, Pi,h)/Pj,h O.
h--0 h---0 j

Then for every g E LP(O) there is a unique fh Xh N LP(Oh), .for h < ho, such
that

(3.6) o Ahfh W da O ghw da
2h

for all w e X with compact support. Here gh(P) g(F[(P)). Moreover, if f
Lp(O) is defined by Af g, then fh o Fh converges to f in LP(O).

Proof. The proof is immediate. Of course, (3.6) follows directly from Theorem
3.2; in fact, it follows that the IIhAh’S are uniformly invertible. To finish the proof, it
remains to show that fh o Fh converge to f in LP(0), where Af g.

We have IIhAhfh IIhgh, and, since we have assumed that co does not depend
on h, the projections IIh are uniformly bounded. Hence,
(.7)

IIIIhZhfh IIhAhIIh(f o F/-)II -IIHhgh IIhahIIh(f o

< C ]lgh ahHh(f o F X)ll c IIg o F; ahHh(Y
< C Ilg ahHh(f o F[) o Fh lip C liar AhHh(f o F-1) o Fh lip-

Now, using (3.3) and the fact that the Ah’s are uniformly bounded on LP(Oth), as
well as the uniform invertibility of the Fh, we obtain from (3.7) that

(3.8) IlnhahYh HhahHh(f o F[)llp < C liar ah(f o F) o Fhl[p + o(1).
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Using (3.4) and the uniform invertibility of the IIhAh, (3.8) yields that

(3.9)

Using (3.3) once more, and composing on the right with Fh, we finally get that

which establishes the theorem.

4. An example of a localized space. In this section we shall describe a simple
construction of a localized space of variable size on a given smooth domain.

We start in Rn-1 and assume that (I) Rn-1 -- is a smooth function with
Lipschitz constant M and with a supx max,j 102(x)/OxOx:il < x). For each cube
Q c ll-, we let

K(Q) =/(Q) sup max
ueq, ,. OyOy.

Fix e > 0 and a _> 1. For each x E Rn-l, we let Q(x) be the largest dyadic cube Q
containing x such that K(Q) <_ e. Here Q is the cube with the same center as Q,
but with sidelength as long. Note that there is always such a nonempty finite cube
Q(x), and, in fact, infx g(Q(x)) >_ e0 > 0 since a < x. There are only countably many
different such cubes; let us call them Qi. These cubes have the following properties:

(i)
(ii) The cubes Qi are pairwise disjoint (modulo sets of measure zero);
(iii) t(Qi) _> e0;

(iv) K(’),Qi) <_ e;
(v) For any fixed <_ -/4, the cubes/Qi have bounded overlap.

Of these, only v requires some explanation. Let Qi and Qj be two distinct cubes in
this cover such that QiVdQ =/: . We claim that Qi and Qj must be of approximately
the same size. This would clearly prove v.

Let us assume for instance that Qj is much smaller than Qi, g(Q)/.(Qi) <_ , say.
Simple geometric considerations then show that Q is contained in a dyadic cube Qj
with (Qj) 2(Q) and such that "TQj c "fQ. This implies that K(Q) <_ K(Q) <_ ,
which contradicts the maximality of Qj.

Now, given the smooth domain f {(x, y):x e ]Rn-l, (I)(x) > y} with a < oc,
we let Go be the projection of 0t on Rn-, and F0 its inverse so that

ao((z, x, F0( ) (x,

For any Qi in the covering of R- that is obtained by our construction, define Ei
Fo(Qi), Pj F0(xi), where xj is the center of Qj, and define pj to be the radius
of the ball (in R-I) inscribed in/Qj. We can take any > 5x/’M2 + 1 to satisfy
Ei C Bi(Pi, pi), where 5 is a constant depending only on the dimension n- 1. Note
that each (x, (I)(x)) 0t lies in only finitely many of the B(P, p). Indeed, (x, (I)(x))
B(Pi, pi) implies x Go(B(Pi, pi)). But Go(B(Pi, pi)) c Qi, and x is in at most g
of these, as noted in our construction.

To satisfy conditions 1, 2, and 3 for a localized variable scale space X, we can,
for example, choose X to be the space of polynomials defined on Rn-, of total degree
less than or equal to 1 on each Q. See also [Li]. There are many other choices as



1366 V. ADOLFSSON, M. GOLDBERG, B. JAWERTH, AND H. LENNERSTAD

well. For instance, we can use certain functions satisfying a refinement relation, and,
in ,particular, each of the functions (I) yielding the compactly supported wavelets of
Daubechies IDa]. More specifically, let (I) be a compactly supported function defined
on N. For I [2-k, 2-v(k + 1)] we let q)x 2v/2(I)(2x- k). (I)i is thus supported
on I + 2-usupp. We let T) denote the set of dyadic intervals with sidelength 2,
and 7) the union of the :D’s. We assume that q) satisfies a refinement condition,

Let S be the span of the functions (I)I, I E T)v. We also assume that for some integer
r > 0, S contains the polynomials of degree < r. In particular, the i’s form a
partition of unity when the length of I is fixed. Finally, for J an interval in N, we let
Aj denote the set of all j for which (I)(.- j) is not identically zero on J. We assume
that for all J E Z), the functions (.-j), j Aj, are linearly independent over J (i.e.,
local linear independence). From these assumptions, it follows that if I -g (?,J(g,
where g(J) < g(I), then the support of each (I)g is contained in the support of

Returning to the Su’s, we see from the refinement property that they form an
increasing chain of linear spaces. Each S is associated to a uniform partition of N into
dyadic intervals of length 2-. Note that even if we have a nonuniform partition of
lI into dyadic intervals, with a lower bound on permissible lengths, there is a natural
linear space V arising from (I) associated with this partition. The functions of V still
retain local linear independence, and further refinements of this partition generate
superspaces of V. We will illustrate this association starting with So and perform
one subdivision of one of the cubes. The process of associating natural spaces for
further subdivisions is analogous. The final space V obtained, which corresponds to
a nonuniform partition, will thus be shown to arise in a natural way.

So, let I0 be a dyadic interval of length 1. We subdivide I0 into two intervals,
Let 11,12 Im be the finite number of intervals such thatJ1 and J2, of length .

the support of each of q)I1, (I2,"", (I)i. has nonempty intersection with I0. From
the refinement condition, each I4 has a decomposition in terms of intervals of length
1 and for III 1 q)I has a decomposition containing (I)gl or q)j. only if I is one2
of I1, I2,’", Ira. For any Ik such that (I)i4 has (I)j or (I)g in its decomposition, let
(I)* be the function obtained by discarding (I)g and (I)g2 from the decomposition and
summing the other functions. Replace (I)I4 by q)* in S0 and also adjoin (I)g and14
The new linear space is the one we choose for the new partition.

In this context, let us make a remark concerning orthogonality. Suppose that
the functions q)I, III 1, in addition, form an orthonormal set in L2(R). (This is
the case for the (I) that yields the compactly supported wavelets.) Then the above
construction leads to three mutually orthogonal sets of functions: the functions (I)i
in So that do not contain the (I)j or q)g, and, hence, are not changed, the functions
(I)gl and (I)g and, finally, the (I)* ’s. Clearly, the functions in each of the first two
sets are also pairwise orthogonal. If we thus want orthogonality also for the functions
corresponding to the nonuniform partition, there only remains to orthogonalize the
functions (I)* which of course can be done in a standard manner.

Using tensor products, it is possible to obtain spaces adapted to nonuniform
dyadic decompositions in higher dimensions.

Suppose now that we consider a Lipschitz domain gt {(x, y)" x ]Rn-l, (I)(x) >
y} and the corresponding approximating domains [’h {(x,y) x ]ln-1 (h(X)
y}. Let us consider a discrete sequence of these, fn 2-, n >_ O. It is easy to
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arrange that the dyadic cube mesh constructed at one level is a refinement of the
dyadic cube mesh for the previous level. To see this, we start with the first level,
corresponding to n 0, and carry out the construction of the dyadic mesh described
above with K(Q) Ko(Q), defined with respect to (I)1. This gives us the collection
(Q0}. On the next level, j 1, we only consider dyadic cubes which are subcubes
of the dyadic cubes in (Q}. In fact, to ensure that the sidelengths of the cubes in
(Q} ---, 0 as n oc, we also restrict the sidelengths of the cubes we consider. For
each x E Rn-l, we let Q(x) be the largest dyadic cube Q, contained in some Q0 and
containing x, with g(Q) _< 1/2 and such that g(Q) <_ e. Here g(Q) is defined with
respect to (I)/2. As before, this yields the collection (Q}. Proceeding by induction
gives us the dyadic meshes (Q}, n _> 0.

5. An error estimate. In this section we prove error estimates for the Galerkin
procedure of the previous sections. The proof we shall give is similar to that of Lin [Li],
where the solvability of the Galerkin equations for functions f E L is established. In
that work p is assumed to lie between 2-e and 2/ e, and more involved approximation
spaces are used.

Consider, as before, the Lipschitz graph case and the corresponding smooth ap-
proximating domains satisfying the seven conditions above. On each Oh we assume
that we have a function space Xh, localized of variable scale with parameters K and
co independent of h. If, under the hypotheses of Theorem 3.3, the function f defined
by Af g has gradient in Lp, then we have the following estimate of the rate of
convergence of the approximate solutions to f.

THEOREM 5.1. Suppose the hypotheses of Theorem 3.3 are satisfied, and, in
addition, that Ph maxj Pj,h O(h). For each 2 M < P < x) and g Lp(O), let
f and fh denote the unique solutions in LP(O) and in Xh N L(Oh) of Af g and
IIhAhfh IIhgh, respectively. Then

Ill--fh o FhlILp(O) <-- Ch IlVflln(o) for all f e L(O).

Before entering into the details of the proof, we shall give a brief outline and state
some lemmas which we need.

The idea is simple. We know that Ill- fh o F[IILp(Oa) --, 0 as h -- 0+. The
main obstacle in obtaining an estimate for the rate of convergence is that V(I)h --almost everywhere, but not uniformly, and, as a consequence it is not immediate
that IITf Th(f o Fl)lli(Og) 0 as h O. However, (I)h (I) uniformly; so,
exploiting the smoothness of the function f L(O), we can use Green’s theorem to
move the derivatives from (I) and (I)h to f and fh, or, rather, to

and

xi yi

ul: +

I(u, xi yi

This yields an estimate IITf- T(f o F[)ll(on) O(h), which is what we need.
We shall use the following two lemmas.
LEMMA 5.2. Suppose Ph O(h). For 2 M

IlIIq o F[ q o F[lllL(Oflh)
__
ca IlVql[L(Ofl) for all q L(0).
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Proof. Take xo E Ej,h. The localization property gives

where the supremum is taken over w Xh with Ilwl[ 1 and support in Bj,h
B(Pj, pj,h)NOh. It is easy to estimate the right-hand side by CIVq[*(xo maxj P,h <_
ChlVql*(xo), from which the proposition follows. [:]

The second lemma ultimately depends on the boundedness of the Cauchy integral
on Lipschitz curves [CMM], [C]; f. [Li] and the references therein.

LEMMA 5.3 (Lin [Li]). Let

T,(y) (f(x) f(y))g(x) rlk(i(x)
(Ix yl 2 + ((b(x) (y))2)(n+k)/2

dx.

Suppose that }IVII oc < M and that k > 2 is an even integer. Then

e>0 Lr(IRn-1) k

l<p<oo l<q<oo, l<r<oc.where T +-,
Proof of Theorem 5.1. We have

- IIs o F i.(s o F;-)ll.(o) + III.(S o F-1)

Hence, by Lemma 5.2 it is sufficient to estimate IIn.(f o F[) f.ll(o.)" By the
uniform invertibility of HhAh, we see that

Adding and subtracting Ah(f oF)o Fh and using the triangle inequality shows that
this is less than

c(IIAS- Ah(S o F[) o F.ll.(o.)
+ IIAh(S o F[) o F. AhHh(f o F[) o . II ,(o.))

<_ c(IITS Th(S o F-1) o F. I1.(o.) + IIAhll Ill o F IIh(f o Fl)llLp(Ofz)).
Applying Lemma 5.2, there only remains to estimate the first term of the right-hand
side.
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Let P (x, (I)(x)) and F(x) f(x, (x)).
Tf(P) Th(f o F[I)(Fh(P)) lime--.0 i’(P) with

Since T1 Thl 1/2, we have

(p) 1 9f (F(y) F(x)) ((x y) V(I)(y)- ((I)(x)- (I)(y))

(x ). w() (0() 0()))
Here B(x, e) (y e R- (y, (y)) e B(P, e) 0} is the perpendicular projection
of B(P, e)O on R-. Let I(x) be defined I(P), but with B(y, e) replaced by
a regular ball b(y, e) (y e R- "Ix- y e} in R-. Since is Lipschitz, each
(y, e) is enclosed between two regular balls of comparable size, b(y, e/(1 + M2)1/2) c
(y, e) c b(y, e), and, a consequence, it ey to see that limo(i I) 0 in np.
Hence, Tf(P)- Th(f o F[)(Fh(P)) limo I(x). In the remainder of the proof
we shall estimate I.

Let n(x,y) (]y- x2 + ((y)- (x))2)n/2 and denote by nh(x,y) the cor-
responding entity for h. Then, dividing into gradient and nongradient parts, and
adding and subtracting the quantities (f(y)-f(x))((x)-(y))/n(x, y) and (f(y)-
F(x))((z- y). Vh(y))/n(x,y), respectively, we get the decomposition I(x)
I(x) + I(x) + I(x) + I(x) + J(x), where

I(x) y-l(F(y) F(x)) o(y)L(x,y)- Oh(y) dy,

I(x) u_l(F(y) F(x)) O(X)L(x,y)- Oh(X) dy,

(( ()(( e(l (,) (, ’
( 1 1 )() (() ()( .( (, (,

e,

and

j(y L(x,1J(x) _xl>(F(y) F(x))(x y) V(O(y) Oh(y))y) dy.

Using Green’s formula, we move the derivative away from V((I)(y) Oh(y)) in J(x).
In this way, we see that J(x) I(x) + I(x) + I(x) + I(x), where

(x) F() F(x)
_= n(x, y) (O(Y) Oh(Y))]Y x] da(y),

Z(x) VF(). ( ))- (: (() (u))du,

(F(u) F())(() (U))
Zi() - L(, U)+:/ (() ()) d,

n(F(y) F(x))VO(y) (x y)(((x) (I)(y)) ((I)(y) Oh(y))dy.L(y,x)+2/’
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8Our basic decomposition of I is I k=l I.
We estimate the boundary integral I(x) first. Clearly,

f
II(x)l <_ C I1 ChllLoo I IVF(x + ew)l dw.

Hence, by Minkowski’s inequality and a change of variable,

IIIgllp < c I1- ChllLo IIVFIIp.

The estimates for the remaining integrals will follow from Lemma 5.2. For I and
direct application of the lemma with k 2, r p, and q yields

II
[[I[[ < [[sup[I[P II e>o

N C(M)I1I, Chll IIVFII,,
p

i--1,2.

To estimate I, we write the integrand as

OF(1( ,1((1 (11 (Ix 1 + ((1 (11)
(1 1: + ((x) (u)):)=/:+

Now, Lemma 5.2 with k 2, r q 2, and p oc readily gives

Ilia, lip < C(M)I1 hll IIVFIIp-

In a similar way, we get

IIIgllp < C(M)I1 Chllo IIVFIIp, i= 7,8.

There remains to estimate I] and I. We let H(q)= Hzy(q)= (ly-xl2+q2)-=/2,
q E R so that H(q) -nq([y xl2 + q2)-n/2-1. We also define t(x) h(X) +
t((x) h(X)). Then

1 1
L Lh

dr,

where Lv, (Ix yl2 + (fft(x) fft(y))2)n/2. Hence, by Fubini’s theorem,

()

-n _xl>(F(y) F(x))(eh(X) Ch(y))((X)

(F(y) F(x))(h(X) Ch(Y))((Y) h(Y))/n

g+’.

V(x)- v(u)
l+2/n

() ()
l+2/n

dydt

dydt
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Another use of Lemma 5.2 shows that

where C(M) only depends on M, since the Lipschitz constant of is less than 3M.
Similar arguments give the same kind of estimates for I’ and I.
Summing up, we have thus proved that

which is the desired inequality.

6. Systems of equations. In this section we shall discuss certain systems of
elliptic equations on a Lipschitz domain C Rn, n _> 3. For simplicity, we shall
still assume that ((x, y) y (I)(x)} for some Lipschitz function (. We shall
concentrate on the discretized version of the Dirichlet problem for the Lam systems of
linearized elastostatics with L2(0) data. For the detailed treatment of the continuous
case, and background and references, we refer to [DKV] and [FKV].

Let the function (gl,"" ,gn) G_ L2(0) be given. The Dirichlet problem for
the Lam(! system is to find a function 7 that solves

(6.1)

with boundary values 71on ft. Here A and # are constants, the so-called Lam
moduli, which satisfy

# > 0, /k > -2#In.
The Kelvin matrix F of fundamental solutions of (6.1) is given by

where

1( 1) 1(1 1)A - +
2# +

B A - # 2#+A
To discuss the boundary integral method, we first need the analog of the layer

potentials. Corresponding to the single layer potential, we have

(6.3) sf(P) fo r(P Q)(Q) da(Q).

There are, in fact, infinitely many conormal derivatives and corresponding double layer
potentials associated with the Lam system in a natural way. Following [DKV], we
consider
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where N denotes the outward normal. The associated double layer potential is

We let ,4 denote the operator corresponding to the boundary values of this double
layer potential. By formally allowing P E 0f in the definition of :D, we obtain, as in
the scalar case, a principal value operator T that satisfies

AfaR)- -f(P) / T(P).
The conormM derivative defined by (6.4) has the advantage that the operator T is
compact for bounded, smooth surfaces. More specifically, the kernel of T is a sum of
terms with kernels of the form

(P Q)(P Q)j (P Q, NQ)
IP-QI IP-QI,

and
(P Q, NQ)
ip Qin

Furthermore, the analog of the norm inequality (2.4) is true for p 2 (see [DKV]).
As a consequence, the Galerkin procedure of Dahlberg and Verchota and the results
above extend, in a straightforward way, to the Dirichlet problem for the Lam( system.

From an application point of view, the so-called traction problem is perhaps
more interesting. This problem is the analog of the Neumann problem with the
(co)normal derivative defined by

(6.5) o.
O--u A(div g)N + #(Vg + VgT)N.

The boundary values of the corresponding double layer potential can be written Af
f + However, in this case the operator is not compact on smooth boundaries,

and the Dahlberg-Verchota procedure does not apply, at least not in a trivial way.
There are many other examples of systems of equations to which the theory

applies. One such example is the Stokes system of linear hydrostatics:

Au Vp,
V’u=0.

We define the conormal derivative
0

(6.6) --g (V+ V’T)N- Yp.
Op

Again the boundary values of the associated double layer potential equals

(6.7) A] 5

The operator T is of essentially the same type as before; in particular, it is compact
on smooth bounded domains. Also, the norm inequality that replaces (2.4) is proved
in [DKV] (cf. also [FKV]). This means that the analog of the above results for the
Galerkin method procedure and the Dirichlet problem are true. In addition, the
Neumann problem associated with this conormal derivative (cf. [DKV]), which results
in the so-called slip condition, can be discretized. Let

Bf --1- T*

where T* is the adjoint of the operator in (6.7). A typical example is the following
result (cf. Theorem 3.3).
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THEOREM 6.1. Suppose that limh-,0 Ph O. Then there are ho > 0 and / > 1
with the property that if

lim ah lim sup a(Pj,h, Pj,h)/P,h O,
h--,0 h--0 j

then for every E L2(0) there is a unique fh Xh L2(Oh) for h < ho, such that

(6.8) Bhfh W da h da

.for all (wl,..., wE), wi e X, with compact support. Here h(P) (F[I(P)).
Moreover, if e L2 (Of) is defined byB , then o Fh converges to in L2(0).

Another interesting example is provided by the system

1 3 Jfo yi xi
-fi(Y) (Y) + lY xl 5

(y x, n(y)) (y- x, (x))dSx, i-- 1,2,3.

This system describes the stress f in a Stokes flow after a body of shape C 3 has
been inserted in a Stokes flow with stress ] (cf. [BL]); n denotes the inward normal.
In this case, the kernel K has the form

which obviously is compact on bounded, smooth domains.
The boundedness of the operator 1/2 +K and its inverse with respect to the appro-

priate subspace of L2(0f) follow from Theorem 4.6 in [DKV]. The Galerkin procedure
with variable meshsize thus applies for this system as well.

Acknowledgment. This paper grew out of a problem posed to us by Bjbrn E.
J. Dahlberg, and arising in a natural way in [DV]. We have also had several useful
discussions with Dahlberg.
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MATHEMATICAL ANALYSIS OF MISCIBLE DISPLACEMENT IN
POROUS MEDIUM*

PIERRE FABRIEf AND MICHEL LANGLAIS

Abstract. When modeling miscible fluid displacement in porous medium Stud. Math. Appl., 17 (1986)],
Mathematical and Computational Method in Seismic Exploration and Reservoir Modeling, SIAM, pp. 108-127]

variation with temperature of such physically relevant parameters as viscosity and thermal conductivity
needs to be considered [Goyeau, thesis, Universit6 Bordeaux I, 1988]. The dependence of dispersion with
velocity is also important when modeling pollution problems. In so doing, one is led to a system of a
nonlinear parabolic equation coupled with a Darcy or a Darcy-Forchheimer type equation; natural boundary
conditions are supplemented.

A mathematical analysis of such a problem is performed in a cylindrical domain corresponding to a
reservoir. A notion of weak solutions is introduced for the two unknown functions: temperature and velocity.
The existence of at least one such solution is proved. This is achieved upon introducing a positive time-lag
in the nonlinearities featuring in the energy equation. It leads to a decoupling of the system into a pair of
linear problems having at least one solution. A uniform bound for the approximate temperature is derived
using a maximum principle from which further energy estimates leading to a compactness property follow.
Next, using a local Meyers lemma, a compactness property is derived for the approximate velocity.

The existence of a weak solution is. obtained upon letting the time-lag go to zero. Some extra properties
of the solution, when more or less restrictive conditions are added, are given.

This paper refers to [J. Differential Equations, 90 1991 ), pp. 186-202] for a mathematical theory of related
stationary problem. See also [Stud. Math. Appl., 17 (1986)] for a comprehensive modeling of this type of
displacement.

Key words, miscible displacement, elliptic parabolic system, Darcy, Darcy-Forchheimer equations

AMS(MOS) sub|ect classifications. 76T05, 35K55, 76S05, 35K50

1. Introduction. For an incompressible but dilatable fluid, the main system
frequently used reads

--mass conservation law

Op
e--+V, pV=0;
Ot

---energy conservation law

0T+(pC)*’- (pc)fV" VT-V’ [(A*(T)+D(V))" VT]=0;

---momentum equation (taking either forms)
--Darcy’s law

(i) /z( T)V + K. (Vp + pg) 0;

--Darcy-Forchheimer’s law

(ii) _p 0_y_v+ p,( T)K_IV+ cjpo’(V)+ Vp+ pg=O"
e Ot
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the underlying constitutive equations are first

p po(1-(T- To))

(this constitutive law expresses that the fluid is incompressible (Op/Op) 0 but dilatable
p p (T)) and next

g(T) Xo e(r-r), D0(V) OLIV1-1 V/Vj -" TIVI-I(IvI2,j VV).
In these relations e stands for porosity, p for density, V the filtration velocity, p the
pressure, and T the temperature. We, respectively, denote by (pC)f and (pc)s the fluid
and solid heat capacity, so that the equivalent heat capacity of the medium is given
by (pc). e(pc)y+ (1- e)(pc)s. Next ,X*(T) is the thermal conductivity of the medium,
D the dispersion tensor,/x(T) the fluid viscosity, and K the permeability. According
to the generalized Boussinesq assumption, the fluid density variation is neglected
everywhere in all of the previous equations, except in the term

The Darcy model is the one most frequently used. But for large velocities, the
Darcy-Forchheimer model is more realistic: see [12]; in this case, for isotropic flow
(r(V) may take the following form:

k-’/ lvlv,
where k is the intrinsic permeability and K kid. For more general flows we may take
the ith component of (r(V) to be

Iv--]
As an example, (r(V)= J(V)V with

J0(V) clVI60 fl- (1 80), /3>0, (>0.

So the dimensionless final problem that is to be analyzed here takes the following
form:

--isovolume flow

(1) V.V=O;

--energy equation

O0
(2) --+V. V0-V. [(A(0)+D(V))V0]=0;

0t

--momentum equation
--Darcy’s law

(3a) /x(0)V + K(Vp-Ra*(O)e.)=O;

--Darcy-Forchheimer’s law

(3b) e_lDaP_l
OV
--+ K-tz(0)V+ 9Da/:PT(r(V) + Vp Ra*( O)e,. O,
Ot

where Ra*= RaDa is the filtration Rayleigh number, Pr the Prandtl number, and Da
the Darcy number. Further, h(0),/x(0), and/3(0) are dimensionless thermal conduc-
tivity, viscosity, and density.
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In a cylindrical aquifer f ]0, H[ x ]R,, Re[ x ]0, 2r[, having height H, external
radius Re, crossed by an injection well of radius Ri, the thermal and hydrodynamical
boundary conditions are

and z H,(4) -(A(0)+D(V)).V0.I=0 forz=0

where "tl is the unique outward normal vector to 0f

(5) (A(0)+D(V)) V0. l+g,(O-h,)=O

(6)
(7)
(8)
with

(9)

for r Ri,

-(A(0)+D(V)).V0.I=0 fort=

V’I=0 forz=0 and z=H,

V.l=gs forr=Rs j=iore,

(A1)

gi dtri + | ge dcre= O.
R J R

2. Assumptions, notations, and weak formulation.
2.1. Assumptions and notations. E is the subset of the boundary 9I defined by

E={(z,R,),O<z<H,O<-<2r}, j=i or e.

Throughout this work, the data will satisfy the following conditions:

h,L(E,), gs L(Es), J=i or e,

there exists m > 0, M, > 0 such that

(A2)
M g, -m a.e.,

0 g a.e.,

gd+ ged 0.

The tensors I, D, and are continuous on their respective domains. The functions
and are continuous over R.

Fuhermore, we assume that

V(a, b) e u, 1 > 0, Vc e ]a, b[, al (c).
(A3) V(a, b)=, =0, Vc]a, bE, V, =ll=(c), , ,
(A4) VV3, V3, D(V)..0,
(A5) S(a4, as)e, VV

1>0, vv,vxu, ((v)-(v)). (v-v)lv-vl,
(A6)

2.2. Weak formulation. We first introduce the closure in Lp() of the smooth and
divergence free functions vanishing on 0, which we denote Hp.

We begin with the Darcy model.
Assuming (A1),..., (AS) to hold, a weak solution for problems (1) to (9) is a

triplet (0, V, p) such that for all positive t,

0 (+ x) :((0, t); HI()),
V e L(+; H),
pL(+;H()/),
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verifying for any test function q lying in L2((0, t); wl’(l)),

q d’r+ (A(O)+ D(V)) VO. V d.o d’r

(o) + ((v. vo)-(v, v)o) aa+
+ Oge de dr g(0 h) dd O,

and verifying for any test function lying in H(O),

a-(O)g" (Vp-Ra*(O)e) Vd+a
(a

+ gd 0 a.e. in (0, t);
e

the velocity is then given by

(12) V=--(0)K (Vp-Ra*(O)e).

Next we consider the Darcy-Forchheimer model.
The only two modifications are in the momentum equation. The velocity Nnction

is given by V U+, where is a solution to

V.=0,

.=0 forz=0 and H,

.=g, r=R, j=i,e

and seek V in L3((0, t), N3), satisfying, for each test Nnction W lying in L((0, t), H3)

waa+ 0n-. v+z
t

(1 lb) + 6Da/P;(U+ Z) W) d dr

Ra* (0)W e d d=0.

Note that here we first compute V; the pressure p appears by using a De Rahm type
theorem.

3. Ma results.
3.1. Esteee f e slfi. The main result of this work is the following.
TOM 1. Under the assumptions (A1),..., (AS) for each 0o, in L(a), there

is at least one weak solution in the Darcy model such that 0(0)= 0o.
Under the assumption (A1),. ., (A6) for each (0o, Vo) in L(a) x, there is at

least one weak solution in the Darcy-Forchheimer model such that (0(0), V(0)) (0o, U0).
We supply the proof in 4; it will be a consequence of the following theorem.
ToM 2. Under the assumpions (A1),..., (A4), (A6), and (A7),

there is at least one solution satisfying the following estimates.
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There exist positive constants kl and positive continuous functions fl independent of
D as long as it satisfies (A4), but depending on the data hi, gi, ge, and 00 or (00, Uo)
such that

(13)

io(14) Iv0()l d"rfl(tL2(l’)

( Iv[(; g.

Moreover, there exists q greater than 2 depending only on k such thatfor the Darcy model

(6 [v](; g,

while for the Darcy-Forchheimer model,

o’ Ivv()l df(t).
3.2. Uniqueness results.
THEOREM 3. Assuming , D, to be constant and Lipschitz continuous, then the

weak solution is unique (for either models).
The sketch of the proof follows from Gronwall’s inequality as in [4], to which

we refer for fuher details.
Now we give, for the Darcy model, uniqueness theorems assuming some regularity

on the data and the solution. We are not actually able to prove that weak solutions
have such regularity propeies.

THEOREM 4. Suppose that , , , D are Lipschitz continuous. Assume there exist
two weak solutions Ol, Vl, Pl) l= 1. for the Darcy model verifying

Ol

pl e ((0, t); w’,(a));

then 0(0)= 02(0) imply O 0, p =P2, and V1 V.
Remark. In fact, we have the following continuous dependence: for two weak

solutions Ol, p)l= ,2 verifying

Ol

pl e ((0, t); w,(a)),

there exists a nonnegative function f(t) in Lo(N+) such that

[O(t)-O2(t)l<mcoexp f() d

TOM 5. AssumingD satisfies (A7), suppose, moreover, that A, , are Lipschitz
continuous and there exists a solution 0, p) verifying

0 e ((0, t); w’,(a)) g((0, t) x a),

then for the Darcy model any weak solution (0, V, p) satisfying 0(0)= 0(0) is equal to

(01, V,p).
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3.3. Remark on the large time behavior for the Darey model. If D satisfies (A7),
and if the boundary data hi is constant on Ei, then we have

lim 10(t) h,[.)= 0, lim IV(t) VIn2 0,

where V is the solution of (11), (12) with 0 h.
4. Proof of the main results; Theorems 1 and 2. We supply a detailed proof of

Theorem 1 for the Darcy model, which turns out to be less regular than the Darcy-
Forchheimer one. For this case, in order to get some smoothness propeies for the
velocity, it is convenient to choose both pressure and temperature as main unknowns.

The proof for the Darcy-Forchheimer model follows the same lines and is sketched
in 4.3.

4.1. Prelimina results. We first prove Theorem 2. The proof goes through several
steps. We use a kind of linearization process by introducing a positive delay which
uncoupled the system. This is similar in spirit to the fractional step method in 16]. A
similar idea, called retarded mollification, is used in [2]. This idea is also known as
the method of Rothe, and it is used in [13] for quasilinear parabolic equations. We
next derive a priori estimates for the approximate solutions and pass to the limit upon
letting the delay go to zero.

4.1.1. Approximate solution. Let h be a small positive number.
For any measurable function f:ax, set rhf:xO as rhf(t,x)=

f(t-h,x).
Next we introduce the following scheme.
Define first

Oh(t,x)=Oo(X); t[-h, 0], x;
then, assuming Oh to be known on the interval kh, k + 1 h ], k , compute Ph verifying

p ([kh, (k+ 1)hi; n(o)/U)
such that for any test function belonging to H(O)/

(17) (Oh)-K (Vph-Ra*(Oh)e) Vd+ gd+ gd=O,

set Vh as

V, e ([h, (+ )h]; a),
Vh (Oh)-K (Vph Ra*(Oh)e);

then define Oh on the interval (k + 1) h, (k + 2) h verifying

Oh e L([(k + 1)h, (k + 2)h]; L(a)) L([(k + 1)h, (k + 2)h]; HI(a))
and such that for any test function belonging to Lo(N+; H()),

+>h ’ dr+ (X(rhOh)+ D(ThVh)) Oh d dr
g(k+)h

1 J (k+2)h a+ k+)

(k+2)h

g(0 h) d dr
k+l)h

giOh dd+ geOhd dr 0,+2 (k+l)h 2 k+l)h

where 0h((k + 1)h, x) is known from the previous step.
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LEMMA 1. The algorithm is consistent and gives a global solution (Oh,Ph, Vh),
satisfying

Oh L(l+ x) Lo(R+; HI(’)),

Vh L(+; ),

Ph L(R+; HI()/R);

furthermore, there exist constants kl and a positive and continuousfunctionf independent
ofD as long as it satisfies (A4), but depending on the data h,, g, g, Oo such that

(19) OhlL(U+xa)kl,

(20) IVOhl

(21) k=,

(22) Ip.l(a+;H,(m/a) k

Moreover, there exists a positive and continuous function f2 depending on k, fl, k2, k3,
gi, ge, and 6 (see (A7)) such that

OOh(23)

The lengthy proof of this statement is postponed until 7.

4.1.2. Regulari results for the velocity. Let (0)o be a sequence of bounded
function over g. Define V as the solution of the Darcy equation with data

(24) V, (O,)-’K. (V,- Ra*(O,)e,),

where , is the unique solution in H(fl)/ to

(25) V. ((O,)-’K. (V,-Ra*B(O,)e))=O,

(26)
(O,)-’K. (V,-Ra*#(O,)e).=g; on E; j= or e.

We are going to prove the following.
LEMMA 2. Assume the previous sequence 0,),o is bounded in L(fl) by a constant

M and converges strongly to some function 0 in h2(fl); then there exists q greater than
two, depending only on M such that (V,),o converges strongly to V in Lq(fl), where V
is the unique solution of the Darcy equation with data O.

Proo Let G be the unique solution in Hl(fl)/ of the variational problem.
For any test function belonging to H(fl)/,

G" d gd+ gd,

where g; are as in (A2).
According to Lions-Magenes [9], G belongs to l,p(g) for any p greater than 1.
Thus (25), (26) become

(27) (O)-N V. Vd= (Ra*(O)-(O)e+VG) Vd.
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Let t be a function of W’P(3) with compact support whose restriction to
coincides with G. Consider, then, 0". the extension by zero of 0. to I, where I is an
open domain in 3 containing 1) and supp .

Consider the variational problem.
For each of H()/R.

By local Meyers regularity theorem 1], 10] there exists Po greater than 2, depending
only on the ellipicity constant of (ff.)-K and on such that
belongs to Wg().

The equation (28) being in divergence form on both sides and the boundary
conditions being natural ones, . coincides with

Remark. When 0. does not belong to o(), we cannot make sure that . belongs
to W’P() for any p.

Let be the solution of the Darcy equation with data 0; taking the difference of
the equation for . and , we obtain

Iv( . -1-
(29)

+

for some constant ao, a independent of n.
By assumption and the Lebesgue dominated convergence theorem, we have that

(0,, (0,), (0,)),o converges strongly for each finite q to (0, (0), (0)).
Choose then q such that (1/q)+(1/po)=; then from (29)

strongly in H()/.
Fuahermore, (V,),o is bounded in LPo(O); so for each small positive e, (,),

converges to , strongly in W’Po-()/.
By definition of (V,),o, (V,),o is strongly converging to V in Lq() for each

q satisfying 2 q < Po.

4.1.3. End of the proof of Theorem 2. When D is bounded, we have built a family
of functions (0, Vh, h), verifying the uniform estimates of Lemma 1, solutions of the
following.

For any test function in H(),

, + (A(zhOh)+ D(zhVh)) VOh" V dx

(30) + In .Vh VOh dX + Iz g,h, d,

+ f_ geOh de 0 a.e. in (0, t);

for any test function @ in

(Oh)-K (ph Ra*#(Oh)ez) dm

(31)

+I g’d’+I gd=0 a.e. in (0, t).
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Upon extracting a sequence, we may assume that

Oh --> O

Oh - O

PhP

OOh O0

Ot Ot

using Aubin’s lemma,

in L((0, t) )

in L2((0, t) )

in L((0, t); HI(’)/[)

in L2((0, T); HI(I’) ’)

weak star,

weakly,

weak star,

weakly;

Oh - 0 in L2((0, t) x 12) strongly and a.e.,

Oh - 0 in Lp ((0, t) x f/) strongly for each finite p;

then, according to Lemma 2 there exist r and q greater than two such that

Ph - p in Lr(O, t); wl’r(’)/R) strongly,

Vh - V in _q((0, t); Hq) strongly.

Noting that translations are strongly continuous in LP(0, T) for each finite p, we
show that (0, V, ) is a solution of the problem satisfying 0(0)= 0o.

This completes the proof of Theorem 2.

4.2. Proof of Theorem 1. We approximate a general D satisfying (A4), (AS) by
a sequence of bounded operator D defined in the following way:

D(V) Min (l, D(V)).
Now by Theorem 2 for each there exists a triplet (01, VI, 1) verifying the following.

For each test function in H().

+ (x(o,)+

(32)

+ [_ geO de 0 a.e. in (0, t);

for each test function in Hi(o),

(O,)-K (V/-Ra*(Ot)e.). V@d
(33) + gd,+ gde=0 a.e. in (0, t).

The sequence (0, V, ) satisfies uniformly the estimates (19), (20), (21), (22) of
Lemma 1 because each D satisfies the assumption (A4).

The estimate on (O0/Ot) in L((0, t); (H(a))’) may not be uniform; so we are to
prove a weaker uniform estimate, namely"

ere exists a positive function independent of such that

OOi f(t).(34)
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Toward this end we remark that DI(v)vOI is uniformly bounded in _2((0, t); L1(12));
so from (32) and by the previous estimates it follows that the sequence (O01/Ot)>_o is
uniformly bounded in L2((0, t); H3()’).

Then we can apply again Aubin’s lemma and conclude as in Theorem 2 to the
convergence of a subsequence (0tr, Vtr, 7r) toward a weak solution of the original
problem.

Remark. We also obtain that O/Ot belongs to L2((0, t); W-l’l(f)).
4.3. Main estimates for the Darcy-Forchheimer model. Let again Z be a function

of H3 such that

V. Z=O,

Z.I=O forz=O and z=H,

Z.=g for r=Rj j=i or e.

Next take U V-Z; U verify U’I 0 on 012.
Now, as in the Darcy model we introduce the following scheme.
Define first

Oh t, x) Oo(X), t [-h, 0],

Uh(t,x)--Uo(x), t--0;

then assuming Oh to be known on the interval kh, (k + 1) h ], k , compute Uh verifying

Uh L([kh, (k + 1)h]; H2)0 La([kh, (k + 1)hi;

such that for any test function W in L3oc(+; Ha),

--1 fk+lhfOUhe DaP-; W dtodr
.I kh Ot

(k+l)h

+ K-’lz( Oh)(Uh + Z)" W dot)aT
Jkh

(k+l)h

+ cjDal/2pT tr(Ua + Z) W dto d
dkh

(k+l)/h

Ra* fl(Oh)eW do dr O,
,J kh

where Uh(kh, x) is known from the previous step.
Set Ph La/E([kh, (k + 1)h]; Wl’a/2(f)/) such that for any test function belong-

ing to W’3/2(12)/,

IaVPh" Vdd dto Ia K-1tx(O)(Uh + Z)Vd/ dto

cDa/EpT1 fa tr(Uh + Z)W dto dr

+ Ra* Ia fl(O)e. Vd/dto.

Then define Oh on the interval (k + 1) h, (k + 2)h verifying

Oh L([(k + 1)h, (k + 2)hi; L(I))) f’) LE([(k + 1)h, (k + 2)hi; Hl(f))
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and such that for any test function belonging to Loc(R+; HI(’)),

(k+l)h \-’ ( d+d(k+l)h (X(hOh)+D(hVh)) VOh" Vd dT

lfk+2’hfn (rhVh" VOh--rhVh" VOh) do dr+2 +)
(18)

g 0 h) d dr
(+)h

geOh de dr O.giOh d dr+ k+)h+2 d (k+l)h

LEMMA 3. e algorithm is consistent and gives a global solution (Oh, Ph, Uh)
satisfying

0h E L(R+ x fl) f3 Loc(+; HI()),

Un E Lo(+; H3) (3 L(+; Hz),

Ph "-’loc tu+,

furthermore, there exist constants kl and positive and continuous functions fl independent
ofD as long as it satisfies (A4), but depending on the data hi, gi, ge, 0o, Uo such that

Io’ dz<-f,(t),

Io’ Its,, a,,.

’lVp l / -L3/2(1../)

o

OUh 3/

Moreover, there exists a positive and continuous function fs depending on k, f, k, f,
gi, g, and o (see A7) such that

OOh 2

dr<-_fs(t).
Hl(f)

The existence of a global solution Uh is a classical consequence of the hypothesis (A6);
the estimate of Uh obtained by taking W Uh as a testfunction is the Darcy-Forchheimer
equation, using Young’s inequalities.

5. Uniqueness results.
5.1. Proof of Theorem 4. Let (01, Vl, Pl) be two weak solutions corresponding to

the same data (hi, gi, ge, 00), 1, or 2.
Set 0= 02-01, P=P2-Pl, V=V2-V1.
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Taking the difference of the equations for 01 and 02, we get, after straightforward
computations,

q + (h (02) + D(V2)) V 0. Vp dto
w-l,l(fU, wl,(f)-- giOdi

2 geOde+ (V:.VO-V:.VO) d
(35)

J. (x(o) + o(v))- (x(o) + o(v)) vo. vd
_! (v.0-v.0.
2 a

We may now take p 0 as 0 belongs to L((0, t); W’(a)) L(N+ x a) to get the
following energy inequality:

L(a) + giO
2 dt 012 ColV0[2(a) di+ geO de

(36) j (c[O- 011 + c[V- vl)lv011 01 d

Using H61der inequalities, we get

1 d lf lI O:m giO d+ ge
d o.+olVO

Co 1(37) <--IVOI 2

4 L2(O)

So there exists a function fl belonging to L(O, t) such that

1 d Colvol 1 1(38) 2 at lO[2m>+ U<m- giO2 di+ ge02 de

To obtain an estimate on the velocity V=V-V1, we first prove a bound for the
pressure gradient Vp Vp-Vpl.

Taking the difference ofthe equations forp and p, we get, after some calculations,

d do

+ Ra* . ((0)(0)-’-(01)(0)-)e Vd.

By taking p, we find

So there exists a function f2 belonging to L+(0, t) such that
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According to the Darcy law, we get

V -/.,(02)-’KVp (/x(02) -1 -/x( O1)-I)KVp1

+ Ra*(tx(O2)-lfl(O2)-tx(O1)-lfl(O1))ez.

So we have for some functions f3 or f4 belonging L(0, t),

(40)

So according to the inequality (39), there exists a function f in L(0, t),

(41)

By taking this last inequality in the energy equation (38), we prove the existence of a
function f in L(0, t) such that

L2() gi0 diat

According to the assumption (A2), we derive, by using the Gronwall lemma, the
uniqueness of a solution.

5.2. Proof of Theorem 5. When D satisfies (A7), the equality (35) has the form

w_,t(a),wt,(-- giO di + geOd 2

(a(O:)-a(O,)+ D(V:)-D(V,)) VO, Vd- ((V.V0,)-(V.V)01)d.

Assuming only that 0 belongs to L2((0, t), W’(a)), this equality remains valid for
any test function in L:((0, t), H(a)), and by taking 0 we get the inequality (38).

The bound for V follows the same lines as in Theorem 4, and uniqueness is
deduced by using Gronwall’s lemma.

6. Proof of the large time ehavior. When D satisfies (A7), we may use Theorem
2 in 4.1. This implies that O0/Ot belongs to L:((0, t), HI()’). When hi is constant,
the function T 0- h satisfies the following equation.

For any test function in H(fl),

, + ((o)+(v). yr. Vd

+ I, (V VT),-V V,Tdo- I g,T d,=O.

Then taking T in the above equation, we get the following inequality:.+ mi TI di O.
2 dt
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Because the two-dimensional Lebesgue measure of Ei is positive, Poincar6’s
inequality gives

and, therefore,

d
L2(m + fl TI 2 for some constant/3 > O,

lim

7. Proof of Lemma 1. The equations we are to solve are linear equations. We omit
the index h, which is a fixed positive number throughout this section.

We introduce the bilinear and continuous mapping a2(’," defined on Hl(ft)x
H’(Ft) by

a2(p, d/)= (0) Vp. Vd.

Next b2(O, ) is the bilinear and continuous mapping defined on L2()X HI() by

b2(O, O) fl(0)ez" Vff dw.
.(0)

7.1. Solving the Darcy equation.
LEMMA 4. Assume (A3) holds. Let 0 L(N+; L(O)); there exists a unique p such

that

p e (a+; N(a)/a)

and a solution of

Furthermore, there is a constant Co depending only on g, g, 1, and 10l(u+a such
that IVpl(a Co.

Proo Because 0 is fixed, a2 is coercive on H()/N while b is linear. Hence,
existence and uniqueness follows from the Lax-Milgram theorem once we have checked
that

Assume now that 0 e Lo(N+; H()) L(N+; L()). Then p verifies

(43) V. (0)" Vp =Ra K. (0)e in

Now that 0 is lying in Lo(N+; HI()) L(N+; L()), the right-hand side of (43)
belongs to Lo(R+; L()); hence we may define

K

as the normal trace on 0fl of an L(fl) function having a square integrable divergence.
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(44)

(45)

We may now use Green’s formula to get

tx(O)
Vp n Ra* fl(O)

/x(0)
Ke,..l on z=0

.(o
p " a* (o

(0) Ke. + g;

(0)
Vp Ra*

(0) Ke
+ ge,

Remark. When K is a diagonal tensor, (44) reduces to

(o) kVP .=g onr=Ri,

(0)
kVp "n=ge on r=Re.

and z H,

Remark. 0 is not smooth enough to make sure that (K. Vp) has a normal trace.

7.2. Solving the energy equation. Take V in _o(+; H2) with div V 0.
Choose (0, q) in L(E+; L(I))f’)L(oo(+; HI(f)).
We then have

(V.

VO)q dw Jet (V. Vq)O + (Oq,

because any element of Hi(f/)f’l L(f/) has a trace in L(Ol’)f’l H1/2(0"), which is
actually an algebra.

In particular, we may write

(v.oao= (v. oo-(v. oo
1

-(00, V" H’/2(On),H-1/2(O)

For our problem, this reads

(46)

(47)

(V. VO)r dto = (V. VO)o-(V. Vo)O dto

+- Ogi do.i +- Oqge do.e.

The variational formulation of the energy equation is now

q + A(0)VOVq dx+ D(V)VOVq dx

+ [(v.vo)-(v.v+)o],tx

g, 0 h,)q do’, +- geO q doe +- g,Oq do., O.
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This equation possesses at least one solution in the setting of 2.2. To see this,
we may approximate V by smooth functions, use Galerkin’s type techniques, and pass
to the limit. We omit this lengthy process. (See also [6] and [8].)

7.3. First estimates in HI(). Taking 0 in (47), which is possible because
D(V) is bounded, yields

d-slol:()/ (A(o). vo). VOdx+ (D(V). VO). VOdx

fx lfxg,( 0 h,)O dcr, +- g,O2 dcr, +- geO2 do O.

Thus

tk2(fl) - giO2 dtri
2

geO2 dcr

l’<-- [gihi[ I01 di.

Hence, using assumption (A2), we have

(.)+ ml 0 di Igihi[ ]OI di.(48)
2 at 10[(")+ IV012

2

Using Young’s inequality on the right-hand side of (48), we find a constant Cl depending
only on m such that

&(a + a(a+ m di c gh d.2 dt I1
Therefore, there exists a constant c depending only on (Ig,,, Ih,l,, m,) such that

(49) 10(t)l(.)+2, Ivo(,)lb(,) d,10(0)l L2() + c2t.

We may conclude that for each t, 0 lies in a bounded set of

(0, t; :()) (0, t; H()).
7.4. Uniform estimates in L.
LEMMA 5. Assume Oo and h are bounded. en

101o,,. Max

Proof Take v Max (10o1.>, Ih,[(,)). Let T= 0 + u; T is a solution of

, 2
(v. vr)-(v. V)(T- ) dx

(50)

Ix 1Ixg,(T- v- h,), d,+ g,(T- v), d, +!2 ge(T- v), de.

Green’s formula yields

1 1
V’ d+- V.dx= +2

+ . gd+ . gd.
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Thus we have

--, o + (*(T)+D(V)). VT. Vdx

(51) + (V. VT)o-(V. Vo)Tdx

grd+ g(+ h) d.

Taking =-T- in this relation and writing T= T+- T-, we find, after some
calculations,

L2(O) + m [r-I= d,
2 dt

IT-Ib<") + ’Iv T-[ =
(52)

+ g(+ h) T- d.

We know that

mi <-- gi <--- m < O, v- hi < O.

It follows that the left-hand side of (52) is nonpositive; this implies that T-= 0. In a
similar fashion, setting T 0- u we show that T/= 0. Lemma 7.2 is proved.

7.5. Estimates on OO/Ot. In this subsection we rewrite

(v.vo-v.vo)a

as

(V. Vo) 0 dx +- g,Oo dr,
2

geOo dre.

Hence 0 is a solution of

00, o + (A(0)+D(V))V0. V dx- V. VOdx
(53)

--IE gi(O-hi)difE giOdlffE geOde=O"

Because 0 is bounded, we get

erefore, there is a function f(t) depending only on

such that

(54) ]c. r(o,;tu’m))’)

This completes the proof of Lemma 1.

<=f(t).
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ONE-DIMENSIONAL THERMOELASTIC CONTACT WITH A
STRESS-DEPENDENT RADIATION CONDITION*
KEVIN T. ANDREWS, ANDRO MIKELI(, PETER SHI,

MEIR SHILLOR, AND STEVE WRIGHT

Abstract. A one-dimensional quasistatic thermoelastic contact problem with a stress-dependent
boundary condition is considered. The problem models the evolution of the temperature and the dis-
placement of a long thin elastic rod that may come into contact with a rigid obstacle. The mathemat-
ical problem is reduced to solving a nonlocal heat equation with a nonlinear and nonlocal boundary
condition. This boundary condition contains a heat exchange coefficient that depends on the pressure
when there is contact with the obstacle and on the size of the gap when there is no contact. The
local existence of a strong solution to the problem and local dependence on the initial-boundary data
are proved. In addition, the uniqueness of the solution is established. The proof rests on an abstract
result dealing with perturbations of monotone operators, as well as some a priori estimates which
permit an application of Schauder’s fixed point theorem.

Key words, thermoelastic contact, nonlinear heat transfer coefficient, nonlinear perturbations,
monotone operators, nonlinear boundary conditions, Signorini’s condition

AMS(MOS) subject classifications, primary 35K60; secondary 73C35, 73T05

1. Introduction. Thermoelastic problems with contact arise naturally in many
industrial processes, particularly in the manufacture of such items as castings, mould-
ings, pistons, thermostats, etc. In these situations two or more elastic materials are
forced into contact with each other as a result of thermal expansion. Predicting the
behavior of thermoelastically contacting bodies in such situations is of considerable
applied importance. In ball bearings, for example, in cases where the ball and the cas-
ing are made of different materials, thermal expansion or contraction may cause the
bearing either to lock up or to chatter. There is a considerable engineering literature
that deals with such problems. For example, Srinivasan and France [SF] report on
erratic performance of duplex heat exchange tubes in experimental breeder reactors
and suggest that this may be due to the presence of multiple steady states. Richmond
and Huang [RH] have suggested that the growth of a sinusoidal perturbation in an
otherwise uniform contact pressure between a solidifying casting and the mould may
be responsible for experimentally observed waviness in nominally plane cast surfaces.
Barber [Ba2] has shown that such behavior may result from the instability of the
thermoelastic contact.

In spite of the obvious applied importance of the subject, there are relatively few
theoretical results about general problems of thermoelastic contact. Until recently the
existing mathematical models make various restrictive assumptions about how the
process behaves. A general variational inequality model was derived in Duvaut and
Lions [DL], where evolution problems with unilateral conditions were considered, but
it assumes that there is no loss of contact. Duvaut [Du] considered only the static
problem with Signorini’s contact condition and a smoothed stress-dependent radiation
condition.

*Received by the editors February 11, 1991; accepted for publication (in revised form) March
31, 1992.

fDepartment of Mathematical Sciences, Oakland University, Rochester, Michigan 48309-4401.
:Department of Physics, .Ruder Bokovid Institute, 41001 Zagreb, Yugoslavia.
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More recently, the one-dimensional quasistatic problem of thermoelastic contact
was considered in a series of papers by Gilbert, Shi, and Shillor [GSS], Shi and Shillor
[SS1], [SS2], and Shi, Shillor, and Zou [SSZ]. The problem was formulated as a fully
coupled variational inequality in [GSS], and the existence of a strong solution was
established. A reformulation of the problem in [SS1] led to a decoupled heat equation
with a nonlinear and nonlocal source term. The uniqueness of the solution was proved
as well as the fact that the solution converges to a steady state. In both of the papers
[GSS], [SS1] the Dirichlet condition was assumed for the temperature at the contacting
edge. The more realistic heat exchange condition was considered in [SS2], where the
existence of a solution was obtained from an abstract result involving perturbations
of monotone operators. The model there was somewhat restrictive in that the heat
exchange coefficient k was assumed to be a constant.

It is known from the work of Barber and his collaborators, [Bali, [Ba2], [BDC],
[BZ] as well as [CD], that the heat exchange between the contacting edge and the wall
seems to depend in a complicated way on the distance of the edge from the obstacle
and on the contact pressure. Thus it seems reasonable that a general model for the
process would assume that the heat exchange coefficient k depends on the distance
of the edge from the obstacle when there is no contact, and on the contact pressure
otherwise. In the latter case it is also assumed that there is a thin heat-resisting
layer at the edge and that the resistance to the heat conduction decreases when the
magnitude of the contact pressure increases. In this paper we consider such a general
model. Some numerical simulations for problems with constant and nonconstant k
can be found in [SSZ].

We now describe the remaining sections of this paper. The modelling of k is pre-
sented in 2, where the precise mathematical problem is described. Decoupling leads
to a heat equation with a contact dependent source term. This section also contains a
statement of our main result, Theorem 2.1, which guarantees the local existence of a
strong solution to the problem and the local dependence on the initial-boundary data.
The theorem also asserts that any solution to the problem is unique. The remaining
sections of the paper are devoted to constructing a proof of this theorem. In 3 we
prove an abstract result, Theorem 3.1, concerning variational inequalities associated
with nonlinear perturbations of monotone operators in Banach spaces. This theorem
is used in 4 to solve an auxiliary problem. Finally, the results of 4, together with
Schauder’s fixed point theorem, are used in 5 to prove Theorem 2.1.

2. The model. The problem under consideration models a homogeneous elastic
rod that is held fixed at one edge. It is free to expand or contract at the other edge
as a result of the evolution of its temperature and stress field, but the expansion is
limited by the existence of an obstacle, say a rigid wall, which blocks any further
expansion once the rod comes into contact with it. We assume that the accelerations
in the system are negligible, and thus the problem may be described as quasistatic.

The physical setting is depicted in Fig. 1. We denote the temperature by
0(x, t), the displacement by u u(x, t), and the stress by a a(x, t), all in nondi-
mensional form. The thermoelastic problem for such a system may be posed (see, e.g.,
Carlson [Ca] or Day IDa]) as follows: find a pair (, u} such that

(2.1) Ox=Ot+auxt for0<x<l and 0<t<T,

(2.2) u=a0 for0<x<l and 0<t<T.

Here (1.1) and (1.2) are the energy and the elasticity equations, respectively. The
coupling constant a is related to the physical properties of the material (see [Da],
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g

FIG. 1

[SS1], or [GSS]) and is typically a small positive number. We shall assume throughout
that 0 < a < 1. To complete the model, we prescribe the initial condition O(x, 0)
together with the following boundary conditions. At the left edge (x -0) we assume
that the temperature is prescribed in the form m(t) and that the rod is held
fixed there, i.e., u 0. At the right edge (x 1) we assume the radiation condition
-Ox kO, which is discussed below. For the displacement at that edge we assume the
Signorini contact condition

(2.3) u_<g, a_<0, and (u-g)a-O,

where g is the initial gap between the wall and the free edge. This condition implies
that the expansion of the free edge is restricted by the obstacle, i.e., u _< g, and the
stress is compressive, i.e., a _< 0. Consequently, if contact occurs, then u g, but if the
edge is free then a 0. In one space dimension we have that a(x, t) ux(x, t)-a(x, t)
(see IDa]). Therefore, the condition may be written in terms of the displacement and
temperature as

u

_
g, ux

_
aO, and (u- g)(ux aO) O.

We turn next to the modelling of the radiation condition, more precisely to k.
As was mentioned above, we would like it to depend on the actual gap g- u, when
there is no contact, and on the pressure a when contact occurs. It turns out that the
natural argument for k is g u + a. Indeed, in the absence of contact, a 0 and

r g u > 0. Thus measures the distance of the edge from the wall. On the other
hand, when contact occurs, u g and, therefore, r] a _< 0, and now measures
the contact pressure. Therefore, we propose the following form for the heat exchange
coefficient"

(2.5) k k(g u + a) k(g u + u= at?).

Here k k() is a prescribed function of its argument. In this paper we will consider
only smooth nonnegative functions k. Primicerio [Pr] has suggested that in some
applications it may be appropriate to take k to be a piecewise constant function

ko, 7 -< O,

Some numerical simulations were performed in [SSZ] using such a choice of k.
A more complicated condition (the so-called "imperfect contact" condition) was pro-
posed in Barber [Bali (see also [CD]).
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We now describe the spaces in which we expect to find solutions. Let ’T
(0, 1) x (0,T) for some T > 0. From the form of (2.1) and (2.2) it is natural to seek
a solution , which lies in the Sobolev space W22’1 (ftT), which consists of all L2(tT)
summable functions that possess generalized L2(DT)-summable second-order space
and first-order time derivatives. The norm of this Hilbert space is given by

02 + 02 + 02 / 02) dx dr.

Similarly, we seek for u a function that lies in the Sobolev space

X {u e HI(tT); uxx, uxt e L2(tT), u(0, t) 0, 0 < t < T},

whose norm is given by

u I1 -- 2 + + u2 + u2t)dx dr.
T

For 0 as above, it is known (see, e.g., [LM, p.9]) that the boundary functions 0(0,-)
and 0(1,.)lie in H3/4(O,T), 0x(1, t)in HI/4(O,T), and 0(x, 0)in Hi(0, 1). These facts
imply that the initial-boundary data must have the degree of regularity described
below. The only properties of these fractional Sobolev spaces that we shall need are
that they are Hilbert spaces and that they satisfy compact imbedding theorems. For a
full treatment of these spaces, we refer the interested reader to [LM]. The definitions of
any unexplained spaces or notation may be found in [LSU], but we mention one item
in particular here since the notation may be unfamiliar to some. The Banach space
W(R) consists of all essentially bounded functions defined on R having a generalized
derivative that is also essentially bounded; the norm of this space is the sum of the
essential suprema of the function and its derivative.

We can now give a complete description of the initial-boundary value problem
that we will consider in this paper.

Given in Hi(0, 1), m in Hi(0, T), and a nonnegative k in W(R), find 0 in
W2,1(T) and u in X such that

(2.9) 0xx Ot + auxt in -T,
(2.10) u aO in ’T,
(2.11) 0(0, t) m(t), 0 < t < T,
(2.12) O(x, O) (x), 0 < x < 1,
(2.13) -0(1, t) kO(1, t), 0 < t < T,
(2.14) u(0, t) 0, 0 < t < T,
(2.15) u(1, t) _< g, 0 < t < T,
(2.16) ux(1, t) <_ aO(1, t), 0 < t < T,

t) t) t)] o, o < t < T,

where k k(g u + u aO) is given by (2.5). Of course, to find a solution with the
desired degree of regularity the data must be compatible, i.e., (0) m(0).

It turns out, as was shown in [SS1], [SS2], that the problem (2.9)-(2.17) decouples
and can be formulated equivalently in terms of the temperature only. It is this problem
that we will solve here. The reformulation is obtained by performing a number of
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integrations with respect to x, using the boundary conditions. We refer the interested
reader to [SS2] for the details. Once the temperature is found, the displacement is
given by

(2.18) u(x, t) a 0(, t) d x max a (, t) d g, 0

In particular, the displacement of the right edge is

(2.19) {/0u(1, t) min a 0(, t)d, g

Also a(x, t) a(t), as can be seen from (2.10) upon recalling that a uz -nO. It
was shown in [SS1], [SS2] that

(2.20) { /0 }a(t) min g a (, t)d, 0

We turn next to consider k and its argument. Using (2.19) and (2.20) we have

(2.21)
{/o } { /0r/--g-u-a--g-min a O(, t)d, g + min g a O(, t)d, O

It is interesting to note that k has a nonlocal argument. We can now state our main
result.

THEOREM 2.1. Given o in H (0, 1) and m in H (0, T) and a nonnegative k in
W(R), there exists a To <_ T and a 0 in W’(To) which satisfies the conditions

(2.22)

in gtTo,

O<t<To,

provided 0 < a < 1 and and m satisfy the compatibility condition (0) m(O).
Moreover, if n -- in H(O, 1) and mn --* m in H(O, To), and On and 0 are the
corresponding solutions, then On - 0 in L2(tTo). Finally, for any To, if the solution
to (2.22) exists, then it is unique.

As previously indicated, the constant a is typically close to zero, and hence it is
possible to satisfy the hypothesis of the theorem. It is shown in [SS2] that if 0 satisfies
the conditions of Theorem 2.1 and if u is given by (2.18), then the pair {, u} solves
the problem (2.9)-(2.17). The proof of Theorem 2.1 is given in 5.

3. An abstract existence theorem. In this section we prove an abstract exis-
tence result that is used in the proof of Theorem 2.1. The result is of some independent
interest and is similar in flavor to results described in Chapter 10 of [BC] in that Fan’s
lemma plays a key role.
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Let Y be a Banach space with dual Y*, and let K be a convex subset of Y. Let p
denote a proper convex functional on K, and let n be a topology on K that is stronger
than the norm topology and such that p is lower semicontinuous in the n-topology
and p-bounded and n-closed subsets of K are norm compact. We denote the duality
pairing between Y and Y* by (., "/. Let Z be a subspace of Y*. Let A and B be two
operators (not necessarily linear) mapping K into Y* so that the following conditions
hold:

(A1) The operators A and B are n-to-weak* continuous; the range of B is in Z;
(A2) The operator A is monotone, i.e., for any u, v E K with u v we have that

<Au Av, u v/> 0;

that
(A3) There exists a function F" Z --. R and constants f _> 0, A > 0 and />_ 0 so

(i) For each y* E Z there is a Y0 K such that

(Ay0, y y0) _> (y*, y y0) Vy K,

and

(3.3) p(yo) <_ F(y*) +/;

(ii) For each y K we have that

F(By) <_ Ap(y) + 7;

(iii) for each y* Z there exists a constant cy. >_ 0 such that

(3.5) F(y* + w* <_ F(w* + cy. Vw* e Z.

We can now state our abstract existence result.
THEOREM 3.1. Assume that < 1. Under the assumptions (A1)-(A3) we have

that for every y* in Z there exists a yo K such that

(3.6) (Ayo Byo, y yo) h (y*, y yo) Vy e K.

Proof. It suffices to establish the existence of y0 when y* 0 since the general
case may be reduced to this by replacing A by A- y*. In this reduction we use part
(iii) of assumption (A3), and this is the only place where this condition is used in the
proof.

Since < 1 and p is proper, we can choose > (/ / /)/(1- ) >_ 0 so that the
convex set K, defined by

(3.7) K (y e K" p(y) A },

is nonempty. Notice that the hypotheses imply that K is norm compact. Consider
the problem of finding yl in K so that

(3.s) (Ay By,y- y) >_ O Vy K.

For each y E K we define

K(y) {w e K (Aw Bw, y w) >_ 0}.
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The existence of yl in (3.8) is thus equivalent to the assertion that ve/( K(y) .
To establish this latter fact we use Fan’s lemma [BC, p. 208]. Note that, for each
y, K(y) is nonempty since y E K(y). Next we show that each K(y) is a-closed and
hence norm compact. Note that a is first countable since it is stronger than the norm
topology. Hence we may check closure using sequences. Let {wn} be a sequence in
K(y) that converges in a and hence in norm to an element w (necessarily in K).
Since A and B are a-to-weak* continuous, it follows that

Awn- Bwn Aw- Bw weak* in Y*,

and hence

0 <_ (Aw, Bw,, y w,) =(Aw, Bw,, y w) + (Aw, Bw,, w wn)
---,(Aw Bw, y w).

This shows that each K(y) is a-closed. It remains to be shown that for each finite
subset {yl,’", yn} of K6 we have that

n

co {yl, Yn} C U K(yi).
i--1

Assume, by way of contradiction, that there exists an element y -in= Aiyi (with
Ai >_ 0 and in= Ai 1) so that y

_
K(yi) for each i, i.e.,

(Ay- By, y y) < O.

But then
n

0 (Ay By, y y) E Ai(Ay By, yi y) < O,
i--1

a contradiction. Since all conditions of Fan’s lemma are satisfied, we have that
ueg K(y) is nonempty. Let yl be any point in the intersection. Then by (A3)
there is a y0 E K so that

(3.10)
(3.11)
(3.12)

(Ayo, y yo) >_ (Bye, y yo)
p(yo) <_ F(By) / ,

F(By <_ p(y + 7.

Now (3.11) and (3.12)imply that

p(uo) Z < +

and hence
P(Yo)

_
Ap(yl) + 7 +/ - (A)5 + (1 A)5 5,

by the choice of 5 above. Thus yo e K, and so

(3.13) (Ay Bye, yo y >_ O.

On the other hand, substituting y y in (3.10) yields

(3.14) (Ayo Byl, y -yo) >_ O.
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Combining (3.13) and (3.14) gives

(Ayo Ayl, yl yo) >_ 0

or

(3.15) (Ayo Ay, yo y) <_ O.

Hence, by condition (A2), we have that y0 y. Consequently, (3.10) may be written

(Ayo Byo, y- yo) >_ 0 Vy K,
which is the desired result for y* --0.

4. A priori estimates and an auxiliary result. In this section we will see
how the abstract existence theorem of 3 may be applied to prove the existence of
a solution to an auxiliary problem. We seek a solution , which lies in the space
W22’ (T). The convex set K will thus be a subset of this space. In order to construct
the space Y and the convex functional p of the theorem, we need an estimate on the
size of solutions to,the initial-boundary value problem. This estimate is furnished by
Lemma 4.2. This lemma also contains a second estimate, which we will use in 5 to
complete the proof of Theorem 2.1. In order to derive this second estimate we need
a preliminary lemma, Lemma 4.1, which allows us to control the size of (1, .) in a
particular manner. To motivate this result, we recall that there exists a constant c
so that I1(1, ")IILs(0,T)2

_
CIIOlIW,I(’T) for all in W22’l(T). However, in general,

this constant depends upon T. The purpose of the next lemma is to show that the
dependence upon T may be concentrated in the initial-boundary data.

LEMMA 4.1. Let 0 be in H(T), and suppose that 0(0, t) m(t) and O(x, O)
(x) are in L(O,T) and 5(0,1), respectively. Then

11o(1, ")ll.(O,T)
<_ C(IIO, II2L2(T)+ II0II:(T)+ (1 + T2) I111o(0,1 -- (1 + TI/3 + T)Ilmll2i(O,T)),

where c is a constant that is independent of 0 and T.
Proof. We suppose first that re(t) O. Then by integrating the equality

0(1, t) aOa(1, t) O(x, t)O(, t)e

over [O,T] and ghen repeatedly using the Cauchy-Schwar inequality, we obgain

3
0

e(,)d e(,)d e(,)d d

3 e(, )d ess sup e(, )dx e(,)dd
O<t<T
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It follows that

(4.1)

(j0T )1/3 (J01 )
1/3 (j0T j01 )1/306(1, t)dt _< 32/3 esssup Ca(x, t)dx e2(x, t)dx dt

0<t<T

We now release the assumption that O(O,t) 0 and apply (4.1) to 0- re(t) to
obtain
(4..1

I10(1, ")11(o,)

c esssup IIO(’,0 m(t)ll(o,)llO,,.(n.) + Ilmllo(O.T)
0<t<T

k O<t<T

C (ess sup [,0(., ),,4/3 2/3 ),,c:(o,)llO:ll:(n) + Ilmll(O,T) + IIO:ll:(n) + Ilmlio(O,T)
0<t<T

Here c denotes a constant that is independent of 0 and T but that changes from line to
line. We now estimate esssuP0<<T II0(.,t) Ila/3

154(0,1) by assuming first that O(x, 0) 0
and then applying the Cauchy-Schwarz inequality to the equality

Oa(x, t)dx 2 O2(x, t) O(x, s)Os(x, s)ds dx

as before to obtain

1/2 1/2 1/2<_2 (oo 04(x’t)dx) esssuP0<x<l (J0 02(X’ s)ds) (o oo 02(x’ s)dsdx)
It follows that

ess supll0(, t) ILL4(0,1)O<t<T
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Again we release the assumption that O(x, 0) 0 and apply (4.3) to to obtain
(4.4)

4/3ess sup ]l/?(., t) IIL,(O,1
O<t<T

< c esssup lie(’, t),- OI,L,(O,1 -t- II llL,(O,l)
k O<t<T

< c esssup ]]O(x, .)- ,,L=(O,T)IIOtlIL(a) +
0<x<l

( 2/3 2/3 T2/3 2/3 t2/3 tla/3E c esssup IlO(x,.lllL(O,T)l[OtllL(nr) + IIIIL(O,1)IIOt,,LU(aT) + II,,L’(O,1)
k O<x<l /

Using the result (4.4) in (4.2) and then using Young’s inequality, we have that

213 11213 11213
O<x<l

112/3 2/: 2/3

4/a /a )

This is the desired result.
2LEMMA 4.2. Let f be in L (T), in H (0, 1), m in H (0,T), and let k in

W(R) be nonnegative. 2,1Suppose zn W2 (T) satisfies the followzng con&tzons:

(4.7)
(4.8)

Then

(1 + a2)Or Oxz f in -T
O(x, O) (x), 0 < x < 1,
O(O, t) re(t), 0 < t < T,

k(t)O(1, t) + 0x(1, t) 0, 0 < t < T.

where c c(a, T, Ilkllw (n)) is a constant that depends only on a, T, and Ilkllw()
If instead of (4.8) we assume that

(4.10) k(/)0(1, t) + 0x (1, t) 0,
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where g a f3 (x, t)dx and is in W2,1(fT), then we have

where c c(a, IIk’llLoo()) is a constant that depends only on a and IIk’llLOO(), and
c C(a,T, IIllw()) ia a constant that ap=a o=tu o= , T, =a IIllw(n).
Moreover, for fixed a ana IIllw(), C s an increasing function of T.

Proof. We first establish the result under the additional assumptions that Ozt and
Ott exist as elements of L2(flT). Notice that 0 must satisfy

(l+a2)(O-m)t-Ozz=f-(l+a2)m inleT.

Now squaring both sides of the above and integrating over gtr (0, 1) (0, T) yields

(4.12)

The two integrals on the right in (4.12) are easily estimated by Cauchy’s inequality
with e:

(4.13)

(4.14)

-2(1+a2) f m’f

2(1 + a2)2 ff m’Ot

1< 2(1 + a2)2llm’[l.(0,) + llf
< 4(1 + a:)llm’lt:(o,.) + (1 + a2)2

4

Applying integration by parts to the integral on the left of (4.10) and using the bound-
ary conditions, we obtain

(4.15)
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We now estimate the two integrals on the right. The first integral in (4.15) may be
estimated directly by Cauchy’s inequality with e:

(4.16)

T

2(1 + a2) mt(t)k(t)O(1, t)dt

" (1 + a2) k(t)O2(1, t)dt_< 2T(1 + a2) (m’)2(t)k(t)dt + 2T
(1 +) k(t)O(1, Oat.<- cllml[l(,’) + 2T

Here c denotes a constant that depends only on a and Ilkllw(R), and from this
point until the end of the proof we will use c to designate such a constant. Applying
integration by parts to the second integral in (4.15) yields

(4.17)

T

2(1 + a2) k(t)O(1, t)0,(1, t)dt (1 + a2)k(T)O2(1, T) (1 + a2)k(0)02(0)

(1 + ) k’(t)O(1, t)dt.

Using the results of (4.13)-(4.17) in (4.12) and rearranging terms leads to

(4.18)

In particular, we have that

(4.19)

Integrating (4.19) with respect to T over the interval [0,T] and then combining terms
yields

2 (1 + a2) IT(1 + a2)llOz + k(r)02(1, r)dT
Jo

+ (1 + a2)Tllk’llL+() 02(1, t)dt.
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Using (4.18) with "r-T and (4.20) together we obtain

((1 +)) (1 +)IIL-(T) / llel + llell

Using he elemengary esgimage II0(1, ")1,(0. llmll,(0.r + ll0ll,(a
and re,ranging erms yields he firsg resulg.

o obtain he second result, we proceed in a simil way using appropriate choices
of e in (4.1a) and (4.14) o obtain he esimage

)+ T

(4.22) (1 + a2)2
2a2 Ilfll=m)+C(llmll0,)+

+ 2a(1 + a2) Ik’()( (t(,t)d)0(1, t)ldt.
re c C(, r, IIllw() is a consh depends only on , T, and
and we will use go designate such a consgant from this poin on until ghe end of
proof. I is also ey o check hat, for fixed and Ilkllw(, that is an increing
funcgion of T. Ig will be appareng in the nex secgion why we wish the coecients of

II0tll,(a. and IlIIl,(a. o ake on he above form. We now proceed o estimate the
lt integrN on the right. Using he multi-H61der inequNiy and hen Lemma 4.1, we
obtain

IIL:(n=) + IlO: (1

+ (1 + T1/3 + T)Ilmll(o,)).
Here c is a constant that depends only on IIk’llL(). Using this estimate in (4.22)
and taking appropriate suprema over all T in [0, T] leads to

a(1 + a=)=llOll::(a) + IIO::ll=:(a) + (1 + a2) sup I10:(’, )11=:(o,)
0<-<T

+ (1 + T/3 + T)
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Here c depends upon a as well as IIk’[IL(R). Rearranging the terms yields (4.11).
To obtain the estimate (4.9) for a general we apply the forward averaging

operator (l/h) f:+h(.)dT to both sides of (4.9)-(4.13) to obtain

(4.23) (1 + a2)(h)t- (0h)xx fh in

(4.24) Oh (x, O) h(x), 0 < x < 1,

(4.25) Oh(O, t) mh(t), 0 < t < T- h,
(4.26) (k(t)O(1, t))h + (Oh)x(1, t) 0, 0 < t < T- h,

where in each case the subscripted variable is the forward average of its unsubscripted
counterpart. Note that in (4.26) we may replace (k(t)O(1,t))h by k(t)Oh(1, t) and still
have the right-hand side converge to zero in the norm of Hi(0, T) since (k(t)O(1, t))h--
k(t)Oh(1, t) converges to zero in Hi(0, T) as h tends to zero. Since Oh possesses the
additional smoothness properties assumed at the start of the proof, we may apply the
previous manipulations to (4.23)-(4.26), and then let h tend to zero to obtain the
result. The same technique may be applied to produce (4.11).

The following auxiliary result is a generalization of the main result of [SS2], which
treats the case when k is a constant.

THEOREM 4.3. Let m, , and k be as in Lemma 4.2. Then there exists a unique
0 in W’ (’T), which satisfies the conditions

{/01(1 + a2)Ot 0 a- max a O(, t)d g, 0 in

o(, o) (), o <
8(0, t) m(t), 0 < t < T,

k(t)0(1, t) + 0x(1, t) 0, 0 < t < T.

Proof. We establish the result by applying Theorem 3.1 and begin by defining
the various items found in the assumptions of that theorem. We suppose first that k
satisfies kmin inf k > 0. Let

{(0, 0(, )). 0 w,(), 0(, 0) (), 0(0, ) ()},K

Y L2(12T) L2(0, T),
Z L2(T) O,
a the norm topology of W22’(T),

and

p(O) (3(1 + a2)2

1/2

+ (1 + ) (1 TII’II )11011T (R) (T)

We shall identify elements of K with their first components. Note that, for T
sufficiently small, p is a proper convex functional on K and bounded subsets of K
are Y-compact since bounded subsets of K are W’(T)-norm bounded. Define
the operators A, B from K into Y* by

A0 ((1 / a2)0t 0, (0x + k(t)0)(1,
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and

BO (at max (a ool O(x, t)dx g, O) ,0).
We now verify that the hypotheses of Theorem 3.1 are satisfied.
(A1) The operator A is easily seen to be a-to-weak* continuous since if On -. O

in W22’(fT), then (On)t "-’+ Ot and (On)xx Oxx in 52(T), while On(1,’) 0(1,.)in
L(0, T) and (0n)(1, ") -- 0(1, .) in L2(0, T). The continuity of the operator B has
already been demonstrated in [SS2], and its range is obviously in Z.

(A2) To show that A is monotone suppose that 0, 02 are in K and that (AO
A02, O1- 02) _< 0. Let z 01- 02. Then

<AO A02, O 02> [ [(1 + a2)(0 92)t (/9 02)] (0 02)
T

+ [(o o)(1, t) + (t)(o(1, t) o(1, t))] (o o.)(1, t)et

/o(1 + a)IIz(’, T) liLy-(o,1)2 z (1, t)z(1, t)dt

(1, t)z(1, t)dt + k(t)z(1, t)dt

<0.

It follows that z 0 and hence (AO A02, 0 -02> > 0 if 0 02.
(A3) Define F" Z --. R by F((f, 0)) 4IIflIL-(O,T), and et

and

n (llmll,cO,T) + cllll,(o,))
2a2

A=
(1+ a2)

Here c is the constant of (4.9). Then the following conditions are satisfied.
(i) The inequalities (3.2) and (3.3) hold since for every pair (f, 0) in Z there

exists a 0 in W’(f’tT) satisfying the standard initial-boundary value problem (4.5)-
(4.8) [LM, p. 33], and hence the a priori estimate (4.9).

(ii) The inequality (3.4) holds since

IIB011 aallOt 2IIL=(0,T)--<
444

p(0)
3(1 + a2)2

(iii) The inequality (3.4) holds simply with %. IlY*II.
Finally, note that A < 1 since a < 1. This completes the verification of the

hypotheses of Theorem 3.1. Consequently, we obtain, if T satisfies 1- 4TIIk’IIL > O,
a function/9 in K that satisfies (AO BO, O) > 0 for all in K. If we now put

0 +/- , where is in C(fT), with (x, 0) (0,t) 0, then it follows that
(AO- BO, ) 0 for all such . Hence AO B/9 i.e., 0 satisfies all the conclusions
of the theorem.

To obtain a solution for a general T we appeal to a standard continuation ar-
gument. Choose To > 0 so that 1- 4Tollk’llLO,,(R) > 0, and then choose n so that
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nTo > T > (n-1)To. Let Ti iTo fori 0,1,...n-i, and let Tn T. Then
the preceding argument shows that for each i there is a function +1 defined on

fi (0, 1) (Ti, Ti+l) and satisfying the conditions

If we now define on fiT by O(x,t) O,+(x,t) for (x,t) in (0,1) (Ti,Ti+),
then 0 is in W22’ (fT) and satisfies the conclusions of the theorem.

Finally, to obtain a solution for a general k _> 0, let kn k + (l/n), and let 0n
be the corresponding solution. We have already seen that if fn is the first component
of BO, then [[f[[L(T) _< a2[[(O)[[L(T) Hence the estimate (4.9) shows that

Note that 3(1 + a2)2/4- 3a4 > 0 since a < 1. Consequently, if 1 -4T[ik’]lLOO(R) > O,
then an expression equivalent to the W22’ (fT) norm of the 0,’s may be bounded by
the initial and boundary data. Hence the 0n’s form a relatively weakly compact set in

W22’ (fT), and any weak cluster point 0 of the set will satisfy 0x(1, t) k(t)0(1, t), and
will, therefore, satisfy the conclusion of the theorem. To obtain a solution for a general
T we can again use a standard continuation argument. This completes the proof of
existence. Because uniqueness may be established using the kinds of manipulations
that are found in the next section, we postpone further mention of the proof until
then.

5. Existence, uniqueness, and stability. To complete the proof of the exis-
tence of a solution to (2.22) we now prepare to employ Schauder’s fixed point theorem.
We suppose first that kmin inf k > 0. For each in W22’l(T) define 0 S in

W’1 (fT) as a solution to the initial-boundary value problem

d { f01(5.1) (1 + a2)0 0 a- max a O(x, t)dx g, 0 in

O(x, O) (x), 0 < x < 1,

0(0, t) re(t), 0 < t < T,

k g a t)dx 0(1, t) + 0 (1, t) O,(5.4) 0 < t < T.

Note that the existence of such a 0 is guaranteed by Theorem 4.3. Now since

a- max a O(x t)dx g 0 < a4[[Ot 2

L2 (0,T)
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the estimate (4.11) implies that

(a(1 a)( + a) cTX/llllL.n))llOlln.) +

( (1 + a2) -cTX/ll,llzm))llOll+ T L(T)

(.) + ( +) sp (.,)o,)

+ cTX/’IItlIL=(..)((1 + T2)

where a c(a, Ilk’liLt<n)) is constant that depends only on a nd IIk’llL(), d
C C(a, T, Ilkllw()) is constant that depends only on a, T, and Ilkllw(n>. We
now choose T0 so that

1
<2’

and hen choose M > 1 so ha M >
Noge hat any smaller value for To will sagis ghe above inequality. Consequently, we
may choose 0 < To N rain(l, T) so hag he following Mdigionel condigions hold:

2M a(1 a)(1 +a(1 a)(1 + a2)2 cT/6 a(1 a)(1 + a2)2 >
2

(1 + ) / 2M
ro o (1 )(1 +) > (1 + ).

We now define

{e,(a. (, 0 (,(0, t (t,

(1 )(1 +) }IIL=(ao + (1 + )ll=ll=(ao)
Then, recalling that C is an increing function of T, (5.5) shows that
into K. Note that K is compact when regarded a subset of L(To) since it is
bounded in W’(fiTo), and w’l(fiTo)embeds compactly into L(To) [LSU, p. 74].
We now need only show that S is well defined, i.e., that the solution to (5.1)-(5.4)
is unique, and that if n and e in K and
in L2(To). Since the proofs of these two statements require essentially the same
manipulations, we content ourselves with presenting a proof of the latter. Toward
this end, let On Sn,O S, and wn fo (0- On). Note that wn must satis the
conditions

(1 + )(.),- (.).. y(0, 0.),
(.)(, 0) =0,

(.6) (.)(0, t)=0,

-()(1,t) ()(l(1,)e + ( o)0(1,



1410 ANDREWS MIKELI SHI SHILLOR AND WRIGHT

where

f(, 0.) ma 0(, )d , 0 x .(,)d , 0

kn k(vn) k g-a en(x,s)dx

(Z )ko k(v) k - (,)d

Note that, for each T satising 0 < T < T, we have that

Squaring both sides of (5.6) and integrating over fir, we obtain

( + ):(),L() e( +)[ (),()dd +

(5.7) II(0, e)l 2

We now proceed, in Lemma 4.1, to apply inteation by parts to the integral on
the le of (5.7) and thus obtain

-2(1 + a2) [ (wn)t(wn)xx dx dt (1 + a2)[[(wn)x( ., ) [[L2(0,1)2

(.a) + (1 + a) (w)t(1, t) (k)(w)(1, s) es et

+ (1 + a) (w)t(1, t) (k ko)O(1, s) es

Applying ingegragion by pargs twice to the first ingeN on ghe right in (g.8) yields

(w) (1, t)(k)(w)t(1, t) at

2

+ (1,) ,() ()(,)a (1, ) e

where the prime denoges differengiagion with respect to the argument. Applying a
single ingegration by pargs go the second ingegrN in (.8) yields

(w)t(1, t) (k ko)0(1, s)ds at w(1, r) (k ko)0(1, s)ds
(.10)

(w)(1, t)(k ko)0(1, t)et.
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Using the results of (5.8)-(5.10) in (5.7) and rearranging terms, we obtain

(5.11)

We now estimate the four integrals on the right in (5.11). The first integral may be
estimated using the Cauchy-Schwarz inequality and then Cauchy’s inequality with e:

(5.12)

The second integral may be estimated using the Cauchy-Schwarz inequality and then
Cauchy’s inequality with e:

(5.13)

The last two integrals are easily estimated using Cauchy’s inequality with e"

(5.14)
(1 + g)

+ 4(1 + a2)kn(T) -1 (kn k0)202(1, s)ds,

2(1 + ) (w,)(1, t)(k, ko)O(1, Oetl<_(1 +1 (/(1, t)et

+ (1 +) (k, ko)o(1, t)dt.

Using the results of (5.12)-(5.14) in (5.11) and rearranging terms we have that
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(1 + 2a2)l[(wn)t 2 + (1 + a2)ll(wn)(.,’r) 2I[L2 (.r)

+ II (w,): ll2(n. (1 + a2) w2(1, T)k,(r))+ ’"2
(5.15) < kmin

(1 + a2) [](Wn)(1, ")l](o,r)4

+ 4(1 +)(ki- + 1) (k

In pargicul, we have

(1 + )(1,

(o,)

(+ 1) (k- o)o(1,)e(g.16) + 4(1 +) -
< ki

(1 + )

+ (1 + a2) (5akllk’l](n)ll(5)ll,(n) + 1)II(w)(1,
+ 4(1 + ) - )0(kmi + 1) (k ko (1,

for any u sagising r N u N To. I follows

(1 + )I1()(1 .)11

< k + )
(.1)

I1()(1,.)11(o,)
+ 4(1 + )(k + 1) (k ko)O(1,

and hence

ki.II 11()ll(5)ll,(a) + I1(o,)
(.18)

+. - jo(mi. + ) (- o):(,)e.

Consequently, by Gronwall’s inequality [LU, p.94], e have that
(.9)

w(1, .)d. exp kmin II I1() I1(),11=() + 4kn) dT

x 16k(k + 1) (k o)o(1,)esa
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Now

(5.20) Ikn kol <_ allk’llLo(R) I(n )(x, s)ldx,

and, consequently, (5.19) shows that as n --* in L2(To) we have that wn(1, ") -* 0 in
52(0, T0). Using this fact in (5.17) and then (5.15), we obtain that (wn)t O-On -. 0
in L2(To). Consequently, the operator S is continuous when K is viewed with the
L2(To)-topology and so by Schauder’s theorem S must have a fixed point 0 SO.
This fixed point satisfies all the requirements of the problem (2.22) on To. To obtain
a solution for a general k >_ 0, let kn k + (l/n), and let 0n be the corresponding

IM’2’I (’To) andsolution in K Then the On’s form a relatively weakly compact set in "2
any weak cluster point of the set will satisfy (1, t) k(v])O(1, t), and will therefore
satisfy the conclusion of the theorem on DTo. This concludes the proof of the existence
of a local solution to (2.22).

To show uniqueness of the solution let and be two solutions to (2.22) corre-

sponding to the same initial-boundary data, and let w f(0- ). If we repeat the
same manipulations as in (5.6)-(5.11), then we obtain

where

( /0 )k k(?) k g- a (x, s)dx and ( /0 )ko k(Te) k g-a O(x,s)dx

We now estimate the four integrals on the right in ways different from what was done
in (5.12)-(5.14). The first and second integrals are estimated simply by using the
Cauchy-Schwarz inequality:

2a(1/ sup
O<s<"

/0 (/0 )a(i + a2)
" ]k’(7) s(x,t)dx w2(i,t)ldt

_< a(1 + a2)T sup IW2(1,8)] Ilk’llLO(R)llsllL(n.).
O<s<"
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The last two integrals are easily estimated using the Cauchy’s inequality with e:

(.23)
(1 +(1 D ( oO(1, le < (!...+ ,o,(1, /

+ 4( +) (k ko)o(1, )a,

2( +) w(, t)( o)o(1, t)at <_( +) (1, t)t

+ (1 + ) (k ko)o.(1, t)dt.

Using these facts in (5.21), we have that



THERMOELASTIC CONTACT 1415

Now, for all t sufficiently small, we have that

(1 + a) 2(3alIk’IIL(R)II81IL2() + X/2)(1 + a2),1/2 > O.

Consequently, we have that

(5.2s)

for all less than some To. Hence Gronwall’s inequality shows that w 0, i.e., 0
on the rectangle (0, 1) (0, To). We may now use a continuation argument to extend
the result to all of T. A similar, but more complicated argument, establishes that if
on --. o in H(0, 1) and mn --* m in Hi(0, T) and if On and 0 are the corresponding
solutions in W’1 (T), then On --* 0 in L2(To) for some To less than T.
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A DEGENERATE STEFAN-LIKE PROBLEM WITH JOULE’S HEATING*

XIANGSHENG XU’

Abstract. This paper studies the system (a/at)a(u)-diva(Vu)r(u)lVl2, div(tr(u)Vp)=0 in a
bounded domain of RN coupled with initial and boundary conditions. Here, a is a maximal monotone
graph in R, a a monotone mapping from N to , and tra positive function on with the limit of tr(s)
as Isl-, being zero. In the generality considered here, the problem may not always have a solution in the
sense of distributions. Under certain assumptions on the data, an existence assertion is established for the
problem that incorporates the new phenomena involved and, at the same time, retains the main feature of
a classical weak solution.

Key words, capacity solutions, degeneracy, compactness

AMS(MOS) subject classifications, primary 35D05, 35K65

1. Introduction. Let 12 be a bounded domain in RN with smooth boundary 012
and T a positive number. Consider the following initial-boundary value problem"

0
(1.1a) --v-diva(Vu)=r(u)[Vl in QT--I’I(0, T),

Ot

(1.1b) div (cr(u)V)=0 in Qr,

(1.1c) a(Vu), u+f(x, t, u)=O in $7-=012x(0, T),

(1.1d) P qo in Sr,

(1.1e) v Vo in 12 x {0},

(1.1f) v c(u) a.e. on QT-.

Here, c is a maximal monotone graph in R, v denotes the outward normal to 0fl, V
(respectively, div) is the gradient (respectively, divergence) in the spatial variable
x N, a is a monotone mapping from N to R, and tr is a continuous function
on .

A special case of (1.1) is proposed in [SSX] as a model for the combined processes
of heat conduction and electrical conduction in a conductor, which may undergo a
change of phase due to the heat generated by the electric current, the so-called Joule
heating. An example situation is the process of resistance spot-welding of thin steel
sheets [A]. In this case, u is the temperature of the conductor, v the enthalpy density,
q the electrical potential, and tr(u) the electrical conductivity. Equations (1.1a) and
(1.1f) amount to the employment of the "enthalpy formulation" for the Stefan problem
to describe the melting of the conductor as a result of Joule’s heating, while equation
(1.1b) represents the current conservation. We refer the reader to [SSX] for a detailed
discussion on the physical justification of this model.

Mathematical problems related to the combined heat and current flow were
considered recently in a number of papers under the title of "the thermistor problem."
However, most of the studies only focus on the stationary case; see, e.g.,
[C2], [C3], [CP], [HRS], [X3], [CF1], [CF2], [CH], [AX], where the effect of various

* Received by the editors April 29, 1991’ accepted for publication (in revised form) March 10, 1992.
This work was supported in part by National Science Foundation grant DMS-9101382.

f Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701.
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assumptions on tr and different boundary conditions on the existence of a solution
and regularity properties of the solution is investigated. The time-dependent case was
first considered in [C1] for N 2. This restriction on the space dimension was later
eliminated in [SSX]. However, in both papers it is assumed, among other things, that

M1 -< tr(s) =< M2 for all s,

where M1, M2 are two positive constants. This condition is very crucial to the existence
of a classical weak solution. In [X2] cr is only assumed to be positive, but the boundary
conditions are linear and no phase change is allowed in the conductor, i.e., a(s)= s.
In this paper we shall further relax most of the assumptions in [SSX] and IX2], which
leads to new mathematical difficulties. Let us make some remarks on the new mathemati-
cal aspects of (1.1). For this we need to state our precise assumptions on the data
involved first. We shall assume the following:

(A1) The vector field a(x)=(a(x),...,aN(x)) T is continuous on R, and
satisfies the growth condition

la(x)l<-Klxl for ixl sufficiently large, some K > 0.

Moreover, a(x) is strongly coercive monotone, i.e.,

(a(x)-a(y)).(x-y)>=ColX-yl2 for all x,yR

for some Co > 0.
(A2) The function f(x, t, ) is continuous over S-xE, and satisfies the growth

condition

If(x, t, :)l =< Ko+ gl:l,

where Ko, K are positive constants. Moreover, :-f(x, t, ) is monotone at the origin
for all (x, t) ST, i.e., f(x, t, ) sign :_--> 0.

(A3) r(s) is continuous on , and satisfies

0<tr(s)-<M for all

for some M > 0. Furthermore, limlsl_ or(s) 0.
(A4) c(s) is given by

a(s) if s > 0,
a(s)= [-1,0] if s=0,

a(s)-I if s<0,

where al and a2 are two known functions that are continuously differentiable on their
respective domains, with aa(0+) a(0-) =0. Moreover, for each e > 0 there exist two
positive numbers cl and c2 such that

c<-_a’(s)<-c2 for all sR\(-e, e).

(AS) qo L(0, T; L(OI2)) and there is a function q-- in L(0, T; W’(l))) such
that

qo Po in L(ST).

The initial value Vo belongs to L2(l’),).
Assumption (A4) says that the melting temperature of the conductor is zero.

Assumption (A3) arises in the case of metallic conduction; see [C1].
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Under these assumptions we see that there are three different types of degeneracy
involved in our problem. First, a’(s) may oscillate wildly near zero in the sense that
a’(s) may be unbounded above and a’(s) may not be bounded away from zero as
s- 0. We mention in passing that results concerning the existence of a solution and
regularity properties of the solution for a one-dimensional Stefan-like problem with
this feature are established in [X1]. Also, in the references cited there we may find
descriptions of several heat conduction phase change processes that give rise to this
type of degeneracy in a. Second, (1.1b) does not contain a term involving (o/Ot)q.
Third, or(s) does not stay away from zero as Isl-. As it is observed in [X2], this
condition prevents us from obtaining a solution of (1.1) via the classical weak formula-
tion as it is done in [SSX]. Let us expand on this point a little bit more. In order for
us to view the system in the sense of distributions, we should know that q belongs to
L2(0, T; W1’2(12)). This information would be implied by the boundedness of the
temperature, which in turn depends upon the regularity of q. Existing results on the
regularity of weak solutions to degenerate parabolic equations of type (1.1a) indicate
that there is a gap between the regularity of q obtained from assuming u is bounded
and that needed to yield the boundedness of u. This gap does not seem to be of a
technical nature. As a result, the classical notion of a weak solution [SSX] is not
appropriate in analyzing (1.1). We conclude that the solution to (1.1) may display new
phenomena that cannot be incorporated into the classical notion of a weak solution.
It turns out that we are able to employ the notion of a capacity solution developed in
[X2] to study (1.1). This notion of a solution is based upon the following observation.
Equation (1.1b) degenerates only at points where u is infinity. For each m > 0, (1.1b)
is uniformly elliptic on the set E,,-= {(x, t) QT-: lu(x, t)l -< m, Thus it is reasonable
to expect that Vq exists as a vector-valued function on E,, for each m in a certain
sense. That is to say, Vq in the sense of distributions may not belong to any LP-space
with p _-> 1. Somehow, Vq still exists almost everywhere on QT as a function. Then we
may view cr(u)Vq as a product of two functions in QT-. In this way we hope to avoid
the above-mentioned gap in our problem. To make our above statements precise, we
have the following definition.

DEFINITION. By a capacity solution of (1.1), we mean a quadruplet (u, 0, v, g)
such that

(i) uL2(O, T; Wl’2(f)), qL(Qr), vL2(Qr), and g [L2(0, T; L2(f))]N;
(ii) v a(u) almost everywhere on
(iii) u, q, v, g satisfy

(1.2)
a(Vu)Vr/dx dt + f(x, t, u)r ds dt

(q-qo)gVrldxdt+ gVqgorldxdt+
QT QT

for all r/ Hi(0, T; wl’2(f)) such that r/(x, T)-=0, and

Vo(X),(x, o) dx

(1.3) I gVd/dx dt =0 for all 6 L2(0, T; W’2(12));
aQ

(iv) For each positive integer m and each function 0 in 4 {b CI(R): b’(s)>=0
on R, b(s) =0 on (-, 0], and b(s)= 1 on [1, c)} there hold

(1.4) F(om)cp L:Z(0, T; W":z()),
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(1.5) Fo")q q:’o in L2(0, T; L2(01])),

(1.6) Fo")g tr(u) (V (Fo")q) VF)),

where F) 1-O((1/m)lul).
LEMMA 1.1. Let (A1)-(A5) be satisfied. Assume that (u, , v,g) is a capacity

solution of (1.1). If [u] M almost everywhere on Qr for some M> O, then V
L2(0, T; W’2()), g= (u)V, and (u, , v) is a classical weak solution of (1.1).

Remark. A classical weak solution of (1.1) can be defined in an obvious way; see,
e.g., [SSX]. The proof of this lemma is similar to that given in IX2]. Thus the notion
of a capacity solution is a suitable generalization of that of a classical weak solution.
If (u, , v) is a classical weak solution, then we deduce from (1.3) that for any

L2(O, T; W"2(n))L(Qr),

f (u)}VJ2dxdt=f (u)V(V(-o)+Vo)dxdt
QT QT

(1.7)

dx dt.
QT dQT

Now let (u, , v, g) be a capacity solution of (1.1). For each positive integer k, let

Ek {(x, t) Qr: lu(x, t)l k}. By the proof of Lemma 1.1 in IX2], we may select a 0
from M and an m so that

(1.8) F a.e. on Ek.

SinceF L(0, T; WI’()), we may calculate V(F(x, t)(x, t)) for almost every
(x, t) Q in the sense of Lemma A.2 in [KS, p. 50]. In view of (1.8), it is natural for
us to define

(1.9) V(x, t)=V(Fm(x, t)(x, t)) for (x, t) Ek.

Since QrkI Ek is of measure zero, we may evaluate V(x, t) through (1.9) for
almost every (x, t) Qr. Thus we say that V(x, t) exists almost everywhere on Qr.
Clearly, V so obtained is a measurable function, and it belongs to [LE(Ek)]N for
each k. Also, we easily obtain from (1.6) that

g=(u)V a.e. on Qr.

We may conclude that the difference between a capacity solution and a classical weak
solution is that in the classical weak solution the gradient of is evaluated in the
sense of distributions, while in the capacity solution the same gradient is calculated
in the almost everywhere sense. However, in a capacity solution, V in the sense of
distributions may not belong to any LP-space with p 1. Thus (1.7) only holds for
those L(0, T; W’())L(Qr) such that (-ffo)L2(0, T; W’2()). It is
easy to see that if L2(0, T; wl’2()) is such that 0 almost everywhere on QTEk
for some k, then L(0, T; WI’(O)). Also, in a capacity solution, the trace ls
may not make sense, and thus (1.5) is used to describe the boundary condition for .
Moreover, the product (u)V is taken as a product of two functions in Qr. Thus
through the use of (1.4)-(1.6) we have successfully avoided all possible ambiguity in
our problem caused by the degeneracy and at the same time probably retained the
best possible regularity information on the solution under the circumstances.

The main result of this paper is that under (A1)-(A5) there is a capacity solution
to (1.1).
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A capacity solution to (1.1) is constructed as a limit of a sequence of classical
weak solutions ofthe regularized problems. In 2 we consider the regularized stationary
problem, while 3 is devoted to the study of the regularized time-dependent problem.
The results in 2 and 3 are used in 4 to prove our main existence theorem.

The letter c will be used to denote the generic constant. When distinction among
different constants is needed, we add a subscript to c with {0, 1, 2,... }.

2. The stationary problem. In this section we consider the following stationary
problem:

(2.1a) a(u)-div a(Vu)=o’(u)lV,,o[2+H(x) in

(2.1b) div (tr(u)X7)=0 in

(2.1c) a(Vu), v+f(x, u)=0 in

(2.1d) qo in

With respect to the data involved we assume the following.
(B1) a is Lipschitz continuous and strongly coercive monotone, i.e.,

CIIS S2I2 (O($1)- O($2))(S $2) Cols $212 for all sl, s2 ,
where Co, C1 are two positive constants.

(B2) or(s) is continuous and satisfies

C2 o-(s) C for all s I,

where C2, C3 are two positive constants with C2 <= C3.
(B3) a is given as in 1. The function f(x, ) satisfies (A2) with (x, t) replaced

by x, while the function H(x) belongs to L2(f). Also, o L2(OO), and there is a
function -- in wl’(f) such that --- o in L:(0f).

A weak solution to (2.1) is defined as a pair (u, ) such that

(2.2) u, Wl’2(f),
(2.3)

(2.4)

o in L2(a[’),

fa (a(u)b + a(Vu)Vd/) dx + fo f(x’ u)d/

In (a’(u)lV12+ H(x))d/(x) dx

for every $(x) e wl’2(-) L(f), and

(2.5) [ tr(u)VVn(x) dx=O
d

for every n e W’2(fl).

We immediately have the following.
LEMMA 2.1. If (U, ) is a weak solution of (2.1), then (2.4) is equivalent to the

following:

fa (a(u)d/ + a(Vu)Vd/) dx + f f(x’ u)d/

(2.6)
tr(u)VtpV $(q qo) dx+ tr(u)VqVCod/dx+ H(x)d/dx

for every , W’/(fZ).
The proof is similar to that of [HRS, Lemma 1], and we shall omit it here.
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LEMMA 2.2. Under the assumptions (B1)-(B3) there is a weak solution to (2.1).
Proof We follow the approach adopted in [X3]. For each positive integer k define

(2.7) Pk(X) (k if k,

IXl2 if [X12--<__ k.

By an argument similar to that used in the proof of Lemma 2.1 in [X3], we obtain
that for each k there exists at least one vector-valued function uk=(uk, u(Ek)
W1’2(1)) x {v W1’2(1)): vloa Oo} such that

(2.8)

In ((u?)P(Vu)+ H(x)), dx

for all o W1’2(12), and

(2.9) fa ’(uk))VUI’v’q(X) dx=O

We infer from (2.9) that

(2.10)

for all 7 e Wo1’(12).

sup

(2.11) Ia IVu2kl- dx<=c (k= 1, 2,." .).

We infer from the proof of Lemma 2.1 in [X3] that we can set O=(uk)-, (uk)/
successively in (2.8) to obtain

(2.12) [[IIk)IIW’,2(II)C (k= 1, 2,." .).

In view of (2.10), (2.11), and (2.12), we may select a subsequence of {k}, still denoted
by {k}, so that

(2.13) u]k) Ul strongly in L2(I)) and weakly in W1’2(12),

(2.14) u(2 u2 strongly in L2(I)) and weakly in W’2(12).

Setting r/= uk)- u2 in (2.9) and using (2.14) in the resulting equation yields

(2.15) u(2k) u2 strongly in W’2(I)).

It follows from (2.13) and a result in [M, p.76] that

uk-- U strongly in L2(OI’).

We still need to show that

(2.16) V uk) -’) VUl

For this purpose, fix e, i > 0 and define

(s) s

a.e. on .
if s -_> e,
if -e < s < e,
if s<--e.
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According to Egoroff’s theorem, there exists a measurable set E c f such that
LN(f\E)<-/5 and uk)- Ul uniformly on E. Thus if we choose k so large that
[uk)- u[<-_ el2 on E, we may calculate using (2.8) and [B3] that

f ’Vuk)-Vu[2 dx<=c fa(a(Vuk))-a(Vu))Vfl(uk)-ul) dX

Now l(u- u) goes to zero strongly in L(a) and weakly in W’(a). Also, P(Vu)
converges strongly to IV ul in L(ll) due to (2.15). Consequently,

limsup f dx =Oo
k-c ]E

Hence, passing if need be to a further subsequence, we deduce VukVUl almost
everywhere on E. This is true for each/5 > 0, and so (2.16) holds. By (B3), we conclude

a(Vuk) a(VUl) weakly in [L2(f)] N.

Now we can pass to the limit in (2.8) and (2.9). This completes the proof of the lemma.
Remark. The proof peresented here can easily be modified to cover the case

considered in [HRS].

3. The time-dependent problem. In this section we assume that (B1), (B2), (A1),
(A2), and (AS) hold. Consider the following problem:

(3.1a)
0
a(u)-div a(Vu)= r(u)[Vp[2 in QT,

Ot

(3.1b) div (cr(u)Vq) =0 in QT,

(3.1c) a(Vu), v+f(x, t, u)=0 in ST,

(3.1d) P Po in ST,

(3.1e) a(u) Vo in f x {0}.

(3.2)

(3.3)

By a weak solution to (3.1) we mean a pair (u, q) such that

u, p L(0, T; W"2(f)),

P qo in L-(0, T; L2(02)),

a(u)d/t dx dt + a(Vu)Vff dx dt + f(x, t, u)d/ds dt
QT QT

Ic Vo@(x, O) dx + I cr(u)]V[2@ dx dt
QT
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for all q Hi(0, T; WI"2(f))f’IL(QT-) such that q(x, T)-=0, and

(3.4) I o’(u)VqVrldxdt=O
QT

for all L2(0, T; W’2()).
Let U= W’2() and U* be the topological dual of U. Define an operator

A:L2(0, T; U) L2(0, T; U*) by

(A(u),v)= a(Vu)Vvdxdt+ f(x,t,u)vdsdt, U, OG L2(0, T; U).
Q

In view of (A1) and (A2), A is well defined. Let B(u, v) be the operator from
L2(0, T; U)x L(0, T; U) L(Q) to L2(0, T; U*) defined by

(B(u, v), w)=- (u)Vv(v-o)Vwdxdt+ (u)VvVpowdxdt,

u, U(o, ; u), (o, T; u) (

By [B2] and [AS], B(u, ) is also well defined.
Ln 3.1. I the pair (u, ) is a weak solution o (3.1), then (3.3) is equivalent

to the ollowing:

t

.6 --u+Au:u, n 0, ; *.
t

For La(0, T; U) L(Q) we calculate, with the aid of (3.4), that

QT QT

I(3.7) (u)V(p o)V dx dt
r

+ (u)VVodxdt.

The lemma can easily be inferrred from using (3.7) in (3.3).
LMN 3.2. Let (B1), (B2), (A1), and (A5) be satisfied. Assume that

W’(). en there is a weak solution to (3.1).
Proo Let k be a positive integer and T/k Set

ug=
By Lemma 2.2, we may define a set of k pairs (u, ),..., (u,) via the
following iteration formula:

(3.a (}-(-d(} (1 n a,

(3.9) div ((u)V})=0 in a,
(3.10) a(Vu)+f(x,j, u) =0 in

o(X,t) dt onOff, j=l,2,.’.,k.(3 11) k
-1
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Subsequently, set

Uk)(X, t)= Uk)(X
)(x))(, t)= )(x)

if t-<O
(j=l,...,k),

if (j 1)t < _-<j

if t<-
(j=2,.-. ,k).

if (j- 1) < _-<j

Invoking the weak formulation of problem (3.8)-(3.11), we obtain

(3.12) f cr(u(k))vq(k)Vdxdt--O
QT

for all L2(O, T; W’2(I)). We infer from the weak maximum principle that

(3.13) sup I,)1 <- c (k= 1,2,’’ ").
QT

Set

(k)Let sc=p

po(X, 7") d’r if (j 1) 8 < -<j6ok(X, t) " J-’)

0 in (3.12) to obtain

(3.14) f IVI= dx dt <= c (k 1, 2,’" ).
QT

(j= 1, 2,... ,k).

Now set

J(s -l( a,.

Without loss of generality, we assume a(0) 0. Then the functional G: L2(f)
defined by

Ia J(f) dx if J(f) Ll(f),
G(f) +oo otherwise

is lower semicontinuous on
Now we wish to show that

(3.15) sup f lu(k)(x, t)l2 dx + f 1Tu(k)[2 dx dt <=c (k 1, 2,... ).
O <= T ,1 ,1QT

This estimate can easily be inferred from 4 of [SSX]. We only point out that in our
situation there exist two positive numbers Cl, c2 such that

I-l(s)l>-c, ls[, I(s)l>_-c21sl for all s.
Subsequently,

G(a(u(k)(x, t)))= o-l(s) ds dx

a-l(s) as dx >-_ c [u(k)(x, t)l2 dx.
o

Now define v(k) by

v(g)(x, t)
(j 1)8 (u,)+
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if (j 1) 3 < _-<j3, j 1," , k for k 1, 2,. . We may infer from Lemma 3.1, (3.8),
and (3.9) that

0 v(k) + a(Vu(k))v dx dt + f(x, t, uk)) ds dt
QT fZ

(3.16) f O’(u(k))v((k)(((k)--Ok)V dx dt
QT

q" f O’(u(k))7(0(k)7Ok dx dt for all sc L2(0, T; W1’2(’)),
QT

where (.,.) denotes the duality pairing between L2(0, T; U*) and L2(0, T; wl’(f)).
Since a is Lipschitz continuous, we derive from (3.15) that

sup Ivk)(x, t)l dx + IV vk)12 dx dt <-_ c,
OtT

(k=l,...),

where c may depend on [[Va-l(Vo)[IL2(a). This, together with (3.16), (3.13), and (3.14)
implies that

L2(0, T; U*)

By Lions-Aubin’s theorem, {l)(k)} is precompact in L2(QT). We estimate

(3.17)

(k) 1 Io (k)(x, t)) ot dx dt--a(u(k)))2 dxdt=’ (a(u (u(k)(x, t--3)))2

T

(u(k)(x, t) u(k)(x, t-- 3)) dx dt.
T

Using UJk) ,(k),;_ as a test function in (3.8), after a sequence of calculations we get

Co (u(k)(x, t)--u(k)(x, t--rS))2 dxdtCl5/2O as k - oo.

This, together with (3.17) implies that {a (u(k))} is precompact in L2(Qr). Consequently,
{u (k)} is also precompact in L2(0, T; L2(f/)) due to (B1). Now we can select a sub-
sequence of {k}, still denoted by {k}, such that

(3.18)
u(k)- U strongly in L2(0, T; L2(f/))

weakly in L2(0, T; Wl"2(fl)),

and

(3.19) a(Vu(k)) L(x, t) weakly in [L2(Qr)]

(3.20) 0(k) 0 weakly in L2(0, T; W’2(f)).

By (3.18) and the trace theorem [CDK], we obtain

(3.21) u(k) u strongly in L2(0, T; L2(Ofl)).
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From the definition of {Ok}, we see that

(k)_ qOk L2(0, T; W’2(f)) for each k,

Ok" o strongly in L2(0, T; wl’2(f)).

Set 0
(k)

0k + 00 in (3.12) to get

f cr(tt(k))vcP(k)v(cP(k)--qg)dxdt=f cr(u(k))vtp(k)v(-Ok--Cp--o)dXdt
Q’F QT

from whence follows

(3.22) lim | IV(o (k) p)12 dx at o.
k-oo jQT

Note that (O/Ot)v(k)(O/ot)a(u) weakly in L2(0, T; U*) because of (3.17). We can
take k in (3.16) to obtain

0
a(u) L(O, T; U*),

Ot
(3.23)

a(u)+ A(u)= B(u, q) in L2(0, T; U*),
Ot

where B(u, q) is given as in Lemma 3.1, and A(u) L2(0, T; U*) is given by

($(u), v)= LVvdxdt+ f(x, t, u)vdSdt,
QT

v L2(0, T; W"2(a)).

Before we continue, let us cite the following lemma.
LEMMA 3.3. Let a be a Lipschitz continuous and strongly coercive monotonefunction

on and fl a Lipschitz continuous function on with a(0)=/3(0)=0. Assume that
uL2(O, T; W1’2()) and that (O/Ot)a(u)L2(O, T; U*). Then the function t-

faOfa(u(x’t)) (0--I(S)) ds dx is absolutely continuous on (0, T), and

dt ao
a(u),(u) for a.e. (0, T),

where (.,.) denotes the duality pairing between U* and wl’2().
Remark. This lemma is a consequence of Theorem 17 in [BR1], the chain rule,

and the fact that (v, u)=n vudx for u wl’E(f), v L(f) fq U*. It is worth pointing
out that if v only belongs to L(I)fq U* the question of whether (v, u)--a vu dx is
first, raised by Br6zis in [BR2], remains open.

Return to the proof of Lemma 3.2. We derive from (3.23) and Lemma 3.3 that

(3.24)

O-I(s) ds dx- o-l(s) ds dx

+ LVu dx dt + f(x, t, u)u dS dt
QT f

r(u)Vtp (q po)V u dx dt + cr(u)VqVpoU dx dt.
QT QT
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Here we would like to point out that a(u) C([0, T]; L2(fl)), and thus the first term
in (3.24) makes sense. We have

G(a(u(k)(x, T)))-G(vo)+ f a(Vu(k))Vu (k) dxdt

+ fk(x, t, uk))uk) ds dt

(3.25)

/ r(uk))Vqk)(qk)--o)VUCk) dxdt

+ f o’(uk))Vk)VoUCk) dxdt.

Remember that v)(x, t)- (u(x, t)) strongly in L:(f) for almost every (0, T].
Also, {(O/Ot)vk)} is bounded in L(0, T; U*). We easily see that a(u),v)
C([0, T]; L2(f)) for each k and

vk)(x, t)- a(u(x, t)) weakly in L:(f/) for each in [0, T].

In particular, we have

1)(k)(x, T)-"ce(u(k)(x, T))-, a(u(x, T)) weakly in L2(f).
Consequently,

lim inf G(a(u(k)(x, T))) >- G(a(u(x, T))).
k-oo

We easily deduce from (3.22) that

P
(k) __> P strongly in Lp (Qr)

Thus letting k--> in (3.25) yields

lim sup f a(Vu(k))Vu
k-c dQr

for each p => 1.

(k) dx dt <-_ G(vo)- G(a(u(x, T))) f(x, t, u)u dS dt

I tr(u)Vp(p-qo)Vudxdt
QT

I+ tr(u)VpVqoU dx dt
QT

=[ LVu dx dt.
QT

The last step is due to (3.24).
We estimate from (A1) that

f Ivu<  -Vu[ dxdt<=c f (a(Vuk)-a(Vu))(Vuk-Vu) dxdt
QT QT

-’c[f a(tl(k))vtl (k) dxdt-f a(Vu(k))Vudxdt
QT QT

f a(Vu)(Vu(k)-Vu) dxdt1.QT
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This implies that

lim Ik QT
IV u (k) V u]2 dx dt O.

We immediately obtain, with the aid of (A1) and (3.19), that

L=a(Vu) a.e. on QT.

This completes the proof of Lemma 3.2.
Remark. The arguments presented here can be used to simplify the proof in [SSX].

4. Proof of the main result. Let J(s) be a nonnegative function on belonging
to C(R) and having the following properties:

(i) J(s) 0 if Is[->_ 1; and
(ii) R J(s) ds 1.

We derive from (A4) that a-l(s) is uniformly continuous on . Thus the sequence
{ Ck (S)} defined by

Ck(S)= J(k(s-))a (r) d (k= 1,2,...)

converges to a-l(s) uniformly on R as k--> oe. For each k, denote by ak(S) the inverse
of k(S)+(1/k)s--tk(O). Then ak is Lipschitz continuous and strongly coercive
monotone for each fixed k. Now fix a k, and consider the following problem:

0
ak(u)-div a(Vu)=   (u)lv l2 in QT,(4.1)

Ot

(4.2) div (Crk (U)Vp 0 in QT,

a(Vu). , +f(x, t, u) O in ST,

(4.3) q qo in ST,

ak(U) VO in f {0},

where Crk(S)--cr(s)+(1/k). Without loss of generality, assume o-l(vo) E wl’2(") for
each k. By Lemma 3.2, for each k there is a pair (Uk, qk) such that

(4.4) Ok L(QT)f"I L’(O, T; W"2(I’])), Uk L2(0, T; W1’2(1"1)),

0
(4.5) --0t Vk + A(Uk) B(Uk, k) in L2(0, T; U*),

(4.6) fQ crk(uk)VqgVd/dxdt=O for all L2(0, T; W’2(f)),

(4.7)

(4.8) ak(Uk)=Vo

in L2(0, T; L2(0fl)),

in C([0, T); L2(f)),

where Vk ak Uk ).
NOW we proceed to derive a priori estimates on the sequence {(uk, k)}. Set

qJ ok- Po in (4.6) to obtain

(4.9) f O"k Uk )17 (k 2 dx dt <- c k 1, 2,... ).
QT
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By the weak maximum principle,

(4.10) sup Itpk[ <-- C
QT

We wish to show that

(k=l,2,.- .).

(4.11) supf.u(x,t)dx+IlVuldxdt-c (k=l,2,. .).
0__.t___ T QT

For this purpose, fix a positive number M. For each k let Sk be the solution of the
following equation:

(4.12) ak(S)=M.

By [A4], there is a positive number Mo so that

(4.13 lim inf Sk > Mo.
koo

Use (Vk-M)+ as a test function in (4.5) to get

a
)+]2 if.dx-- [(Vo dx

+ I(u>=s)
(4.14)

rk(Uk)VPk(Pk qO)ak(Uk)VUk dx dt
us}

+ f rk(uk)VqkVq--o(Vk-- M)+ dx dr.
dOr

a(VUk)a(Uk)VUk dx dt + f(x, t, Uk)(Vk M)+ ds dt

Without loss of generality, assume a(0)=0. According to (A4) and (4.3), there exist
two positive numbers M1 and M2 such that

(4.15) M1 <= a’(Uk) <= M2 a.e. on {Uk >= Sk}

at least for k sufficiently large. Also, the term jor Joaf(x, t, Uk)(Vk--M)/ dS dt is non-
negative due to (A2). Consequently, we deduce from (4.9), (4.10), and (4.14) that

Ia [(vk(x, T)-M)+]2 dx+c f{ IVUk[2 dxdt
(4.16)

-->}

t"

Cl q" Ca / [(Vk M)+]2 dx dt.
dQr

It is not difficult to see from the proof of (4.16) that

lfa foIa[(Vk(X, t)- M)+]2 dx < C + C2 [(Vk M)+]2 dx dt

for all (0, T].
An application of Gronwall’s inequality yields

(4.17) sup f [(Vk(X, t)-M)+]2 dx<=c
O<--tT

(k= 1,2,...).
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In a similar fashion, we can find a positive number M3 so that

(4.18) sup f[(Vk(X,t)+M3)-]2dx<-c (k=l,2,. .).
O<--tT

Combining (4.17) and (4.18) yields

(4.19) sup f V2k(X, t) dx<=c (k= 1, 2,’").

This, together with [A4], implies

(4.20) sup f Uk(X, t) dx <= c (k 1, 2,’’’ ).
O<--tT

Use Uk as a test function in (4.5), and keep in mind Lemma 3.3, to get

If(x’T)

-1 fD, f v(x)
-1a (s)dsdx- a (s) dsdx+c Ivu l= dxdt

# 0 . 0 Qvr
(4.21)

<=-- O’k(Uk)Vqgk(qgk--qgo)Vtlkdxdt+ O’k(tlk)VpkVqgOtlkdxdt.
QT QT

Since ak(0)= 0, the term (,T)a(S)ds=’) al(s)ds is nonnegative. Also,
recall that al(s)a-(s) uniformly on as k. We have

a(s) ds dx a-(s) ds dx,
dO dO

which is finite by our assumption. We estimate from (4.21), using (4.20), (4.9), and
(4.10) that

[VUkl dxdt c (k= 1, 2,’").
QT

This completes the proof of (4.11).
It follows from (4.11) and (4.5) that {(O/Ot)v} is bounded in L(0, T; U*). This,

together with (4.19), implies that {Vk} is precompact in L(0, T; U*) (see IS]). Thus
we may select a subsequence of {k}, still denoted by {k}, so that

(4.22) Uk U weakly in L(0, T; W’()),

(4.23) a(VUk) L weakly in [L(Qr)],
(4.24) Vk V weakly in L(Qr) and strongly in L(0, T; U*),

(4.25) k(Vk)Vk g weakly in [L(Qr)]s,
(4.26) k weakly* in L(Qr).

By (4.22) and (4.24), we have

(v v)(u u) dx dt (v v, u u) dt 0 as k ,
where (.,.) denoted the duality pairing between U* and W’().
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Consequently,

a(u)- a(u))(u u) ,ix at
Qr

f (ak(Uk)-- V)(Uk-- U) dxdt
Qr

+ f (v-a(u))(u-u) dxdt-O as ko.
OT

Hence, passing if need be to a further subsequence, we deduce

(4.27) O<=(ak(Uk)--ak(U))(Uk--U)O a.e. on QT.

Since a-l(s) is a single-valued function, we can derive from (4.27) that

(4.28) Uk " u a.e. on QT.

In view of (A4) and (4.28), we have that VkUk VU almost everywhere on QT. By (4.27),
or VkUkdXdt-Or vudxdt. Then a result of [X4] asserts that {VkUk} is uniformly
integrable. This, together with (A4), implies that {u} is uniformly integrable. We may
appeal to Vitali’s theorem to conclude that

(4.29) Uk - U strongly in L2(0, T; L2(f)).
Now we are in a position to invoke the trace theorem [CDK] to get

(4.30) Uk -- u strongly in L(0, T; L2(0f)).
We wish to modify the proof presented in [X2, 3] so that we can establish

(4.31) 0k -- P a.e. on QT.

For each k let

I/k (k (0 and 0 o.
Then is a solution of the problem

-div (trk(Uk)Vtk)=div (Crk(Uk)VqO) in Q,

Ok 0 in St.
For 0 M, where M is defined in 1, and m {1, 2,... }, let

6(km)=l--O(1---’JUk[)’rn b(") 1- 0 (- lu’) =-F(m)"

By the proof presented in IX2, 3], there hold

0__< )___ 1, 0__< ()__< 1,

Or
IVb (k")l2 dx dt <-_

m2

dxdt<=- (m= 1, 2,’’ "),

and for each fixed m

strongly in L2(QT) and weakly in L2(0, T; wl’2(’)),
weakly in L2(0, T; W’2(f)).
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Now we are in a position to establish

(4.32) lim sup tYk(Uk)lV(llkt(km)--I].l(rn))l2 dxdt <-- (m= 1,2,...).
k QT m

To this end, we calculate, for X e L2(0, T; W’2(I))), that

QT QT

f tYk(Uk)XVd/kVC(km) dx dt
QT

+ f O’k(Uk)lkV(km)Vx dx dr.
QT

L=(0, T; W’2(")). Set X--Ilkt(km)--It (m) in the aboveNote that g/k4) (km),
equation to obtain

O’k(Uk)V(d/kCibkm))v(bkCibk-6(’) dx dt
QT

f O’k(Uk)V(O’-OV[(rlk(km)- /(m))(km) dX at
QT

I O’k(Uk)(d/kd,b(km)- d/d,b(’))VqkVqb(k’ dx dt
Qr

+ I (u)g,v6()v(66m)- ,4) (m)) dx at
Qr

Each term on the right-hand side is estimated below"

z=-f (u)VV6(m)(e,6m)--4,6()) dxdt
Qr

(u)V6m)v(6m)_ 66(m)) dx at
Qr

f ffk(Uk)V6m)V(k6m)-6() dx dt

-- (u)V6)v(6) 6(m)) & at
m Qr

c
as k.

m

h and h can be estimated in the same manner as in [X2, 3]"
Cl
m

c 1 c2
m m

-+Cmm+ (u)(())ll(o) as ko--._m
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We are ready to estimate

lim sup f trk(Uk)lV(0kthm)- 04(m))l2 dxdt
k .]QT

Nlim sup [ k(Uk)V(Okm))V(Okm)--O(m)) dxdt
k QT

+ lim- k(Uk)V(o(m))V(Okm)--O(m)) dxdtN--.
k Qr m

This completes the proof of (4.32).
Choose a bounded domain D in Nu so that

We extend each Uk to belong to L2(0, T; W’2(D)) in such a manner that there still hold

uk u strongly in L2(0, T; L2(D)),

Uk u weakly in L(0, T; W’(D)).

A careful examination of the proofs of the extension theorems in [AD] clearly indicates
that such an extension is possible. We extend each Ok to be identically zero outside
QT. Clearly, we still have qk e L2(0, T; W’2(D)) for each k, and (4.32) still holds with
QT replaced by DX(O, T).

Whenever E c DX(0, T), 1 _-< p < m, define

Xp(E)--inf{fDX(O,T [VvlP dxdt: v LP(O, T; W’P(D)), v>- I

We easily verify that Xp is an outer measure over DX(0, T); see [X2, Lemma 2.1].
We can also prove, as in [X2, Lemma 2.2], the following lemma.

LEMMA 4.1. Assume that the sequence {fk} is bounded in L-(O, T; W’2(D)) and
precompact in L2(0, T; L2(D)). Then there exist a subsequence {fk}C {fk} and afunction
fL2(0, T; W’2(D)) such that for each l=<p<2 and each 6>0, there exists a set

E DX(O, T) with

fkj f uniformly on E and Xp(DX(0, T)\E) <-_ a.
Once we have Lemma 4.1 and (4.32), we can appeal to the proof presented in

IX2, 3] to conclude that

0k 0 a.e. on DX(O, T).

This completes the proof of (4.31).
Remark. Here we do not have estimates of the type

(u(x, / h)- u(x, t)) dx dtd"’(h)=h
O

C

for all h e (0, T) and some e > 0

for u,. If we examine the proof of Lemmas 2.1 and 2.2 in [X2], the only purpose such
estimates serve is to guarantee that a bounded sequence in L-(0, T; w’E(D)) is
precompact in L(Qr). Here we already know that [Uk} is precompact in L(Qr). Thus
we may ignore the term d,,,(h) and claim that Lemmas 2.1 and 2.2 in [X2] remain
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true even when e 0. However, we are no longer able to use the method employed in
IX2, 2] to prove

VUk-Vu a.e. on

For this, we need to adopt a different analysis here. We calculate, using Lemma 3.3, that

rk, U dt= a (s) ds dx- (s) ds dx
dO 0

(4.33)
((s--(sl s

+ a-l(s) ds
d0 d0

Recall that a o a- uniformly on as k o. Thus the first two terms on the right-hand
side of (4.33) converge to zero as ko. Since ((a/at)v} is bounded in L(0, T; U*),
it is not dicult for us to verify that

v c([0, ]; ()),
Vk(’, t) o V(’, t) weakly in L(fl) for all [0, T].

We deduce from (4.33) that

liminf v, u dt
0

a (s) dsdx

(4.34)
a-l(s) ds dx.

dO

We may take k in (4.5) to get

v+,(u) B(u, o) in L2(0, T; U*),(4.35)
Ot

where (u) is given by

((u), v) dr= LVvdxdt+ f(x, t, u)vdsdt
o f

(4.36)
for each v L2(0, T; wl’2(f)),

and B(u, o) is defined by

fo ; I(/J(u, o), v) tit=- o o---o gV v dx d + gV ov dx d
QT QT

(4.37)
for each v L2(0, T; W’:(f)).

A result of [BCS] asserts that

v6a(u) a.e. on Q.

Moreover, we have that (O/Ot)v L2(O, T; U*) and that

) Iof(4.38) v, u dr= a-l(s) ds dx- a-l(s) ds dx.
dO dO
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Now we use Uk as a test function in (4.5) to get

)a(VUk)7t/k dx dt 1)k, IIk dt- f(x, t, Uk)Uk ds dt
QT

(4.39) O’k(Uk)Vqk(Pk oo)V Uk dx dt
QT

+ O"k Uk V (kV(oUk dx dt.
QT

Pick a 0 from M so that O(s)=0 on (-o, 1/2). For each m let

p(m)= sup tr(s).
Isl>=m/2

We estimate

I O’k(Uk)V((OkO(-’[Uk[)) ((Ok-(--O)V(uk-u) dxdt
QT

(4.40)

-}-I O’k(tlk)kV(O(--[tlk[)) (k-Z)V(uk-u) dXdt
QT

1/2
C

IIV(u -
m

<-c,/p(m)+ l/k+--.
m

We have that

lim sup
ko IQT r(Uk)V(qkdV))(qk -)V(uk u) dx dt

(4.41)

<_- lim sup (u)V(b))(o- -)V(u- u) dx dt
Or

+lim sup
kc fQr (u)V(qSo6m))(o -)V(u u) dx dt

--Jl+J2.

Note that {rk(Uk)(k--)} converges strongly in L2(QT) due to (4.31). Consequently,

J2 -< lim
koo

r(U)qbmVoo(k --o)V(u, u) dx dt

r(u)oVqb"(--o)V(u-u) dxdt
QT

Cllim sup cllXT    ll   o  llV(u -
k-o m
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To estimate J1, we use (4.32) to obtain

J1 lim sup

+ lim
ko

trk(Uk)V(k6(k")- dp(m))(Pk--oo)V(Uk-- U) dx dt
QT

whence follows

Consequently,

lim| IVuk-Vul2dxdt=O.
k .]QT

L=a(Vu) a.e. QT-

Equation (1.2) is a consequence of (4.35). Taking kc in (4.6) yields (1.3). Equations
(1.4), (1.5), and (1.6) can be obtained in the same manner as in IX2]. This completes
the proof of our main theorem.

We conclude that

(4.42) lim sup O’k(Uk)V((k()(km))((k

We derive from (4.40) and (4.42) that

Ilim sup- (u)V(
k QT- g( o)Vu dx dt

(4.43) +lim sup-
k QT

( o)V(u u) dx dt- g(-o)Vudxdt+c ++4p(m)

By (A3), limmp(m)= 0. Thus we have from (4.43) that

(4.44) lim sup- (u)V( o)Vu& de N g( o)Vu & dr.
k QT QT

Lettingk in (4.39) and taking into account (4.34), (4.31), (4.30), and (4.44) yields

lim sup a(Vu)Vu dx dt a-l(s) ds dx + a-l(s) ds dx
k QT 0

f(x, t, u)u ds dt

g(
QT QT

This, together with (4.35) and (4.38), implies

limsup a(Vu)Vudxd,N LVudxdt
k QT QT
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A FREE BOUNDARY PROBLEM ARISING IN
ELECTROPHOTOGRAPHY:

SOLUTIONS WITH CONNECTED TONER REGION*

BEI HU AND LIHE WANG$

Abstract. A free boundary problem that arises in the development of a photocopy is studied.
The electric potential -u satisfies the equation Au 1 in the toner region and Au 0 elsewhere.
It is shown that Cl/a smoothness of the free boundary would imply the C2/a smoothness of the
solution up to both sides of the free boundary. Using this fact, the existence of a solution with
connected it is proven that toner region with 0-g 0 on the free boundary when the electrical charge
length is "small."

Key words, free boundary problems, electrophotography, photocopy, elliptic estimates
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1. Introduction. One of the steps in the photocopying process is the develop-
ment of the electrical image into a visible image. A positively charged toner is brushed
on to the electrical image, and a visible dark image is therefore produced. This process
is modeled as a nonstandard free boundary problem. (See [2], [3] for more details.)
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I 0); Ixl < e},
J {(x, 0); Ixl < a},

{(x, y); < a,-h < y < b} +U J U f-.

The problem is formulated as follows. Find the pair (u, A) such that

(1.1) Au=l inA,

(1.2) Au----0 inf,\A,
(1.3) u ( C ( \ ),
(1.4) uy(x, O+) uy(x, 0-) -a in I,

and u satisfies the free boundary condition

(1.5)
Ou
0--=0 onF,

where F OA q f+ and is the outward normal to A, and also the boundary
conditions:

(1.6) u(x,-h) 0 -a < x < a,

(1.7) u(x, b)= M -a < x < a,

(1.8) ux(:t=a,y) 0 -h < y < b.

Here -u is the electrical potential. The jump condition (1.4) on the interval I rep-
resents a negative surface charge, and positively charged toner is expected to be
attracted to cover the interval I. The domain A is the toner region, and (+ \ A) is
the air region. The condition (1.5) indicates that there is no force to attract or repel
the toner on the interface between the toner and air, and, therefore, the toner region
reaches its equilibrium. This should be the case when the image is fully developed.
Mathematically, the toner region A is a nonempty region where Au 1.

a, b,h,M,a in (1.1)-(1.8) are positive constants, and it is reasonable to assume
that (see [3])

(1.9) M < ah, b >_ h.

When a- e is small, the problem reduces to a variational inequality; it is proved
in [3] that in this case the problem has a unique solution.

When e is small, it is proved in [3] that the problem is no longer a variational
inequality and there are infinitely many solutions with two symmetric components, it
is not clear, however, whether such solutions are physical.

The toner is expected to cover the entire interval I, where a black dot should
develop. A connected toner region over the interval I will serve such a purpose. It
is shown in [3] that there exists a "em-approximate" solution for which the toner set
consists of a single component. The tool used there is the topological fixed point
theorem. In order to use a topological fixed point theorem, the system (1.1)-(1.4) is
solved with the boundary condition (1.6)-(1.8) for each given F, and then a new F is
obtained, roughly speaking, by solving (1.5). The difficulty for finding a real solution
with one connected toner region is that the corresponding u will have Vu 0 at the
point F q {x 0}, which makes it very difficult to solve the dynamical system (1.5)
for the new F {(x,y); x x(t), y y(t)}. In [3], a W2,p estimate is employed for
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the Partial Differential Equation (PDE) solution; however, for this dynamical system
coupled with the solution of the PDE, it is clear that more regularity is required on
the solution of the PDE to use a fixed point theorem.

Here we prove that if e is small, the problem has a solution with one connected
toner region. In 2, we prove an elliptic estimate that is of independent interest.
Using the elliptic estimate, we prove in 3 the existence result.

Recently, this problem has been formulated in [6] as an optimization problem.
The solution of the optimization problem is an approximate solution of (1.1)-(1.8) in
some sense.

2. Elliptic estimate. In this section, we shall establish that Cl+a smoothness
of the free boundary would imply the C2+a smoothness of the solution up to both
sides of the free boundary. Suppose that F is given by y g(x) for -2 < x < 2 with
g(0)- 0. Let B(s) denote the ball of radius s centered at (0,0). Suppose that

(2.1) Au--0XE for(x,y) eB(2), (0<<1),

where XE is the characteristic function of E and E {y > g(x)}.
THEOREM 2.1. Suppose that

(2.2) sup In(x, Y)I < L,
B(2)

and

(2.3) IIglIc + (- ,2) < K,

where 0 < c < 1. Then

IlUllc+.(-s()) <- C,

-< c,

where the constant C depends only on L, K, and .
Remark. The proof below will actually show that the conclusion is also true in n

dimensions.
The proof uses harmonic polynomials to approximate the derivatives. Such a

technique was used in Caffarelli and Friedman [1]. (See also [4]). It is worth mention-
ing that because of the discontinuous right-hand side, the space L1 seems to be the
right choice (cf. Lemma 2.4).

We shall divide the proof into several lemmas.
LEMMA 2.2. If

where 0 < s < 1, then

(e.8)

Proof.

(2.9)

Au= f in B(s),
u 0 on OB(s);

lul <
1

Ill.

u(x, V) / G(x , y r/)f(, rl)ddrl,
JB()
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where G is the Green function on B(s). Therefore,

(s)
(82 2)If(’

< -1 JB(s) If(, l)lddl

LEMMA 2.3. Suppose that for some s E [, 1], we have

(2.10) Av 0 in B(s)

(2.11) [ [vlda < L.
JoB(s)

Then there exists a constant CL depending only on L such that

(2.12) Iv(, u)- P[v](, u)l < c o v/x. + u < ,
where P2[v](x, y) is the second order polynomial of the Taylor series of v at (0, 0).

Proof. Using (2.11) and Poisson formula we conclude that

(2.13) I[D3V[IL(B(1/2)) <_ eL,

from which the lemma follows. D
We now fix L and c. Then we take CL as in Lemma 2.3, and select a number

satisfying

1 1
(2.14) 0 < ’ -< ’ CLI-a --< --’27r
For such a fixed , we take 0 such that

(2.15) o <_ A4+a.

Using the scaling (x, y) u(Sx, 5y) (5 (so/K)/) if necessary, we may assume
without loss of generality that

(2.16) [g’]c- (-2,2) < 0.

LEMMA 2.4. Let the assumptions of Theorem 2.1 be in force, and let (2.16) hold.
Then there exists a constant C such that for any Q F N B(1), there exists PQ

(2.17) ( 0 2)u PQ + - (((x, y) Q, nQ>+)
LI(BQ(r))

<_ Cr4+a forO < r < ,,
where PQ is a harmonic polynomial of second degree, and nQ is the normal of F at Q
in the direction of y-axis.

Proof. We may assume without loss of generality that

Q=(O,O), g(o)=o, g’(O)=O.
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Then

(2.18) ig(x)l < o ixll+, < eolxl+,
-1+(

Set

(2.19)

and define v by

0
(, u) (x, u) (u+):,

(2.20) Avl 0 in B(1),
(2.21) v w on 0B(1).

Then

(2.22) A(w -vl) 0 in B(1) \ {lYl olxl},
(2.23) [A(w- v)l <: 1 in B(1).

Therefore, by Lemma 2.2 and (2.15),

(2.24)

Clearly,

I[w VIILI(B(1)) _< 1/4meas(B(1) N {[Yl < eolxl}) eo -< 1/2< A4+a.

(2.25) L [v[--o Iwl-L;
B(1) B(1)

therefore, by Lemma 2.3,

(2.26)

which implies

Iv(x y)- P2[v](x y)l < eLra < eLAx-"Au+ < --1
2zr

forr=v/x2+y2<_ A,

1 A2+CrA2 1A4+Ilvl- P[vI]IIL(B()) < < -
(2.29) w2(x, y) (w P2[vl])(Ax, Ay)

and observe that, by (2.28),
1

(2.30) IIw211LI(B()) A4+ IIw P2[v]IIL(B()) <_ 1.

It follows that there exists so E [, 1] such that

(2.31) f I1 4 n.
JoB(so)

Next, define

The inequalities (2.24) and (2.27)imply

(2.28) I1 P2[v]IiL(B())
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Now, define v2 by

(2.32)
(2.33)

Then

(2.34)

(2.35)

Av2 0 in B(so),
v w on OB(so).

A(w2- v2)= 0 in B(so) \ (lYl
1

IA(w2 v2)l <_ - in B(so).

Therefore, by Lemma 2.2 and (2.15),
1 JB 1 1 1 A4+a(2.36) [[w2- V2IIL’(B(o)) <-- - __(o)tt<-ott>) < -0 <_ -Clearly by Lemma 2.3, using (2.31),

(2.37) [v2(x,y)- P2[v2l(x,y)l <- CLr3 --< CLXl-aX2+ <- 1A2+2r
and, therefore,

(2.38)

for r V/X2 + y2 _< A,

1 A2+c71.A2 < 1 Aa+a

(2.43) P, P2[vk] ,,k-l ,k-1
k-l

It is obvious that all coefficients of the harmonic polynomials P2 [vk] are bounded with
the bounds depending only on L. If we set

(2.44) P n--,olim Pn P2[vk] ,Xk_l,Ak_
k--1

(2.42)

where C 1/A2, and

The inequalities (2.36) and (2.38) imply

(2.39) IIw2 P2[v2]IILI(B()) <_ 4+.

Now we inductively define

(2.40) wn(x, y) (wn-1 P2[Vn--I])(AX, Ay)
2A-a

Notice that whenever we scale the domain by A, we get one more 1/X factor on the
right-hand side of the equation; but that is compensated by the fact that we get one
more factor of X for the domain at the same time. Hence we obtain

(2.41) Ilwn P[v=]IIL(B(x)) A4+,

where P2[v=] is a harmonic polynomial of the second degree. It follows from (2.40)
and (2.41) that

Ilwx PiL(B()) C(An)4+a,
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then (assuming that Aa _< 1/2)

(2.45) 10th order coefficients of (P- Pn)I <- C E(2+a)k 2C(A2+a)n,
k--n

(2.46) list order coefficients of (P Pn)l -< CE(1+ k _< 2c(1+ n,

(.e) Ia oa ofci of (P- e,)l <_ c() _< c()’.

So

_< c [(+")() + (+")() + ()():()]
<_ c()+-.

For each 0 < r < A, choose n so that An+l < r _< An. Then by (2.48) and (2.41), we
obtain

(2.49) Ilwi PIILI(B(r)
_
Cr4+ for 0 < r < A,

where P is a harmonic polynomial of second degree.
Next, for any point Q E B(1), take zr(Q) E r such that

(2.50) d(Q, r(Q)) inf{IQ SI; S E F}.

Although F is not C2 and, therefore, r(Q) need not be uniquely determined by Q,
the map r B(1) -- r is well defined by axiom of choice.

LEMMA 2.5. Let the assumptions of Theorem 2.1 be in force, and let (2.16) hold.
Then there exists a constant C such that for any Q E B(1), there exists PQ

(2.51)
u- PQ + - (<(x,y)- r(Q),n(Q)>+) 2

L(BQ(r))
Cr4+a

forO<r<A,

where PQ is a harmonic polynomial of second degree, and n(Q) is the normal of F at
r(Q) in the direction of y-axis.

Proof. We may assume without loss of generality that

(Q) (o, o), (o) o, ’(o) o.

Set

(2.52) (,) u(, ) (+),

and

Then it is clear that

(2.54)

G {; () # 0}.

IGNBQ(r)[<_or2+ for0<r<l,
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where BQ(r) is a bali of radius r centered at Q. Now the remainder of the proof is
the same as Lemma 2.4, where we shall use (2.54) instead of Lemma 2.2.

Lemmas 2.4 and 2.5 give the equalities

(2.55) () P(),
(2.56) Du(Q) DPQ(Q),

and if Q F,

D2(2.) D() DP() + 5 (<(,) (),-(>+)1,=,
which implies that IlUlIw.,c(B(1)) <_ C.

LEMMA 2.6. For any Q1, Q2 E B(1), there holds

P, (,)- P(,) + (<(, )- (),(,>+)

(2.s) - (<(,)- (.),>+) < c+ o (x,y)
r

where r 31Q -Q2I.
Proo]. Let d d(Q, r(Qi)) for i 1, 2. Without loss of generality, we assume

that dl >_ d2.
Case 1. d2 > 2r.
In this case the balls S, (r) and B2(r do not intersect and B1/2(Ql+2)(r does

not intersect F. Hence

(2.59) A (PQ1 P2 -+- q) 0 in B1/2(+.)(r),
where

+)2q(x,y) - (((x,y) r(Q1), n(Q))+)2 0 (<(x, y) (Q), n.(Q,)>

It follows that

Cr4+a
(2.60) IIPQ PQ2 + qlIL’(OB1/2(Q,+Q2)(s)) <-- r/4 <- Cr3+

for some sr E (1/4r, r]. Now by the Poisson formula

(2.61)

Case 2. d2 < 2r.
In this case,

dl IQ1- 7r(Q1)l < IQ- (Q)I <_ IQ- Q21 + d2 < 5r

so that

(2.62) Ir(Q) (Qu)l <- d + IQ QI + d2 _< 5r + 3r + 2r 10r.
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Therefore,

10r(Q) r(Q), n(Q:)> <_ Cr+,

(2.63) In=(e) n=(Q)]

This in turn implies

(2.64)

(-g’,l) ]=(Q2)

for (x, y) 6 B(r). Similar to the proof of Case 1 from (2.59) to (2.61), we can now
estimate PQ-PQ= (which is harmonic). Since the error term q is controlled by (2.64),
the proof goes through.

Proof of Theorem 2.1. Take Q, Q2 6 B(1) \ S (in which Au 0). Notice that
in this case the second term of (2.57) is zero for both Q Q1 and Q Q2; therefore,
by Lemma 2.6 and (2.55)-(2.57),

(2.65)
)TD2u(Q)(X Q))(u(Q) + Du(Q) (X -Q)+ 1/2(x- Q

(u(Q2) + Du(Q2). (X Q2) + 1/2(x Q)TD2u(Q2)(X
<_ CiQ QI+

for all X with IX- 1/2(Q + Q2)] _< 3r. This implies that

The estimates on N B(1) is obtained by considering (u- (x2 + y2)).
3. Existence of a solution with connected toner region. We shall always

sume (1.9). Let a e (0, 1) be fixed.
THEOREM 3.1. The ee bounda problem (1.1)-(1.8) has a solution (u,A) with

a connected toner region A such that

(3.1) F OA + 6 C+a,
provided is small enough.

Suppose that ue satisfy (1.1)-(1.4) and (1.6)-(1.8). Set

(3.2)

Then

1
7 0)].

0

for (x, y) 6 -1Ae -= .e,
for (x, y) 9 Ae U {(x, 0); Ixl _< 1},

where Ae is the region in which Aue 1.
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It has been proved in [3, 8] that for any compact F C R2

(3.3) ]] ]]W-,(F) _< CF,p (meas(A) -I- P)/P
for any p > 2, where

(3.4) "6(x, y) log V/(x )2
27r

My a

b h r"

The equation O- 0 gives the level curves of the harmonic conjugate z(x, y) of
where

(3.5) aTa I (1-x)21+) +y2+y2 1-x
z(x, y) "7--’ Y log x,2 2(1 x)arctan

Y

+ 2(1 + x) arctan
1 + x ") M

h
x.

There is only one of these curves, y o(X), that passes through y axis. o(x) is
analytic and it is shown in [3] that

(3.6)
o(O) vo, ,(o) o,
(x)<O forO<x_<5o,

(x)<O forO_<x_<5o,

where

Yo cot
ab+h

b+ha
M 2

>1.

It is clear that

(3.8)

We set

0--=0 ony--o(X).

(3.9)

x (); e c+"[0,o + t], ’(0) 0, (o + t) 0,

7(x) > V/#2 (x- 1)2 3
Yo < (x) < for 0 <Yo x #,

(x) co > o for 5 x 5 , i]lc+-O,o+, 5 K,
where l, It, and co are fixed small positive constants, and K is to be determined later.

For each 7 E X, we extend it to an even function on the interval [-50 l,o / 1]
by letting 7(-x) 7(x). Denote by A the connected component of the area enclosed
by 7 and x axis which contains { (0, y), 0 < y < 7(0)}. Next, define w by

(3.10) Aw X in R2N,

(3.11) w 0 on cgR2N,

where R2N (11 < 2N, lyl < 2N} (N/2 > 3yo/2) and XX is the characteristic

function of A..
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By W2,p estimates and Sobolev’s embedding theorem,

(3.12) llwllc+() <_ C.

Here and below we shall use C to denote constants independent of K and CK to
denote the constants depending on K.

Let Y ([0, 1] [co, N]) t2 (([1,50 -4- l] [0, N]) \ ((x 1)2 4- y2 < #2}). Then by
Theorem 2.1,

(3.13)

Now let u be the solution of (1.1)-(1.4) and (1.6)-(1.8) with A eAr, and let

and observe that

(3.14)

1
[u.(ex, ey) u(O, 0)],u,(, U)

A (,e - ew) 0 in R2N.

Therefore, by (3.12) and (3.3) (with e u,e in (3.3)), we can apply the Schauder’s
interior estimates to obtain

(3.15) [[-r, - ew[[c(a,,) <_ Ce + Ce/’,

where the constant is independent of K.
By symmetry,

(a.)
o
o- (,e v ew) 0 on x 0,

and so by (3.15),

(a.7)
o
0-- (’ v ew) < (Ce -4- Ce2/p)x for (x, y)

Using (3.13) and ow (0, y) 0 (by symmetry) we get

(3.18)
Ow Ow

(x, y)-
Ow

(0, y) < Cgx for (x, y)e V.0--- O

Clearly,

a (1 x)2 4- y2(3.19) vx log
(1 4- x)2 4- y2 -< -clx < 0 for (x,y) V.

It follows that

(3.20)
0_ ( ) 1
"XU,.g,e <__ Ce 4- Ce2/p 4- eKe c1 x <_ --ClX in V,

provided 0 < e < eK and eK is small enough (depending on K).
Write

(3.21)
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where [][]C3(RN) <_ C by (3.15), and

<

by Theorem 2.1.
Let w* l-1/pw 2r- l/p; then

(3.22) ., + sl/Pw*.

If 0 < e < eK and ’K is small enough, then

(3.23) I1(111C1+ _< 1, 11211C1+ <- 1,

where (l(x) w;(x, 7(x)) and 2(x) w;(x, 7(x)).
Differentiating (3.19) in x, we obtain

a ( 2(l-x)(3.24) v -v 4- (1 x)e + y + 2(1 + x) )(1 + x)2 + y2

Therefore,

u)
a 1

It follows that (using also (3.22) and (3.13)),

(3.26) 02g’
(0, y) >

1 a 1
Oy2 2r y2

>0 inV,

provided 6K is small enough.
Therefore, the equation

(3.27) 0g, (0, y) 0,
1 3

Oy -Yo <_ Y <_ Yo

has a unique solution y y, provided ’K is small enough. It is obvious that y
depends continuously on the C1+ norm of 7.

Now we take T > 0 and define T7 to be the solution of the ordinary differential
equation (ODE)

(a.es)

(3.29) X+T
+ l/p 2(X) 2(0)

X+T

-+- I/P ( (I (xX) ) , p.r(X)

where p.,-(x) is a C mollifier (see [5, Chap. 71) and the convolution is defined after
extending the definition of l(X)/X to be 1 (50 + I)/(5o + l) for x > 50 +l and
limx-,0+ (1 (x)Ix) for x < 0.

We write the right-hand side of (3.29) as fl (x, y)/f2(x, y), where y r/(x). Then
by analyticity of g, noticing also that "6xy(O, y) =_ 0, we get

(3.30)
L(V) X

vxy
L(V)
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LEMMA 3.2.

c-[0,o+q

Proof. Suppose that 0 < x < x2. If x2 x _> x. Then x2 x2 x / x <_
2(x2- x). So by (3.23),

() (:)
Xl x2

< () (o)+ () (o)
Xl X2

<_ xl /x2" <_ (1 + 2)lxl xul.
Now we consider the case x2 x < x. Clearly,

(x2) (xl) + (x)(x2 x) + r,

Therefore,

Xl x2

(Xl X2)I(Xl) - XlI(Xl)(X2 Xl) I Xll l+a<_ +
XlX2 X2

_< xx2]i(Xl Xl(xl)l / Ix2 xlll+a
XlX2 X2

_< IXl xl Ixll 1+ + Ix xll+ (since (0) O)
XlX2 X2

<_ 21x x21.
Since x (0, y) 0, Lemma 3.2 and the analyticity of imply that

(3.32) supIf2(x,y)l+
v

IA(x, y) A(x, y)l < c.sup
(,),(,)ev Jx x[

By (3.19), we have

A(, ) <_ -1/2 < o,

provided K is small enough.
Using the analyticity of , vx(0, y) 0, (0) 0 and an argument similar to

Lemma 3.2 for (2(x) 2(0))/(x + T), we conclude

(3.34) sup fl (Xl, Y) fl (X2, Y)[ <__ C,
#; (,),(,)ev Ix x[

and

Io(t)- (o)1(3.35) sup [f(t, o(t))l _< c sup
0<t<x O<t<_x t

where the constant C is independent of T, and also

(3.36) x+r
C

--X+T
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Therefore, for each T > 0, the ODE (3.28), (3.29) is uniquely solvable. It is obvious
that for each T > 0, y E C1+. Next, we shall derive C1+ estimates independent of
T. From now on we shall assume that

(3.37) for the solution (x), we have (x, (x)) e V.

What we need to prove is actually the estimates near x 0.
LEMMA 3.3.

lim "xvvv 1(3.38)
x--*0 Vx

Proof.

The convergence is uniform by the analyticity of . Thus there exists some small
# > 0 such that

-xv 1 3
>0 for0_<x_<#, Y0_<Y<_ Y0,Vx

which implies

(3.39) (fl)u(x,y)
f:(,n())

x+T 1 3
f2(x,(x))

<0 for0_<x_<#, Y0_<Y_< Y0.
Let A(x)= r/(x)- r/(0); then

(3.40)

fl(X,(X))
f:(,v())

fl (x, (x)) fl (x, v}(O)) + l/p 2(x) ’2 (0)
X+T

:(,,())
=_ q (x)A(x) + q2(x)

where q(x) (f)v(x,y)/f2(x, rl(x)) < 0 by (3.39), and it is also clear that q(x) >_
C

By the definition of 2 we have (0) 0; therefore,

(3.41) Iqu(x)l <_ C1/p () (o)
X+T

< C*xa

where the constant is independent of K, T. It follows by comparison (we use ql (x) < 0
here) that

(3.42) IA(x)l _< Iq2()ld <-- C*xl+a-

This inequality, together with (3.35), implies that

(3.43)
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It follows that

(3.44)

Next, take a > 0, and consider A(x) /(x + a) /(x) for x > 0. Clearly,

(3.45)

fl (x + a, /(x + a)) fl (x, /(x))
f2(x + a, l(x + a)) f2(x, r/(x))
fl (x + a, r/(x + a)) fl (x + a, r/(x)) + fl (x + a, r/(x)) fl (x, /(x))

.( + ,( + ))
(,())[y(, ()) f( + ,( + ))]

=--II+I2.
(,())Y( + ,( + ))

We estimate Ii, i= 1, 2 separately. First by (3.32), (3.33), (3.35), and (3.44),

(3.46) 1121 <_ C*a’.

Next, letting

(3.47) I1 -= Ji + J2,

where by (3.34), (3.33),

(3.48) fl ( + , (z)) (, ())
f( + ,( + ))

< C*ac

Moreover,

(3.49)

fl (x + a, r/(x + a))- fl (x + a, 7(x))J= f2(x + a, l(x + a))
=_ q(x + a)(l(X + a) 7(x))

where by (3.33), (3.36),

(3.50) Iq(x -4- a)l <
x+a+T

By (3.43),

(3.51)
x-ba

Ir/(x + a)- r/(x)l _< In’()ld <_ C*(x + a)’a <_ C*(x + a)a.
Therefore, (3.49)-(3.51)imply

(3.52) IJxl
Combining (3.46)-(3.52), we obtain

(3.53) I’(x + a) ’(x)l I’(z)l <_ C*aa.
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This proves that if E (0, 8K), then

(3.54) I]11c1+-[0,5o+1]-< C**,

where the constant C** is independent of K and T.

We now choose K C**. Since the curve T/goes to y 0(x) uniformly as-- 0, it is easy to choose the remaining constants in the definition of X (as in [3])
so that T maps X into itself.

Obviously T is a continuous map from X to X (using Cl+a norm topology). For
each T > 0, the image of T is contained in a bounded set of C1+ for any f E (a, 1).
Therefore, the closure of the image of T is compact. Hence T has a fixed point, by
Schauder’s fixed point theorem (see [5]). It is obvious that all the estimates of this
section apply to the fixed point Tr], where the estimates are independent of T;

therefore, we can take a subsequence and pass the limit as - 0 to obtain a solution
(u, A) with one connected toner region. This proves Theorem 3.1.

Acknowledgment. We would like to thank the referee for many helpful com-
ments. The referee assisted in revising the exposition. This work was partially carried
out while both authors were visiting Institute for Mathematics and Applications at
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Abstract. In this work, approximate inertial manifolds are constructed for a class of dissipative evolution
equations. The innovation is that these manifolds are defined as graphs on orthonormal wavelet bases.
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1. Introduction. Our aim in this article is to construct approximations of inertial
manifolds for dissipative evolution equations by utilization of wavelets. In this way
we make the connection between two recent theories: the theory of inertial manifolds
that has emerged from the study of dynamical systems and the theory of orthonormal
wavelet bases.

First let us have an overview of the inertial manifolds theory that relates to the
large time study of dissipative evolution equations.

Let us consider a nonlinear PDE that is dissipative; it means that there exists a
global attractor for the associated dynamical system, i.e., a compact set that is invariant
by the flow of the solutions, and that attracts all the orbits when --> +c. Nevertheless,
the convergence of the orbits towards the attractor can be arbitrarily slow, and this
one can have a complex structure, and even be a fractal (see [18]).

New mathematical tools have been introduced by Foias, Sell, and Temam [7]:
the inertial manifolds (IM), which are smooth finite-dimensional manifolds, positively
invariant by the flow of the solutions, and which attract all the trajectories with
exponential speed. From the physics point of view, IMs model the interaction laws
between small and large structures of a turbulent flow, and represent its permanent
regime; actually on an IM small eddies are slaved by large ones, and there are similar
results, after a transient time, for a trajectory that is not on the IM (see [5], [7]).
Nevertheless, until now the existence of IM necessitates a very restrictive property,
the spectral gap condition (see [18]).

Hence came the approximate inertial manifolds (AIM). They are smooth finite-
dimensional manifolds that attract all the orbits into a thin neighborhood, in a finite
time, and with exponential speed. AIMs provide good substitutes for IMs when no
existence result for IM is available; moreover, because their equations are rather simple,
they make the implementation of numerical algorithms easier (see [3], [4], [5], [19]).

The theory of AIMs, which first developed in the spectral case, has begun to
extend beyond. Some nonlinear algorithms have been established for finite elements
(see [14]) and finite differences (see [20]). The purpose of this paper, following a
suggestion by Temam, is to construct approximate inertial manifolds using the newly
developed concept of orthonormal bases of wavelets.

The improvement featured by wavelets with respect to spectral bases (here the
trigonometrical system), is to combine good localization properties in space variable,
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Computing at Indiana University, Bloomington. This research was supported in part by National Science
Foundation grant NSF-DMS8802596 and by the Research Fund of Indiana University.

" Laboratoire d’Analyse Num6rique, Universit6 de Paris-Sud, 91405 Orsay Cedex, France.
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and good localization properties in frequencies (see 13]). Hence by constructing AIMs
using wavelets we hope to obtain laws for the slaving of small eddies and high
frequencies by large eddies and low frequencies. In this paper we are interested in the
space periodic case, and we consider the periodic version of orthonormal wavelet bases
of Daubechies, Lemari6, and Meyer (see [2], 11], 12]) as described in 13]. However,
wavelets are flexible tools that can be adapted to other domains than the n-dimensional
torus (see [10]), and allow us to consider the construction of AIMs in general domains
where little information on the spectral bases is available.

Nevertheless, in this paper, for the sake of clarity, we will focus particularly on
the one-dimensional spline wavelet bases of 11], referring the reader to the Appendix
for multidimensional results and for other wavelet bases.

The paper is organized as follows. In 2 we briefly recall some results about spline
wavelets in the one-dimensional periodic case. In 3 we give, for the sake of complete-
ness, a proof of a result announced in 13 saying that, if spline wavelets are sufficiently
regular, then they provide an unconditional basis for periodic Sobolev spaces. In 4,
we describe a class of nonlinear parabolic PDEs, that includes, for instance, the
two-dimensional Navier-Stokes equations, written in the stream function formulation
(in order to avoid the difficult problem of the treatment by wavelets of the incompress-
ibility condition), and the Kuramoto-Sivashinsky equation. In 5 we show how the
wavelet expansion of a function can be used to construct several AIMs for the class
of evolution equation described above. The method follows [21]; first we define the
induced trajectories, tools that allow us to estimate the distance, for different topologies,
between the orbits and the space spanned by the first k wavelets, ordered in the natural
way. These estimates, which hold for large time, are then compared to the ones obtained
in the spectral case, for spaces that have the same dimension. The result is that the
wavelets provide a flat AIM that provide the same order of approximation as the one
obtained using spectral bases. Then we give two examples of nontrivial (nonflat) AIMs
that approximate the attractor with higher order than the flat one; once again we match
the accuracy obtained in the spectral case. Finally in the Appendix we extend the
results of 3 to the constructions of [2] and of [12] and to the multidimensional case.

Notation. Let (respectively, , ) be the set of integers (respectively, of real
numbers, of complex numbers).

Let II-t/ be the one-dimensional torus. We denote by CN(H) the space of
N times continuously differentiable functions on II and by HS(II) the usual periodic
Sobolev space.

We denote by/:/s(II) the space of functions u in H(H) such that

i
u(x) dx O.

/:/(II) is a Hilbert space when endowed with the scalar product

(u, v) , Ikl2(k)(k),
ken

where

(k)- Jr u(x) e 2irkx dx.

Let lul be the corresponding norm,

When s 0 we write H(II)= L2(II).
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In the following we will denote by C a constant that only depends on the regularity
N of the wavelet, and in 5 on the data of the equation.

2. Spline wavelet bases of L2(II). We consider the finite-dimensional space V
{v CN (H); v is a piecewise polynomial function of degree less than or equal to N+ 1,
with nodes at k/2J; 0 =< k < 2J}. Then we have the embeddings

Vo... v V/l ... L-(n).

We define

(2.1) W V+, fq V)’,

then we have

(2.2) /,(n) (R) ,
j=O

the sum being orthogonal.
Let us introduce what are the periodic wavelet bases associated to the W’s. We

first recall the original construction on ; from [11] (see also [1], [13]) we know that,
for each integer N, there exists a function 0N satisfying

(i)

(2.3)

0N being a piecewise polynomial function of degree less than or equal to N+ 1 with
nodes at the half integers.

(ii)

(2.4)
:leN>0/ form-<_N+l,

(iii) If m -<_ N+ 1

(2.5) L XmN(X) dx =0.

The wavelets, that are derived from qN by a translation and a dilation as below, satisfy
(iv) The family {2/2qN(2x k)},k is an orthonormal basis of

(2.6) L2().

Remark 1. Formula (2.4) shows the exponential decay of the wavelet 2J/21tN(2Jx
k) for x away from (k+1/2)/2j. Formulae (2.3) and (2.5) describe the localization in
frequencies of the wavelet 2J/2ON(2x-k) around an annulus of radii C12, C22;
actually (2.5) means that [N(:)I--o(11 when I1+0, and IN(SC)[ O(1:1-N-l)
when Isl

Remark 2. Throughout this paper we shall omit the subscript N on
Then following [13] we define the periodic wavelets as

(2.7) q,.,(x) 2j/2 Y’. q,(2Jx + 2q- k).
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This periodization transfers to periodic wavelets the localization in frequencies (see
Lemma 2 below), and does not deteriorate the localization in space variable too much.
Then we have

(2.8) The family {0j,g}l__<k_2 is an orthonormal basis of W,
(2.9) The family {0j,k}o--_j<__+o;1-<_g_2 is an orthonormal basis of L2(II).

3. Preliminary results.
3.1. Bernstein inequalities.
PROPOSITION 1. There exists C > 0 such that for any v in V

(3.1) I/)IN+I __--< C2J+111o.
Proof Let bN be the Nth fundamental B-spline, defined from the characteristic

function X of [-1/2,1/2] by
(3.2) bN

N+ times

For v in V,
2J

(3.3) v Y %,k2J/2bu(2Jx- k).
k=l

It is well known that

(3.4) c, [a,gl2 <_-Ivl<_-c2 Icrj,gl
k=l

for some constants c, c2 depending on N.
On the other hand, we have

(3.5)

where

(3.6)

Ivl%+, E 4J(N+l)cej,kCej, pmj,k,p,
1N k, p ---2

ON+I 0N+I

m,g,p 2 xU+ bu(2Jx- k) /i bN(2x --P) dx.

We observe that either mj,k, p 0 if Ik -Pl > N+ 1 or

(3.7) Imj, , l <_- XN+ bN OxN+ bL()

Ik--pI--N/l

It follows

(3.8)

Using
2

(3.9) Y c E
Ik-plN+l k=l

L()

we infer the result from (3.4) and (3.8).
Remark 3. We recall that C is a constant that depends on N, but which is

independent of j.
LEMMA 1. Let r, s, be real numbers, r <- s <= r Then for any u in I’ (H)
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Proof. This is just a particular case of the interpolation inequality (see [18] and
the references therein).

COROLLARY 1. Let s belong to [0, N+ 1]; then for any v in V
(3.11) Ivl --< C2[vl0.

Proof Thanks to (3.10),

(3.12) I1 < ]vl-/c+aJvl N+I
We infer from (3.1) and (3.12)

(3.13) vl CS/+2lvlo.
COROLLARY 2. Let s belong to I-N-1, 0]; then for any v in

(3.14) I1o C2-11.
Proo Thanks to (3.10), we have

<3 15) I1o
Using (3.1)

(3.16)

To conclude we take the {(N+ 1-s)/(N+ 1)}th power of inequality (3.16).

3.2. Poinear inequalities.
LZMMa 2. Let fbe in L(R). Let g(x)=nf(x+l) L(). en

(3.17) (k) f(k).
e left-hand side ofthe equality represents the kth Fourier coecient ofg, the right-hand

side denotes the value at the point k of the Fourier transform off).
Proo Thanks to Fubini’s theorem,

(. g(x) e-x= 2 f(x e--x
1

provides the result.
PROPOSITION 2. ere exists C

(3.19) II-N-
Proof Let w ; we write

2J

3.20)
k=l

We easily infer from (2.7) and (3.17)

We set

This yields

(3.23)

kl
rn 2-j/2 Olj,k exp -2irr

k=l

(/) m () ().
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Then, thanks to Parseval’s identity,

(3.24) Iwlg- Y I(/)1=,
we obtain

(3.25)

we write

2J-I

(3.26) Iwlg-- __ =,_, ,E
Observing that m is a one-periodic function, we obtain

(3.27) [wl= k=2J’- m 7 ! +1
Now we need the following.
LEMMA 3. Let f be in LI()fqL2() such that I(z)l<-f(l/lzl) with

and such that the family {f(x +/)}z is an orthonormalfamily in L2(). Then, for each
z in II

(3.28) E If(z +/)l--- 1.

Proof. We prove that the Fourier coefficients of the one-periodic function

1- E If(z + l)l2

are equal to zero.
Lemma 2 yields

(3.29) In( If(z+/)12) e-2ikz de= ; If(z)[2 e-2ikz dz.

The result follows, using Plancherel’s theorem

[ iy:z)l e-2i=: de= f f(x)f(x-k)dx.(3.30)

Then, we apply Lemma 3 to (3.27) to obtain

(3.31) Iwlg= E, m
k=l-2

On the other hand, by the same computations as above

1 2J-1

(3.32) Iwl -N-1 4J(N+I k= 2j-I

Using (3.31), we observe that it is sufficient to show that there exists C>0 such that

(3.33) E
-2N-2 2

<-C<+

to conclude the proof of Proposition 2.



CONSTRUCTION OF APPROXIMATE INERTIAL MANIFOLDS 1461

Actually, we write

1+

(3.34)
1+ 1+ +

I*

and we majorize independently the two terms involved in the right-hand side of equality
(3.34).

We first observe that for l *, for [k[ <_-2j-l, we have

k -2N-2

7+1 4s+l.

Then, using Lemma 3, we obtain

k
+ )

-2N-2

(3.35) 71*

Now we prove

2

4N+I.

2

that is a consequence of (2.5) that implies 1(:)1= O([:l+1) when :0. This fact
concludes the proof of Proposition 2.

Then we also have the following.
COROLLARY 3. Let s belong to I-N-1, 0]; then for any w in W

(3.37) Iwl --< cz lwlo.
COROLLARY 4. Let s belong to [0, N + 1 ]; then for any w in W

(3.38) IW[o <- C2-JSlwls.
Proof. We prove (3.37) and (3.38) as we established (3.11) and (3.14), using (3.19)

instead of (3.1).

3.3. Conclusion. We summarize 3.1 and 3.2 by the following.
PROPOSITION 3. There exist C1, C2 > 0 such that, for each s in [-N 1, N + 1 ], for

any w; in W, setting

2J

w
k=l

we have

( 2k )
1/2

(3.39) C[wls < 2.is :z, <--C[wls.
=1

We also have

(3.40) Iw lo =/j,k

Proof. First we observe that (3.40) is a rewriting of (2.8). On the other hand, for

w as above, for s > 0,
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is established using (3.38) and (3.40). The proofs of the other inequalities are similar
using Corollaries 1, 2, 3, and 4.

The following theorem includes the main result of this section.
THEOREM 1. Let s be in (-N- 1, N+ 1); let u be in/-:/s(II). We set

2, (u, qi,),.,n>,-r>, w E ,q,.
k=l

en, u =o w, where the sum is unconditionally convergent in ().
Actually, there exist Cl(S), Cz(s) > 0 such that

(3.41) c()lul
j=0

Proof We first prove (3.41) for u regular, such that u E w holds in L2(H),
for instance.

Then we conclude by noticing that if u, u in (H), then, thanks to Proposition
3, w,, w in (H) (w,, defined from u, in the obvious way).

Now we follow step by step the proof of Theorem 8 [13, Chap. 2]. We write

(3.42)
j=0 j<l

Choosing e such that lsl < N-e, we obtain

(3,43)

and thanks to (3.39)

(3.44)

Therefore,

(3.45)

This yields

(3.46)

On the other hand, setting

(3.47)

we have

2 Ej<. I(Wj, Wl)s[" C j=o+C(j,. 2-ell-Jl) [wJl

I,,,l=< c(s) E I,,,,,.,l.
j=O

J

u=E 4Sw,
j=0

(3.48)

Thanks to (3.39), we obtain

(3.49)

J

(,,,, ,,,.,)o E 4-"Slw.,lo.
j=O

J 3

E 4-"lw.,l c E Iw.,l.
=0 =0
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Then we infer from (3.48), (3.49)
J

<3.5o) Iwlclllul-,
j=O

Using the first part of the proof, we obtain

J

(3.51) lulc() E 14wjl.
j=0

This yields, using (3.39),
J

j=O

We then infer from (3.50) and (3.52)

)1/2(3.53) Iwl <-c(s)lul.

We let J + to end the proof.
We summarize Proposition 3 and Theorem 1 by the following.
COROLLARY 5. For each s in (-N 1, N+ 1), there exist Cl(s), C2(s) > 0 such

that, if
+oo 2

u E E ,,,, (n),
j--0

then

(3.54) C,(s)lul2<= E 4’1,,1-< c()lul.
j,k

In other words, if Is]< N+ 1, the family {lj,k}Oj<=+oo;l<=k2 is an unconditional
basis for/:/s (1-I). (For equivalent definitions of an unconditional basis in Hilbert spaces,
see, for instance, [10]; see also [13] and the references therein.)

4. A class of evolution equations. Let H be a Hilbert space whose elements are
periodic functions. Actually we assume that there exists an integer p such that either

H qP(n"

or His a closed subspace of IdIP(I-[ n) endowed with its natural topology. The class of
evolution equations we shall consider has the form

(4.1)
du
dt
---F uAu + Ru + B(u, u) f,

where u > 0, A is the unbounded operator (--A) acting on H, whose domain is

D(A)={uH;AuH},

R is a bounded linear operator from D(A1/2) into H, B is a bilinear operator from
D(A1/) D(A/) into D(A-I/a), f is in H, and the unknown u maps t+ into H.

We will consider the initial value problem consisting of (4.1) and ofinitial condition

(4.2) u(O)=uon.
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As usual we denote by 1-[ and by (.,.), respectively, the norm and the scalar product
on H. We set V D(A1/2), I1" being the norm on V, and (( .,. )) being the corresponding
scalar product.

We assume that there exists a, C > 0 such that for any v V we have

(4.3) (z,Au+ Ru, u) >- Ilull =,
(4.4) IRul C u II.
Moreover, we assume that the following properties involving B hold: setting

n(u)=n(u,u),

for u, v, w V, we have

b(u, v, w): (B(u, v), W)v,,v,

(4.5) b(u, v, v)=0,

and there exists Cb > 0 such that for any u, v, w in V

(4.6) Ib(u, v, w)l-< clul’/=llulll/llvll Iwl’/llwll ’/.

We also assume that there exists CB > 0 such that for any u, v in D(A)

(4.7) IB(u, v)l--< Clul/=laul/=llvll,
(4.8) In(u, v)l = Clul’/llull’/llll’/lavl /=,

(4.9) ]B(u, v)l Cllull Ilvll 1 + Log AlllUll2}
where A is the smallest eigenvalue of A.

Under these assumptions we recall without proofs the following results that are
classical for this class of evolution equations.

THEOREM 2 (Well-posed problem). ere exists a unique solution u of (4.1) and
(4.2) belonging to

C(0, +; H) L:(O, T; D(A1/2)) or each T> 0).

Moreover, if Uo V, then

u C(0, +; V) L:(O, T; D(A)) (for each T> 0).

Proo See [18] and the references therein.
THEOREM 3 (Dissipativity and absorbing sets). Let us consider initial data Uo in

(4.2) satisfying

luolRo.
en there exists a time to that depends on Uo through Ro, and on the data , A1, Ifl of
the equation such that for to

(4.10) }u(t)lMo, Ilu(t)llM,,

where Mo, M are independent of Uo, but dependent on the other data.
Proo This is related to the existence of an absorbing set in H and V for the

dynamical system (4.1); actually to=Cllog(Ro)+C is the entrance time in these
absorbing sets; see Chapter III, 2.2, in [18].
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THEOREM 4 (Time analyticity). Let Uo belong to V; then there exists a domain of
c containing

F(II Uo [[) {" c, Re " > 0,

[Im 1 <= To if Re " >- To,

[Im if[ _-< Re " if Re "-< To},

where u can be extended to an analytic map into D(A); here To depends on hi, [fl, [lUoll, v.

Proof. See [5], [9], [17].
Remark 4. We will use Theorem 4 in the following form: let Uo belong to H, for

t-> to (to as in Theorem 3), u can be extended to an analytic map from

F {" cg, Re " > to,

IIm ff[ <_- To if Re " >= to + To,

Jim r =< Re " to if Re " =< to + To}

into D(A), with To that depends on v, A1, If] but which is independent of Uo.
We also recall from the proof of Theorem 4 (see [17], for instance) that for sr F,

(4.11) u(ff)II _--<2(1 + M1),

M1 being as in Theorem 3.
Let us briefly describe two examples of equations satisfying these hypotheses.
Example 1. The stream function formulation of the two-dimensional Navier-

Stokes equations.
The usual velocity-pressure formulation of the two-dimensional Navier-Stokes

equations reads (see [22]),

(4.12) Ou_ vAu+(u.Vu)+VP= F,
Ot

(4.13) div u 0,

where u {ua, u:} is the velocity vector, P the pressure; the driving force F is given.
These equations are supplemented by space-periodic boundary conditions on II:.

Nevertheless, we do not want to address in this paper the difficult question of the
treatment by wavelets of the incompressibility condition (4.13). Therefore we rather
consider the stream function formulation of the Navier-Stokes equation that reads,
setting u curl

(4.14) --t- vZX2xI*+ A A curl F,
Ot Ox2 OXl

where the unknown maps + into/:/1(H2).
The equation (4.14) has the form (4.1) with H=II(II2),A=-A,D(A)=

/5/3(II2), R 0,

ffII (O’I’IY20’I’II’30"t30’ItY2dxldX2(B(XIl’ xI2)’ xI3)-- AxI\ Ox2 0x Ox20x-/
for any ,,3 in V, and f is defined by

(f,*)=ffnF’curl*dxdx2
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Since the application

curl:/:/+l(II)- {v (/2/(II))2; div v=0}

0X

is an isomorphism, all the assumptions (4.3)-(4.9) are satisfied, and are easily derived
from similar results that hold for the velocity-pressure formulation of the Navier-Stokes
equations (see [18]).

Example 2. The Kuramoto-Sivashinsky equation. This equation reads

ov 04v O2v Ov--+++v--=0,(4.15)
0t 0x4 0x2 0x

where the unknown v maps / into L-(II).
We use the translation method of [15],[16],[18] to transform (4.15) into an

equation that has the form (4.1), with assumptions (4.3)-(4.9) satisfied; actually, the
difficulty is to prove (4.3), and hence Theorem 3. Following the method ofthe references
above, we restrict ourselves to the case where v is an odd function on H @, 1/2 ]. Hence

H {w e L2(I-I); w is odd},

04a D(A) =/2/4(1-[) 0 H.

We then set

v=u+4,,

where & is an appropriate function in D(A). The new equation for u reads

Obl 04U 02U 0( OU OU
--+++u+qb+ u--= g( dp ),
Ot OX4 OX2 OX OX OX

(4.16)
044 0thg(
OX4 OX2 OX

This equation has the form (4.1), with v= 1, A as above, f= g(), while B(u)=
u(Ou/Ox), and

R(u)
O)-u Ou

Ox2 Ox Ox

The choice of & such that (4.3) holds is one of the main tasks in [15] and [16].
On the other hand, using Sobolev embeddings and Agmon inequality (see [18]), we
easily check that for u, v V

OD 11/2 1/21 1/2 1/2IB(u, v)l-<-Iul  --<lu Ilult v[ Ilvll

This implies (4.6)-(4.9). Finally we observe that (4.5) is not satisfied, but instead we have

b(u,u,u)=O

for any u V. This induces some slight changes in the proofs of Theorem 2 and 3 that
still hold (see [18]).

5. Approximate inertial manifolds. Let us consider the dynamical system defined
by (4.1). First we recall what is an approximate inertial manifold (AIM).
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DEFINITION. A smooth finite-dimensional manifold At is an AIM of order / (in
H) for (4.1) if for any trajectory u(t) there exists tl that depends on [Uo[ (as in Theorem
3), such that for t_-> tl

dist/4 (u(t), At) <- q.

Remark 5. Therefore the global attractor is imbedded into an /-neighborhood
(in H) of At.

Remark 6. For equivalent definitions of AIMs, and for construction of sequences
of AIMs for several dissipative equations, see [3], [4], [5], [21].

Let us describe briefly the aim of this section. We are looking for AIMs defined
as graphs of mappings

PV- (Id- P) V,

where P is a suitable linear projector that has finite rank.
The innovation of our work is that, instead of considering a projector onto an

eigenspace of A (see the references above), we choose P as the projector onto the
space spanned by a finite number of wavelets. As we will see in the next section, it is
important to take the wavelets in the natural order, i.e., to consider the functions of

W before the functions of W+I. In other words, we choose P as the projector onto
a low frequencies wavelet space.

Remark 7. For instance, for Example 1, since H-/-:/1(II2), we shall use the
two-dimensional wavelets derived from the one-dimensional ones by tensor products
(see the Appendix). For Example 2, we have to choose wavelets that are odd, since
H {v /,2(II); v is odd}. For that purpose, we proceed as in [13, VI.11]. We know
that the function S defined in 2 satisfies

(5.1)

Therefore, N being fixed, a basis for H is given by considering all functions

(5.2) p.,k(X)= b,k X--1/2 +(--1) P,k X--1/2

such that k+ k*=012], for all j>0 (we recall that P,k(X) is defined in (2.7)). Of
course this construction applies to wavelets that enjoy symmetries, as the Littlewood-
Paley ones (see [13]).

5.1. Induced trajectories lying in the flat manifold. In the following, for the sake
of clarity, we will assume that n 1 and that H =/:/P (H). The reader could check that
only minor changes are needed to extend the results of the next sections to, for instance,
the cases described in Examples 1 and 2.

Let V (j being fixed in this section) be the flat manifold associated with the
(linear) Galerkin approximation of (4.1), (4.2) by periodic piecewise polynomial
functions. Being provided m +p _-< N+ 1 such that V c V holds, we define P as the
orthogonal projector in H onto V; let Q= Idn-P. We also define P, as the
orthogonal projector in V onto , and Q, Idv- P,.

Remark 8. In the following we shall omit the subscript j on P, Q, Ply, and Q.
Following the methods developed in [21] we call induced trajectories (lying in

the flat manifold) associated with u(t) solution of (4.1), (4.2) the trajectories y(t), y(t)
defined by

(5.3) y(t) Pu(t), yl(t) Pu(t).
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We also set

(5.4) z(t) Qu(t), Zl(t) Qlu(t).

Remark 9. In contrast with the spectral case we no longer have y Yl.
We recall from the results of 3 the following proposition.
PROPOSITION 4. For p + m < N+ 1, there exists c > 0 such that for any z in QV,

(5.5) Izl< Ilzll

Proof. For the sake of clarity, and although this is not necessary, we first prove
the result for p 0, an then consider the case p # 0.

First let us assume p- 0. We then have H-/.,2(lI), and

with the notation of 2 and 3. For z in QV, we write

such that

+oo 2

z Y Y /,,0,,
l=j k=l

On the other hand, thanks to Corollary 5, we have for m < N+ 1

c(p) 2t"lTt.kl2 --< Ilzll =.
l,k

Therefore the two last inequalities yield (5.5).
Let us consider the general case p # 0. z belongs to QV means that there exists u

in/-:/"+P(II) such that z-u-Pu. Since Pu belongs to /:/N+I(II), we have to assume
m +p -< N + 1 to have z IIm+p (I[). Hence

(z QV)c(z /:/P+m(II) and ((-A)Pz, 6,)am-,a- =0 for <j).

Then we write

+cx3 2

(5.6) (-Atpz= Y Y T,.kl,k,
l=j k=l

this equality holding in//m-p(lI); moreover, thanks to Corollary 5

+oo 21
(5.7) Y Y. Ir,,l=4’-< c(m-P)l(A)zl =

m--p.
l=j k=l

We then observe that

(5.8)

which yields

I(--A)zI- --Izl+ --Ilzll,

+cx 2

(5.9) C4J" E E 4-’[,,,12 <- Ilzll =,
l=j k=l



CONSTRUCTION OF APPROXIMATE INERTIAL MANIFOLDS 1469

On the other hand, computing the norm in/-:/-P(YI) of I(--A)PzI, we obtain, thanks to
Corollary 5,

+oo 2

(5.]o) Izl=_-< c E E 4-*1,,.,I.
l=j k=l

Therefore, (5.9) and (5.10) yield (5.5).
We would like to check this kind of inequality for Zl in Q1 V. For this purpose we

need more regularity on the wavelets 0,’s.
PROPOSITION 5. For 2m +p < N+ 1, there exists c > 0 such that for any z in Q1 V

Proof. First we observe that

(Z1 Q1 V) (z IIp+m (lI) and

Then we write

((--A)p+mz1, ll,k)IcI-m-p, I2lp+m =0 for <j).

+c 2

(5.12) (--A)m+PZ1 E E ")/,,kl/Jl,k
l=j k=l

We then apply the method ofthe proof of Proposition 4 to derive (5.11). The assumption
2m +p < N+ 1 comes from the fact that we apply Corollary 5 to estimate the ffI-Em-P(I-[)
norm of (-A)P+Zl to obtain z.

5.2. Behavior of small edies.
THEOREM 5. For 2re+p< N+ 1, both z(t), Zl(t) satisfy, for large enough as in

eorem 3, the following inequalities"

(5.13) [z(t)l, zl(t)[, [z’(t)l Iz;(t)l c,
(5.14) IIz(t)ll, IlZl(t)ll c.

We reinterpret these inequalities saying that the flat manifold associated to splines
of order N is an approximate inertial manifold of order /4 in H and of order /2
in

Remark 10. Here we set z’= dz/dt, z’ dz/dt.
Remark 11. We match here the accuracy established in the spectral case. For

instance, let us consider Example 1, the Navier-Stokes equations. In [5] (see also
[21]), it has been proven that if is the ohogonal projector onto the spaye spanned
by the first (U) (here the dimension space is n 2) eigenvectors of A; Q Id-;
then we have, for large enough,

Iu( t)l cL/,

O(t)[ c/L/,
where c/4% L being a logarithmic correction of . Here we obtain analogous
results, considering a wavelet space that has the same dimension. Therefore, for
equations of type (4.1), we can say that wavelets provide a fiat AIM that has the same
order of approximation as the one obtained using the eigenvectors of A.
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and
Proofof Theorem 5. We take the scalar product in H of (4.1) with Zl; using (4.5)

(5.15) (Au, ,)-- ((u, z))--IIz, =,
we obtain

zl -(Ru, Zl) b(zl, Yl, Z1) b(yl, Yl, Zl).

Then (4.9) yields

( \ II!(lAy1[2’) 1/2

(5.17) Ib(Y, Yl, Zl)l <-- Cllyll 1 + Log Al,,y,,,2/ IZll.

Thanks to (3.1), we have

Hence

(5.19) Ib(yl, Yl, Z1)] < cllyll=lzll.
On the other hand, we use (4.6) to obtain

(5.20) Ib(z, yl, z)l <-- CllYll IIzll Izll.
Then we infer from (5.16), (5.19), and (5.20)

(5.21) llzll=_-< [fl+ +lRul+fVTIly, ll=+fllyllllzll [zl.

We observe that for large enough as in Theorem 3 we have both

(5.22) ]]ylll, IIzll =< Ilull M1,

and that for large enough as in Theorem 4

du
(5.23) C,

that is a consequence of the Cauchy formula applied to u in a ball included in F, and
of (4.11). On the other hand, we derive from (4.4) and (5.22) that [Ru[ C.

We use these facts to obtain

(5.24) IIz, 2 ClZll,
holding for large enough as above, where C depends on N and on the data , A, Ifl
of the equation, but is independent of j. Then Proposition 5 yields

(5.25) IIzll c
2j

(5.26) IZll<C aim

Now we estimate [z[ and [[zll; we observe that z= QZl and that therefore

(5.27) Izl levi c
holds; but moreover we have the following.
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PROPOSITION 6. For m +p < N+ 1, Q, which is an orthogonal projector in H, maps
continuously V into itself, and its norm as a linear operator acting in V is bounded
independently ofj.

Proof. For v V, the following inequalities hold in /:/m-P(II)
+cx3 2

(5.28) (-A)Pv
1=0 k=0

d-cx 2

(5.29) (-A)PQv E Y. Yl,kq’l,k.
l=j k=0

Thanks to Corollary 5 we have

I(-AYQuI- Qvll
1

kO4t(m_p)lTl,kcl(m-p) 1/2
l=j

(5.30) <_
1 (+o 2,

12)cl(m _p)1/2 =0E k=OE
1/2

where cl(m-p), c2(m-p) are as in Corollary 5.
We apply this result to z Qzl to obtain

(5.31) Ilzll-<c 2Jm"
To end the proof of Theorem 5, it remains to estimate Iz’l and Iz l. For this purpose

we observe that z and Zl are analytic in time in the same domain as u, and then we
use Cauchy’s formula to get the estimates on z’ and z from these on z and zl. For
the reader’s convenience we give a complete proof below.

First we need to introduce some notation. Let Hc, Vc, V, and D(AS)c be the
complexifications of H, V, V, and D(A). We recall that if u + iu2 is a typical element
of H, then we have

A(Ul + iu2) Au + iAu2,

(U + iu2, v,+ its2)--(Ul, Vl)’4-(U2, /)2)+ i[(u2, v,)-(u,, v2)],

and that the multiplication by a complex constant is performed in the natural manner.
We observe that the family {q’,k}O<--l<j;l<k<--2 is an orthonormal basis of V in

,2(yl)c and that moreover we have the following.
LEMMA 4. The family

(5.32) {$t,k}o_<-<+;<_-k<_-2’ is an orthonormal basis of L2(II)c,
and for (m + p)ls < N+ 1 the family

(5.33) {q’/,}o<-_<+;<_-2’ is an unconditional basis of D(AS/2)c.

Proof. The proof is straightforward and left as an exercise to the reader.
Now we observe that y and z can be extended as time analytic functions in the

same domain as u. Let Y, Z, and U be the extensions of y, z, and u. Then U
satisfies, for " F,

OU
(5.34) + ,AU+RU+ B( U)=f.
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Taking the scalar product in Hc of (5.34) with Z we obtain

t’llZlll<= -- +IRUI ]Zll+lb(Y1,

(5.35) +lb( Y1, Z1, Z1)I+Ib(Z1, Y1, Z,)I
/lb(z,, z,, m,)l / Ifl Iz, I.

Easy computations yield

(5.36)

(5.37)

Ib(m,, Z,, Z1)I IZ, IIZ, ,
Ib(z,, Y, z,)l CIz, IIz, YII,

where C is an absolute constant.
Using (3.1) on Re (Y) and Im (Y) we obtain

(5.38) Ib( Y,, Y,, Z,)l <= CII Y, Ilh/]lZll,
(5.39) Ib( Y1, Zl, Zl)l ell YIII
where C depends on N.

For " such that Jim st[ _-< To and Re sr _-> to + 2 To (with to and To as in Remark 4),
we apply Cauchy’s formula on a ball B centered at sr, of radius To/2, to obtain

OU
(5.40) Z-7 (’) <- C sup

and we infer from (4.11)

(5.41) O]__< C,

where C depends on the data of the equation through M1.
We also use (4.11)to majorize Ylll, IlZlll, and IRUI (thanks to (4.4)) by 2(1 +

for t" as above.
All these facts yield

(5.42) IIZ, =--< c,//IZll.
On the other hand, we observe that Lemma 4 provides analogous forms of Poincar

inequalities (5.5) and (5.11) for Z and Z1. We also infer from Lemma 4 that the
orthogonal projector in Hc onto the orthogonal complement of V{ is continuous as a
linear operator mapping V into itself, the corresponding norm being bounded indepen-
dently of j.

We apply these remarks to (5.42) to obtain, by the same computations as above,

(5.43) Izl, lz,l< c e1
4jy/,

(5.44) Ilzll IIz, =< c v7
2j

for " belonging to a strip thinner than F, for example

{Re st_-> to+ 2 To, ,Im ’1 =<--}.
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To end the proof of Theorem 5, we apply Cauchy’s formula on a ball B centered
at -> to + 3 To, of radius To/2 to obtain

dz
(5.45) - (t) - C sup

where C depends on the data of the equation through M1. We then infer from (5.43)
and (5.45)

dz
(5.46) - -<C4.,
An analogous result for z concludes the proof.

5.3. Two nonflat approximate inertial manifolds. Following the methods developed
in [21] we provide below two examples of (nonflat) approximate inertial manifolds
of higher order than the fiat one.

First let us consider the (nonlinear) mapping I:PV- QV defined as follows:
for each y in PV, there exists a unique l(y) in QV such that

(5.47) ,(((y), Y.)) (f ,Ay- Ry- B(y),

for any ff in QV. 1 is well defined, thanks to a straightforward consequence of the
Riesz representation theorem.

Remark 12. Let us notice that the term (Ay, Y.) does not vanish. Actually, unlike
the spectral case y and ff are orthogonal in H, not in V. This point can be also observed
in the nonlinear algorithms described in [14].

Let 1 be the graph of 1; then we have the following.
PROPOSITION 7. is an approximate inertial manifold for (4.1) of orderj’ in

H and of order j/42m in V.
Remark 13. We match here the accuracy established in the spectral case (see

[5], [21]) in the sense of Remark 11.

Proof We plan to estimate the gap between the trajectory u(t) and its induced
trajectory lying in J//1, Y(t)+dPl(y(t)), where y(t)-Pu(t) as above. We set

(5.48) Xl(t) l(y(t)) z(t).

We rewrite (5.47) as

(5.49) ,QAdPl(y) + ,QAy + QRy + QB(y) Qfi.

Hence X satisfies

dz
(5.50) ’QAx1 + Q(B(y)- B(u)) =-+ Rz.

We take the scalar product in H of (5.50) with X1 to obtain

dz
(5.51) llxll=<--lb(y,z,x)l+lb(z,y,x)l+lb(z,z,x)l + Ixl+lRzllxl[.

On the other hand, (4.9) yields

(5.52) ]b(y,z,x)]<=CllYllllzll 1 +Log \Ally[]2
We infer from (4.10) and (5.30)

(5.53) Ilyll--< Cllull--< CM,,
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and from (5.14)

these estimates holding for large enough as in Theorem 5.
We apply (5.5) to obtain

(5.54)

and (3.1) to get

( iAyl2)l/2(5.55) 1 + Log \xllYll=) C.

Then we finally obtain

(5.56) JIb(y, z, x)l C4-- Ilxl[.

We also have, using (4.6),

(5.57) [b(z, y,

We then infer from (5.13), (5.14), (5.53), (5.54), and (5.57)

(5.58) Ib(z, y, x)l< C /4 IIxll,

for large enough as above.
Using (4.5) and (4.6) we obtain

(5.59) Ib(z, z,

as well, and thanks to (5.13) and (5.14), we have

(5.60)

We also have, thanks to (4.4),

(5.61)

and thanks to (5.14) and (5.54)

(5.62)

JIb(z, z, x)l C8---IIx, ll.

I(ez, X1)] CIIzll Ix, I,

4Jm [IX, It.

Using (5.13) to estimate [dz/dt we finally obtain

(5.63)

This yields

(5.64)

v7 j___+ vT]IIxll = c 4--+ c 4--+ c 8 c4 Ilxlll.

JIIx, c4--,
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and thanks to (5.54),

J(5.65) Ixl c 8.,

holding for large enough as above.
Now we define 2 as the graph of the mapping 2 PV QV defined by induction

from 1 by:

’((2(Y), ))= (uQAl(y)- QR(y)- QB(y, l(y))
(5.66)

-QB((y), y), ) for any in QV.

Existence and uniqueness of 2(Y) are consequences of the Riesz representation
theorem. We have the following proposition.

PROPOSITION 8. 2 is an approximate inertial manifoldfor (4.1) oforder (j)3/2/16J,,
in H and of order (j)3/2/sjm in V.

Remark 14. We match here the accuracy established in the spectral case (see [21])
in the sense of Remark 11.

Proof. Setting

(5.67)

and using (5.49) we rewrite (5.66) as

(5.68)
uQA2(y)+ ,Qay+ QB(y)+ QRy+ QRI(y)

+QB(y, tl(y))+ QB((y), y)= Qf.

Hence

(5.69) d__z+’QAx2 + QRx + QB(y, X1) + QB(x1, y)
dt

QB(z)

where X1 is defined as above. We take the scalar product in H of (5.69) with X2 to obtain

IIx=ll =--< IRx IIx=l / Ib(y, x, x)l / Ib(x,, Y, X2)I
(5.70)

dz
+[b(z, z, X2)I-t- - IX=I.

As usual, thanks to (4.9), we obtain

(5.71) ]b(y,/"1, X2)[---< CB Ily IIxl (1 + Log ()Ayl2111y))1/2Ix=l.

From previous estimates (5.53), (5.55), and (5.64) we obtain, for large enough as above,

(5.72) Ib(y, Xa X2)I < C
(j)3/2

Ix=l,4JD1

and thanks to (5.5)

(5.73) [b(y, X, X2)I C
(j)/2 IIx=II8,

On the other hand, using (4.6)

(5.74) ]b(x1, Y, X2)l <= CblXI/IIXII/211Yll IX21’/211X211 /2
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We infer from (5.5), (5.53), (5.64), and (5.65)

j 1

(5.75)
J

By similar computations, using (4.5), (4.6), (5.13), and (5.14)

J(5.76) [b(z, z, X=)I <-- Ilzll IIX=II <-- C8- IIx=II.

We have as well, using (4.4), (5.5), (5.13), and (5.64)

(5.77) IRxI
We summarize (5.70), (5.73), (5.75), (5.76), and (5.77) by

(j)3/:z
(5.78)

holding for large enough as above. The Poincar6 inequality (5.5) ends the proof.

Appendix. In this Appendix we want first to present a proof of Theorem 1 for the
multidimensional periodic wavelet bases built from the one-dimensional ones by tensor
products. For the sake of simplicity we present this result for the two-dimensional
case. The reader could check that it can be extended without difficulties to the
d-dimensional case, d > 2.

After that we will end the paper by explaining in a few words how to prove
Theorem 1, considering two other important examples of wavelet bases.

In both cases we just have to prove analogous results to Propositions 1 and 2.
We recall from [11], [13] that, for each N > 0, there exists a function qN satisfying

(i) and (ii) such that

(A.1) I qN(x) dx O,
R

and that, setting

(A.2) (pj,k(X) 2j/- E 0N(2x + Ul- k),

the family

(A.3) {0,k}l__<k____J is an orthonormal basis of V.
(We dropped for convenience the. subscript N on the 0,k’S.)

Let us introduce some notation. H (II) will be the usual periodic Sobolev space
on the two-dimensional torus./:/s (II) will be the set of functions u in H (II) such that

flrt u(x) dxdx2=O"

//(II) is a Hilbert space when endowed with the scalar product

((u,
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where

Ik (k. k) 1/2, k. l- kill + k212,

We denote the corresponding norm

I111 ((, ))’/
Then let V be the space of functions v L2(Ha) H(H2) such that both

X V(X1, X2), X2 D(XI,

belong to (i.e., @ ). For a (a,, a2) in M ={1,..., 2}, we set

(A.4) (x) ,,(x,),(x).
Then we obsee that the family {}a is an ohonormal basis of .

Now we are ready to claim the following.
PROPOSITION A.1. ere exists C > 0 such that for any v in

(A.5) 1+, = c2+1)111o.
Remark A.1. As above, C is a constant that depends only on N.
Proof We use the convexity of the function 1u+ to write

]lullS+, (k+k)U+’la(k)]
k

(A.6) 2u (kU+2+kU+2)la(k)l2

k

2[ll(0,)+’.llg+ II(0)+l.ll],
setting (O)U+’u=OU+u/Ox+’; i= 1,2.

On the other hand, we write for

(a.7) v= E a in ,
(A.8) I[(l)+’vll A,A,,(((I)S+I,, (Ol)N+’,,))O.

Thanks to Fubini’s theorem

(A.9)

where we set

(((t91 (a (191 (a’))0 tl3otl 1)(Xl)dX

(f. ,o(x),,(x)dx),
19N+1(N+I)(x1) 19x1N+l a’(X1)’

and where we dropped the subscript j on the oz,’s to write q,; i= 1, 2.
Using In (XE)C,o,(x2) dx2 0 if a2 e a (cf. (A.3)), we obtain

(A.IO) II(Ol)N+lvllg E Aa+I)(x,) dx1.
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2J (N+We then apply (3.1) to the function x-,_=1Ao (x)

(A.11) X ia((N+l)(xi) dxl < c4J(N+I) Aaq)at(Xl) dXl
1=1 =1

(A.3) yields

(A.12) A,,,(x) dx= ., A,
=1 o1=1

therefore

(A. 13) [[(01)N+IIIIg<--c4J(N+I)( A)..
To conclude we recall that the family {(p}j is an ohonormal basis of , then
using (A.6), (A.13), and that (A.13) holds for II(o=)+ollg as well, we obtain

Now we set

(A. 14) %+,n (%)
can be viewed as the direct sum of three of its subspaces, namely

We observe that the family {,(x)O(x2)}a is an oahonormal basis of

(A.15) @.
(We dropped the subscript j on , to write $2.) We claim the following.

PROPOSITION A.2. ere exists C > 0 such that for any w in

(A.16) w]l.__l c2-m+ll wIl0,

Proo For w in we write w w + WE + w3, where

We observe that

(A.17)

(A.18)

Ilwllg IIwllo+ w=llo+ Ilw311,
Ilwll_,

__
=

_
- <3(llwll + I[wll--+ [Iwll -1)

It follows that it is sufficient to check (A.16) on both w, w2, w3. Because the
proofs are similar we present below only the proof for w.

Let

(A.19) Wl X Xaal(Xl)Oa2(X2)"

Using (2.7), (.17), and (A.2) esy ompmtions yield

(A.20, ,(/,=( A e-2’’1/2’) (/#) ().
Hence

(A.21) Wll[ =,2
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setting

() z1 -2./2(A.22) m = Y ,e
j

m is a 2-periodic function. Using this fact, we obtain

where F {k 2/1 U-1 k, 2-, 1, 2}.
Thanks to Lemma 3

(A.24) I[wll[ y
keY’

On the other hand, we write

(A.25) 4+’)11 w,[I _N_

By the same computations as above, we obtain

(A.26) -2N-2

2j

-2N-2

We infer from (A.24) and (A.26) that to prove (A.16) for wl it is sufficient to majorize
the function

--, --9, +, Z-’)lg Iz +/1-z-213(z +/1)121(Z2+

Observing that Iz + I[-2N-2N4N+ for z in [--, ]2 and I# 0 we obtain

Z [z +/I-2u-2l(za +/,)ll(z: +/:)l
1o

(A.27)

We then apply Lemma 3 to obtain

(A.28) Iz/ I[-2N-2[(Z1 //)12l(z=+ 12)12_--< 4rv+l.
!o

Now we have to majorize

We infer from (2.5) and (A.1) that

[3(Zl)12 0(1),
when Izl 0. This fact ends the proof.

Let us recall some results about Daubechies’ compactly supposed wavelets. (See
[2], [13].)

For all n 1, there exist a couple of functions ,, , such that

(A.29)

(A.30)

,., . c"(),

xm@,(x) dx=O ifm<=n,

(A.31) ,, q, are compactly supported.
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(Actually there exist two constants 1, C2>0 such that the width of their support
belongs to [cln, c_n].)

(A.32)

(A.33)

The family {2/2q,(2x-k)}, is an orthonormal basis of L().
If we denote by l the space spanned by the functions .(2x k); k

then the family {2/q(2x-k)} is an orthonormal basis of
l<j

Now we are able to define the periodic Daubechies wavelet bases and to prove
Theorem 1 in this case, provided n is large enough with respect to s. Actually, we just
have to replace bv by qn in the proof of Proposition 1 and q by q, in the proof of
Proposition 2. The multidimensional results follow.

We now recall the Littlewood-Paley wavelet basis (see [12], [13]). There exist a

couple of functions q, 0 belonging to the Schwartz class 5e() satisfying, respectively,
(A.1), (A.30), for each integer m, (A.32) and (A.33). Moreover, q3 and q are compactly
supported. Then, with the same notation as above, for w in W
(A.34) (1) m(l/2)(l/U),
where m is a one-periodic function. This yields, for each s in ,

Iwl =
(A.35)

a2 b2

where a and b are independent of j. This fact yields to Proposition 1 and Proposition
2. We then deduce that the periodic Littlewood-Paley wavelets provide an uncondi-
tional basis for all Sobolev spaces/-:/s(I-l). The multidimensional results follow.
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HOMOGENIZATION AND TWO-SCALE CONVERGENCE*

GRIGOIRE ALLAIRE’

Abstract. Following an idea of G. Nguetseng, the author defines a notion of "two-scale" convergence,
which is aimed at a better description of sequences of oscillating functions. Bounded sequences in L2(f)
are proven to be relatively compact with respect to this new type of convergence. A corrector-type theorem
(i.e., which permits, in some cases, replacing a sequence by its "two-scale" limit, up to a strongly convergent
remainder in L2(12)) is also established. These results are especially useful for the homogenization of partial
differential equations with periodically oscillating coefficients. In particular, a new method for proving the
convergence of homogenization processes is proposed, which is an alternative to the so-called energy method
of Tartar. The power and simplicity of the two-scale convergence method is demonstrated on several
examples, including the homogenization of both linear and nonlinear second-order elliptic equations.

Key words, homogenization, two-scale convergence, periodic

AMS(MOS) subject classification. 35B40

Introduction. This paper is devoted to the homogenization of partial differential
equations with periodically oscillating coefficients. This type of equation models various
physical problems arising in media with a periodic structure. Quite often the size of
the period is small compared to the size of a sample of the medium, and, denoting
their ratio by e, an asymptotic analysis, as e --> 0, is required: namely, starting from a
microscopic description of a problem, we seek a macroscopic, or averaged, description.
From a mathematical point of view, we have a family of partial differential operators
L (with coefficients oscillating with period e), and a family of solutions u which,
for a given domain [l and source term f, satisfy

(0.1) Lu =f in fl,

complemented by appropriate boundary conditions. Assuming that the sequence u
converges, in some sense, to a limit u, we look for a so-called homogenized operator
L such that u is a solution of

(0.2) Lu =f in fl.

Passing from (0.1) to (0.2) is the homogenization process. (There is a vast body of
literature on that topic; see [10], [40] for an introduction, and additional references.)
Although homogenization is not restricted to the case of periodically oscillating
operators (cf. the F-convergence of DeGiorgi [16], [17], the H-convergence of Tartar
[42], [34], or the G-convergence of Spagnolo [41], [49]), we restrict our attention to
that particular case. This allows the use of the well-known two-scale asymptotic
expansion method [7], [10], [27], [40] in order to find the precise form of the
homogenized operator L. The key to that method is to postulate the following ansatz
for ue"

(0.3)

* Received by the editors November 5, 1991; accepted for publication (in revised form) February 24, 1992.
? Commissariat l’Energie Atomique, Laboratoire d’Etudes Thermiques des R6acteurs, Service d’Etudes

des R6acteurs et de Math6matiques Appliqu6es, D6partement de M6canique et Technologie, Centre d’Etudes
Nucl6aires de Saclay, F-91191 Gif sur Yvette, C6dex, France.
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where each term ui(x, y) is periodic in y. Then, inserting (0.3) in (0.1) and identifying
powers of e leads to a cascade of equations for each term ui. In general, averaging
with respect to y that for Uo gives (0.2), and the precise form of L is computed with
the help of a so-called cell equation in the unit period (see [10], [40] for details). This.
method is very simple and powerful, but unfortunately is formal since, a priori, the
ansatz (0.3) does not hold true. Thus, the two-scale asymptotic expansion method is
used only to guess the form of the homogenized operator L, and other arguments are
needed to prove the convergence of the sequence u to u. To this end, the more general
and powerful method is the so-called energy method of Tartar [42]. Loosely speaking,
it amounts to multiplying equation (0.1) by special test functions (built with the
solutions of the cell equation), and passing to the limit as e- 0. Although products
of weakly convergent sequences are involved, we can actually pass to the limit thanks
to some "compensated compactness" phenomenon due to the particular choice of test
functions.

Despite its frequent success in the homogenization of many different types of
equations, this way of proceeding is not entirely satisfactory. It involves two different
steps, the formal derivation of the cell and homogenized equation, and the energy
method, which have very little in common. In some cases, it is difficult to work out
the energy method (the construction of adequate test functions could be especially
tricky). The energy method does not take full advantage of the periodic structure of
the problem (in particular, it uses very little information gained with the two-scale
asymptotic expansion). The latter point is not surprising since the energy method was
not conceived by Tartar for periodic problems, but rather in the more general (and
more difficult) context of H-convergence. Thus, there is room for a more efficient
homogenization method, dedicated to partial differential equations with periodically
oscillating coefficients. The purpose of the present paper is to provide such a method
that we call two-scale convergence method.

This new method relies on the following theorem, which was first proved by
Nguetseng [36].

THEOREM 0.1. Let u be a bounded sequence in L2(D.) ( being an open set of N).
There exists a subsequence, still denoted by u, and a function Uo(x,y) LE(’)X Y)
(Y (0; 1) N is the unit cube) such that

(0.4) lim I u(x)O(x,)dx= I f Uo(x,y)(x,y)dxdy
e-0 y

for any smooth function O(x, y), which is Y-periodic in y. Such a sequence u is said to
two-scale converge to Uo(X, y).

We provide a simple proof of Theorem 0.1 along with a new corrector result.
THEOREM 0.2. Let u be a sequence that two-scale converges to Uo(X, y). Then, u

weakly converges in L2(f) to u(x)-y Uo(X y) dy, and we have

Furthermore, if equality is achieved in the left part of (0.5), namely,

(0.6) lim u. :(n)= Uoll :(n Y),

and if Uo(X, y) is smooth, then we have
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Loosely speaking, Theorem 0.1 is a rigorous justification of the first term in the
ansatz (0.3), while Theorem 0.2 gives the condition of a strong convergence to zero of
the difference between u and its ansatz. We are now equipped to explain the two-scale
convergence method. We multiply equation (0.1) by a test function ofthe type $(x, x/e),
where $(x, y) is a smooth function, Y-periodic in y. After some integration by parts,
we pass to the two-scale limit with the help of Theorem 0.1. In the limit, we read off
a variational formulation for Uo(X, y). The corresponding partial differential equation
is called the two-scale homogenized problem. It is usually of the same type as the
original problem (0.1), but it involves two variables x and y. Thus, averaging with
respect to y leads to the homogenized problem (0.2). Eventually, so-called corrector
results (i.e., strong or pointwise convergences) can be obtained by the application of
Theorem 0.2.

We emphasize that the two-scale convergence method is self-contained, i.e., in a
single process we find the homogenized equation and we prove convergence. This is
in contrast with the former "usual" homogenization process (as described above)
which is divided in two steps" first, find the homogenized and cell equations by means
of asymptotic expansions; second, prove convergence with the energy method. Another
interesting feature of the two-scale convergence method is the introduction of the
two-scale homogenized problem. It turns out that it is a well-posed system of equations,
which are a combination of the usual homogenized and cell equations. Indeed, if it is
expected that the periodic oscillations in the operator L generate only the same type
of oscillations in the solution u, the sequence u is completely characterized by its
two-scale limit Uo(X, y). Thus, starting from a well-posed problem for u, we should
obtain in the limit a well-posed problem of the same type for Uo. However, this is not
always the case for the usual macroscopic homogenized equation (the solution of
which is u(x)=g Uo(X, y) dy). When averaging the two-scale homogenized problem
with respect to y, its "nice" form can disappear, and, rather, we could obtain integro-
differential terms (corresponding to memory effects), nonlocal terms, or nonexplicit
equations. There are many such examples in the literature (see [5], [29], [32], [46],
where "classical" methods are used, and [2], [3], [37], where two-scale convergence
is applied). In these cases, the two-scale homogenized problem explains and simplifies
the complicated form of the macroscopic limit equation, thanks to the additional
microscopic variable y, which plays the role of a hidden variable.

Since Theorem 0.1 proves the existence of the first term in the ansatz (0.3), the
two-scale convergence method appears as the mathematically rigorous version of the,
intuitive and formal, two-scale asymptotic expansion method [7], [10], [27], [40]. The
key of the success for such a method is to consider only periodic homogenization
problems. This amounts to restricting the class of possible oscillations of the solutions
to purely periodic ones. Working with the relatively small class of periodic oscillations
allows us to obtain the representation formula (0.4) for weak limits of solutions. For
general types of oscillations, a result like (0.4) seems to be out of reach (the main
obstacle being how to choose the test functions). On the other hand, periodic
homogenization can be cast into the framework of quasi-periodic, or almost-periodic
(in the sense of Besicovitch) homogenization (see, e.g., [28], [38]), since periodic
functions are a very special subclass of quasi-, or almost-, periodic functions. In this
case, test functions can also be written @(x, x e), where @(x, y) is quasi-, or almost-,
periodic in y. However, we do not know if Theorem 0.1 can be generalized to such
test functions or if a new convergence method can thus be obtained.

The paper is organized as follows. Section 1 is devoted to the proof of Theorems
0.1 and 0.2, and other related results. In 2, we show precisely how the two-scale
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convergence method works on the homogenization of linear second-order elliptic
equations (this is the favorite model problem in homogenization; see, e.g., Chapter 1
in [10]). We do this in a fixed domain 12, but also in a periodically perforated domain
12 (a porous medium), obtained by removing from 12 infinitely many small holes of
size e (their number is of order e-N), which support a Neumann boundary condition.
Two-scale convergence is particularly well adapted to the latter case, and we recover
previous results (see [13], [1], [4]) without using any extension techniques. Section 3
generalizes 2 to the nonlinear case. In the periodic setting, we give a new proof of
the F-convergence of convex energies (see [31], [16], [17]), and we revisit the
homogenization of monotone operators [42]. On the contrary of 2 and 3, 4 deals
with an example of homogenization where typical two-scale phenomena appear. We
consider a linear elliptic second-order equation with periodic coefficients taking only
two values 1 and e 2. It models a diffusion process in a medium made of two highly
heterogeneous materials. It turns out that the limit diffusion process is of a very special
type: the usual homogenized problem is not an explicit partial differential equation.
Finally, 5 is devoted to the proof of a technical lemma used in 1; more generally,
we investigate under which regularity assumptions on a Y-periodic function q(x, y)
the following convergence holds true"

(0.8) limla-o q(x,)dx=Ia IY Iq(x,y)ldxdy.

It is easily seen that continuous functions satisfy (0.8). We prove that (0.8) still holds
true for functions of L1112; C#(Y)] or L[Y; C(I))], which are continuous in only
one variable, x or y. However, we cannot decrease the regularity of q(x, y) too much.
Indeed, we construct a counterexample to (0.8) for a function q(x, y) of C[12; L( Y)],
which is not continuous in x for any value of y, but merely continuous in x in the
"LI( Y)-mean."

1. Two-scale convergence. Let us begin this section with a few notations. Through-
out this paper 12 is an open set of RN(N_>- 1), and Y [0; 1IN is the closed unit cube.
As usual, L2(12) is the Sobolev space of real-valued functions that are measurable
and square summable in 12 with respect to the Lebesgue measure. We denote by C(Y)
the space of infinitely differentiable functions in RN that are periodic of period Y.
Then, L(Y) (respectively, H(Y)) is the completion for the norm of L2(Y) (respec-
tively, Hi(y)) of C(Y). Remark that L2(Y) actually coincides with the space of
functions in L2(Y) extended by Y-periodicity to the whole of .

Let us consider a sequence of functions u in L2(f) (e is a sequence of strictly
positive numbers which goes to zero). Following the lead of Nguetseng [36], we
introduce the following.

DEFINITION 1.1. A sequence of functions u in L2(12) is said to two-scale converge
to a limit Uo(X, y) belonging to L2(12 Y) if, for any function (x, y) in D[12; C( Y)],
we have

(1.1)

This new notion of "two-scale convergence" makes sense because of the next
compactness theorem.

THEOREM 1.2. From each bounded sequence u in L2(12), we can extract a sub-
sequence, and there exists a limit Uo(X, y) L2(12 Y) such that this subsequence two-scale
converges to Uo.
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To establish Theorem 1.2, we need the following lemma, the proof of which may
be found in 5.

LEMMA 1.3. Let q(x, y) be afunction in L2[I; C#( Y)], i.e., measurable and square
summable in x l, with values in the Banaeh space of continuous functions, Y-periodic
in y. Then, for any positive value of e, (x, x e) is a measurable function on 12, and we
have

Sup [O(x, y)[ dx
yY

and

1.3) lim 0 x, dx q(x, y) dx dy.
eO fl y

DEFINITION 1.4. A function tp(x, y), Y-periodic in y, and satisfying (1.3), is called
an "admissible" test function.

It is well known (and easy to prove) that a continuous function q(x, y) on f x Y,
Y-periodic in y, satisfies (1.3). However, the situation is not so clear if the regularity
of q is weakened: in particular, the measurability of q(x, x e) is not obvious. To our
knowledge, the minimal regularity hypothesis (if any) making of $(x, y) an "admiss-
ible" test function is not known. In order that the right-hand side of (1.3) makes sense,
t0(x, y) must at least belong to L2(12 Y) (in addition to being Y-periodic in y). But,
as we shall see in 5, this is not enough for (1.3) to hold (a counterexample is provided
in Proposition 5.8). Loosely speaking, q(x, y) turns out to be an "admissible" test
function if it is continuous in one of its arguments (as is the case when q belongs to
L2[12; C#(Y)]). For more details, see 5, which is devoted to the proof of Lemma 1.3
and to the investigation of other regularity assumptions making of $ an "admissible"
test function.

Proof of Theorem 1.2. Let u be a bounded sequence in L2(’): there exists a
positive constant C such that

e<,,>-<- c.
For any function 0(x, y) L2[; C#(Y)], according to Lemma 1.3, q,(x, x/e)belongs
to L2(I)), and the Schwarz inequality yields

L(a)

Thus, for fixed e, the left-hand side of (1.4) turns out to be a bounded linear form on
L[; Ce( Y)]. The dual space of L2[; Ce( Y)] can be identified with Z2[; M( g)],
where Me(Y) is the space of Y-periodic Radon measures on E By viue of the esz
representation theorem, there exists a unique function e L[fl; Me(Y)] such that

Ja k e/

where the brackets in the left-hand side of (1.5) denotes the duality product between
L2[’; C#( Y)] and its dual. Furthermore, in view of (1.4), the sequence/z is bounded
in L2[I); M#(Y)]. Since the space L2[’; C#(Y)] is separable (i.e., contains a dense
countable family), from any bounded sequence of its dual we can extract a subsequence
that converges for the weak* topology. Thus, there exists/Zo L2[12; M#( Y)] such that,
up to a subsequence, and for any @ L2[12; C#( Y)],
(1.6) (/x, q) (/Zo, q).
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By combining (1.5) and (1.6) we obtain, up to a subsequence, and for any q
[; c Y)],

From Lemma 1.3 we know that

e-O L2()

Now, passing to the limit in the first two terms of (1.4) with the help of (1.7) and (1.8),
we deduce

I<o, >[ cIlll =<.
By density of LZ[f; C#(Y)] in L2(f x Y), and by the Riesz representation theorem,
0 is identified with a function Uo L2( x Y), i.e.,

(1.9) Ia/Y Uo(x,y)q(x,y)dxdy.

Equalities (1.7) and (1.9) are the desired result. [3

Remark 1.5. In the proof of Theorem 1.2, we considered test functions $(x, y)
in L2[f; C#(Y)]. Other choices of space of test functions are actually possible. For
example, in the case where f is bounded, we could have replaced L2[f; C#(Y)] by
C[I); C# (Y)], or by L[ Y; C()]. The main ingredients of the proof would not be
affected by this change. All these spaces have in common that they are separable
Banach spaces, which is the required property in order to extract a weakly convergent
subsequence from any bounded sequence in their dual. In any case the two-scale limit
Uo(X, y) is always the same, whatever the chosen space of test functions (see Remark
1.11).

Before developing further the theory, let us give a few examples of two-scale limits.
(,) For any smooth function a(x, y), being Y-periodic in y, the associated sequence

a,(x) a(x, x/e) two-scale converges to a(x, y).
(**) Any sequence u that converges strongly in L2(f) to a limit u(x), two-scale

converges to the same limit u (x).
(***) Any sequence u that admits an asymptotic expansion of the type u(x)=
Uo(X, X/e)+ eUl(X, X/e)+ 62U2(X, X/E)-+-" ", where the functions u(x, y) are smooth
and Y-periodic in y, two-scale converges to the first term of the expansion, namely,
Uo(x, y).

In view of the third example we already have a flavour of the main interest of
two-scale convergence: even if the above asymptotic expansion does not hold (or is
unknown), it is permited to rigorously justify the existence of its first term Uo(X, y).
This is very helpful in homogenization theory, where such asymptotic expansions are
frequently used in a heuristical way (see [10], [40]). This remark is the key of our
two-scale convergence method, as explained in 2, 3, and 4.

The next proposition establishes a link between two-scale and weak L-conver
gences.

PROPOSITION 1.6. Let u be a sequence of functions in L2(f), which two-scale
converges to a limit Uo(X, y) L2([’ Y). Then u converges also to u(x) y Uo(X y) dy
in L2(fl) weakly. Furthermore, we have

(1.10) lim II/,/e L2(y/)’ [[l,/Oll L2(f/x y) - I[/,/ll L2(I’).
0
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Proof. By taking test functions q(x), which depends only on x, in (1.1), we
immediately obtain that u weakly converges to u(x)-g Uo(X, y)dy in L2(I)). To
obtain (1.10), for q(x, y) L2[I); C#( Y)], we compute

Passing to the limit as e 0 yields

limfau(x)dx2Iafoy u(x’Y)(x’y)dxdy-lafy O(x’y)2dxdy"

Then, using a sequence of smooth functions that converges strongly to Uo in L2( x Y)
leads to

lim u(x) & e uo(x, y) & dy.
eO y

On the other hand, the Cauchy-Schwarz inequality in Y gives the other inequality in
(.0.

Remark 1.7. From Proposition 1.6, we see that, for a given bounded sequence in
L(), there is more information in its two-scale limit uo than in its weak L
contains some knowledge on the periodic oscillations of u, while u is just the average
(with respect to y) of uo. However, let us emphasize that the two-scale limit captures
only the oscillations that are in resonance with those of the test Nnctions (x, x/e).
Contrary to the example (.) above, the sequence defined by b(x) a(x, x e) (where
a(x, y) is a smooth Nnction, Y-periodic in y) has the same two-scale limit and weak
L limit, namely, I a(x, y) dy. (This is a consequence of the difference of orders in
the speed of oscillations for b and the test Nnctions O(x, x/e).) In this example, no
oscillations are captured because the two-scale limit depends only on the variable x.
Remark also here that the independence of the two-scale limit on the Nst" variable
y does not imply strong convergence of the sequence in

We claim that there is more information in the two-scale limit of a sequence than
in its weak L limit. But does this supplementary knowledge yield some kind of strong
convergence? This question is precisely answered by the following theorem.
TOM 1.8. Let u be a sequence offunctions in L(a) that two-scale converges

to a limit uo(x, y)e L(a x Y). Assume that

eO

en,for any sequence v that two-scale converges to a limit Vo(X, y) L:( x Y), we have

(1.12) u(x)v(x) [ Uo(X, y)vo(X, y) dy in D’().
dY

Furthermore, if Uo(X, y) belongs to L2[; C(Y)], we have

(1.13) lim Ilu  x -uo(x, )llo L(a)

Remark 1.9. The condition (1.11) can be interpreted as uo contains all the
oscillations of the sequence u." Indeed, (1.11) always takes place for a sequence
(x, x e), with (x, y) e L[; Ce( Y)] or, more generally, being an admissible" test
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function in the sense of Definition 1.4. The result (1.12) can be defined as a strong
two-scale convergence for the sequence u remarkably, it allows to pass to the limit
in some product of two weak convergences in L2(f).

Remark 1.10. As already pointed out before, for a given e, the function Uo(X, x/e)
need not be measurable in 2, if Uo(X, y) merely belongs to L2(I x Y). Thus, in order
for (1.13) to make sense, some regularity on Uo is required; more precisely, we restrict
ourselves to functions Uo(X, y) in L2[12; C#(Y)] (more generally, Uo(X, y) could be any
"admissible" test function; see 5 for details). However, we could wonder if all
two-scale limits automatically are "admissible" test functions. Unfounately, this is
not true, and Lemma 1.13 below shows that any function in L2( x Y) is attained as
a two-scale limit. In view of the counterexample of Proposition 5.8, it is clear that, in
general, a function of L( x Y) is not "admissible" in the sense of Definition 1.4.
Thus, we cannot avoid an assumption on the regularity of Uo in order to state (1.13).

Finally, we claim that, in the vocabulary of homogenization, (1.13) is a corrector-
type result. Indeed, the sequence u is approximated by its two-scale limit Uo(X, x e)
up to a strongly convergent reminder in L2(O). Thus, the weak L2-convergence of u
to its weak limit u is improved by (1.13), and the precise corrector is Uo(X, x/e)-u(x).

Proof of eorem 1.8. Let @,(x, y) be a sequence of smooth functions in
L2[O; C(Y)] that converges strongly to Uo(X, y) in L( x Y). By definition of two-
scale convergence for u, and using Lemma 1.3 and assumption (1.11), we obtain

(1.14) lim u()-O, , dx= [Uo(, y)-O(, y)]: ddy.
0 y

Passing to the limit as n goes to infinity, (1.14) yields

(1.15) lim lim u,(x)-O , d=O.
eO

Let v be a sequence that two-scale converges to a limit Vo(X, y). For any (x) D(),
we have

Passing to the limit as e goes to zero (and having in mind that v is a bounded sequence
in L()) yields

e0 L()

Next, passing to the limit when n goes to infinity and using (1.15) leads to (1.12), i.e.,

lim (x)u(x)v,(x) dx (X)Uo(X, y)vo(x, y) dx dy.
eO y

Fuahermore, if Uo(X, y) is smooth, say Uo L:[O; C( Y)], then (1.14) applies directly
with Uo instead of ft,, and it is nothing but (1.13).

Remark 1.11. As a consequence of Theorem 1.8, we can enlarge the class of test
functions if(x, y) used in the definition of two-scale convergence. In Definition 1.1, a
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sequence u two-scale converges to a limit Uo if

(1.16) limfau(x)q(x,) dx=Ia IeO y
Uo(X, y)q(x, y) dx dy

for any smooth test function q, namely, for q(x, y) DIll; C( Y)]. The class of test
functions has already been considerably enlarged since the compactness Theorem 1.2
is proved for any q(x, y) L2112; C#( Y)]. In view of Theorem 1.8, the validity of (1.16)
is extended to all "admissible" test functions q in the sense of Definition 1.4. Indeed,
an admissible test function satisfies hypothesis (1.11) in Theorem 1.8, and thus the
sequence q(x, x! e) two-scale converges strongly to q(x, y). Retrospectively, the choice
of the space L2[f; C#( Y)] in the proof of Theorem 1.2 appears to be purely technical:
other choices would have led to the same two-scale limit.

Remark 1.12. Let us conclude this section by some bibliographical comments. As
already said, the notion of two-scale convergence and the proof of the compactness
Theorem 1.2 go back to Nguetseng [36]. Here we present a new proof of Theorem 1.2,
which is simpler than the original one (note in passing that our proof has some
similarities with that of Ball [8] for the existence of Young measures). Proposition 1.6
and Theorem 1.8 (concerning corrector results) are new. Recently, a generalization of
two-scale convergence to Young measures has been introduced by E [19] in order to
handle homogenization of nonlinear hyperbolic conservation laws (see Remark 3.8).
Various authors have also developed ideas similar to two-scale convergence: Arbogast,
Douglas, and Hornung [6] defined a so-called dilation operator for homogenization
problems in porous media, while Mascarenhas [32] introduced a kind of two-scale
F-convergence in the study of some memory effects in homogenization. All these works
can be embedded in the general setting of two-scale convergence.

Now that the basic tools of the two-scale convergence method have been estab-
lished, we give a few complementary results before explaining how it can be applied
to the homogenization of partial differential equations with periodically oscillating
coefficients. We first prove that two-scale limits have no extra regularity, as announced
in Remark 1.10.

LEMMA 1.13. Any function Uo(X, y) in L2(I’ x Y) is attained as a two-scale limit.

Proof For any function Uo(x,y)L2(fx Y), we shall construct a bounded
sequence u in L2() that two-scale converges to Uo. Let u,(x, y) be a sequence of
smooth, Y-periodic in y functions that converge strongly to Uo in L2(fx Y). Let
[k(X, y)]l<=k<__ be a dense family of smooth, Y-periodic in y functions in L2(’ Y),
normalized such that IlffJkllL2(xy) 1. Obviously, for fixed n, the sequence u,(x, x/e)
two-scale converges to u,(x, y), i.e., for any 6> 0, and for any smooth if(x, y), there
exists eo(n, 6, ) > 0 such that e < eo implies

Iu,(x,)d/(x,) dx-ffyU,(x,y)q(x,y)dxdy
Now, we extract a diagonal sequence; namely, fixing 6, u. uoll Y), there exists
a sequence of positive numbers e(n), which goes to zero as n such that

x )2u, x, (n dx- u,(x,y dxdy <=6,
E f y

(1.17) (x) (x)u,, x, e(ni ddk x,
e (n)

dx-
Y

u,,(x, y)k(X, y) dx dy <= 6.

for l<=k<=n.
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Defining the diagonal sequence u(,)(x)=-u,,(x,x/e(n)), and recalling that 6n is a
sequence of positive numbers that goes to zero, it is clear from the first line of (1.17)
that the sequence u(n) is bounded in L2(). By density of the family [Ok(X,
in L2(1 x Y), the second line implies that u(,) two-scale converges to Uo.

So far we have only considered bounded sequences in L2(O). The next proposition
investigates some cases where we have additional bounds on sequences of derivatives.

PROPOSITION 1.14.
(i) Let u be a bounded sequence in HI() that converges weakly to a limit u in

H1(1). Then, u two-scale converges to u (x), and there exists a function ul(x, y) in
L[I; H(Y)/R] such that, up to a subsequence, Vu two-scale converges to Vxu(x)+
VyUl(X, Y).

(ii) Let u and eVu be two bounded sequences in L(I)). Then, there exists afunction
Uo(X, y) in L211-1; H (Y) such that, up to a subsequence, u and e u two-scale converge
to Uo(X, y) and to VyUo(X, y), respectively.

(iii) Let u be a divergence-free bounded sequence in [L-()]N, which two-scale
converges to Uo(X, y) in [L(I x y)]N. Then, the two-scale limit satisfies divy Uo(X, y)=0
and v divx Uo(X, y) dy O.

Proof.
(i) Since u, (respectively, Vu) is bounded in L(f/) (respectively, [L2(1)]), up

to a subsequence, it two-scale converges to a limit Uo(X, y)e L2(1 x Y) (respectively,
Xo(X, y) e ILk(f/x V)]). Thus for any q(x, y) e DIll; C(Y)] and any (x, y)
D[; CT(y)]N, we have

(1.18)
limfu(x)p(x,)_.o dx=f. IY Uo(x,y)p(x,y)dxdy,

limI.u’(x)’(x’ dx=I IY Xo(x,y).(x,y)dxdy.
By integration by parts, we have

Iu(x). (x,)dx=-I u(x)[dive, (x, )+e dive, (x, )]dx.
Passing to the limit in both terms with the help of (1.18) leads to

0"---- ffl fy Uo(x,y) divy(X,y)dxdy.

This implies that Uo(X, y) does not depend on y. Since the average of Uo is u, we deduce
that for any subsequence the two-scale limit reduces to the weak L2 limit u. Thus, the
entire sequence u two-scale converges to u(x). Next, in (1.18) we choose a function

such that divy (x, y)=0. Integrating by parts we obtain

limIu(x) div’(x’)dx=-f. v
Xo(x,y).(x,y)dxdy

u(x) divx (x, y) dx dy.
1" Y
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Thus, for any function (x, y) D[g/; C( y)]N with divy xIZ(x, y)-0, we have

(1.19) Ial[X(x’y)-vu(x)]’(x’y)dxdy=O’v
Recall that the orthogonal of divergence-free functions are exactly the gradients (see,
if necessary, [43] or [47]). This well-known result can be very easily proved in the
present context by means of Fourier analysis in Y. Thus, we deduce from (1.19) that
there exists a unique function ul(x, y) in L2[l); H(Y)/] such that

Xo(X, Y) Vu(x) + Vyu(x, y).

(ii) Since u (respectively, eVu) is bounded in L2(ll) (respectively, [L2()]),
up to a subsequence, it two-scale converges to a limit Uo(X, y) L2(12 Y) (respectively,
Xo(X, y) [L2( x Y)]u). Thus for any q(x, y) D[12; C(Y)] and any (x, y)
D[12; C(Y)], we have

(1.20)
lim eVu(x) x, dx Xo(X, y) (x, y) dx dy.
e-O fl Y

Integrating by parts in (1.20), we obtain

i.m fa u.(x)[div,eg(x,)+e divx (x,)] dx=-Ia f.o(x,y).(x,y)dxdy

Disintegrating by parts leads to Xo(X, y)= Vyuo(x, y).
The proof of part (iii) is similar to the previous ones, and is left to the reader. [3

Two-scale convergence is not limited to bounded sequences in L2(-). Our main
result, Theorem 1.2, is easily generalized to bounded sequences in Lv(-), with 1 < p _-<
+. Remark that the case p +o is included, while p 1 is excluded (this is similar
to what happens for weak convergence).

COROLLARY 1.15. Let u be a bounded sequence in LP(’), with 1 <p <= +o. There
exists a function Uo(X, y) in LP(I)x Y) such that, up to a subsequence, u two-scale
converges to Uo, i.e., for any function q(x, y) D[I; C( Y)], we have

limlau(x)b(x’)dx=Ia v
Uo(X,y),(x,y)dxdy.

(The proof is exactly the same as that of Theorem 1.2.)
Of course, two-scale convergence is also easily generalized to n-scale convergence,

with n any finite integer greater than two. This is a very helpful tool for what is called
reiterated homogenization (see [10, Chap. 1, 8]).

COROLLARY 1.16. Let u be a bounded sequence in L2(). There exists a function
Uo(X, y, Yn-) in L2(fl x yn-1) such that, up to a subsequence, u n-scale converges
to Uo, i.e., for any function d/(x, ya, ., Yn-1) D[; C( y,-1)], we have

lim u(x)q x,-,..., ,_ dx
e-O E E

--ffy._,Uo(x, yl,’’’,yn-1)qt(x, yl,’’’,yn-1) dxdyl dyn-1.
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Remark 1.17. In the present paper, the test functions q(x, y) are always assumed
to be Y-periodic in y. Other choices for the period are possible. For a same sequence
u different two-scale limits can arise according to the period chosen for the test
functions y--> q(x, y), but they are related by a straightforward change of variables.

2. Homogenization of linear second-order elliptic equations. In this section we show
how two-scale convergence can be used for the homogenization of linear second-order
elliptic equations with periodically oscillating coefficients. We first revisit this favorite
model problem of homogenization (see, e.g., [10, Chap. 1, 6] in a fixed domain f,
and later on we consider the case of perforated domains f (see [13]). Besides
recovering previous well-known results from a new point of view, we establish a new
form of the limit problem, that we call the two-scale homogenized problem, and which
is simply a combination of the usual homogenized problem and the cell problem (see
[10], [40] for an introduction to the topic).

Let f be a bounded open set of R. Let f be a given function in L2(f). We
consider the following linear second-order elliptic equation

u=O onOl),

where A(x, y) is a matrix defined on f Y, Y-periodic in y, such that there exists two
positive constants 0 < a _<-/3 satisfying

N

(2.2) all2 <= 2 Ao(x, Y),j <= [l2 for any c iN.
i,j=

Assumption (2.2) implies that the matrix A(x,y) belongs to [L(Ox Y)]u, but it
doesn’t ensure that the function x A(x, x e) is measurable, nor that it converges to
its average v A(x, y) dy in any suitable topology (see the counterexample of Proposi-
tion 5.8). Thus, we also require that A(x, y) is an "admissible" test function in the
sense of Definition 1.4, namely, Aj(x, x/) is measurable and satisfies

(2.3) lim ao x, dx aj(x, y) dx +.
eO y

Assumption (2.3) is the weakest possible, but is rather vague. More precise, but also
more restrictive, assumptions include, e.g., A(x,y)L[f; C#(Y)] N2, A(x,y)
L[Y; C()] 2, or A(x, y) C[f; L(Y)] (the latter is the usual assumption in
[10]). Under assumptions (2.2), (2.3), equation (2.1) admits a unique solution u in
H(f), which satisfies the a priori estimate

(2.4)

where C is a positive constant that depends only on f and a, and not on e. Thus,
there exists u Ho(l-l) such that, up to a subsequence, u converges weakly to u in
H(f). The homogenization of (2.1) amounts to find a "homogenized" equation that
admits the limit u as its unique solution.

Let us briefly recall the usual process of homogenization. In a first step, two-scale
asymptotic expansions are used in order to obtain formally the homogenized equation
(see, e.g., [10], [40]). In a second step, the convergence of the sequence u to the
solution u of the homogenized equation is proved (usually by means of the so-called
energy method of Tartar [42]).

The results of the first (heuristic) step are summarized in the following.
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DEFINITION 2.1. The homogenized problem is defined as

-div [A*(x)Vu(x)] =f in 1),
(2.5)

u 0 on 01),

where the entries of the matrix A* are given by

(2.6) A(x) f A(x, y)[VyWi(X y) + ei] [VyWj(X, y) + ej] dy
Y

and, for <= <-N, W is the solution of the so-called cell problem

(2.7)
-divy [A(x, y)[Vywi(x, y)+ ei]]--0 in Y,

y -> wi(x Y) Y-periodic.

As a result of the second step, we have the following theorem [10, Chap. I, Thm. 6.1].
THEOREM 2.2. The sequence u of solutions of (2.1) converges weakly in H() to

the unique solution u of (2.5).
We are going to recover this last result with the help of two-scale convergence,

but we also propose an alternative formulation of the limit problem by introducing
the two-scale homogenized problem, which is a combination of the usual homogenized
equation (2.5) and of the cell equation (2.7).

THEOREM 2.3. The sequence u of solutions of (2.1) converges weakly to u(x) in
H(I)), and the sequence Vu two-scale converges to Vu(x)+Vyul(x,y), where (u, Hi)
is the unique solution in H(I)) x L2[); H( Y)/N] ofthefollowing two-scale homogenized
system:

(2.8)

-divy [A(x, y)[Vu(x) + VyUl(X y)]] 0 in f x Y,

-div, [fv A(x,y)[Vu(x)+Vyu,(x,y)]dy] =f in1),

u(x) O on Ol),

y Ul(X, y) Y-periodic.

Furthermore, (2.8) is equivalent to the usual homogenized and cell equations (2.5)-(2.7)
through the relation

(2.9)
N Ou

u,(x, y) i=IE x/(X)Wi(X’ y)"

Remark 2.4. The two-scale homogenized problem (2.8) is a system of two
equations, two unknowns (u and ul), where the two space variables x and y (i.e., the
macroscopic and microscopic scales) are mixed. Although (2.8) seems to be compli-
cated, it is a well-posed system of equations (cf. its variationial formulation (2.11)
below), which is easily shown to have a unique solution. Remark that, here, the two
equations of (2.8) can be decoupled in (2.5)-(2.7) (homogenized and cell equations)
which are also two well-posed problems. However, we emphasize that this situation
is very peculiar to the simple second-order elliptic equation (2.1). For many other
types of problems, this decoupling is not possible, or leads to very complicated forms
of the homogenized equation, including integro-differential operators and nonexplicit
equations. Thus, the homogenized equation does not always belong to a class for which
an existence and uniqueness theory is easily available, as opposed to the two-scale
homogenized system, which is, in most cases, of the same type as the original problem,
but with twice the variables (x and y) and unknowns (u and u). The supplementary,
microscopic, variable and unknown play the role of "hidden" variables in the
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vocabulary of mechanics (as remarked by Sanchez-Palencia [40]). Although their
presence doubles the size of the limit problem, it greatly simplifies its structure (which
could be useful for numerical purposes, too), while eliminating them introduces
"strange" effects (like memory or nonlocal effects) in the usual homogenized problem.
In short, both formulations ("usual" or two-scale) of the homogenized problem have
their pros and cons, and none should be eliminated without second thoughts. Par-
ticularly striking examples of the above discussion may be found in 4, in [2] (a
convection-diffusion problem), or in [3] (unsteady Stokes flows in porous media).

Remark 2.5. As stated earlier, the two-scale homogenized problem (2.8) is
equivalent to the homogenized system (2.5) and the cell problem (2.7), which are
obtained by two-scale asymptotic expansions. This equivalence holds without any
assumptions on the symmetry of the matrix A. Recall that, if A is not symmetric, the
test functions used in the energy method are not the solutions of (2.7), but that of the
dual cell problem (i.e., (2.7), where A is replaced by its transpose

Proof of Theorem 2.3. Thanks to the a priori estimate (2.4), there exists a limit u
such that, up to a subsequence, u converges weakly to u in H(12). As a consequence
of Proposition 1.14, there exists Ul(X y) L2[ H(Y)/] such that, up to another
subsequence, Vu two-scale converges to Vu(x)+Vyul(x, y). In view of these limits,
u is expected to behave as u(x)+ eul(x, x/e). This suggests multiplying (2.1) by a
test function th(x) + e4)(x, x e), with b(x) D(12) and thl(X, y) D[f; C( Y)]. This
yields

I,A(x,)Vu[Vdp(x)+Vydpl(X,)+eVxqbl(X,)3 dx

If the matrix A(x,y) is smooth, then the function tA(x, x/e)[Vch(x)+Vychl(x,x/e)]
can be considered as a test function in Theorem 1.2, and we pass to the two-scale limit
in (2.10). Even if A(x, y) is not smooth, at least, by assumption (2.3), the function
’A(x, x/e)[Vt(x)d-Vytl(X,X/e)] two-scale converges strongly to its limit ’A(x,y)
[Vdp(x)+Vy4)l(x,y)] (i.e., condition (1.11) is satisfied in Theorem 1.8). Thus, using
Theorem 1.8, we can still pass to the two-scale limit in (2.10):

fa l A(x’Y)[’u(x)+Vyul(x’Y)] [Vqb(x)+VYqbl(x’Y)] dxdy
(2.11)

fcf(x)qb(x dx.

By density, (2.11) holds true for any (b, bl) in Ho(O)x L2[f; HI(Y)/R]. An easy
integration by parts shows that (2.11) is a variational formulation associated to (2.8).
Endowing the Hilbert space H(f) L[12; H(Y)/R] with the norm IlVu(x)ll
IlVyU(x, y)[I y), we check the conditions of the Lax-Milgram lemma in (2.11). Let
us focus on the coercivity in Ho(f) x L2[f; H(Y)/] of the bilinear form defined
by the left-hand side of (2.11):

a(x’ Y)[Vqb(x)+VYqbl(x’ Y)] [Vqb(x)+VYqbl(x’ Y)] dxdy
Y

Ol Io fY IVqb(x)+Vydl(x’ y)12 dxdy

-- ffl(x)12dxd- fo IY IYPl(x’Y)l:Zdxdy"
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Thus, by application of the Lax-Milgram lemma, there exists a unique solution of the
two-scale homogenized problem (2.8). Consequently, the entire sequences u and Vu
converge to u(x) and Vu(x)+VyUl(x,y). At this point, we could content ourselves
with (2.8) as a homogenized problem, since its variational formulation (2.11) appears
very naturally by application of two-scale convergence. However, it is usually prefer-
able, from a physical or numerical point of view, to eliminate the microscopic variable
y (one doesn’t want to solve the small scale structure). This is an easy algebra exercise
(left to the reader) to average (2.8) with respect to y, and to obtain the equivalent
system (2.5)-(2.7), along with formula (2.6) for the homogenized matrix A*. [

Corrector results are easily obtained with the two-scale convergence method. The
next theorem rigorously justifies the two first terms in the usual asymptotic expansion
of the solution u (see [10]).

THEOREM 2.6. Assume that VyU(X, y) is an "admissible" testfunction in the sense

ofDefinition 1.4. Then, the sequence [Vu (x) V u (x) VyU x, x/ e converges strongly
to zero in [L2(12)] N. In particular, if u, V,,ua, and Vybl are "admissible," then we have

in HI(12) strongly.

Proof Let us first remark that the assumption on Ul, being an "admissible" test
function, is satisfied as soon as the matrix A is smooth, say A(x, y) C[12; L( y)] u2,
by standard regularity results for the solutions wi(x, y) of the cell problem (2.7).

Now, using this assumption, we can write

Using the coercivity condition (2.2) and passing to the two-scale limit in the right-hand
side of (2.12) yields

(2.13)

In view of (2.8), the right-hand side of (2.13) is equal to zero, which is the desired
result. ]

Two-scale convergence can also handle homogenization problems in perforated
domains, without requiring any extension lemmas or similar technical ingredients. Let
us define a sequence 12 of periodically perforated subdomains of a bounded open set
12 in N. The period of fl is eY*, where Y* is a subset of the unit cube Y (0; 1) N,
which is called the solid or material part (by opposition to the hole, or void part,
Y-Y*). We assume that the material domain E*, obtained by Y-periodicity from
Y*, is a smooth connected open set in N (remark that no assumptions are made on
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the void domain RN-E*; thus, the holes Y-Y* may be connected or isolated).
Denoting by X(Y) the characteristic function of E* (a Y-periodic function), f is
defined as

(2.14)

We consider a linear second-order elliptic equation in f,

(2.15)

u =0 onalaf,,

where the matrix A satisfies the same assumptions (2.2), (2.3) as before. From (2.15),
we easily deduce the a priori estimates

(2.16)

where C is a constant which does not depend on e. The main difficulty in homogeniz-
ation in perforated domains is to establish that the sequence u admits a limit u in
HI(Iq). From (2.16) we cannot extract a convergent subsequence by weak compactness
in a given Sobolev space, since each u is defined in a different space Hl(-e), which
varies with e.

Nevertheless, this problem has first been solved by Cioranescu and Saint Jean
Paulin 13] in the case of domains perforated with isolated holes (i.e., Y- Y* is strictly
included in Y), while the general case is treated in [1] and [4]. The main result of
these three papers is the following theorem.

THEOREM 2.7. The sequence u ofsolutions of (2.15) "converges" to a limit u, which
is the unique solution in H(YI) of the homogenized problem

(2.17)
-div [A*V u + Ou Of in f,

u =0 on

where 0 is the volume fraction of material (i.e., O=yX(y) dy=lY*l), and the entries

of the matrix A* are given by

(2.18) A(x) f A(x, y)[Vywi(x, y)+ ei] [VyWj(X, y)+ ej] dy,
y*

and, for 1 <= <-_ N, W is the solution of the cell problem

-divy (A(x, y)[VyW,(X, y)+ e,])= 0 in Y*,

(2.19) A(x,y)[VyWi(x,y)+ei]. n=O onOY*-OY,

y --> W (X, y) Y-periodic.

Remark 2.8. The convergence of the sequence u is intentionally very "vague" in
Theorem 2.7. In view of the a priori estimates (2.16), there is no clear notion of
convergence for u, which is defined on a varying set 12. In the literature this difficulty
has been overcome in two different ways. In [13] and [1], an extension of u to the
whole domain 1) is constructed, and this extension is proved to converge weakly in
Hl(f) to the homogenized limit u. In [4], no sophisticated extensions are used, but
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a version of the Rellich theorem in perforated domains is established (loosely speaking,
the embedding of Hl(f) in L2(f) is compact, uniformly in e), which allows us to
prove that u converges to u in the sense that Ilu- u llL2,) goes to zero. All these
references use classical methods of homogenization (the energy method of Tartar in
[13] and [4], and the F-convergence of De Giorgi in [1]).

In the next theorem we recover the results of Theorem 2.7, using two-scale
convergence. As in [4], we do not use any sophisticated extensions (apart from the
trivial extension by zero in the holes f-f), and we give a new interpretation of the
"vague" convergence mentioned above.

THEOREM 2.9. Denote by the extension by zero in the domain f f.. The sequences
and Vu two-scale converge to u(x)x(y) and X(y)[Vu(x)+Vyul(x, y)], respectively,

where (u, Ul) is the unique solution in H(O) L2[-; H( Y*)/R] of the following
two-scale homogenized system;

-dive (A(x, y)[Vu(x)+VyUl(X, y)])=0 in f Y*,

y*

(2.20) u(x) =0 on Oa,

y Ul(X, y) Y-periodic

(A(x, y)[Vu(x)+VyUl(X, y)]) n=0 on OY*-OY.

Furthermore, (2.20) is equivalent to the usual homogenized and cell equations
(2.17)-(2.19) through the relation

N OU
(2.21) UI(X, y) i=l Xi (X)Wi(X, y).

Proof. In view of (2.16), the two sequences t, and u are bounded in L(f),
and by application of Theorem 1.2 they two-scale converge, up.to a subsequence, to
Uo(X, y) and o(X, y), respectively. Since, by definition, a and Vu are equal to zero
in -, their two-scale limit Uo(X, y) and :o(X, y) are also equal to zero if y Y- Y*.
In order to find the precise form of Uo and o in f x Y*, we argue as in Proposition
1.14(i). Let if(x, y) e D[f; C(Y)] and (x, y) D[; C(Y)]N be two functions,
equal to zero if y e Y- Y* (hence, they belong to D(f) and [D(f)]N). We have

liml. u(x)d/(x,)dx=I, f Uo(x,y)tp(x,y)dxdy,
O Y*

(2.22)

lim/ Vu(x).(x,-)dx:I, f ,o(x,y).(x,y)dxdy.
eO y.

By integration by parts, we obtain

Passing to the limit in both terms with the help of (2.22) leads to

0 IFt /y. Uo(x,y) divy*(X,y)dxdy.

This implies that Uo(X, y) does not depend on y in Y*, i.e., there exists u(x) Le(f)
such that

Uo(X, y) u(x)x( y).
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Now, we add to the previous assumptions on (x, y) the condition divy (x, y)-0.
Integrating by parts in 12 gives

(2.23) fa Vu(x).(x,)dx=-y, u(x) divx(X,)dx.
Passing to the two-scale limit yields

(2.24) Iafv* ’(x’Y)’(x’y)dxdy=-Ialv* u(x) divx(X,y)dxdy.

By using Lemma 2.10 below, the right-hand side of (2.24) becomes Ia u(x) divx O(x) dx,
while the left-hand side is a linear continuous form in O(x)[L2(l)]. This implies
that u(x)e H(f). Then, integrating by parts in (2.24) shows that, for any function

(x, y) L2[f L2 Y* N#( )] withdivy(x,y)=0and(x,y).ny=0on0Y*-0Y, we
have

(2.25) Iaf[o(x,y)-Tu(x)]’(x,y)dxdy=O..
Since the orthogonal of divergence-free functions is exactly the gradients, we deduce
from (2.25) that there exists a function u(x, y) in L[I); H( Y*)/N] such that sCo(X, y)
X(Y){VU(X)+VyUl(X, Y)].

We are now in the position of finding the homogenized equations satisfied by u
and ul. Let us multiply the original equation (2.15) by the test function b(x)+
echl(x, x/e), where b D(I2) and 41 D[I2; C( Y)]. Integrating by parts and passing
to the two-scale limit yields

far a(x’Y)[Vu(x)+Vyul(x’Y)]’[Vqb(x)+VYdpl(x’y)]dxdy+Ofaudpdx(2.26) v.

O fafdp dx.

By density, (2.26) holds true for any (, ) in H(f) L2[12; H(Y*)/R]. An easy
integration by parts shows that (2.26) is a variational formulation associated to (2.20).
It remains to prove existence and uniqueness in (2.26), and, as in Theorem 2.3, the
main point is to show the coercivity of the left-hand side of (2.26). Indeed, it is an
easy exercise (left to the reader) to check that 1lTl,/(X)-[-Ty/Al(X, y)[[L2mv.)is a norm
for the Hilbert space H(a)x L[a; H(Y*)/]. Remark, however, that this result
relies heavily on the assumption on Y* (namely, the Y-periodic set E*, with period
Y*, is connected), and even fails if Y* is strictly included in the unit cell Y. Remark
also that here, to the contrary of the situation in Theorem 2.3, the above norm is not
equal to IlVu(x)llL=(m+llV,Ul(X, y)llL=(,..), t

LEMMA 2.10. For any function O(x) [L2(-).)] N there exists (x, y)
L:[f; H1(y,) such that

divy(X,y)=O in Y*,

(x, y) 0 onOY*-OY,

(2.27) f (x, y) dy O(x),
y*
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Proof For 1 <- <_- N, consider the following Stokes problem:

Vpi Avi e in Y*,

divvi=O inY*,

vi=O onOY*-OY,

Pi, vi Y-periodic,

which admits a unique, nonzero solution (p, Vi) in [L(Y*)/R]x[H(Y*)]N since
we have assumed that E* (the Y-periodic set obtained from Y*) is smooth and
connected. Denote by A the constant, symmetric, positive definite matrix
(y. Vv. Vvj)I_<i,j__<N. Then, for any O(x)[L2(fl)], the function defined by

N

(x, y) Y (A-10(x), e,)v,(y)
i=1

is easily seen to satisfy all the propeies (2.27) since y. V v V Vj y. V e.
3. Homogenization of nonlinear operators. In this section we show how two-scale

convergence can handle nonlinear homogenization problems. Again, we revisit two
well-known model problems in nonlinear homogenization: first, the F-convergence of
oscillating convex integral functionals, and second, the H-convergence (also known
as G-convergence) of oscillating monotone operators. We begin this section by recover-
ing some previous results of De Giorgi, and Marcellini [31], concerning F-convergence
of convex functionals. Then we recover other results of Tatar [42], about H-conver-
gence of monotone operators, and finally we conclude by giving a few references where
generalizations of the two-scale convergence method are applied to the homogenization
of nonlinear hyperbolic conservation laws, and nonlinear equations admitting viscosity
solutions (see Remark 3.8).

Let be a bounded open set in and f(x) a given function on . We consider
a family of functionals

where v(x) is a vector-valued function from into R, and the scalar energy W(y, )
satisfies, for some p > 1,

(i) for any I, the function y W(y, ) is measurable and Y-periodic,

(ii) a.e. in y, the function I W(y, ) is strictly convex and C in N,
(3.2)

(iii) OclhlPW(y,h)C[l+h[P]a.e. in y, withO<c<C,

OW
(iv) (y, A)C[l+lhlP-]a.e. iny.

(Actually, assumption (iv) is easily seen to be a consequence of (ii) and (iii), as
remarked by Francfo [24].) We also assume thatf(x) [LP’()] with (l/p) + (1/p’)
1. Since W(y, A) is convex in A, for fixed e, there exists a unique u(x) W’P()]
that achieved the minimum of the functional I, (v) on W’P()]", i.e.,

(3.3) I(u) Inf f[W(,Vv(x)-f(x)v(x)]dx.
v[W.p()]" Jakke / J
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The homogenization of the functionals L(v) amounts to finding an "homogenized"
functional I(v) such that the sequence of minimizers u converges to a limit u, which
is precisely the minimizer of I(v). This problem has been solved by Marcellini [31].
His result is the following.

THEOREM 3.1. There exist a functional I and a function u such that

u u weakly in W"p(

(3.4) I(u) I(u),

I(u) Inf I(v).
I)[ w’P(().,)

Furthermore, I is given by

Io-(3.5) I(v)= [W(Vv(x))-f(x)v(x)] dx,

where the energy W is defined by

(3.6) W(A) Inf W(y, A + Vw(y)) dy.
e[w’P()]

Remark 3.2. By definition, I is the homogenized functional, and the sequence I
is said to F-converge to L (For more details about the F-convergence of De Giorgi,
see [16], [17].) In addition, it is easy to see that the energy if" is also convex and C 1,
and satisfies the same growth conditions as W. We emphasize that Theorem 3.1 is
restricted to convex energies; the situation is completely different in the nonconvex
case (see [12], [33]).

We are going to recover Theorem 3.1 using two-scale convergence, and without
any tools form the theory of F-convergence.

THEOREM 3.3. There exists a function u(x) such that the sequence u of solutions
of (3.3) converges weakly to u in [W’P(-)] n. There also exists a function Ul(X y)
Lp 1); W;p(Y) such that the sequence Vu two-scale converges to VxU (x) + VyU (x, y).
Furthermore, the homogenized energy is also characterized as

(3.7) I(u) I(u, Ul)= Inf I(v, v),
/91 LP [[; w’P(Y)/[]

where I(v, Vl) is the two-scale homogenized functional defined by

(3.8) /(t, Vl) fa IY [W[y, Vv(x)+VyVl(X,y)]-f(x)v(x)]dxdy.

Remark 3.4. Theorem 3.3 furnishes a new characterization of the homogenized
problem, which turns out to be a double minimization over two different spaces of
functions of two variables x and y. In the quadratic case, this characterization was
also proposed by Lions (see his "averaging principle" in the calculus of variations
[30, 5, Chap. 1]). Theorem 3.1 is easily deduced from Theorem 3.3 by averaging the
two-scale homogenized functional I(v, Vl) with respect to y to recover the usual
homogenized functional I(v). The difference between I(v) and I(v, vl) corresponds
exactly to the difference in the linear case between the usual and two-scale homogenized
problems (see Remark 2.4).

Proofof Theorem 3.3. In view of the growth condition (3.2)(iii) for the energy W,
the sequence of minimizers u is bounded in W’P(f)]. Thus, there exists a function
u such that, up to a subsequence, u converges weakly to u in [W’P(I))].
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Applying Proposition 1.14 and Corollary 1.15, there also exists a function Ul(X y)
LP[f; WP(Y)/R] such that, up to another subsequence, Vu two-scale converges
to Vxu(x) + VyUl(X, y).

In a first step we give a lower bound for I(u). Since W(., A) is convex and
differentiable, we have

(3.9) W(., A)-

By specifying (3.9), we obtain

(3.10)
x /-, ,/z x, + ,/x x, ,Vu(x)-/ x,

For a smooth function /z(x, y) D[fl; C’(Y)]n, we can integrate (3.10) on fl, and
then pass to the two-scale limit in the right-hand side. This leads to

(3.11)

lim I[u(x)]>- fn Y ( W[y, tz(x, y)]-f(x)u(x)) dxdy

+ ---- [y,/x(x, y)], VxU(X) + Vyul(x, y) Ix(x, y) dx dy.
Y

Now, we apply (3.11) to a sequence of smooth functions /x(x, y), Y-periodic in y,
which converges to VxU(X)+Vyu(x,y) strongly in [LP(flx y)]nN. In view of the
growth conditions (3.2)(iii) and (iv) on W and 0 W/,gA, we can pass to the limit in
(3.11) and obtain

lim I[u(x)] >- In f [W[y, Vxu(x)+Vyu(x, y)]-f(x)u(x)] dxdy
(3.12) -,o y

--I(U, Ul).

Now, in a second step we establish an upper bound for I(u). For 4(x) [D(f)]"
and bl(X, y) D[f; C( Y)]’, since u is the minimizer, we have

Passing to the two-scale limit in the right-hand side of (3.13) yields

lim I[u(x)]<- In I [W[y, Vd(x)+V,d(x, y)]-f(x)d(x)] dxdy
(3.14) -,o y

I(b, b,).

The functional I(b, bl) is called the two-scale homogenized functional. By density,
we deduce from (3.14) that

(3.15) lim I[u(x)]<= I(v, Vl).
e->0

Inf

vlLP[fl; W’P( Y)/II]

Combining (3.12) and (3.15) yields

(3.16) lim I[u(x)] I(u, Ul)= Inf I(v, v).
,o

vI LP[f;W Y)/I]
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Since W(., A) is a strictly convex energy, there exists a unique minimizer (u, ul) of
(3.16). Thus, the entire sequence u converges weakly to u in [W’P(f)]", and the
entire sequence Vu two-scale converges to Vxu(X) + VyUl(X y). rq

So far, we have considered minimization problems. Instead, we could have solved
the corresponding nonlinear Euler equations, satisfied by the minimizers. More gen-
erally, we could consider nonlinear second-order elliptic equations, which may not
correspond to any energy minimization. Indeed, we are going to generalize Theorem
3.3 to the case of monotone operators, thus recovering previous results of Tartar [42].

Define an operator a(y, A) from Yxnv in nN as follows:

(i) for any A, the function y-> a(y, A) is measurable and Y-periodic,

(ii) a.e. in y, the function A a(y, A) is continuous,
(3.17) (iii) O<-_clAIP<-a(y,A) A, for 0< c, and p> 1,

(iv) la(y, A)I -< C[1 + for 0< C.

Furthermore, the operator a is strictly monotone, i.e.,

(3.18) [a(y, A) a(y, z)]. (A -/z) > 0 for any A

For f(x)[LP’()]" (with (1/p)+(1/p’)= 1), we consider the equation

(3.19)
-div a(,Vu)=f in

u=O onOf,

which admits a unique solution u in W’P(f)] ".
THEOREM 3.5. The sequence u ofsolutions of (3.19) converges weakly to afunction

u (x) in W"p(f)]’, and the sequence Vu two-scale converges to V,u (x) + VyUl (x, y),
where (u, ul) is the unique solution in W’P(I)] LP[f; W;P( y)/]n ofthe homogen-
ized problem

-divx[ I a[y, Vu(x)+Vyu(x,y)]dy]=f inl-I
Y

(3.20)
-divya[y, Vu(x)+Vytll(X y)]=O in Y

u 0 on OFI

y u(x, y) Y-periodic.

Proofi From the growth conditions (3.17), we easily obtain a priori estimates on
u,, which is bounded in [W’P(f)], and g=a(x/e, Vu,), which is bounded in
[LP’(f)] N. Thus, up to a subsequence, u converges weakly to a limit u in W’P(fl)] ",
while Vu and g two-scale converge to Vu(x)+Vyul(x, y) and go(x, y), respectively.
Since f+ div g 0, arguing as in Proposition 1.14, it is not difficult to check that the
two-scale limit go satisfies

divy go(x, y) 0

(3.21)
f(x)+divx [fy go(x,y) dy] =0.

The problem is to identify go in terms of a, u, and u. To this end, for any positive
number t, and any functions b, b DIll; C( Y)], we introduce a test function defined
by
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which two-scale converges to a limit io(x,y)=Vu(x)+Vybl(x,y)+td(x,y). The
monotonicity property (3.18) yields

or, equivalently,

(3.22) -div g. u a I Vu g. I + a I i dx >- O.

Using (3.19) in the first term of (3.22), and passing to the two-scale limit in all the
other terms leads to

(3.23) f. fy [f.u-a(y,,o).[Vu(x)+VyUl(X,y)l-go.lo+a(y,to).lo]dxdy>=O.
In view of the growth conditions (3.17) on the operator a, we can pass to the limit in
(3.23) when considering a sequence of functions 4l(X, y) that converges strongly to
Ul(X, y) in [LP(12; WIsP(Y))] n. Thus, replacing/o by Vu(x)+Vyul(x, y)+ td(x, y) and
integrating by parts, (3.23) becomes

Ia [f(x) + diV ( fy go(x, y) dy) ] u(x) dx + Ia fy divy go(x, y) ul(x, y) dx dy

(3.24)

+ fa fg [a[y, Vu(x)+Vyul(x,y)+tdp(x,y)]-go(x,y)]tdp(x,y)dxdy>-O.

Thanks to (3.21), the first two terms of (3.24) are equal to zero. Then, dividing by
> 0, and passing to the limit, as goes to zero, gives for any function th(x, y),

f f [a[y, Vbl(X)’dr’VyUl(X y)]-go(x, y)]b(x, y)dxdy>-O.
Y

Thus, we conclude that go(x, y)=a[y, Vu(x)+Vyul(x, y)]. Combined with (3.21) it
implies that (u, Ul) is a solution of the homogenized system (3.20). Since the operator
a is strictly monotone, system (3.20) has a unique solution, and the entire sequence
u converges.

In the case p 2, and under the further assumption that the operator a is uniformly
monotone, i.e., there exists a positive constant c such that

(3.25) [a(y, A)- a(y,/)]. (A ) >_- c[A -/1 for any A,

we obtain a corrector result similar to Theorem 2.6 in the linear case.
THEOREM 3.6. Assume that the function ul(x, y) is smooth. Then, the sequence

u(x) u (x) eua (x, x/ e converges strongly to zero in H (1)).
Remark 3.7. Corrector results for monotone operators in the general framework

of H-convergence have been obtained by Murat [35] (see also [15] in the periodic
case). By lack of smoothness for 7u(x), the corrector in [35] is not explicit. Here, on
the contrary, the corrector is explicitly given as 7ul(x, x/e). However, we still have
to assume that Ul(X, y) is smooth in order to state Theorem 3.6 (more precisely,
7u(x, x/e) is required to be, at least, an admissible test function in the sense of
Definition 1.4).
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Proof of Theorem 3.6. Since Ul(X y) is assumed to be smooth, we consider the
function

which two-scale converges to xo(x, y)= Vu(x)+ Vu(x, 3’). The monotonicity property
(3.25) yields

(3.26)

As in the proof of Theorem 3.5, the left-hand side of (3.26) goes to zero, which implies
that the sequence V[u(x)-u(x)-eu(x, x/e)] converges to zero in [L(fl)]

Remark 3.8. In the literature, homogenization has also been applied to other types
of nonlinear equations. A first example is given by certain fully nonlinear, first- or
second-order, partial differential equation, which fall within the scope of the theory
of viscosity solutions (see the review paper of Crandall, Ishii, and Lions [14]). The
key point of the viscosity solutions theory is that it provides a maximum principle that
permits comparison between solutions. Based on this fact is the so-called "perturbed
test function" method of Evans [22], [23], which provides very elegant proof of
convergence for the homogenization of such equations. A perturbed test function is a
function of the type qb(x)+eiqbl(X,X/e) (i=1,2, depending on the order of the
equation), which is, thus very similar to that of the two-scale convergence method.
Indeed, the perturbed test function method appears, a posteriori, as the ad hoc version
of two-scale convergence in the context of viscosity solutions of nonlinear equations.

A second example is nonlinear hyperbolic conservation laws. To handle
homogenization of such equations, E [19] introduced so-called two-scale Young
measures, which are a combination of the usual Young measures (introduced for PDEs
by Tartar [45]) with two-scale convergence. Combined with DiPerna’s method for
reducing measure-valued solutions of conservation laws to Dirac masses 18], it allows
us to rigorously homogenize nonlinear transport equations, and nonlinear hyperbolic
equations with oscillating forcing terms [19], [20]. In the case of linear hyperbolic
equations, two-scale convergence has also been applied by Amirat, Hamdache, and
Ziani [5] and Hou and Xin [26].

4. Homogenization of a diffusion process in highly heterogeneous media. In 2 we
studied the homogenization of a second-order elliptic equation with varying coefficients
A(x, x/e). This can be regarded as a stationary diffusion process in a medium made
of two materials, if A(x, x/e) takes only two different values (of the same order of
magnitude). The present section is also devoted to the homogenization of a diffusion
process, but the main novelty with respect to 2 is the high heterogeneity of the two
materials" namely, e being the microscale, the ratio of their diffusion coefficients is
taken of order e 2 (this precise scaling corresponds to an equipartition of the energy
in both materials, see Remark 4.9). As we shall see, it changes completely the form of
the homogenized problem, which is genuinely of "two-scale" type (see 4.6)). In
particular, the elimination of the microscale in the homogenized system does not yield
a partial differential equation (see (4.9)).

Let us turn to a brief description of the geometry of the heterogeneous medium.
We consider two materials, periodically distributed in a domain fl (a bounded open
set in N), with period eY (e is a small positive number, and Y-(0; 1)N is the unit
cube). The unit period Y is divided in two complementary parts Y1 and Y2, which
are occupied by material 1 and material 2, respectively. Let XI(Y) (respectively, X2(Y))
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be the characteristic function of Y (respectively, Y2), extended by Y-periodicity to
the whole EN. They satisfy

X(y)+x2(y) 1 in Y.

The domain is thus divided in two subdomains 121 and ,2 (occupied by materials
1 and 2, respectively), which are defined by

We make the fundamental assumption that, in the heterogeneous domain , material
1 is the matrix," while material 2 can be either finclusions" or another matrix (like
interconnected fibers). More precisely, denoting by the subset of N obtained by
Y-periodicity from Y, we assume that is smooth and connected. On the contrary,
no such assumptions are made on (the Y-periodic set built with Y).

Let and be two positive constants. We define the varying diffusion coecient
of the heterogeneous medium by

For a given source term f and positive constant , we consider the following diffusion
process for a scalar u

-div [Vu + au f in a,
(4.2) u =0 on0.

We implicitly assume in (4.2) the usual transmission condition at the interface of the
two materials, namely, u and Ou/On are continuous through 0 0fl2

Remark 4.1. We emphasize the paicular scaling of the coefficients defined in
(4.2): the order of magnitude of is 1 in material 1 (the "matrix"), and e: in material
2 (the "inclusions" or the "fibers"). This explains why such a medium is called "highly"
heterogeneous. (For a motivation ofthe precise scaling, see Remark 4.9 below.) Problem
(4.2) is a simplified version of a system studied by Arbogast, Douglas, and Hornung
[6], which models single phase flow in fractured porous media. Its homogenization
leads to the so-called double porosity model. In their context, u is the fluid pressure,
and is the permeability that is much larger in the network of fractures than in
the porous rocks fl. Problem (4.2) can also be interpreted as the heat equation. Then,
u is the temperature, and is the thermal diffusion. (Thus, material 1 is a good
conductor, while material 2 is a poor one.) Under additional assumptions on the
geometry and the regularity of the source term, problem (4.2) has been studied by
Panasenko [39] with the help of the maximum principle (that we do not use here).

Assuming f L2(), it is well known that there exists a unique solution of (4.2)
in H(). Multiplying (4.2) by u and integrating by pas leads to

Then, if a is strictly positive, the solution u is easily seen to satisfy the a priori estimates

(4.4) Vu b C,
C
E

where C is a positive constant which does not depend on e.
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Remark 4.2. The a priori estimates (4.4) are easily deduced from (4.3) when a > 0.
Actually they hold true even when a =0, but with a new ingredient, namely, a
Poincar6-type inequality. Under the additional assumption that Y1 is connected in Y,
there exists a constant C, which does not depend on e, and such that, for any v Ho(12),

(4.5)

Obviously the Poincar6-type inequality (4.5), applied to u, implies (4.4) even for a 0.
The proof of (4.5) is rather technical and out of the scope of the present paper. The
interested reader is referred to Lemma 3.4 in [4] for a similar proof. Thus, this is only
for simplicity that a zero-order term has been introduced in (4.2).

Before stating the main result of the present section, let us define the Hilbert space
H#(Y2) made of functions of H(Y2), which vanishes on the interface 0 Y1 fq 0 Y2.

THEOREM 4.3. The sequence u of solutions of (4.2) two-scale converges to a limit
u(x)+Xz(Y)V(X, y), where (u, v) is the unique solution in H(12) L2[f; H#(Y2)] of
the homogenized problem

-/xl div [a*Vu(x)] + au(x) =f(x)- a f v(x, y) dy in f,

--[.lb2myyV(X y)+ av(x, y)=f(x)- au(x) in Y,

(4.6) u 0 on Of,

v(x,y)=O onOYf-lOY,

y - v (x, y) Y-periodic,

where the entries of the constant matrix A* are given by

(4.7) A= f [VyWi(y)q-ei] [VyWj(y)q-ej] dy,
Y

and, for 1 <- <= N, wi( y) is the solution of the cell problem

-divy [VyWi + el] 0 in Y
[Vywg + e] n 0 on 0 Y fq 0 Y2,

y wi(y) Y-periodic.

Thanks to a separation ofvariables, the homogenized system (4.6) can be simplified.
Denoting by U(x) the weak limit in L2(O) of the sequence u, we obtain an equation
for U. (Let us note in passing that U(x) is not equal to u(x), but rather to u(x)+
I y I)(X, y) dy.)

PROPOSITION 4.4. Let w(y) be the unique solution in H#( Y) of
--tJ,2AyyW(y) + aw(y) 1 in Y2,

w(y) 0 onOYOY2,

y w(y) Y-periodic.

Then, v(x, y)= w(y)[f(x)-au(x)], and u(x) is the unique solution in H(I)) of

w( y) dy)f(x)-tx, divx[A*V,u(x)]+a(1-a f w(y) dy)u(x)=(1-a IY2 Y2
(4.8)

u =0 on 0.



1508 GRIGOIRE ALLAIRE

Denoting by L-1 the solution operator of (4.8) from H-I() to H() (i.e., u(x)-
L-if(x)), U x can be written as

(4.9) U(x)=L-lf(x)+[I w(y)dy]f(x).
Y2

Remark 4.5. In view of (4.9), U(x) is the solution of a very special diffusion
process for which no simple partial differential equation can be found. Of course, if
the source term f(x) is smooth, we can apply the operator L to (4.9) and obtain the
equation

(4.10) L[U(x)]=f(x)+[f w(y)dy]L[f(x)].
Y2

But (4.10) is only formal, since, a priori, the solution U(x) does not satisfy the required
Dirichlet boundary condition. Thus, it seems preferable to write U(x) as the sum of
two terms, which are solutions of a more standard problem (4.6). The homogenized
problem (4.6) is a system of two coupled equations, one "macroscopic" (in 12) and
the other one "microscopic" (in Y2): u(x) is the contribution coming from material 1
in 121, and v(x, y) is the additional contribution from material 2 in 2. This is definitely
a "two-scale" phenomenon, since in the limit as e- 0 (4.6) keeps track of the two
different materials on two different scales. This phenomenon allowed Arbogast, Doug-
las, and Hornung [6] to recover the so-called double porosity model in porous media
flows.

The two-scale convergence of u towards u(x)+x2(y)v(x,y) can be improved
with the following corrector result.

PROPOSITION 4.6. Assume that v(x, y) is smooth (namely, that it is an admissible
test function in the sense of Definition 1.4). Then we have

(4.11) ._,o
k \e/\e/J

For the proof of Theorem 4.3 we need the following.
LEMMA 4.7. There exist functions u(x) H(f), v(x,y) L2[f; Ho#( Y)], and

u(x, y) L[f; H( Y)/R] such that, up to a subsequence,

(4.12) two-scale converge to

u(x)+xz(y)v(x,y)
X,(y)[Vu(x)+Vyu,(x, y)]

X(Y)VyV(X,Y)

Proof In view of the a priori estimates (4.4), the three sequences in (4.12) admit
two-scale limits. Arguing as in Theorem 2.9, it is easily seen that there exist u(x) H(12)
and u(x,y) L2[; HI(Y)/R] such that g(x/e)u and X(x/e)Vu two-scale con-
verge to Xl(y)u(x) and X(y)[Vu(x)+Vyua(x, y)]. On the other hand, it follows from
Proposition 1.14 that there exists a function Uo(x,y)L[12; H(Y2)] such that
X(x/e)u and eXz(x/e)Vu two-scale converge to X(y)uo(x, y) and Xz(y)VyUo(X, y).
It remains to find the relationship between u(x) and Uo(X, y).

Consider the sequence eVu in the whole domain 12. For any function b(x, y)
D[; C(Y)]N, we know from the above results that

(4.13) lim faeVu,(x) 4)(x,) dx= fa Ie-O y
X2(Y)VyUo(X y) d(x, y) dx dy.
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By integration by parts, the left-hand side of (4.13) is also equal to

lmo-fcu(x)[divyp(x,)We divx b (x,)] dx

[Xl(y)u(x) + X2(y)uo(x, y)] divy ok(x, y) dx dy.
fl Y

By equality between the two limits, we obtain that Uo(X, y) u(x) on O Y1 fq 0 Y2. Thus,
there exists v(x, y) L-[f Ho#( Y2)] such that Uo(X, y) u(x)+ v(x, y). U

ProofofTheorem 4.3. In view ofthe two-scale limit of the sequence u, we multiply
(4.2) by a test function of the form b(x)+ eCkl(X, x/e)+ O(x, x/e), where b(x) D(12),
bl(x, y) D[f/; CT(Y)], and O(x, y) D[12; CT(Y)] with O(x, y) 0 for y Y1.
Integrating by parts and passing to the two-scale limit yields

I I [’lbl[VU(X)"’VYtll(X’ y)] [Vt(x)21-VYfI(X’ y)] dxdy
Y1

+ tz2Vyv(x, y)" Vyd/(x, y) dx dy
Y2(4.14)

+a Io IY [u(x)+x(y)v(x, y)] [dp(x)+x:z(y)dff(x, y)] dxdy

=IIvf(x)tb(x)+x2(Y)t#(x,y)]dxdy.

By density (4.14) holds true for any (ck, Ckl,tP)H(l)xLU[12;Hl(Y)/]x
L2[f; H#( Y2)]. Its left-hand side is easily seen to be coercive on the above functional
space; thus (4.14) admits a unique solution (u, Ul, v). Another integration by parts
shows that (4.14) is a variational formulation of the following two-scale homogenized
system for u, Ul, and v:

-/z, divx[f [Vxu(x)+Vyu(x,y)]dy]+au(x)=f(x)-a I v(x,y) dy inf,,
YI Y2

-divy [Vu(x) +Vyul(x, y)] 0 in Y,

-tZ2AyyV(X, y) + av(x, y) =f(x)- au(x) in Y2,

(4.15) u =0 onOlI,

[Vu(x) + VyU,(X, y)]. ny 0 on 0 Y1 f3 O Y,

y-* Ul(X, y) Y-periodic,

v(x,y)=O onOYlfqOY,

y--> v(x, y) Y-periodic.

In (4.15), the equation in U can be decoupled from the two other ones, as we did in
Theorem 2.9. Then, introducing the matrix A* defined in (4.7), (4.8), the elimination
of u leads to system (4.6).

Proof of Proposition 4.6. Recall the energy equation (4.3):

(4.3)
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Passing to the limit in the right-hand side of (4.3), and using the variational formulation
(4.14) yields

lim /[Vu 12 + a u
e-0

(4.16) [ui.,llVU(X)’-Ji-Vyul(x, y)l dxdy
a Yt

+Ial Ix"yV(X’y)12 dxdy+ It f [u(x)+x2(Y)V(x’y)]2 dxdy"
Y2 Y

By application of Proposition 1.6, the limit of each term in the left-hand side of (4.16)
is larger than the corresponding two-scale limit in the right-hand side. Thus equality
holds for each contribution. In particular, if a > 0, we have

(4.17) lim fa u: IaI--,oy
[u(x)+x2(y)v(x’y)]2dxdy"

In view of (4.17) and Theorem 1.8, we obtain the desired result (4.11). The result holds
true also for a =0: first we obtain a corrector result for the gradients X(x/e)Vu and
ex2(x/e)Vu, second we use again the Poincar6-type inequality (4.5) to deduce
(4.11).

Remark 4.8. Similarly to the scalar equation (4.2), we could consider a Stokes
problem in a domain filled with two fluids having a highly heterogeneous viscosity
(still defined by (4.1))

Vp -div [/zVu] =f in ,
(4.18) div u 0 in f,

u =0 on

with the usual transmission condition at the interface: u and pn-Ou/On are
continuous through 0f (3 01)2 (u and p are the velocity and pressure of the fluids).
Assuming that Y2 is a "bubble" strictly included in the period Y, (4.18) can be regarded
as a model for bubbly fluids, where the viscosity is much smaller in the bubble than
in the surrounding fluid. Because of its simplicity, this model is very academic since
the size, the shape, and the periodic arrangement of the bubbles are kept fixed.
Nevertheless, in view of Theorem 4.3, the homogenization of (4.18) could be interesting
to derive averaged equations for bubbly fluids. Unfortunately, it turns out that the
homogenized system can be drastically simplified in the Stokes case. Drawing upon
the ideas of [44], Theorem 4.3 can be generalized to the Stokes equation (4.18), and
a homogenized system similar to (4.6) is obtained:

Vp(x)-/x div, [A*Vu(x)] =f(x) in 12,

div u(x) 0 in 12,

Vyq(X, y) 2AyyV(X, y) =f(x) Vp(x) in Y2,
(4.19)

divy v(x, y) 0 in Y,

u 0 on 0f,

v(x,y)=O onOY,
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where A* is a given positive fourth-order tensor. Since we assumed that the bubble
Y2 does not touch the faces of Y, they are no periodic boundary condition for q(x, y)
and v(x, y). Thus, the unique solution of (4.19) satisfies t 0 and q y. [f(x) Vp(x)].
As the weak limit in [L2(’)]N of the sequence u is u(x)---$g21)(x, y) dy, it coincides
with u(x). Thus the homogenized problem can be reduced to the Stokes equation for
u(x). In other words, there are no contributions from the bubbles in the limit, and
thus no interesting phenomena due to the bubbles appear in the homogenized Stokes
equations.

Remark 4.9. We have chosen a very special scaling of the diffusion coefficients
in (4.2): the order of magnitude of/x is 1 in material 1, and e2 in material 2. Indeed,
we could more generally consider a scaling ek in material 2, with k any positive real
number. Let us motivate our choice of the scaling k- 2, and to make things easier,
we assume that there is no zero-order term in (4.2), i.e., a 0. Then, it turns out that
the value k 2 is the only one (apart from zero) that insures a balance between the
energies in material 1 and 2 is the only one (apart from zero) that insures a balance
between the energies in material 1 and 2, i.e., as e goes to zero, both terms l/xlVu[-and /xlVu]2 have the same order of magnitude. Thus, for k 2, the limit problem
will exhibit a coupling between material 1 and 2. On the contrary, for k < 2 the energy
is much larger in material 1 than in 2, and in the limit no contributions from material
2 remains (material 2 behaves as a perfect conductor on the microscopic level). For
k > 2 the energy is much smaller in material I than in 2, and in the limit no contributions
from material 1 remains (actually, material 2 is a very poor conductor on the microscopic
level, but since the source term is of order one its energy goes to infinity).

In other words, our scaling is the only one which makes of material 1 (respectively,
2) a good conductor on the macroscopic (respectively, microscopic) level, yielding an
asymptotic (as e goes to zero) equipartition of the energies stored in materials 1 and
2.

5. On convergence results for periodically oscillating functions. This section is
devoted to the proof of Lemma 1.3, and more generally to the convergence of periodi-
cally oscillating functions d/(x, x e). Although in 1 the convergence of the sequence
d/(x, x/e) was studied in L2(’), for the sake of clarity we recast Lemma 1.3 and
Definition 1.4 in the framework of L(). More precisely, we consider functions of
two variables q(x, y) (xf open set in RN, y y the unit cube of RN), periodic of
period Y in y, and we investigate the weak convergence of the sequence q,(x, x e) in
Ll(12), as e 0. Recall the analogue of Definition 1.4 obtained by replacing L2 by L1.

DEFINITION 5.1. A function q(x, y) L( x Y), Y-periodic in y, is called an
"admissible" test function if and only if

(5.1) limln-o 0 (x,)dx=In IY ,d/(x,y),dxdy.

The purpose of this section is to investigate under which assumptions a function
0(x, y) is admissible in the sense of Definition 5.1. It is easily seen that continuous
functions on flx Y are admissible. However, when less smoothness is assumed on
0(x, y), the verification of (5.1) is not obvious (first of all, the measurability of p(x, x e)
is not always clear). In the sequel we propose several regularity assumptions for 0(x, y)
to be admissible (see Lemma 5.2, Corollary 5.4, and Lemma 5.5). They all involve the
continuity of 0 in, at least, one of the variables x or y. We emphasize that it is definitely
not a necessary condition for (5.1). However, to our knowledge this is the only way
to obtain, in general, the measurability of O(x, x/e), by asserting that (x, y) is a
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Caratheodory-type function (for a precise definition, see, e.g., Definition 1.2 of Chapter
VIII in [21]). We also emphasize that this question of measurability is not purely
technical and futile, but is very much linked to possible counterexamples to (5.1). We
actually exhibit a counterexample to (5.1), which clearly indicates that the regularity
of q,(x, y) cannot be decreased too much, even if q,(x, x e) is measurable (see Proposi-
tion 5.8).

Our first and main result is the L equivalent of Lemma 1.3, which we recall for
the reader’s convenience.

LEMMA 5.2. Let l,(x, y) LI[[I; C#( Y)]. Then,for anypositive value ofe, d/(x, x e)
is a measurable function on fl such that

Ll(a)

and d/(x, y) is an "admissible" test function, i.e., satisfies (5.1).
By definition, LI[I; C#( Y)] is the space of functions, measurable and summable

in x [l, with values in the Banach space of continuous functions, Y-periodic in y.
More precisely, L[; C#( Y)] is a space of classes of functions (two functions belong
to the same class if they are equal almost everywhere in [l); however, for simplicity
we shall not distinguish a class or any of its representatives. The above definition of
LI[[I; C#(Y)] is not very explicit, but we also have the following characterization,
which implies, in particular, that any function of LI[[I; C#(Y)] is of Caratheodory
type, i.e., satisfies (i) and (ii).

LEMMA 5.3. A function d/(x, y) belongs to La[; C#( Y)] if and only if there exists
a subset E (independent ofy) of measure zero in 12 such that

(i) For any x 1- E, the function y --> d/(x, y) is continuous and Y-periodic;

(ii) For any y Y, the function x --> O(x, y) is measurable on

(iii) The function x-> Supy y [(x, y)[ has a finite Ll()-norm.

Proof We simply sketch the proof that relies on the equivalence between strong
and weak measurability for functions with values in a separable Banach space. Recall
the following result of functional analysis (see [11, Prop. 10, Chap. IV.5], or Petti’s
theorem [48, Chap. V])" let f(x) be a function defined on lwith values in a separable
Banach space E, and let b, be a weak dense, countable, family of functions in the
unit ball of the dual E’ of E; the function f is measurable if and only if all the
real-valued functions x->(bn(x),f(x)),. are measurable.

Applying this result with E C#(Y), and 4, the family of Dirac masses at rational
points of Y, yields the result. [3

ProofofLemma 5.2. From Lemma 5.3, we know that $(x, y) is a Caratheodory-type
function, and this establishes the measurability of q(x, x/e). Then, inequality (5.2)
is a consequence of the definition of the norm [[O(x,y)[[;c(y)j=-
a Supyy ]q(x, y)[ dx. Let us check that O(x, y) satisfies (5.1).

For any integer n, we introduce a paving of the unit cube Y made of n small
cubes Y of size n -. The main properties of this paving are

nN 1
(5.3) Y= w Y, [Y[- , IYt3Y]=0 ifij.

i=1 n

Let X(Y) be the characteristic function of the set Y extended by Y-periodicity to ,
and let y be a point in Y. We approximate any function p(x, y) in L[f/; C#( Y)] by
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a step function in y defined by

(5.4) ,,(x, y)= b(x, Yi)X,(Y).
i=1

We first prove (5.1) for @,, and then show that passing to the limit as n goes to infinity
yields the result for . Thanks to Lemma 5.3 the function x - @(x, yi) belongs to Ll(f),
while Xi(x/e) is in L(f). Due to the periodicity ofXi, a well-known result on oscillating
functions leads to

(5.5) limla-00(x,y)x() dx=Ic d/(x,y)dxlYl.

Summing equalities (5.5) for i[1,..., n N] leads to (5.1) for
It remains to pass to the limit in n. Let us first prove that , converges to in

the strong topology of Ll[f; C#(Y)]. Define

(5.6) 8,,(x) Sup 1, (x, y)- (x, y)].
y6Y

The function y[d/,,(x, y)-(x, y)] is piecewise continuous in Y almost everywhere
in x. Thus, in (5.6) the supremum over y Y can be replaced by the supremum over
y Y . This implies that 8,, being the supremum of a countable family ofmeasurable
functions, is measurable, too (see if necessary [ 11, Chap. IV.5, Thm. 2]). On the other
hand, as a result of the continuity in y of , we have

lim 8,,(x) 0 a.e. in 12.

Furthermore,
0<= 6,,(x)-<_2 Sup [q(x, y)[ e

yY

By application of the Lebesgue theorem of dominated convergence, the sequence
strongly converges to zero in L1(12). Thus q, strongly converges to in L[; Ce( Y)].

Let us estimate the difference

(5.7) +

+ IaIy(X,y)dxdy-IIy,(x,y)dxdy.
The first term in the right-hand side of (5.7) is bounded by

For fixed n we pass to the limit in (5.7) as e 0:

(5.8) lim.o a (x, ) dx-a Ig (1’ y) dx dyN21,,-,

Then, we pass to the limit in (5.8) as n, and we obtain (5.1).
Reversing the role of x and y (namely, assuming continuity in x and measurability

in y), the same proof as that of Lemma 5.2 works also for the following corollary.
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COROLLARY 5.4. Assume that l) is a bounded open set (its closure 12 is thus
compact). Let (y, x) be a function in L[Y; C()], i.e., measurable, summable, and
Y-periodic in y, with values in the Banach space of continuous functions in 12. Then, for
any positive value of e, (x/e, x) is a measurable function on f such that

L(f)

and O(Y,X) is an "admissible" test function, i.e., lim_.oJn [(x/e,x)[ dx=
Ia Iy lO(y, x)l dx dy.

In the literature (see, e.g., [10]) the favorite assumption on q(x, y), ensuring it is
an admissible test function, is (x, y) C[a; L(Y)] (i.e., continuous with compact
support in f, with values in the Banach space of measurable, essentially bounded,
and Y-periodic functions in Y). The next two lemmas are concerned with this situation.

LEMMA 5.5. Let O(x, y) be afunction such that there exist a subset E c y, ofmeasure
zero, independent of x, and a compact subset K Pt independent ofy, satisfying

(i) For any y Y-E, the function x-(x,y) is continuous, with compact
support K;

(ii) For any x f, the function y b(x, y) is Y-periodic and measurable on Y;
(iii) Thefunction x - d/(x, y) is continuous on K, uniformly with respect to y e Y- E.
Then, for any positive value of e, b(x, x e) is a measurable function on f, and

O(x, y) is an admissible test function in the sense of Definition 5.1, i.e., satisfies

(5.1) limla-o h(x,)dx=Ia IY Ib(x,y)ldxdy.

Before proving Lemma 5.5, let us remark that any function satisfying (i)-(iii)
obviously belongs to C[f; L( Y)]. The converse is more subtle. Indeed, since b(x, y)
is an element of C[; L(Y)], for each x eft, its value y- q(x, y) is a class of
functions in L( Y)" picking up a representative for each x and collecting them gives
a "representative" of 0(x, y) in C[a; L(Y)].

LEMMA 5.6. Let d/(x,y) be a function in C[f; L(Y)]. Then, there exists a
"representative" of (x, y)for which properties (i)-(iii) in Lemma 5.5 hold.

Proof Let (x,y) C[f; L(Y)]. By definition, for any value of x eft, the
function y- O(x, y) is measurable on Y, Y-periodic, and there exists a subset E(x) of
measure zero in Y such that 0(x,y) is bounded on Y-E(x). The continuity of
x- q(x, y) from f in L(Y) is equivalent to

(5.10) lim Sup [O(x + r/, y) q(x, Y)I 0 for any x e 1).
70 ye Y-[E(x)wE(x+rl)]

We emphasize that, a priori, the exceptional set E(x), where the function y 4(x, y)
is not defined, depends on x. Nevertheless, thanks to the continuity of b(x, y) with
respect to the x variable, we are going to exhibit a "representative" of O(x, y) for
which E(x) is included in a fixed set E of measure zero.

Let Kc be the compact support of x- O(x, y). Let (K)__ be a sequence of
partitions of K (i.e., U 7= K K and ]K, K21 0 if j) such that
lim._,+o Sup_i. diam (K)=0. Let X(x) be the characteristic function of K, and x
a point in K. Define the step function 4,(x, y) by

d/,,(x, y)= i q(x, y)X(x).
i-----1
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By definition of the partitions (Ki)i"_-l, and continuity of x q(x, y) from 1) in L(Y),
we have

(5.11) lim Sup II (x, y)-d/,,(x, Y)[ILTY.
no+oo xK

In view of its definition, q(x, y) is defined and bounded on
is a set of measure zero that does not depend on x. Then, the set E (_l =1 E is also
of measure zero and does not depend on x. From (5.11) it is easily deduced that
(x, y) converges pointwise in fx(Y-E) to a limit tp(x,.y) that is continuous in
x fl uniformly with respect to y Y-E. As announced, is a "representative" of
q(x, y), which has the desired properties (i)-(iii).

Proof ofLemma 5.5. Properties (i) and (ii) imply that q(x, y) is a Caratheodory-
type function, and thus (x,x/e) is measurable on . Using the approximating
sequence of step functions qn (x, y) introduced in the proof of Lemma 5.6, and arguing
as in Lemma 5.2, leads to (5.1) for q.

In the three previous results, the function q(x, y) is assumed to be continuous in,
at least, one variable x or y. Of course, it is not a necessary assumption that q be an
"admissible" test function. For example, if a separation of variables holds, namely,
is the product of two functions, each depending on only one variable, we have the
following well-known result (for a proof, see, e.g., [9]).

LEMMA 5.7. Assume that f is a bounded open set. Let )l(X)
LP(Y) with (1/p)+(1/p’)= l and l<_-p<_-+oo. (In case p= l and p’=+oo, the set
can be unbounded.) Then, for any positive value of e, qb(x)ck2(x/e) is a measurable
function on 1), and 49(x)492(y) is an "admissible" testfunction in the sense ofDefinition
5.1.

In general the regularity of cannot be weakened too much" even if O(x, x/e)
is measurable, the function O(x, y) may be not "admissible" in the sense of Definition
5.1. Following an idea of G6rard and Murat [25], we are able to construct a counter-
example to (5.1) with /(x,y) C[fi; L(Y)].

PROPOSITION 5.8. Let - Y-[0; 1]. There exists v(x, y) C([0, 1]; L[0, 1]),
which is not an "admissible" test function, namely,

(5.12) lim Iv(x, nx)] dx # Iv(x, Y)I dx dy.
+

Remark 5.9. In general, a function q(x, y) e C[fi; L(Y)] is not of Caratheodory
type, i.e., is not continuous in x almost everywhere in Y. Thus, the measurability of
(x, x/e) is usually not guaranteed.

Proof of Proposition 5.8. Let us fix fi Y [0; 1]. In the square [0; 1]2, we are
going to construct an increasing sequence of measurable subset E,, which converges
to a set E. The desired function v(x, y) will be defined as the characteristic function
of E extended by [0; 1J-periodicity in y.

For each integer n, we consider the n lines defined in the plane by

y=nx-p withp e {0, 1, 2, , n- 1}.

Then, we define the set D, made of all the points (x, y) in [0; 1 ]2 that are at a distance
less than cell

-3 of one of the lines y nx-p for p 0, 1, , n- 1 (the distance is the
usual Euclidean distance, and a is a small strictly positive number). The set D, is
made of n strips of width 2an-3 and length of order 1. Next, we define the measurable
set E. U= Dp. The sequence E. is increasing in [0; 1]2, and thus converges to a
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measurable limit set E. We have a bound on its measure

(5.13) IE] -< Y IO, l-<4 .
n=l =1

Let v(x, y) be the characteristic function of E extended by [0; 1J-periodicity in y. For
sufficiently small a, we deduce from (5.13)that jtO;la2 v(x, y) dx dy < 1. Meanwhile,
we obviously have v(x, nx) 1 for x [0; 1 ]. Thus, the sequence to;l v(x, nx) dx cannot
converge to the average of v. To complete the proof it remains to show that v(x, y)
belongs to C([0, 1]; L[0, 1]), i.e., for any x [0; 1],

(5.14) lim f Iv(x + e, y) v(x, Y)I dy O.
e0 d[0;1]

(By definition of E, v(x,y) is measurable in [0; 1]z and is easily seen to be also
measurable, at fixed x, in y.) Let E(x) (respectively, Dn(x)) be the section of E
(respectively, Dn) at fixed abcissa x, i.e.,

Then

E(x)={y[O; 1]/(x,y)E},

D,(x) {y [0; 1]/(x, y) D,}.

Iv(x+e,y)-v(x,y)l dy=lE(x)t-I([O; 1]-E(x+e))l
0;1]

+[E(x+e)f"l([O; 3- E(x))l.
Since E(x)= U=I D,,(x), we have

IE(x)fq([o; 1]-E(x/e))l Z ]O(x)fq([O; 1]-D.(x+e))[.
n=l

It is easily seen that ]D.(x)fq ([0; 1]-D,,(x+ e)) is constant when x varies in [0; 1].
Thus

(5.15) Iv(x+e, y)-v(x, y)l dy<=2 _, ID.(x)CI([0; 1]-D,,(x+e))[.
0;1] n=l

Let us fix e > 0. Recall that D, is made of n strips of width 2an -3. Denote by I,
(respectively, L,) the length ofthe intersection of one strip with the x-axis (respectively,
y-axis). It is easily seen that I, is of order n -3, while L, is of order n -2. Both points
(x, y) and (x + e, y) lie in the same strip of D, if n is smaller than 8 -1/3. This suggests
to cut the sum in (5.15) in two parts, the first one being

(5.16) Z
-1/3

ID.(x) CI ([o; 1]-D.(x/ e))l

while the second one is
--1/3

(5.17) ID.(x)fq([0; l]-D.(x+e))[.
n=l

Since [D.(x)] L. is of order n -z, (5.16) is bounded by
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On the other hand, an easy calculation shows that, for any value of n, IDn(x)f3
([0; 1]-Dn(x + e)) is bounded by Cen. Thus, (5.17) is bounded by

--1/3 --1/3

Y’. ID,,(x)([O;1]-D,,(x+e))l <=C Z en<=Cel/3
n=l n=l

This leads to

f[0;1] Iv(x + e, y)- v(x, Y)I dy <= Ce /3

where C is a constant independent of e. Letting e - 0 yields (5.14).

Acknowledgment. The author wishes to thank F. Murat for stimulating discussions
on the topic.
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AND WAVELETS*
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Abstract. This paper indicates how to find energy moments in direct and Fourier space of a

solution to the functional equation u(x) N-1
=0 2c/u(2x k) and shows that the Sobolev regularity

of u is determined by the spectral radius of a matrix defined from the coefficients (c/). The results
are applied to compactly supported orthonormal wavelets.
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1. Introduction. A two-scale difference equation is a functional equation of the
type

N-1

(1.1) u(x) Z 2CkU(2X- k),
k=0

where c0, cl,... ,CN-1 are given complex numbers. Such equations arise in many
contexts where the concept of changing scale is employed, such as the construction
of orthonormal and biorthogonal bases of compactly supported wavelets derived from
a multiresolution analysis [D1], [M], [C], [VH], IS], subdivision schemes for computer
aided design [CDM], [D], [DD], and subband or pyramid based coding of speech and
images [BA], [CMQW], [Ma], Jail.

In all such applications it is important to control the properties of the solution
u from the choice of the coefficients (ck). We will focus here on the concentration in
time and frequency as well as the regularity (smoothness) of u. More specifically, we
will explain (in 6-7) how to find the energy moments in time and frequency,

xnlu(x)l 2 dx and /_+ nlfi()12 d, n 0, 1, 2,...,

when these exist. (fi denotes the Fourier transform of u.) The number of existing
moments in frequency is closely related to Sobolev regularity, and in 9 we present an
exact criterion for u to be in the Sobolev space Hs(R) (meaning that (1 + 2)s/2fi E
L2 (R)). This optimal regularity estimate relies on the calculation of the spectral radius
of a matrix defined from the coefficients (ck). We describe how this approach actually
unifies and improves the Fourier transformation based HSlder regularity estimation
methods presented in [D1] and [C]. Finally, 10 is devoted to the study of compactly
supported orthonormal wavelets. All results of the paper, except for those of the last
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section, have straightforward generalizations to the case where the dilation factor 2
in (1.1) is replaced by any integer M _> 2. For a discussion of more general two-scale
difference equations and the history of the subject, we refer to [DL1].

Many of the sharpest results of this paper depend on a technical condition, de-
scribed in 5, which in some sense requires (ck) to be nondegenerate. We refer to [C]
for a more detailed description of the corresponding degenerate case. A central result
which does not depend on the condition of 5, however, is the exact criterion for u to
be square integrable, formulated in 4. The role played by sum rules is explained in 8,
and we show here that maximal Sobolev regularity for a given number of coefficients
N is obtained when u is a basic spline.

The starting point of the paper is an existence and uniqueness theorem defining
the compactly supported distribution solution to (1.1) that we consider here.

2. The compactly supported solution o. Assume that u is a compactly
supported distribution solving (1.1). Then necessarily,

2supp(u) C supp(u)+ [0, N- 1],

and therefore
supp(u) C [0, N- 1].

The Fourier transform of u can be extended to an entire function, and with the
definition

N-1

(2.1) mo()-- E
k--O

we can write (1.1) in the equivalent form,

(2.2) ,fi,(2) mo()().

Hence, if (0) - 0, we must have ck m0(0) 1. This is essentially the only
interesting case, since a zero of fi must be of finite order if u # 0. Thus, solutions to
(2.2) with (0) 0 are just finite order derivatives of solutions of the first kind. Now
fix the normalization of u to fi(0) 1. By iterating (2.2) we get

H
j=l

where the infinite product must converge uniformly on every compact subset of C.
This shows the uniqueness statement of the following.

THEOREM 2.1. Let CO,...,CN-1 E C with -]ck 1. Then there is a unique
compactly supported distribution solution u o to (1.1) with (0) 1. The support
of o is contained in [0, N- 1], and

=1

Proof. By the discussion above and the obvious formal result (2) m0()(),
we only have to prove that the infinite product converges to the Fourier transform of
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a compactly supported distribution. This is a result of Deslauriers and Dubuc [DD],
presented with a different proof in [DL1]. For completeness, we sketch the main ideas
of both proofs.

Define the distributions un, n 1, 2,..., by

n

a=()
j=l

Since too(0) 1, we have Imo()- 11 < Cll for some positive constant C. This
ensures that fi converges uniformly on every compact subset of C towards an entire
function F as n --. +. In particular we have, for all n,

sup _< M <
15J<2

Using this together with the easy estimate that for some R _> 0 and B >_ 1,

Imo()] _< BeRlIml,

we can then prove the fundamental estimate,

(2.3)

by considering the cases 2’ <_ 2m+1, m 1,2,..., and I1 <- 2 separately.
Letting n --, +, we see that the same inequality holds for F(), so by the Paley-
Wiener theorem for distributions JR, p. 183], this function is the Fourier transform of
a compactly supported distribution .

Alternatively, we could have observed that for each n, un is a linear combination
of Dirac masses supported in [0, N- 1]. Using (2.3) for real ( then provides a uniform
majorization of polynomial growth, sufficient to ensure the convergence of un towards

in the sense of tempered distributions. [:3

From this point on, we will always assume ck 1, define m0 from (2.1), and
let denote the solution described in Theorem 2.1. Note that in the case N 1, this
solution is just the Dirac mass at x 0.

Example 2.2. (The Haar solution.) Let g 2 and (c0, cl) (!2,1/2)" Then
1l[0,], the characteristic function of the interval [0, 1]. Indeed, except for x ,

o(x) o(2x) + o(2x- 1),

and is integrable with f (0) 1. We call this the Haar solution, since the
corresponding orthonormal wavelet (see 10) is the well-known Haar function [HI.

3. Two useful operators. Let C(I’) be the space of 2r-periodic, complex con-
tinuous functions on N. Define the linear operators A and A on C(’) as follows:

A’f() 2]mo()[2f(2).

Here A is the transpose of A in the following sense.
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LEMMA 3.1. For all f, g e C(q), we have

Af()g() d f()A’g() d.

ity.
Proof. Change variable --. /2 in the right-hand side integral and use periodic-

We can write

N-1

21mo()lz-- co(k)e-’k,
k=l-N

with co(k) 2(c )(k)

Therefore, A leaves the following space of trigonometric polynomials invariant:

Sy { P e C(qr)I P(5)= e c
k=2-N

(For N=I, define $1 $2.) If we assume COCN-1 O, then A(Sk) c S exactly when
k E {N, N / 1}, so SN is the smallest nontrivial space of symmetrically truncated
Fourier series which is invariant for A. By identifying the elements of SN with their
coefficients p E C2N-3, the action of A: SN --* SN can be described by a (2N- 3)
(2N 3)-matrix with entries Akt a0(2k l), that is,

N-2

Ap(k) (co p)(2k) E ao(2k 1)p(l),
l=2-N

k e {2- N,...,N- 2}.

In the language of signal processing, A is an operator of filtering (convolution
with a0), followed by subsampling by a factor 2. If Im0()l2 / Imo( + 7r)12 1, this
operator belongs the class of transition operators analyzed in [CR].

Remark 3.2. Assume the coefficients (ck) are real. Then m0(-) m0(), and
A commutes with the parity operator

J. P() -. P(-).

Thus the action of A on a symmetric vector

(p(N 2),..., p(1), p(0), p(1),..., p(N 2))-r e C2N-a

can be represented by a (N- 1) (N- 1)-matrix As acting on

(V(0),p(1),... ,v(N- 2))T e CN-I.

Using indices {0, 1,..., N- 2} for the entries of As, we find

AkA Ak + A,_,
l--O
/>0.
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Similarly, the action of A on antisymmetric vectors can be described by a square
matrix Aa of dimension (N- 2) with entries

Az Akz Ak,-, k, le{1,...,N-2}.

Also, any eigenvector of A can be chosen to be either symmetric or antisymmetric,
and this reduces an eigenvalue problem for A to two problems of dimension N- 1 and
N- 2, respectively.

Even in the general case of complex coefficients ck, another kind of reduction in
dimension can be obtained from the observation that Im012 is real: the action of A on

conjugate symmetric vectors, (p(-k) P(k) ), can be described by a (2N-3) x (2N-3)-
matrix with real entries.

Eigenvectors of A corresponding to real eigenvalues can be chosen conjugate sym-
metric, so for problems involving only the real part of the spectrum of A, we can
reduce the 2N- 3 dimensions to 2N- 3 real ones.

4. A characterization of the case E L2(]R). Before we can define the energy
moments in time and frequency of qo

xnlcp(x)l 2 dx and n[()12 d,

we must at least have E L2(N), i.e., that can be represented by a measurable
function with

I111 I(1 e < +.

If this is the case, all moments in time are well defined since qa has compact support.
We postpone the discussion of the existence of moments in frequency to 9.

Assume qo L2(R). Then we can define a trigonometric polynomial Po SN by
its coefficients

po(k) qo(x)9(x k)dx.

In fact, using Plancherel’s theorem, we find that for almost every

P0() I( + e-)l:.
kEZ

Even better, this infinite sum converges uniformly and unconditionally towards P0
on [-r, r], because xg(x) is square integrable [M, p. 29].Observe that P0 is real and
nonnegative, with

P0(0) _> Iq5(0)l 2 1 > 0,

and a simple use of (2) m0()() yields

P0(:) Y: I,o( + k)114( + )1,
Imo(5)12Po(5) -4-Imo(5

that is, APo Po. It turns out that the existence of such a trigonometric polynomial
also implies o L2(R)
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THEOREM 4.1. We have o E L2(]R) if and only if there exists a real nonnegative
trigonometric polynomial P SN satisfying P(O) > 0 and AP P.

Proof. We have seen above that if o L2(IR), then P P0 is a trigonometric
polynomial with the desired properties.

Conversely, assume we have a P as described, and normalize P to satisfy

P(0)- 1.

Define for every n 0, 1,...,

gn()=p(2_n)lfilmo(2_j)[2)l[_,](2_,)’j=l

where In denotes the characteristic function of a set gt, and we set the product equal
to one when n 0. As n +oc, gn converges pointwise to [12, and as a consequence
of Lemma 3.1,

gn() d P() 2lm0(2J)l2 d,
r j=0

P()(A’)n(1)() d AnP() d,

P() d 2rp(0).

Hence, by Fatou’s lemma and Plancherel’s theorem, I1 11 -< p(0) < /.
The proof of Theorem 4.1 shows that

II ll _< inf(p(0) P e SN, P >_ O, AP- P, P(O) 1).

Admit for the moment the following result, which is a special case (n 0) of Theorem
7.1.

LEMMA 4.2. If o e L2(]R), then P0(0) 1.
Then the next corollary is obvious from the fact that p0(0) -11o]122.
COROLLARY 4.3. If o L2(jR), then

11o1122 min{p(0) P e Sg, P >_ O, AP P, P(0) 1}.

To illustrate the use of Theorem 4.1 and Corollary 4.3, let us consider a simple
example, which follows.

Example 4.4. Consider the case of N 3 coefficients. We will apply Theorem 4.1
to decide which choices lead to o L2. Evaluating AP P at 0 yields

Imo(r)lP(r O.

If P $3, P _> 0, and P(r) 0, then P() must be a positive multiple of cos2 /2.
Evaluating AP P at r/2 now gives m0(r/2) m0(-r/2) 0 and this fixes

1 + e-2i
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Hence, is just a dilation of the Haar solution of Example 2.2: 1/21[0,2 L2.
If P(r) 0 we must have m0(r) 0. A parametrization of all the possible

choices of coefficients in this case is given by

(c’c’c2) ( l +re- 1
’2’- 4

with r >_ 0 and -r _< < r. The 3 3-matrix representing A has A 1 as eigenvalue
for all r, and we find that necessarily,

(1- r2 + 2ir sin O l r2 2ir sin O ) -p--t
4-4irsinO

,1,
4+4irsin0

Here P >_ 0 implies t p(0) (1/2r) f_ P() d _> 0 and since we have

3- r
P(O) p(k) t

2 / 2r2 sin2 0’
we see that P(0) > 0 only if r < V. Conversely, it turns out that P >_ 0 if r
(It suffices to show that 21p(1)1 <_ p(0).)

To conclude we have shown that 6 L2 if and only if

In the first case, Corollary 4.3 gives the result

2 / 2(Im Z)2

o
I(x)12dx--

3-Izl2

5. The Riesz basis property. If (ek)kez is a sequence of vectors in a Hilbert
space H, such that the collection of finite linear combinations ek are dense in H,
and there exist constants C > 0, C2 < +oc, such that for all these finite sums,

then (ek)ez is called a Riesz basis for H.
A case where many results of the following sections get sharper, and pathologies

in the convergence of subdivision schemes involving the coefficients (ck) are avoided
[C], is when has the Riesz basis property.

DEFINITION 5.1. We say that has the Riesz basis property, if 6 L2(R) and
the sequence of functions %a(x- k), k 6 Z forms a Riesz basis for the closure of its
linear span in L2(R).

If 6 L2, it turns out that has the Riesz basis property if and only if there
exist constants C1 > 0, C2 < +oo, such that

C1

_
I@(-[-27rk)l 2 - C2.

k6Z

To prove this, use Plancherel’s theorem (or see [M, p. 27]). We recognize the sum as
P0(() from 4. Since P0 is continuous and 2r-periodic the condition above is equivalent
to

V P0() > 0.

Cohen [C] and Lawton ILl], [L2] have characterized this situation in different
ways. We present some of the results in Theorem 5.3, but first a definition follows.
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DEFINITION 5.2. We say that m0 satisfies Cohen’s criterion if there is a compact
set K E ]R containing a neighborhood of 0 and equal to a finite union of closed
intervals, such that

(1) For all but a finite number of E [-r, r], there is a unique y K with
e 2rZ.

(2) mo() ?t 0 for e [.J 2-JK.
j--1

Observe that if mo does not vanish on [-r/2, r/2] then Cohen’s criterion is triv-
ially satisfied with K [-r, r]. If mo satisfies Cohen’s criterion, we have

for K,
and if e L2, this clearly implies P0 > 0. Conversely, if P0 > 0, it is possible to
use the uniform convergence on I-r, r] of the sum defining P0 to construct a K as in
Definition 5.2. This is how to see the equivalence (1) (2) in the following.

THEOREM 5.3. The following three statements are equivalent:
(1) has the Riesz basis property.
(2) E L2(R) and mo satisfies Cohen’s criterion.
(3) Up to scalar multiplication there is a unique solution P SN to AP P,

and this solution can be chosen to be strictly positive.

Proof. We prove only (1) (3) here. By Theorem 4.1 condition (3) implies that
L2, and since APo Po, the unicity statement insures that P0 is strictly positive.

This shows that (3)implies (1).
Conversely, sume (1). Then P P0 is a strictly positive solution to AP P.

if P() p(k)e-ik is another solution we find using Lemma 3.1:

2 +
Po() d

j_ P() 2mo(2t)[2 eik2()12dPo( )

av’ (v

This holds for every j 1, 2, The last integrand is dominated by MIni2 with
M sup(IP()l/Po()) which is finite since Po attains a strictly positive minimum
on [-r, r]. Letting j - +oc, we conclude that P is a scalar multiple of P0.

Example 5.4. If m0() (1 + e-3i)/2, it turns out that the eigenspace E1 of
A Sa -- $4 corresponding to the eigenvalue A 1 is spanned by the functions

(1, (1/2 +cos)2}.
By Theorem 4.1, e L2, and we find 11112 mini1/2, 11 1/2 from Corollary 4.3,
but since dim(E1) 2, Theorem 5.3(3) shows that does not have the Riesz basis
property. In fact, o 1/21[0,3] and Po() (S + cs)2

Even if the eigenspace E1 is one-dimensional, we cannot be sure to be in the
Riesz basis case. To see this, consider mo() (1 + e-2i)/2. Then dim(E) 1 and
Po() cos2(/2). Again o is square integrable, but does not have the Riesz basis
property since Po(r) --0.
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6. Calculating moments in time. Assume L2. For n 1, 2,..., and
k @ Z, we can then define the moments in time

(6.1) qn(k) xn x + x- dx,

and a discrete analogue, generalizing a0 of 3,

By definigion bogh q and are conjugate symmetric, qn(k) 0 for Ikl > N- 2, and
() 0 for I1 > - 1. In 4 we relaed qo po o o. In Proposition 6.1, we
will generNiee hese relations o he ces n 1, 2,... well. Once q is found, we
obtain a speciM ce the ener momen in ime,

qn(O) xl(x)l2 dx.

The extra information contained in qn(k) for k 0 will be needed in 10, were we
consider wavelets sociated to .

In analo with the definition of A we can define operators Ao, A, A2,..., acting
on SN C:g-3 by

(.3) Aq() a(e )q().

Because of the definition of an, these operators have the same symmetry properties
A in Remark 3.2.
PROPOSITION 6.1. Assume L2(R), then

(. - &q_, o 0,1, ,
p=0

If h the Ries bsi propels, then the q re uniquel deteined b (6.4) nd the
requirement qo k 1.

Pro4 By inserting ()= k2ck(2- k)into (6.1) we find

(wherey= 2x l+m)2
), =o 2

q._(2k m l)

p=O p

p=O
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which shows (6.4).
Now, assume in addition that has the Riesz basis property. Then from Theorem

5.3(3) and Lemma 4.2 we know that q0 p0 is uniquely defined by Aqo qo and

-k qo(k) 1. To find ql, q2,..., we rearrange the terms of (6.4) to get

(I- 2-nA)q, 2-nE Apq,_p.
p--1

If I 2-hA is invertible, then qn is uniquely determined from qn_ 1, q-2,..., q0. This
fixes all q by iteration, if we can show that the spectral radius p(A) of A SN SN
is less than 2. We will show that p(A) 1.

Let P E SN be a strictly positive trigonometric polynomial with AP P (fur-
nished by Theorem 5.3(3)), and equip SN with the following weighted supremum
norm:

sup
I--,-1 P()

Let us try to estimate IIAXlIp. For all , we have

IAX(25)l < Im0(5)IuP(5)iX(5)[ Im0(5 + r)12P( + r)IX( +
P(2) P(2) P() P(2) P( + r)

AP(2) IlXllP IlXllP.-< P(2)
Hence, IIAXIIP <_ IlXllP and p(A) <_ IIAIIP _< 1. To see that equality holds, use
X P. [3

7. Calculating moments in frequency. For each s E R, define the Sobolev
space Hs(R) to be the space of tempered distributions u such that (l+2)s/2fi e L2(R).
Given n No, assume Hn/2 and define

1 .[_- n 2eik(7.1) p,(k)-- () d.

Note that since is continuous, Hn/2 is exactly the condition ensuring that the
integral in (7.1) is absolutely convergent. In other words, we ensure that the moment
in frequency

pn(O) () d,

exists.
The definition of Pn is consistent with 4 in the ce n 0, and Pn is conjugate

symmetric, pn(-k) pn(k). For even n 2m, the mth derivative of is in L2 and

Define (I)n by

P2m(k) (m)(x)(m)(x k)dx.

(7.2) )n() nl()12.
If Hn/, then i8 integrable 80 On itself i8 continuous and by definition

,,(k) ,(k).
Since (I), (-i)() , the support of (I) is contained in [1 N, N 1], and by
continuity p(k) 0 for Ikl > N-2. Thus P() YkPn(k)e-ik defines an element
of SN.
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THEOREM 7.1. Let n E No. If qo Hn/2, then

(7.3) Apn 2-npn,

x-" f o, o, ,...,, ,
klpn(k)

inn! n.
k

Furthermore, Pn is the only solution to (7.3)-(7.4) if qo has the Riesz basis property.
Proof. Observe that n(2)= 2nlrn0()12(n() and for almost every ,

p() ](+ .).
kEZ

Generalizing the result for P0 in 4, we obtain

P=(2) 2= (i.o()lP=() + I-o( + r)l:P=( + -)),
which is equivalent to (7.3).

To show (7.4) consider the Riemann sums

z(i) 2- (2-)v=(2-)
k

for 0, 1,..., n and j No. For j 0 we have

(o) (),
k

and since (I)n is continuous with compact support,

I(j) Xln(x) dx for j -. +oc.

If ao(k) are the Fourier coefficients of 21m012 as in 3 we have

(n(x) 2 Z ao(k)(n(2x k).
k

Inserting this into the definition of I yields

l--1

(7.5) In(j + 1) 2n-In(j) + ZT(r,j,l,n)I(j).
r--O

The exact expression for 7 is of no importance here. From the inclusion H8’ c H8 for
s _> s we see that (7.5) holds with n replaced by any n’ 0, 1,..., n. If n >_ 1 we have
in particular Il(j / 1) 211(j) and since the sequence I(j) converges for j --. +oc
it must be identically zero. By induction, using a similar argument, we obtain in fact

I(j)=0 for0_</<n, j=0,1,

The special case j 0 proves the homogeneous part of (7.4).
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For n the last term of (7.5) now disappears so I(j) is independent of j. We
thus find

Z kpn(k) I(O) lim I,(j)

xnn(x) dx in(n) (0)

inn!

and this concludes the proof of the first part of the theorem.
If has the Riesz basis property, then P0 is a strictly positive trigonometric

polynomial and we have just seen that P0(0) 1. As shown in the case n 0 in the
proof of Theorem 5.3, a solution p to Ap 2-up must satisfy

1 /_e 2nJP(2_j)I()12eik d,
P0(e- e)

where P()= kP(k)e-ik. If p satisfies (7.4) we can write

P()= 2sin ei/2R(),

for some trigonometric polynomial R with R(0) 1. Inserting this into (7.6) we see
that j , the integrand converges pointwise towards n()2ei dominated by
C]()]2 where C sup(]R()[/Po()). By the sumption e g/2, Lebesgue’s
dominated convergence theorem allows us to conclude that p(k) pn(k), thereby
showing the lt statement of Theorem 7.1.

Remark. A different proof of Theorem 7.1 h been indicated by Beylkin [B], in
the special ce where is the scaling function of a multiresolution analysis (see 10).
Assuming sufficient regularity of , we have

pn(k) in (x)(n)(x- k)dx.

Therefore the coefficients pn (k) arise naturally when the representation of the operator
dn/dxn in a bis of orthonormal wavelets is sought, for use in the ft numerical
algorithm of [BCR].

8. Sum rules. In this section we will describe some simplifications that occur
in the analysis of when m0 h a zero at r. As we will see in Proposition 8.3,
such a zero exists if h the Riesz bis property.

DEFINITION 8.1. We say (Ok) satisfies M sum les if mo() cke-ik h a
zero of order at let M at r. Equivalently,

N-1

(-1)kkck O forn=0,1,...,M-1.
k=O

(8.1)

Observe that if (ck) satisfies M sum rules we have the factorization

mo() ( l + e-i )
M

2
o()

with ffo(()= 5e-i.
k=O
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Clearly, we can have at most N- 1 sum rules. Combining Theorem 2.1 with Example
2.2, we see that the factorization (8.1) corresponds to an M-fold convolution with the
Haar solution, that is,

I*M(8.2) I0, l *

where is defined from ff0.
A convolution with 110,1] has a very precise effect on the regularity of compactly

supported distributions. We describe this in terms of Sobolev regularity in Lemma 8.2,
but note that essentially the same proof applies to show the result in terms of Hhlder
regularity (Ca spaces). This observation could have simplified the higher regularity
estimates of [DL2].

LEMMA 8.2. If s and u is a compactly supported distribution, then

u e Hs(]l() 4= 110,1] * u e Hs+I(R).

Proof. Define v 110,1] * u. If Th denotes the operator of translation with h and
(h iS the Dirac mass at x h we have

(8.3) v’ 1[0,1]’ * u (o 1) * u u nu.

If u e H, we see that () ((1- e-i)/i)(), and since the first factor is
dominated by 2(1 + 2)-1/2, it follows that. v 6 H+1. (Note that the boundedness of
the support of u is not necessary here.)

Conversely, if v 6 Hs+1 we have v’ H and we will obtain u H8 by telescoping
(8.3). Indeed we can write for every n--- 1, 2,...,

n--1

U TnU Z TkV! 6 Hs.
k--O

For n large enough the supports of u and Tnu are disjoint and we can choose a smooth
compactly supported test function , such that 1 on supp(u) and r/ 0 on
supp(TnU). Since H is stable under multiplication by test functions JR, p.199], we
conclude that u l(u- TnU)

Since the Dirac mass 50 is in H if and only if t < -, a simple consequence of
Lemma 8.2 is that

(8.4) 1,M Hs
[0,1] 6 4= s < M 2"

I*MIn particular, 9 [0,1] is a two-scale difference equation solution with qo 6 HN-2.
This can also be seen directly, since 9 is a basic spline.

We now turn to the general Riesz basis case. Assume o L2 has the Riesz basis
property, then P0 from 4 is strictly positive and

P0(2) Im0()12P0() + Im0( + r)12P0( + r).
Evaluating at 0 we obtain moor) 0, hence (Ck) satisfies one sum rule. With
M- 1 (8.1)-(8.2) become

m()=(l+e-i)()2 =1[0,1]*.

Now if 6 H1, Lemma 8.2 gives 6 L2. Since 0 obviously satisfies Cohen’s
criterion, will have the Riesz basis property (Theorem 5.3). Therefore (k) satisfies
one sum rule as well, and (ck) satisfies two.

By induction, we have shown the following.
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PROPOSITION 8.3. Let m E No. Ifo Hm(R) and o has the Riesz basis property,
then (ck) satisfies m + 1 sum rules.

This proposition shows that in the Riesz basis case, o cannot belong to Hg-1

and the only possible o e HN-2 is given by

1*(N--l) mo() (1-}- e-i’ )
N-1

(8.5) o -[0,1] 2

It turns out that this maximal regularity property of the spline solution does not
depend on the Riesz basis assumption.

PROPOSITION 8.4. /f O Hg-2(), we are in the case (8.5).
Proof. For N 1 we have necessarily o 0 and for N 2 the proposition

follows from Example 4.4.
Assume therefore N _> 3 and o HN-2. By downward induction on N we only

have to show that (ck) satisfies one sum rule.
Define the vectors po, pl,..., P2N-4 (2N-3 as in 7, and let W be the orthogonal

complement of the linear span V of Pl,P2,...,P2N-4. From Theorem 7.1 we know
that

Apn 2-npn.

Thus, the dimension of V must be 2N 4 and it follows that W is one-dimensional.
If v is left eigenvector for the matrix (Ak) corresponding to the eigenvalue A 1, we
must have v E W. On the other hand we have from (7.4) that (1, 1,..., 1) W. Since
dim(W) 1, we conclude that v is proportional to (1, 1,..., 1), hence

Z Ak---- Z a0(2k -l) 1,
k k

which implies
Assume o is m times continuously differentiable: o e Cm. Then o is also in H",

and Proposition 8.4 gives the lower bound N >_ m -t- 2 for the number of coefficients
*(m-t-l)defining o. In fact, since 1[0,1 is not of class Cm, we have even N >_ m / 3. This

result is well known [DL1], but in the critical case N m+ 3, there are many different

o of class Cm. In contrast to this, Proposition 8.4 characterizes the spline solution
(8.5) as the optimal choice with respect to Sobolev regularity for a given number of
coefficients N.

The next lemma describes how the existence of sum rules can reduce the dimension
of an eigenvalue problem for A.

LEMMA 8.5. Letmo() ((1+e-i)/2)0() and define A from Cno. IfP E SN-1
is an eigenfunction for A corresponding to the eigenvalue ;k and

P() sin2 (1) iB(),

then P SN is an eigenfunction for A corresponding to the eigenvalue ;/4.
Proof. Since sin 2 sin(/2) cos(/2), we have

AP(2,) =cos2

_1_ sin2()./5(2 P(2).4
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In parallel to this observation we see directly from the definition of (I)n in 7, that
if (ck) satisfies M sum rules and 7 E Hn/2, then

Pn() 4 sin2

as long as (n/2) >_ M and Pn-2M e SN-M is defined from .
In fact, in the presence of M sum rules, any eigenfunction P SN for A cor-

responding to an eigenvalue A 2- where n < 2M, must have a zero of order at
least n at 0. To see this, let be the order of the zero of P at 0. Expanding
AP 2-rip in Taylor series around 0 yields

(21-n 1)l o() + o(n).

Hence, if < n, dividing by leads to a contradicton. By Proposition 8.3, a con-
sequence of this observation is that the homogeneous part of the condition (7.4) is
superfluous when has the Riesz basis property.

9. Optimal Sobolev regularity estimates. For m 0, 1,..., we can obtain
a criterion for Hm(]), generalizing Theorem 4.1, just from the observation that
P2, is nonnegative.

THEOREM 9.1. For m N0 we have Hm(R) if and only if there exists a
nonnegative trigonometric polynomial P SN, such that AP 4-raP and

{ 0,

k (-1)m(2m)!’
0, 1,...,2m- 1,

2m,

Moreover, the minimum over all such P of the central coefficient p(O) equals the
moment in frequency (1/2r) f 2,[()[2 d.

Proof. If Hm, then P P2m will do: the eigenfunction property and corre-
sponding normalizations follow from Theorem 7.1, and since we see from (7.2) that
(2m >_ 0, the nonnegativeness of P() k (2,( + 2rk) is clear as well.

Conversely, assume P satisfies the stated conditions. Define for n 1, 2...,

gn()=4mnp(2_n)(filmo(2_j)1211[_r,r](2_n)"j=l

As n - +oc, gn converges pointwise to 2m[q3[2, because of the normalization of P.
Using Lemma 3.1 as in the proof of Theorem 4.1, we find that the integral of gn equals
2rp(0) for all n. Since the gn are nonnegative, we deduce from Fatou’s lemma that

2r j_

By the continuity of q3, this shows that H".
Finally, since the above integral by definition is equal to P2m (0), the last statement

of the theorem is evident.
If has the Riesz basis property, much simpler regularity criteria can be formu-

lated. First, the Hm-criterion of Theorem 9.1 becomes inferior to a simple combination
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of Proposition 8.3, Lemma 8.2, and the L2-criterion Theorem 4.1, but we can do even
better: we can find an optimal Sobolev regularity estimate so, in the sense that 99 E H8

if and only if s < so, by calculating the spectral radius of a certain matrix. This op-
timal estimate is described in Theorem 9.5. It relies on two results: Lemma 9.2 and
Lemma 9.3, which we state and prove first.

In the following, we use the supremum norm on SN, IIPIIo sup IP()l. Let
p(A) be the spectral radius of the operator A SN SN defined from m0 as in 3.
Since SN is finite-dimensional, this radius equals the maximum modulus of the set of
eigenvalues of A. The first lemma relates p(A) and the operator norm IIAnll to

R--1

=--/_ YI 21m(2)12 d.
j=0

LEMMA 9.2. There is an r > 0 such that

VneN: rp(A)’ <_ a, <_

Proof. To show the upper bound on an, observe that

a= (A’)=(1)() d An(1)() d < 27rllA"lll1111,

where we have applied Lemma 3.1 with f g 1.
Now, let , be an eigenvalue of A with ],1 p(A), let P SN be a corresponding

eigenfunction, and consider

7n P() 2lmo(2J)l2 p(2n)d.
\=o

By trivial estimates we get

On the other hand, Lemma 3.1 gives

f f f7n P()(A’)nP() d AnP()P() d An IP()I2 d.

Thus, the lower bound on an follows with r
The second lemma explains why we consider the sequence a= of (9.1).
LEMMA 9.3. Let t > 0 and assume that mo satisfies Cohen’s criterion (Definition

5.2). Then

qo e H-t() 4a E an4--tn <
n--1

Proof. Let R > 0 be arbitrary but fixed; we will choose this parameter later. By
the continuity of 3, we have

p H-t z fll>R 1 1-2 1 ( )12 d < +oc.
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With the dyadic decomposition n=l n, where

we obtain, by simple estimations of I1-2 on each n,

6 H- E 4-n/fl 15()[2 d <

f2nRNext, with In j-un;{ I@()I2 d, we find for each k- 2, 3,...,

k-1

4-tklk 4-rio + (1 4-t) E 4-thin"
n-’l

Using the fact that t > 0, we can thus replace fen 2 d with In"

E H- In4-n <
n:l

To complete the proof of the lemma, we now only have to show that In is equivalent
to an for n --. /oo.

By a change of variable, we can write

\=o

Let K be the compact set of Cohen’s criterion. Then I12 attains a positive minimum
m > 0 on K. If we choose R equal to a multiple p of r and large enough to have
g c [-R,R] it follows, with M equal to the maximum of I12 on I-R, R], that
man <_ In

_
pMan. [-I

Remark 9.4. Note that the convergence of the series in Lemma 9.3 implies 6
H- even when m0 does not satisfy Cohen’s criterion. (Choose p-- 1 in the last part
of the proof.) However, the condition cannot be removed from the lemma.

Consider the case N 3 with (co, c,c2) (1,-1, 1). Here it turns out that
p(A) 4, so by Lemma 9.2 we have

E Crn4 n +00.

On the other hand, by multiplying m0() with (1 + e-if)/2, we arrive at the first case
of Example 5.4. Hence, the result of a convolution of with 1[0,1 is an L2- function.
By Lemma 8.2, this is equivalent to qo 6 H-1.

We are now ready to prove the main result of this section.
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THEOREM 9.5. Assume m0() ((1 + e-i)/2)M Cno() where Cno satisfies Co-
hen’s criterion and Cno(r) y O. If A is defined from Crto and so M log4 p(A),
then

H(I) s < so.
Proof. We have o I*Mt0,xl * , as in (8.2), and repeated use of Lemma 8.2 gives

qo 6 H8 , 6 Hs-M.

Recall the spectral radius formula [R, p. 235]
p(A) lim IIA=II1/n inf IIA’III/’.n--+oo n6N

Since AP(O) >_ P(O) for all nonnegative P e SN-M, we have IIAII > 1 for a n. As
a first application of the spectral radius formula, we conclude that

p(A) >_ 1.

Assume s < so. With t M- s we then have t > loga p(A) >_ O, and we have to
show that H-. By Lemmas 9.2 and 9.3 it suffices to show that the power series

=+oo 11.11(4_) converges. But this follows from

4- limsup IIAnllx/’ 4-tp(A) < 1.
n+oo

Next, we have to show that a 6 H*o. Equivalently, that H-to where to
M- so log4 p(A). Since E L2 would contradict the assumption @t0(r) # 0, (by
Theorem 5.3(2) and Proposition 8.3), we only have to consider the case to > 0: from
Lemma 9.2 we see that

+oo
an4-ton > r p(),p()-n

n=l n=l

The desired conclusion then follows from Lemma 9.3.
Example 9.6. Consider the case

(co, cl,c2) ( l + z 1 l-z)4 ’2’ 4
zEC.

From Example 4.4 we know that L2 if and only if Iz[ < x/-. Using the notation
of Theorem 9.5 and excluding the case z 0, we have M 1 and

l+z 1-z
fft0()=+ 2 e-i"

Since fit0 can at most have one zero in [-Tr, 7r[, it is not hard to see that Cohen’s
criterion is satisfied for all z. The operator A is given by the 1 1-matrix (1 -4-
hence Theorem 9.5 gives qa H , s < so, where

so 1 -1094(1 + zl 2), z # 0,

For z 0 we are in the case M 2 of (8.4), so so . That is, the regularity exhibits
a jump from 1 e in the neighborhood of z 0 for z # 0 to e when z 0.

The result is in agreement with Example 4.4, since so > 0 if and only if Izl < x/-.
What is not captured by Theorem 9.5 is the degenerate case c (1/2, 0, 3) where we
know that L2 but qa does not have the Riesz basis property (Example 5.4). Here,
Theorem 9.5 would only give the result s < 0

The following estimations of p(A) will be useful in order to compare the perfor-
mance of Theorem 9.5 with other regularity estimates.
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PROPOSITION 9.7. Define for every n E N

sup II[-,1 j=0

Then we have limsuPn_.+o Kn <_ p(A) _< 2 infneN Kn.
Proof. By induction we find

AnP() E Ira(2-j( + 2rk)) 12 P(2-n( + 2rk)).
k=0 j=l

Using the triangle inequality and testing P 1 leads then to the result

IIA’II sup II Im(2-( + 2’k)) I
\=o i=

Simple estimates of the right-hand side give

and the desired result follows from the spectral radius formula.
Remark 9.8. Inserting 2r/3 into the definition of Kn gives the lower bound

K2n >_ Imo(27r/3)mo(-27r/3)l. (0 2r/3 is periodic of period 2 for - 2 modulo
2r.) Therefore we get

p(A) >_ lim sup Kn >_ 2r

as a simple consequence of Proposition 9.7

Relation to Hiilder regularity estimates. In the appendix of [D1] a method
is developed to estimate the regularity of from the spectral radius of A. Using the
terminology of Theorem 9.5, the result is that

Caa < so e (1)

Here we define Ca in the following way: if a k + with k E N0 and 0 _< fl < 1, then
f Ca if f is of class Ck and f(k) is uniformly HSlder continuous with exponent ft.

The result (9.2) is also a corollary of Theorem 9.5 and the well-known inclusion

Ca(R) fors>a+1/2.
If C denotes the space of compactly supported Ca functions, we have an inclusion
in the opposite direction [HS, p. 242],

C(R) c H’(R) for s < a.

Therefore, the following HSlder estimates of accuracy 1/2 hold.
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COROLLARY 9.9. With notation and assumptions as in Theorem 9.5 then E
Ca(R) if so > s + 1/2 and C() if so < s.

Let Kn be defined from 0 as in Proposition 9.7. Since so M- loga p(A), we
get, for every n E N,

(9.3) s < M loga K, =v C(]t().

This is also obtained in [D1], but as a consequence of the stronger result about the
decay of the Fourier transform of ,

I()l-< C(1 + Il)-M+lga

Cohen has refined this regularity estimation method starting from the observation
that , converges to inf,n as n --, +oc (A consequence of n+m < nmm.)
Then (9.3) still holds with Kn replaced by K and it is shown in [C], under the technical
assumption I0(r)l _> 1, that

s > M + 5 log4 ().

In other words, if s0 sup{s e Ca} and we put b log4 K, then s0 lies in the
interval [M b 1, M b + ].

Here we can immediately remove the technical assumption and improve by 1/2 the
upper bound by observing that Proposition 9.7 implies M- b- 1/2 <_ so <_ M- b. Thus
we get from Corollary 9.9

s0[M-b-l,M-b].
Finally, we should note that optimal estimates of Hhlder regularity have been

obtained by Daubechies and Lagarias in [DL2] without making use of the Fourier
transform. However, their criteria get very complex as N increases. For purposes

in the estimation of s0 is sufficient, Corollary 9.9 offers awhere an accuracy of
substantially easier alternative.

10. Application to orthonormal wavelets. Throughout this section we will
assume that

(10.1) Im0()l2 + Im0( + r)12 1

and that m0 satisfies Cohen’s criterion (Definition 5.2). Then P i will be the unique
solution to AP P with P(0) 1, so is square integrable and the integer translates
of constitute an orthonormal basis for the closure of their linear span. In this case

is the scaling function of a multiresolution analysis of L2(R) [M], [C], and we can
associate a compactly supported wavelet to this scaling function as follows:

1 x
(10.2) () Edkg(X- k),

k

(10.3) where dk (--1)l-k-k.

If we define ml () Ek dke-ik, then (10.2)-(10.3) can also be written in the form

(10.4) (2[) ml

(10.5) with ml ([) e-i m0( +
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Modulo integer translation and multiplication by complex constants of modulus
one, is the unique compactly supported L2-function of unit norm in the span of
((2x- k)}kez, which is orthogonal to all (x- k). The set of functions

Cjk(X) 2J/2(2Jx- k), j, k e Z

then defines an orthonormal basis for L2() consisting of compactly supported wave-
lets [M].

Moments in time. Let us try to apply the results of 6 to find the moment

f x[(x)]2 dx, i.e., the center of gravity of the squared modulus of the wavelet.
First we define, in analo with (6.2)-(6.3),

Uq(k) bn(2k 1)q(1).

Then by mimicking the proof of Proposition 6.1 we get

f ( 1 )ZI(Z)12az= N0ql + Nlq0 (0).

om (10.1) and the definition of (dk) it follows that

(Here is the Kronecker delta.) Using all this together with Proposition 6.1 for n 1,
we obtain

x[(x)2dx= q:-:Aoq+B:qo (0)

(1 1 ) 1
lq0 + Blqo (0) (1(0) + hi(0)) (0 P0 1)

1
2

Hence, we have shown the following amusing result.
PaoposIO 10.1. If the orthoeorml wavelet is defined from (10.2) then

f_ 1

Remark 10.2. his proposition is eily generalized
all orthonormal wavelets which are obtained from a multiresolution analysis and have
a reportable decay ag infinity.

rning o he second momen in time of , hings become more complicated.
However, using

f_ (1 1 1 )x2l(x)l2dx Boq2 + Blq + B2qo (0)
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together with simple relations between bn and an for n 1, 2 and Proposition 6.1, we
arrive at the formula

(10.6)

f_/o( 1)2(Ax)2 x I(x)l2 dx

1 1
q2(0)+ a2(0)+Ea(2k + 1)ql(-2k- 1).

k

Here q2(0) and q(2k + 1) c.an be found from Proposition 6.1.
The above method was applied in [DV] to choose wavelets with the minimum

root mean square duration in time Ax from classes of wavelets with equal I1.
Moments in frequency and regularity. We have a simple relation between

the moments in frequency of o and . In particular, the regularity of is exactly the
same as for 99.

PROPOSITION 10.3. Define o and as above. Then

(2) Let n e No. /] e H(), then

(10.7)
+oo

n[()12 d (2l+n 1) nlq()12 d.

Proof. The key ingredient in the proof is the relation

which follows from (10.1) and (10.4)-(10.5). Iterating this result, we obtain for every
kEN:

k

I b(2  )l
j=l

The integral of the last term tends to zero as k --. cx3, and since the terms of the sum
are nonnegative we have pointwise convergence for almost every in

By the monotone convergence theorem it follows that

FE2-J(2s+1) l12sl()l2 d
j--1

(22+1 1)-1 f-+2 1121((:)12 d(.
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This clearly proves (1), and the result (2) is now an easy consequence of (10.8), since
(1) guarantees that both integrals in (10.7) are well defined. [:]

Remark 10.4. The statement (1) about the regularity of could also have been
obtained simply by observing from (10.2) that is a finite linear combination of half
integer translates of (2x). Then a slight generalization of the telescoping argument
of the proof of Lemma 8.2 would do. Moreover, this approach would also work when
(10.1) does not hold, i.e., when we are dealing with compactly supported biorthogonal
wavelets as in [VH], [C].

Example 10.5. If m0 is a solution to (10.1) with M sum rules, i.e.,

m() l l + e-i )
then I012 must be of the form [D1]

(10.9) [0() 12
M-1

Z(M-l+k)
k:O

k
sin2k (1)+sin2M (1)R(),

where R is a real valued trigonometric polynomial satisfying R() + R( -+- r) 0:

K

R() {ak cos(2k- 1) +/k sin(2k- 1)}.
k--1

Conversely, if R is chosen such that the right-hand side of (10.9) is nonnegative, we
can find a trigonometric polynomial 0 solving (10.9), thanks to a lemma of Riesz.
(This factorization method is well known in signal analysis [P, p. 231].) The resulting
number of coefficients N is equal to 2(M / K) if either Og 0 or /g 0, and equal
to 2M if R- 0.

Assume R is chosen such that 0 verifies Cohen’s criterion. From Proposition
8.3 we know that E Hm implies M >_ m / 1 and therefore N >_ 2M _> 2m / 2.

As a first example, consider the case M 2 and R 0 of (10.9):

I0()J2- 1+ 2sin2 /i) 2 cos.

Then we have simply A (4), so the Sobolev regularity given by Theorem 9.5 is

so 2 loga 4 1, meaning that

E Hs c: s < l.

Clearly, we cannot obtain a better Sobolev regularity for any scaling function defined
from N 4 coefficients, because if we had H1, the two necessary sum rules would
fix R 0. This stands in contrast to the behaviour of the HSlder regularity examined
in [D2], where it is shown that the best possible HSlder coefficient is obtained for a
choice with M 1 and R - 0.

For N 6 and R 0 the Sobolev regularity is so 3- loga 9 1.4150, and
numerical experiments suggest that this cannot be improved by allowing R 0. Cohen
has shown in [C] (using the method described here in Remark 9.8 together with an

estimation of Ka) that the regularity of the family (10.9) with R 0 is roughly N/IO
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for large N. Most of the N/2 sum rules could therefore very well be unnecessary, and
the problem of finding the solution with the highest regularity for a given number of
coefficients N is still open. However, if we accept the measure of regularity to be in
the Sobolev sense, Theorem 9.5 provides a simpler cost function for this optimization
problem than the methods of [DL2].

As mentioned in the previous section, Daubechies developed a spectral radius
based regularity estimation method. She applied this to the family (10.9) with R 0,
and listed the resulting HSlder regularity estimates for M 2, 3,..., 10 in a table [D1,
p. 984]. In fact, adding 1/2 to the values of this table, we arrive at the corresponding
exact Sobolev regularity estimates so of Theorem 9.5. In particular, Corollary 9.9
asserts that the optimal HSlder estimates lies in closed intervals of length 1/2 with left
end points equal to the values of this table.
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SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES*
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Abstract. Convergent subdivision schemes arise in several fields of applied mathematics (com-
puter-aided geometric design, fractals, compactly supported wavelets) and signal processing (mul-
tiresolution decomposition, filter banks). In this paper, a polynomial description is used to study
the existence and HSlder regularity of limit functions of binary subdivision schemes. Sharp regu-
larity estimates are derived; they are optimal in most cases. They can easily be implemented on a
computer, and simulations show that the exact regularity order is accurately determined after a few
iterations. Connection is made to regularity estimates of solutions to two-scale difference equations
as derived by Daubechies and Lagarias, and other known Fourier-based estimates. The former are
often optimal, while the latter are optimal only for a subclass of symmetric limit functions.

Key words, subdivision algorithms, H61der regularity, Sobolev regularity, two-scale difference
equations, wavelets
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1. Introduction. This paper focuses on the behavior of real-valued discrete se-
quences un (n Z) of finite length under repeated action of an operator defined

(1.1) u, Vn uk gn-2k.

kEZ

The fixed sequence gn that parameterizes G is called the subdivision mask [14], [15].
It plays a central role in the following. Starting from the initial "impulse" sequence

1 ifn- 0,5n 0 otherwise,

a binary subdivision scheme [14], [15], [17] (in one dimension) is an infinite collection
of sequences g (j E N), defined by iteration as shown.

The g’s are fully determined given the mask gn. Of course other initial sequences
can be considered. In addition, this scheme is said to be interpolatory [10]-[15] if
it satisfies the extra condition g2n 5n, which means that all points g at some
level j are carried unchanged to the next level: gj+l2n g. In this paper we regard
interpolatory subvision schemes as a special case to which general results will apply.
However, we restrict ourselves to binary subdivision schemes, even though the results
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(a) j 1. (b) j--2.

y- ;0
(d) j 6.(c) j 3.

FIG. 1. A binary subdivision scheme converging to a limit function (after [6]). The discrete

sequences gn are plotted as "pulses" against n2-j for j 1, 2, 3, and 6. At each iteration step the
up-scaling operator (1.1) is applied, which approximatively doubles the number of coejeficients while
preserving a global shape. When j oo, these discrete curves converge to a "nice-looking," regular
limit function, compactly supported on [0, 13].

of this paper easily extend to more general subdivision schemes, for which the number
2 in (1.1) is replaced by any integer p >_ 2 [8], [9].

Subdivision schemes arise in several fields of applied mathematics and signal pro-
cessing. They have been used for curve fitting and to generate fractal or smooth
curves and surfaces numerically [10]-[15], [17]. They also play an important role in
wavelet theory [1], [3]-[7], [20]-[23], a newly born theory in functional analysis closely
related to filter bank theory in signal processing [20], [18], [21], [22]. In all of these
applications, the convergence of (1.2) to a function of a continuous variable qa(x) as j
indefinitely increases is important. It is also important to control several properties
of the limit function (x) from the choice of the mask gn. For example, whether
limit functions (x) are regular (smooth) or not may be relevant for image coding
applications using wavelets [1], [20], and this has motivated the work presented here.

The aim of this paper is to find necessary and sufficient conditions on the mask
gn for the existence and Hhlder regularity of the limit function o(x). Figure 1 shows
that (x) can be thought of as a limit of discrete curves g{ plotted against n2-J. (We
then say that the sequences g "converge" to (x) as j --+ oc.) In addition, we shall
often be in the case of uniform convergence. Intuitively, this means that the discrete
curves g{ converge "as a whole" to the limit curve (x). Section 3 discusses several
possible definitions for both types of convergence.

This paper is organized as follows. First, 2 describes binary subdivision schemes
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(1.2) using the convenient polynomial notation. Then, various definitions of conver-
gence are discussed (3), and a basic necessary condition for the existence of a limit
function is derived (4). We show how the values of a limit function can be computed
exactly on a computer (5). The relation between the values of g and those of (x)
leads us to define "stable" subdivision schemes, to which the results of this paper fully
apply (6). Fortunately, almost all limit functions are stable.

To tackle the regularity problem, we characterize regularity of limit functions in
terms of discrete sequences. Continuity is connected to uniform convergence and a
necessary and sufficient condition for uniform convergence is derived in 7. Hhlder
regularity ( (0 < c _< 1) is expressed by a similar property of the g’s (8). Finite
differences of the g{’s play the role of derivatives and N-times continuously differ-
entiable limit functions are, therefore, characterized by uniform convergence of finite
differences (9).

From these equivalences a full characterization of Hhlder regularity (r (for all
r > 0) naturally emerges in terms of discrete sequences (10). The main result of
this paper is an easily implemented, optimal regularity estimate derived in 11. This
estimate is then compared to other related work [3]-[12], [23]. A sharp upper bound
for Hhlder regularity is also derived in 13.

As a general rule, the first parts of the theorems derived in this paper show
that a given property of the g{’s implies the corresponding regularity property of the
limit function (x). The second parts prove the converse implication, which is useful
for proving optimality of regularity estimates and generally assumes the stability
condition.

The purpose of this paper is close to the one of Daubechies and Lagarias in [8], [9].
They studied the existence, uniqueness, and regularity of solutions to "two-scale dif-
ference equations." We shall see in 5 that the limit function (x) associated to mask
gn indeed satisfies the following two-scale difference equation.

k

Although it can be shown [9] that a solution to this equation is not necessarily the
limit function of the subdivision scheme with mask gn, both approaches are closely
related. In fact, the study of regularity of solutions to two-scale difference equations
can be reduced, after suitable transformation [2], to that of limit functions (x) of
a binary subdivision scheme. However, the contents, formulation, and proofs of this
paper differ notably from [8], [9]; Daubechies and Lagarias derive conditions for the
existence of L1-solutions to two-scale difference equations and estimate global and
local regularity of solutions that are, in fact, limit functions. This paper concentrates
on the determination of optimal estimates for global regularity of limit functions,
with interpretation in terms of discrete sequences and comparison with Fourier-based
techniques. (Local regularity may also be investigated using the methods of this
paper [19].)

It was pointed out to the author by one of the referees that the framework of this
paper is very close to that of Dyn and Levin [14], [15]. I learned that several results
were derived independently in [14], [15] for the study of Cg limit functions (see 7
and 9).

2. Polynomial notation. Subdivision schemes have been mostly described us-
ing matrices or Fourier transforms [6], [8]-[11]. Throughout this paper we often use
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the polynomial description

L-1

u(x) E ,,x"
n--O

of any causal sequence un of length L (un 0 for n < 0 and n > L). Since sequences of
finite length can always be made causal by shifting, we assume all sequences causal in
the following. This notation was adopted in [14], [15], which uses Laurent polynomials
for noncausal sequences.

In polynomial notation, the up-scaling operator (1.1) reads

(2.1) u(x) v(x)= a(x) u(x=),
which shows that it can be seen as resulting from two operations.

1. Change X to X2 in U(X), i.e., insert zeros between every two samples of un.
2. Multiply by G(X), i.e., convolve the result with the mask gn.

In other words, the operator (1.1), (2.1) "smooths" un at twice its rate, and (2.1) can
be seen as a discrete version of a dilation by two: f(x) ---+ f(x/2).

Iterating (2.1) gives the polynomial GJ (X), associated to the sequence g{ (1.2).

This equation fully describes binary subdivision schemes in terms of polynomials (see
4 when the initial sequence is not 6n). It can be rewritten in recursive form in two

(2.3) G+(X) G(X)G(X=), i.e., g{+
k

(.4) o+(x) (x) (xv), ..,
k

Both are useful in the sequel. Equation (2.3) is simply a rewriting of definition (1.2),
while (2.4) links binary subdivision schemes to two-scale difference equations (see 5).
We shall also consider (2.2) for polynomials other than G(X). Given any polynomial
U(X), U (X) (with a superscript index j) is

(.) v(x) v(z) v(z) v(x) v(x’-’).
In this paper we use 11 and/m-norms of discrete sequences in terms of polynomials,

IIV(X)ll %a lull,

IIU(X)ll lUkl,
k

and the following well-known inequality:

(2.6) IIU(X) V(X)ll < IIV(X)II,IIU(X)II,

For polynomials with real coefficients, the following useful inequality holds whenever
V(X) has no roots on the unit circle.

(2.r) IIV(X)ll _< v IIV(X) v(x)ll,

a(x) a(x) a(x) a(x) a(x=’-’).

ways.
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where cv is a constant depending only on V(X).
Proof. This is trivially true for infinite sequences when the roots of V(X) lie

outside the unit circle; the constant cv is then the converging/1-norm of the Laurent
series coefficients of 1IV(X), which is analytic in the complex-domain region IXI _< 1.
Here, since vn is a sequence of finite length L, the index reversal n +- L 1 n in
vn transforms roots of V(X) inside the unit circle into roots outside the unit circle.
Hence (2.7) holds when V(X) has no roots on the unit circle. [:l

3. Definition of convergent subdivision schemes. Various definitions of
convergent binary subdivision schemes have been proposed in the literature [6], [10]-
[15], [17]. In this paper we restrict ourselves to pointwise or uniform convergence. It
is easy to define a limit function in the case of interpolatory subdivision schemes as
defined in the introduction: Since for such schemes one has g+l g, the function
(x) can always be defined on dyadic rationals by

(3.1) (n2-j) 9{.

For example, determining a continuous limit function amounts to finding a continuous
extension of (3.1) to the real axis [11], [12].

The situation is more complex for general subdivision schemes since the values
of g are not necessarily preserved as j increases. In order to "converge" to a limit
function, the sequence g must be somehow interpolated. The idea is that the resulting
sequence of functions of the continuous variable x, indexed by j, converges (pointwise
or uniformly) to a limit function (x) under some conditions on the mask gn.

In [6], Daubechies chose to interpolate the seq.uence g by stepwise constant func-
tions: she defined (x) as the limit of (x) g2:ix-t-1/2j as j -+ c. Other kinds of

interpolation are possible and yield similar results. Among possible choices are g2
2], and the continuous linear interpolation function (x) obtained by connect-

ing the points g{ by segments as in Figs. 2 and 3. All such interpolation functions
(x) agree at the "knots" n2-, i.e., (n2-) g{. In this paper we use a stronger

definition that gives some flexibility on the way the subdivision scheme is interpolated.
DEFINITION 3.1. A binary subdivision scheme g{ (1.2) converges (pointwise) to

a limit function (x) if, for any sequence of integers nj satisfying

(3.2) [nj2-j x <_ c 2-i

(where c is a constant independent of j), we have

(3.3) (x)- .lim g.
The convergence is, moreover, uniform if

Note that the sequence nj depends on x, hence g{ can be regarded as a function of
x. The flexibility comes from the arbitrary choice of nj satisfying (3.2) 1. In particular,

It seems natural to impose the more general condition nj2-J x as j o in place of (3.2).
But then nj 2ix is allowed to increase indefinitely as j cx), and the resulting definition becomes
too strong for deriving some of the results of this paper.
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0 0.5 1.5

(a) j 1,..., 6.

1.5

0.5

0
0.5 1.5

(b) j=9.

0.4

0.2

2 3

(c) j-- 1,...,6.
4 4

0.4

0.2

0
2

(d) j 9.

FIG. 2. Two examples of diverging dyadic up-scaling schemes. Figures (a), (c) show six plots

of the discrete sequences gn (j 1,..., 6), represented with values joined by segments and plotted
2against n2-J Figures (b), (d) show the obtained curve after 9 iterations. (a), (b) go gl g2 ,

2gn 0 elsewhere Here G(-1) 0. Note that up-scaling follows a fractal law. (c), (d)
go g4 0.5, gl g3 0.99, g2 1, gn 0 elsewhere, renormalized such that G(1) 2. Here
G(-1) 0.01 is so small that divergence is not obvious at the level of the figure. Divergence is here
due to oscillations that occur in the graph of gin. Although very small, these oscillations are so rapid
that they preclude convergence.

1.5

0.5
0.5

0 0

-0.5 -0.5
3 4

(a) (b)

FIG. 3. Two examples of converging dyadic up-scaling schemes (after [6]). The gn’s are plotted
against n2-J for j 1,...,6, with coecients joined by segments, so that the behavior of the
"slopes" can be observed. (a) The limit function is o.55oo... and not CI; therefore, slopes are
allowed to increase indefinitely near the peaks of the limit function. (b) The limit function is
.o878...; therefore, C Slopes are constrained to be bounded, especially near the apparent "peaks"
of the limit function.
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the above "stepwise interpolation" examples are recovered by letting nj
[2x], [2x, respectively.

Convergence of the linear interpolations o(x) of the g is also implied by Def-
inition 3.1. This comes from the inequality Io(x)- gl <- Ig+l- gl, which

holds for n [2Jx] because o is monotonous on each interval [n2-J, (n + 1)2-].
From (3.3)this clearly implies Io(x)- gl--* 0; hence Io(x)- o(x)l--+ 0. Con-
vergence of smoother interpolation functions such as splines are similarly implied by
Definition 3.1.

Still another definition of convergence was proposed in [14], [15] by Dyn and
Levin. For example, uniform convergence is expressed as the existence of a continuous
function o(x) such that sup Ig- o(n2-)l- 0 as j --* c. Note that this is implied

J xby the uniform convergence of the linear interpolations o( ); since the o(x) are
continuous, their uniform limit is continuous and we have supn Ig- (n2-)l
sup Io (n2-J) o(n2-)l which --+ 0 as j --.

Therefore, Definition 3.1 implies all the others. In fact, 7 shows that all defini-
tions of uniform convergence presented in this section are equivalent. Since the results
of this paper are mostly based on uniform convergence, they remain valid for various
frameworks used in other works (in particular [6], [14]).

It is possible, however, to find examples for which pointwise convergence holds
for one definition and not for another. Consider, for example, G(X) X for which
g 1 if n 2Y 1 and zero otherwise. Here pointwise convergence of stepwise---or
linear--interpolations holds and we easily find that the limit exists and is o(x) 0.
(This is a typical example of a pointwise, nonuniform convergence to a continuous
function.) But convergence does not hold for all x in the sense of Definition 3.1
because the scheme diverges for x 1 (take n 2 1). Therefore, Definition 3.1
forbids "sharp discontinuities" about which Ig+l -gl does not tend to zero as

The choice G(X) 1 + X behaves similarly. For x 0 and x 1, the scheme
converges to a limit function equal to 1 for 0 < x < 1, and zero for x < 0 or x > 1;
however, depending on the choice of the definition of pointwise convergence, it either
converges or diverges for x 0 and x 1.

4. Basic properties. Several basic properties and simplifications for the study
of convergent binary subdivision schemes follow easily from the description (1.2), (2.2).
First note that all functions considered in this paper are compactly supported because
the mask gn is of finite length L. In fact, we easily find that the length of g is
(2J 1)(L- 1)+ 1 by estimating the polynomial degree of (2.2). Therefore, o(x), if
it exists, has compact support [0, L- 1]. This property makes many technical proofs
easier.

Second, we can restrict the initial sequence in (1.2) to 5n. For an arbitrary initial

sequence of finite length ha, (2.2) is simply multiplied by H(X2)"

H (X) G (X) H(X2 ).

From Definition 3.1, the limitThe iterated sequence is, therefore, h{ k hk gn-2k
function becomes (x) k hko(x- k) instead of o(x). Moreover, since both func-
tions are compactly supported, o(x) itself can be written as o(x) Y]k(h-)k(X k),
where (h-1)n is the convolutional inverse of ha, i.e., Y]k(h-)hn_} 6n. The con-
vergence and regularity properties of o(x) and (x) are, therefore, the same, and we
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can restrict ourselves to the study of the g’s and (x).2

In order that (x) is well defined or does not vanish for all x, the iterated sequences
g should neither diverge nor tend to zero as j -- x). The following proposition shows
that this requires some basic conditions to be fulfilled by mask gn.

PROPOSITION 4.1. If (x) = 0 exists for some x E R, then

(4-:) Z
k k

i.e., G(1)-- 2 and G(-1)---0.

Proof. The key point is to consider the even and odd-indexed sequences gn and

n+l separately. Let y x/2 and nj nj(y) be a sequence of integers satisfying

(3.2) for y. On one hand, from Definition 3.1, the common limit of g2
j and g2nJ+

as j --* c is (2y) (x). But from (2.3) we also have

j-1g32n Z g2k gn-k
k

j-1g+ g:+ g_.
k

Letting n nj and applying Definition 3.1 to the right-hand sides of these equations,
we obtain that their respective limits as j --* x) are (-k g2k)(2Y) and (k g2k+)(2y).
By identification we therefore have

Dividing the members of this equality by (2) 0 gives (4.2).
Condition (4.2) may be interpreted follows. On one hand, a(1) is just a

normalization condition tha ensures that the order of magnitude of 9{ is preserved
when j . On he other hand, the fact hat G(X) must have a let one ero
a X -1 is a "local" requirement. or example, i ensures tha the 9{’s, for
large j, do not rapidly oscillate in n between two different limits, (9k)(2) and
(9+)(2). igure 2 illustrates this phenomenon on a particular example (see
also [20]).

Note that (4.2) is not sufficient to ensure convergence. As an example, consider
G(X) 1 +Z3. Here Gj (Z) is a polynomial in X3; therefore, g vanishes for n 3k
(k Z), where ggk 1. It, therefore, cannot converge to a limit function. (Section 7
gives a necessary and sufficient condition for uniform convergence.)

5. Exact computation of limit functions. Assume that the limit function
(x) of a binary subdivision scheme g exists for all x R. This section derives a
simple, eily implementable method for computing the exact values of (x) at dyadic
rationals x n2-J, n Z, with a finite number of operations. The starting point is
the two-scale difference equation [8], [9] satisfied by (x)"

k

2 Note that this restriction works only for initial sequences of finite length. If, e.g., hn 1 for all
n E Z, then using the definition h+1 {(h} and Proposition 4.1, it easily follows by induction on

j that h _= 1. Hence (x) -]k o(x k) 1 is C, whatever the regularity order of (x).
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This equation, which was mentioned in the introduction, is easily derived by using
(2.4) for n- nj (3.2) and applying Definition 3.1.

Now, let

(.) (x) (,-)x"

be the polynomial associated to the sequence (n2-J). Taking x n2-j-1 in the two-
scale difference equation yields o(n2-j-l) kgk (2-J(n- 2Jk)), i.e., (I)J+I(X)
((X)G(X2). By iteration we have

(5.3) (x) (x)o(x),

where

(5.4) (I)(X) (I)(X) E (n)Xn"
n

Equation (5.3) is very useful, since it links the values of the iterated sequences g{
to the ones of the limit function (n2-J). The latter are simply obtained from the
g{’s by convolving them with the sequence (n), provided that the (n)’s can be
predetermined.

There are several methods for precomputing T(n), which is, by definition, the
limit of g2 as J --+ cx). First note that we have, from (2.4),

gJ+ G* gJ/ gg(_) { },
k

where G* is the following transposed operator [6], [18] of (1.1)"

(5.5) u v gu_.
kEZ

Therefore, (n) can be determined as the limit of (G*)(5,} as j --. oc.
Another method stems from the resulting equality

(5.6) a(n) O*{(n)}.

The sequence (n), n 0,..., L- 1 (where L is the length of the mask gn), is here
determined, up to normalization, as the eigenvector of the operator * associated to
the eigenvalue 1. To obtain a normalization for (n), rewrite (5.5) under polynomial
form

v(x) (u(x)a(x) + u(-x)a(-x))/.

Since we have, by Proposition 4.1, G(1) 2, and G(7-1 0, it follows that
preserves the sum of sequences; hence -’n (n) -,n gn2 ’n g2n 1, i.e.,

(5.8) O(1) 1.
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6. Stability. There is an exceptional class of limit functions (x) for which the
regularity estimates derived in this paper will not always be optimal. Optimality, as
well as some other results of this paper, will be proven only in the case of "stability,"
in the sense of the following definition.

DEFINITION 6.1. A binary subdivision scheme converging to a nonzero limit
function (or its limit function a(x) 0) is stable if no root of (I)(Z) (5.4) lies on the
unit circle, i.e.,

E a(n)einw 0 for all w E R.
n

The terminology "stable" comes from (2.6), (2.7) written for V(X) ((X),

1 IIu(X)ll IIU(X)(x)ll

_
2 IIU(X)ll,

which means that the filter of impulse response (n) and its inverse are numerically
stable for finite length sequences. The stability condition slightly restricts the choice
of the scaling sequence gn. For example, if the mask length is L 4, "unstable"
a(x)’s are such that go g3 and gl g2. All (real-valued) limit functions are stable
for lengths up to 3. Note that an interpolatory subdivision scheme is always stable
since it has the property that (n/2) gn (see (3.1) for j 1); hence )(X) 1.

In fact, in the rest of this paper, stability can be replaced by the even weaker
condition that there exists x E R such that

(.) v(n +) 0 for e a
n

(a similar, but stronger stability condition appears in [15]). Condition (6.1) comes
from (5.3) where n is replaced by n + x, for any fixed number x. That is,

(x) (x)v(x)
where

(x) v(( + z):-)x"
n

and (I)x(X) (I)(X).
Although almost all convergent subdivision schemes are stable, it is easy to con-

struct unstable ones (even with definition (6.1)). As in the preceding section we have
the following generalization of (5.6), (5.7).

(x) (=(x)a(x) + =(-x)a(-x))/..

Therefore, any polynomial mask G(X) divisible by (X2-ei), w # 0, yields unstability
since we have (x(eiw) -O.

I conjecture that the converse holds, i.e., stability (in the weak form (6.1)) is
equivalent to the condition that G(X) has no pair of opposite zeros (ew/2, e(/2+))
on the unit circle. If this conjecture is true, then the regularity estimates presented
below will be optimal under the simple condition above on the mask coefficients gn,
which is easy to check. When this condition is not satisfied, it is possible to apply a
trick as shown at the end of 9 which allows one to consider another, stable binary
subdivision scheme which has the same regularity properties.



1554 OLIVIER RIOUL

7. Continuous limit functions. The framework of uniform convergence (3.4)
is shown to be very convenient in the sequel, and the following theorem shows that
all stable continuous limit functions are obtained by uniform convergence. We shall
then derive a necessary and sufficient condition for uniform convergence in all cases.

THEOREM 7.1. Assume that a binary subdivision scheme converges pointwise
to a limit function a(x) for all x e R. If the convergence is uniform, then (x) is
continuous. The converse is true if (x) is stable.

Proof. (=) In 3 we have seen that uniform convergence (3.4) implies uniform
convergence of linear interpolations (x) of the g’s to (x). Since this is a uniformly
convergent sequence of compactly supported continuous functions, (x) is continuous.

(=) We have

where nj is a sequence of integers satisfying (3.2). Since (x) is compactly supported
and continuous, it is uniformly continuous. Therefore sup I(x)- (nj2-J)l -- 0.
The other term can be written sups I(n2-j) -gl I[(I)Y(X) -GJ(X)[I- From
(5.3) we have (X)((X)- GJ(X)) ((X)- 1)(X). Since (5.8) holds, X-
1 divides (I)(X)- 1 and we can write, using (2.6), II(X)((X)- G(X))II <_
cll(X 1)(I)(X)II. The latter norm is suPs I(n2-j) -((n 1)2-)1 which tends
to zero as j - oc because (x) is uniformly continuous. Now we can use (2.7) with
V(X) ((X) since (I)(X) is stable. This yields
which ends the proof.

It is an open problem to find a limit function (x) for which the convergence is
not uniform (in the sense of Definition 3.1). That would imply that (x) is unstable
or discontinuous.

We now derive a necessary and sufficient condition for uniform convergence of a
binary subdivision scheme g to a (continuous) limit function (x). (By Theorem 7.1,
this also gives a necessary and sufficient condition for the continuity of a stable limit
function.) We need the following lemma, which will also be useful for deriving an
optimal regularity estimate in 11.

LEMMA 7.2. Assume G(-1) 0 and let F(X) G(X)/(1 + X). The sequence
of the first-order dierences of gn,

gn-l

follows a binary subdivision scheme with polynomial mask F(X) and initial sequence’s
polynomial 1 X.

In addition, for any fixed positive integer i, we have

n 0(n(2 --1
k

where fn is the mask associated to the polynomial F(X) and c is a constant indepen-
dent of j.

Proof. Let DJ (X) (1- X)G (X) be the polynomial associated to d. We have

"--1DJ(X) (1- X)(I + X)(I + X2) ...(I+X2 FJ(X)
(1 X2’ )Fj (X),
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which shows, by (4.1), that d{ follows the announced subdivision scheme.
Using (2.2) in the above equation, we can write Di+t(X) Fi(X) Dt(X2), which

also reads dn+t k fn-2’k d. Majorating yields

IID +e(X)llo IIDe(X)ll ’

which, by iteration for j =/ + Hi, 0 <_ <_ i 1, gives (7.1) where c depends only on
the fixed integers i and L []

THEOREM 7.3. A binary subdivision scheme g{ converges uniformly to a (continu-
ous) limit function if and only if G(1) 2, G(-1) 0 and

(7.2) max y
g,+l g{l - 0 as j -- .n

Moreover, there exists a > 0 such that

Proof. (=,) immediately results from Proposition 4.1 and the inequality

gn+l gl < sup I(X) g+ll q’-sup I(X) gl"

(=) We first prove that (7.3) is implied by conditions G(1) 2, G(-1) 0 and
(7.2). First note that from the first part of Lemma 7.2 we have (1- X)GY(X)
(1 X2)Fy(X) i.e. g gY fnj Yfn-2 Writen--1

The number of terms in the sums is bounded by L because the length of f is bounded
by 2YL. From (7.2) each term tends to zero uniformly with respect to n; hence so
does f. Therefore, there exists a (sufficiently large) index i such that maxn Ifn/I
ei < 1/L. Now since the number of terms in the sum in (7.1) is bounded by L, the
second part of Lemma 7.2 gives (7.3) with c -log2(Lei)/i > 0.

To prove the converse part of the theorem, consider supn Igy+ln+I -gJnl, where

ny satisfies (3.2) This equals suPn Ign+1 gl, where my 2ny is a+m nj+l

bounded integer. Now, from (2.3) we can write g2+nl+m -k g2k+m gn-kY. Therefore,
j+the sequence :n+m -g{ is a convolved version of gn; its associated polynomial can

be written in the form Um(X)Gy (X). But from (4.2), we have kg+m 1 (for all
m), and, therefore, Urn(l) 0. Using (2.6), it follows that

sup Igg IIUm (X)G (X)ll < c’ I1(1 X)GY (X)ll+m x cx),

where c’ is a constant (independent of j since my is bounded). From (7.3) the latter
norm is bounded by c d 2-y We therefore end up with sup Igy+I -g{l < cd 2-y

Iterating this inequality, we obtain, for any g > 0,

sup IM+e gl < ca’ (2-(j+e-1)a +... + 2-(y+l)a + 2-ya) < ct’ 2-ya
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which shows that the sequence of functions g() is a uniform Cauchy sequence, which

converges uniformly to a continuous limit function (x). [:]

This theorem has several interesting consequences. First, we shall see in 8
that (7.3), in fact, implies that (x) is Lipschitz of order , which is stronger than
continuity.3 Therefore, by Theorem 7.1, a continuous stable limit function is auto-
matically Lipschitz of order c for some c > 0.

Second, note that the necessary and sufficient condition is quite weak and intu-
itive: it is sufficient that the differences g+l -g{ --* 0 uniformly as j --, (x) to obtain
a continuous limit function.4 In fact, we easily find that (7.2) holds for any definition
of uniform convergence presented in 3.1. (For example, any uniformly convergent
sequence of interpolating functions (x) of the g{’s such that g{ (n2-J) clearly
gives (7.2).) Since we have seen that Definition 3.1 for uniform convergence implies
the others, it follows that all these definitions of uniform convergence are equivalent.

In particular, some results derived in this paper have been derived in the frame-
work of Dyn and Levin [14], [15] as well. The necessary and sufficient condition (7.2)
appears in [14] for interpolatory subdivision schemes and was first derived in [15,
Thm. 3.2] for general binary subdivision schemes--using the (apparently) weaker
definition mentioned in 3.1--in a slightly different but equivalent form, namely,
maxn Ifl --* 0 as j--, cx. Theorem 7.3 was included here in order that this pa-
per be self-contained, since some material presented in this section is also useful in
the sequel.

8. Lipschitz limit functions. In this section we want to characterize Lipschitz
limit functions. Recall that (x) is said to be Lipschitz of order (0 < c <_ 1),
(x) E a, if we have for all x and h E R,

(8.1) I(x + h) (x)l <_ c Ihl,
where c is a constant. Here, (x) is compactly supported, and (8.1) needs to be
satisfied only for small h’s. Since the spaces (a, for 0 < a _< 1, interpolate between
Co and C1, a a-function will be said to be regular of order c. There is a slight
irritation in that C and ( do not coincide; for example, a linear spline function is
( but not differentiable at its knots.

THEOREM 8.1. /f G(1)- 2, G(-1)--O, and

(8.2) max Ig+l gJnl -- C2-Jan

for some 0 < a <_ 1, then the binary subdivision scheme converges uniformly to a
limit function. The converse is true if (x) is stable.

In addition, the more regular the limit, the faster the convergence to this limit:

.for any sequence nj of integers satisfying (3.2).
Proof. (=) Let us first prove (8.3). Since (8.2) holds, we are in the framework of

Theorem 7.3, and (7.4) holds. Letting - oc in (7.4) gives (8.3).

3 Using the same proof as the one of Theorem 7.3, we can show that when (3.2) is replaced by
nj2-J x as j cx), uniform convergence requires (7.3) for c 1, which corresponds to almost
continuously differentiable functions.

4 In contrast, the slopes (gn+l gn)/(2-J) may indefinitely increase (see next section).
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We now prove that (x) is (a. Let nj nj(x) satisfy (3.2) (for all x e R) and
consider the inequality

su , + _< + tO
+ sup Ig(:+h) g(x)l + sup

By (8.3), the first and third terms in the right-hand side of this inequality are bounded
by c2-ja. Assume, for example, that Ihl < 1. If h > 0, choose nj(x) [x2J,
otherwise choose nj(x) [x2J]. A simple calculation yields Inj(x + h)- nj(x)l <_
Inj(h)l + , where e 0 or =t=l. Now, let j be such that 2-J <_ Ihl < 2-j+l. This gives
Inj(h)l- 1; hence we find, from (8.2), that sup Ign(+h) g()l <-- c2-Ja" Putting
all inequalities together yields sup I(x / h) (x)l <_ c’2-ia <_ clhla, i.e., (x) is

(=) G(1) 2, G(-1) 0 result from Proposition 4.1. Since (x) is (a, we have
I((n + 1)2-J)- (n2-J)l <_ c2-ja, i.e.,

II(1 x)o.i(x)[l IIo(x)(1 X)G.i(x)llo <_ c2-a

(the first equality comes from (5.3)). Because (x) is stable, we can apply (2.7) to
obtain the inequality I1(1 X)GJ(X)II <_ c’ 2-ja, which is (8.2).

This theorem provides an intuitive interpretation of regularity of order 0 <_ c < 1
for binary subdivision schemes: regularity (a holds if and only if the absolute values
of the "slopes" J(gn+- gn)/2- of the discrete curves g’s (see next section) grow
less than 2j(-a) when j indefinitely increases. For example, if the slopes of g are
always bounded for all j’s, then (x) is . On the contrary, less regularity allows
slopes to increase indefinitely and the resulting limit function, although continuous,
may present a "fractal" structure as shown in Fig. 3. Note that in this case, (8.3)
means that uniform convergence of the curves g is slower as slopes increase faster.

As an example, consider the convergence of binary subdivision schemes in the
case of positive masks gn > 0, n 0,..., L- 1, as studied by Micchelli and Prautzsch
in [17]. They found that

sup
On-mL--2

Igm gl -< c (1 min gn)J;

hence any binary subdivision scheme with positive mask uniformly converges to a
continuous function .[17]. Theorem 8.1 immediately applies to show that the limit
function is, in fact, Ca, where c -log2(1 min gn).

Since we have a characterization of regularity for stable (x)’s, it is easy to find
a condition on gn that states an exact regularity order 0 < c < 1.

COROLLARY 8.2. Let gn be a stable binary subdivision scheme such that G(1) 2
and G(-1) 0. If, for 0 < c < 1,

(s.4) max J
gn+l gJnl decreases as 2-ja when j

n

then the limit function (x) is a but is not a+, for any > O.
Proof. This is an immediate consequence of Theorem 8.1. If (x) were

(with e > 0 small enough so that + e < 1) we would have Ig -gl < c2-(a+s)
which contradicts (8.4).
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Note that Corollary 8.2 does not hold if 1, since 19P+1 g{I cannot decrease
faster than 2-j as j --, cx when (x) is more regular than (1 (see 10). Otherwise,
intuitively the derivative of (x) would vanish identically, which would imply a(x) 0
since (x) is compactly supported.

9. Continuously differentiable limit functions. In this section, we study
the derivatives of the limit function (x). We start by defining finite differences of
the g{’s, which will be shown to converge to the derivatives of (x). The first finite
difference is

(9.1) Ag (g g_l)/2-J, i.e., (X) (1 X)V (X).

In other words, the Age’s are the slopes of the "discrete curve" g plotted against
n2-J (see Figs. 2 and 3). Finite differences Akg of order k are simply obtained by
applying k times the difference operator A:

(9.2) AkG (X) 2k (1 X)kG (X).

In order to study finite differences Akg similarly, as for the g’s, it is convenient
to express them as binary subdivision schemes as well, associated to masks other than
gn. The following lemma shows that this is possible when G(X) has enough zeros at
X=-I.

LEMMA 9.1. Assume G(X) has at least k zeros at X -1 and define Gk(X) by

(9.3) G(X) ( I + X )
k

Then the finite differences Akgn’s follow a binary subdivision scheme with the initial
sequence’s polynomial (1- X)k and polynomial mask Gk(X).

Proof. This is an immediate generalization of the first part of Lemma 7.2. From
(9.2), (9.3), we have

AkGJ(X) 2Yk(1-x)k H I + X2
2

i--0

where Gk(X) (Gk)J(X) is defined by (2.5). Using the identity (1 Y)(1 + Y)
1 y2 for Y X, X2, X4, ..., we obtain

(9.4) af(x)( x")
which from (4.1) proves the lemma. D

Using the preceding sections we can extend the results of 7 to higher-order reg-
ularity CN (N-times continuously differentiable functions).

THEOREM 9.2. If the sequence of the Nth-order finite differences ANgJn (where
nj satisfies (3.2)) uniformly converges as j oc, then (x) is Cg. The converse is
true if (x) is stable.

In addition, AkgJn (where nj satisfies (3.2)) converges uniformly to ()(x), the
kth-order derivative of (x), for k 0,..., N, and G(X) has at least N + 1 zeros at
X=-I.

Proof. (=v) Let us first prove uniform convergence of the kth-order finite differ-
ences (k 0,..., N) by backward induction on k. We show that if Ak+lgn converges



REGULARITY CRITERIA FOR SUBDIVISION SCHEMES 1559

uniformly to some (continuous) function h(x), then Akg converges uniformly to the
primitive of h(x) defined by

H(x) h(u)du.

For simplicity we assume k 0, the proof being identical for k > 0.
First we prove that H(x) is compactly supported. The functions A2 are all

Riemann-integrable and converge uniformly to the function h(x) of compact support
[0; L- 1] (where L is the length of gn); therefore,

L-I

0
L-I

Ag2j dx Z 2-’ Ag{ tends to h(u) du as j --
But since AGJ(1) 0 (see (9.4)), these integrals vanish, which shows that H(x) is
compactly supported.

Now, since H(x) is C and has compact support, it is uniformly continuously
differentiable and, therefore, supx IAg{ (H(nj2-J)- H((nj- 1)2-J))/2-J tends
to zero as j --. oc, where nj are integers satisfying (3.2). This can be written

where @J(X) is the polynomial associated to the sequence H(n2-J). But for any
polynomial U(X), we have

IIU(X)ll -11 d II(1 X)U(X)I[,
k

where d is the degree of the polynomial U(X). Applying this to U(X) G (X)
J(X) of degree (L- 1)(2J 1), we obtain SUPn [g H(n2-J)l IIG(X)-
J (X)I[ _< (n 1)l[2J (1 X)(GJ (X) tyJ (X))II, which tends to zero; therefore,
g converges uniformly to (x) H(x), and h(x) is the derivative of (x). By
induction it follows that the kth-order finite differences converge uniformly to the
kth-order derivatives of (x) for 0 _< k _< N.

In particular, the continuous uniform limit of AggJn is p(g)(x) E C. Therefore,
(x) is Cg. The property that G(X) has at least N+ 1 zeros at X -1 follows easily
by forward induction on the derivative order k as a consequence of Proposition 4.1
and Lemma 9.1.

(=) We prove uniform convergence of the kth-order finite differences to the kth-
order derivative of (x) (k 0,..., N), from the assumption that (x) is stable and
CN, by forward induction on k. For k 0, this is true by Theorem 7.1. It remains to
prove that this implies supx I(k) (x) Akgl 0 for k 1,..., N, where nj satisfies
(3.2). For simplicity, assume k 1. The proof is identical for larger k’s when one
replaces A by Ak. Define A(I)J (Z) 2J (1- Z)(I)J (Z), where (I) (X) is defined by
(5.2), i.e., A(nj2-J)= 2J((nj2-j) -((nj 1)2-J)). We have

sup I’(x) Ag[ _< sup I’(x) ’(ny2-Y)l

(9.5) + sup I’(nj2

+ sup IAo(nj2-") Ag [.
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The first term in the right-hand side of (9.5) tends to zero as j -- cx because ’(x) is
continuous and compactly supported, hence uniformly continuous. The second term
also tends to zero because (x) is uniformly continuously differentiable on a compact
support. Note that this implies

(9.6) sup IA(nj2-J) A((nj 1)2-J)l--I1(1 X)A@J(X)IIo --. O.

The third term in the right-hand side of (9.5) can be written as IIA@J (X)-AGJ
But from (5.3) we have (X)(AJ(X) AGJ (X)) (@(X) 1)A@(X). Since
@(1) 1 (5.8), X 1 divides (X) 1 and we can write, using the norm inequality
(2.6), II(X)(A@J (X) AGY (X))II <_ c II(Z 1)AJ(X)II which tends to zero by
(9.6). Now we can use (2.7) with Y(X) (X) because (x) is stable. This yields
IIA@J (X) AGJ(X)II --. 0 as j --, cx, which ends the proof.

The direct part of this theorem already appeared in [14], [15]. The converse part
also appeared in [14], [15] for interpolatory subdivision schemes (we have seen in 6
that interpolatory subdivision schemes are stable.)

This theorem is useful because it allows us to estimate the regularity of the deriva-
tives of a stable limit function (x) the same way as for (x) itself: if G(X) has enough
zeros at X -1, the finite differences of the gn’S, which converge to the derivatives
of (x), all follow binary subdivision schemes.

Theorem 9.2 also provides an upper bound for regularity. Since it is necessary
that G(X) has N / 1 zeros at X -1 to obtain CN stable limit functions (x),
the regularity order of (x) is always bounded by the number of zeros at X -1 in
G(X). We shall see that this upper bound may be attained.

However, it is important to note that imposing zeros at X -1 in G(X) does
not ensure any regularity in general. It does not even ensure convergence, as in the
example G(X) (1 + X3)N+I, which has N + 1 zeros at X -1, although g does
not converge for the same reason as for the choice G(X) 1 + X3 treated in 4.
(Section 13 derives a sharp upper bound for regularity.)

Finally, note that the number of zeros of G(X) at X -1 is an upper bound
for regularity only for stable limit functions. This upper bound may be exceeded for
unstable limit functions, as shown in the following example [2], for which the converse
part of Theorem 9.2 fails--as well as many other "optimality" results given in the rest
of this paper.

Consider the polynomial mask G(X) 2-g(1 + Z)(1 / X2)N. Setting Uy(X)
1 + X + X2 +... + X2j-1 and applying (2.6) several times give

therefore, by Theorem 8.1 the limit function (x) exists and is (1, hence continuous.
Theorem 9.2 cannot improve this regularity order since G(X) has only one zero at
X -1. However, (x) is unstable since 1 + X2 divides G(X) (see 6), so we might
expect higher regularity for

Now consider another mask ((X) 2-N(1 + X)N+. It is easy to see that the
subdivision scheme 9 converges to a N limit function 5(x), i.e., the
(N-1)th derivative of 5(x), for which the mask polynomial is 0g-(X) (1.+.X)2/2,
is 01 This comes from Theorems 8.1 and 9.2 since we have
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2-ill(1- X)llllV(X)llo 2-j+l. Now, since the two masks are related by
(1 + x)N((X) (1 + x2)N(x), we have by iteration (1 + x)NGJ(X) (1 +
X2j )Nj(X), i.e.,

N N

k=O k=O

Letting n nj and j --. oc gives, by Definition 3.1,

N

k (- k),
k--0

which proves that o(x) is N, hence CN-1 even though G(X) has only one zero at
X=-I.

This example shows that an unstable binary subdivision scheme may converge to
an arbitrary regular limit function while all finite differences diverge. Note that since

5(x) can also be expressed as a sum of integer translates of (x) (see the beginning
of 4.1), both functions have the same regularity order. It is easy to check that the
regularity estimate N is optimal for 5(x) (which is, in fact, the B-spline of degree
N [15]); hence it is also optimal for (x).

Therefore, the argument used in this example has led to an optimal regularity
estimate for an unstable limit function, while the rest of this paper derives regularity
estimates that are optimal for all stable limit functions. This example can be easily
generalized to the case where unstability is due to the fact that G(X) is divisible
by X2 -e (see 6). Note that if the conjecture mentioned in 6 is true, then this
methods works for arbitrary unstable limit functions (in the sense of (6.1)).

10. Determining the exact Hiilder regularity order. Recall the definition
of Hhlder regularity. The limit function (x) is regular of order r N / c (0 <
c <_ 1), (x) E r, if it is CN and its Nth derivative (N). (x) is Lipschitz of order
(N)(x) Ca, as defined earlier by (8.1). Hhlder spaces Cr generalize the spaces CN
of N-times continuously differentiable functions. As already mentioned in the case
N 1, (N contains functions that are not CN, such as spline functions of degree N.
In fact "(x) is (N,, can be thought of as "(x) is almost CN,’’ since if (x) is
for some > 0, then (x) is truly CN. Other spaces, based on the Fourier transform
of (x), are sometimes used to define a regularity order r R as well. They will be
considered later in 17.

Using the results of the preceding sections, we can extend the characterization
of Lipschitz limit functions (a (0 < c <_ 1), derived in 8, to any Hhlder regularity
order r > 0.

THEOREM 10.1. /f G(1) 2, G(X) has at least N + 1 zeros at X =-1 and

(10.1) max ]ANg+
n

for some a > O, then (x) is N+a. The converse is true whenever (x) is stable.
Moreover, (10.1)implies c <_ 1 (if (x) 0), and

N j ANg x)ANGj(10.2) m la gn+l I1( 1 (X)II
n

can be replaced in (10.1) by any of the following:

(10.3) max [(gN),+ (gN),l 11(1 XIGN(X)II,
n



1562 OLIVIER RIOUL

(o,4) max I(fv)l IIG(X)ll,

(10.5) max
O<n<2. --1

k

where we have set G(X 2-N(1 + X)NGN(X) 2-N(1 + x)N+IF.N(X). The
iterated polynomials GN(X), FN(X), corresponding to the sequences (gPN)n, (fiN)n,
are defined by (2.5).

Proo]. (=>) Assume for the moment that a _< 1. Since (10.1) implies, by Theo-
rem 8.1, that ANg{ converges uniformly to a (a function, it follows from Theorem 9.2
that all finite differences AkgJn converge uniformly to (k) (x), for k 0,..., N. Hence
(x) is (N+a.

() If (x) is stable and CN, then by Theorem 9.2, Agg{ converges uniformly to
(N)(x) 6 a. Using (5.3) and the stability of o(x) we have [l(1--z)ANGJ(Z)l[o <_
c [l(1 x)AgoJ(X)lloo, where ANo(X) 2N(1 x)No(X) corresponds to the
coefficients Ag(n2-J). Now, we have

By backward induction on N, it follows that

I1(1 X)/xN’(X)I]oo <_ max ]o(v)() m(v)( 2-)1 _< c2-,
which proves (10.1).

We now prove that (10.2)-(10.5) are "equivalent" in the following sense. Two
sequences u and vj are equivalent if there exist two constants cl and c2, independent
of j, such that clvj <_ uj <_ c2vj. From Lemma 9.1, we then have ANG(X)
(1- X2#)NGN(X). Hence, using the norm inequality (2.6), I1(1- x)ANGJ(X)IIo <_
2Nil(1- X)GN(X)IIo. Now, since the degree of (1- X)GN(X) is less than 2JL,
where L is the length of the sequence (gg)n, we also have

II(1 X)N(X)lloo 11(1 x2L)N(1 X)N(X)llo

1 X2 (1 x)/xa(x)Iloo

_< N I1(1 X)/xN(X)Iloo.

This proves that (10.2) and (10.3) are equivalent. The proof of (10.3)<=>(10.4) is very
similar, based on the relation (1 X)GJN(X) (1 X2#)FN(X), which comes from
Lemma 9.1. The equivalence (10.4)<=(10.5) is obvious.

We finally show that (10.1) implies a _< 1. Since G(1) 2, we have FN(1)
Fv(1 1; therefore, IIF]v(X)llo >_ 2-llF(x)lll k 2-d[F(1)] 2-j, which shows,
from (10.1) written with (10.4), that a 1..

The "equivalent" sequences (10.2)-(10.5) allow useful flexibility in the formula-
tion of Theorem 10.1. As in 8, the following corollary immediately results from
Theorem 10.1.
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COROLLARY 10.2. Let gn be a stable binary subdivision scheme such that G(1)
2 and G(X) has at least N + 1 zeros at X -1. If, .for 0 < a < 1,

(10.6) max lANg3+l ANgJnl decreases as 2-j when j - cx),
n

then the limit function (x) is N+a, but is not N+a+e, fOr any > O.
This does not hold for a 1, since by Theorem 10.1, (10.1) implies a _< 1. Of

course, in (10.6) we can choose either (10.2), (10.3), (10.4), or (10.5).
Note that the characterization (10.1), or the criterion (10.6), depends on the

choice of N. Theorem 10.1 (or Corollary 10.2) therefore allows us to check whether
the exact regularity order r (that is, the number such that 7(x) is 7r but not r+e,
for any > 0) falls in the range N _< r < N + 1.

Assume, for example, that (10.6) is tested for some N No larger than the
unknown exact regularity order r. This test necessarily fails, which only ensures that
(x) is not (go. On the other hand, if the value ofN is too small, i.e., N N1 < r- 1,
then necessarily (10.6) is satisfied with a 1. This shows that (x) is (Nl+, but
does not tell whether (x) is actually more regular or not. In both cases (under or
overestimated N’s), the criterion (10.6) has to be checked all over again for other
values of N to determine r. It is only when it turns out that N < r _< N + 1 that
the criterion is really optimal and provides N + a r; therefore, the exact regularity
order cannot be determined in general unless all possible values of N are tried.

However, if (10.1) can be extended to negative values of a, then the exact regu-
larity order r is determined even if N is "too large," i.e., N + 1 _> r. That is, even if
the criterion (10.1) for regularity order r > N fails, it could be used to characterize
lower regularity orders 0 < r <_ N. In particular, if we use all of the zeros at X -1
in G(X) (i.e., if G(X) has no more than N + 1 such zeros), then the characterization
(10.1), extended to any a _< 1, necessarily provides the exact regularity order r. This
extension is provided by the following theorem.

THEOREM 10.3. Theorem 10.1 and Corollary 10.2 hold for-N < <_ 1, with
the following slight restriction. If (10.1) holds for a -n, n 0, 1,..., N 1, then
(x) is only "almost" N-n, i.e., its (g- n- 1)th derivative satisfies

(10.7) I(N-n-)(X + h) (N-n-)(X)] _< c.]hl] log Ih]l for all x, h e R.

This theorem will be proven if we can simultaneously increase a and decrease N
by 1 in (10.1). We, therefore, need the following lemma.

LEMMA 10.4. Assume that G(1) 2, G(-1) 0, and that G(X) has at least
N + 1 zeros at X -1. The condition

I--N-I,j AN-lgjn < C2-J(a+)(10.8) maxl n+ln

implies (10.1).
implies

The converse implication holds for a < 0 only. When a 0, (10.1)

(10.9) max IAN-igJn+l
n

AN-gnl <_ cj2-j.

Proof. (:: We have

2-j max lANgn N j AN-1 j /N-1 j/ gn--l[-- max gin
n n
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therefore, (10.8)clearly implies (10.1).
(=) Condition (10.8) implies 1 + c

_
1 by Theorem 10.1. We, therefore, assume

a

_
0 to prove the converse implication. Rewrite (10.1) and (10.8) using (10.4),

knowing that FN_I(X) 2-JF]v(X)(1- X2)/(1- X) by Lemma 9.1. We, there-

fore, have to prove that (10.1), that is, IIFv(X)llo <_ c2-.’ implies (10.8), that is

IIF/v(X)(1 X2)/(1 X)llo

_
c2-". There is a problem at X 1; we, therefore,

subtract Fv(1 FN(1) 1 to FN(X) as shown:

The second term in the right-hand side equals 1. Denote the first one by
From (2.3) written for FN(X), we have FN(X)- 1 (F/v-I(x2) 1)+ (FN(X)-
1)F/v-I(X2). But since FN(1) 1, X- 1 divides FN(X)- 1; therefore, U.i(X)
H-l(X2)(1 + X) + (X2 1)FN-I(X2)(FN(X) 1)/(X 1) and

IIH(X)l[o <_ IIH-(X)II / c2-(-)-.
By induction on j, for a < 0, IIH(X)lloo <_ c’ 2-ja follows, which implies (10.8).
When a- 0, we have [[HJ(X)[[o _< c’ j, which implies (10.9). D

Proof of Theorem 10.3. If a is not a negative integer, the generalization of The-
orem 10.1 to -N < a _< 0 follows from several applications of Lemma 10.4. When
a -n, n 0,... ,N- 1, by n successive applications of Lemma 10.4, (10.1) im-
plies maxn ,.-.IAN-n"JYn+l AN-ngJn[ <- C. Applying Lemma 10.4 again, we only obtain

}AN-n-I"Jyn_}_I --AN-n-lgJn] < cj2-J. By Theorem 10.1, this implies that (x) is
g-n- (for any > 0), but we have a little more: mimicking the proof of the
direct part of Theorem 8.1, we have [(N-n-1)(X + h)- (N-n-1)(X)[ <_ cj2-J for
2-J _< [h < 2-+1, which gives (10.7). D

11. A practical, optimal Hiilder regularity estimate. Theorem 10.3 al-
ready provides an optimal regularity criterion (10.1) (with -N < _< 1). However,
it is not implementable on a computer as written since it needs to be verified for all
j’s and the order of magnitude of the constant c in (10.1) is unknown. The aim of
this section is to transform this criterion into an easily implementable estimate [19]
for Hhlder regularity, computable with a finite number of operations.

The following theorem assumes some properties and notation we have already
met:

G(1)= 2;
G(X) has at least N + 1 zeros at X -1;
FN(X) (corresponding to the sequence (fN)n) is, as defined in Theorem 10.1,

G(X) "without its N + 1 zeros at X -1," i.e.,

G(X) (1+X)2 (1 / X) FN(X).

It generates iterated polynomials FN(X) and sequences (ffN)n by (2.5).
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THEOREM 11.1. With the above notation and assumptions, define the HSlder
regularity estimate N + aN by

(11.1) 2-3a max E I(f)n+2Jt:l
0<n<2J --1

k

and let aN supj a. The sequence aN converges to aN <_ 1 as j oc. If there

exists j such that N + aN > O, then (x) is N+ (almost N+ if aN e -N,
> o.

In addition, if (x) is stable, then the regularity estimate is optimal: If aN 1,
or if aN 1, and G(X) has no more thanY + 1 zeros at X -1, then (x) is
N+aN-e, but is not N+aN+e for any > O. Moreover, the rate of convergence of
the estimates N + aN to the exact regularity order N + aN i8 given by

Proof. From (11.1) and Theorem 10.3 rewritten with (10.5), we have av <_ 1

for all j; hence aN <_ 1. Now, using the relation F+J(X) FN(X)FN(X2) or the

matrix formulation (12.1) given in the next section, we easily find that 2-(i+) <_
2- i.e.,2- J,

aj > ia +ja.
i+j

The following proof of convergence of the is due to Cohen [3], [4]" Let e > 0
be an arbitrary small number and J such that N_ . For any j, write
j nJ + i, 0 i J 1. Applying the inequality above several times, we find

((j + hence, when j is enough.. which
proves that aN j .

We now prove the announced regularity order for (x). Let GN(X) (1 +
X)FN(X) be in Theorem 10.1. By Lemma 7.2 applied to GN(X), we immediately
obtain (10.1), written with (10.3) and ; therefore, Theorem 10.3 applies with, for any such that > -N. The limit function is thus N+ (with the
restriction (10.7)), and, therefore, (x) is N+,- for any e > 0.

Now sume that (x) is stable. om (11.), the condition (10.1), rewritten with
(10.5) is satisfied only when liminfy N. Now if (x) were N++,
where N < 1 and e > 0, by Theorem 10.1 (10.1) would hold with N + e,
which contradicts N; therefore, if (x) is stable, N < 1 implies that (x) is
not N++ for any e > 0. In addition, (x) cannot be N + 1 + e if G(X) h no
more than N + i zeros at X -1 because of Theorem 9.2.

We finally prove (11.2). When (x) is stable and N+-, bv Theorem 10.3,
(10.1), written with (10.5), holds for N --. By definition of (11.1), we thus

have 2- c2-j(-) for any e > 0, which implies (11.2).
Of course, we can replace (10.5) in (11.1) by any other equivalent sequence (10.2),

(10.3), (10.4). We would still obtain a sequence N + , which converges to the
optimal regularity order N + N, however, (x) may not be regular of order N +
for any fixed j because may be greater than N.

Let us make precise the practical outcomes of Theorem 11.1. For a given number
of iterations j, and a given N, the computation of N + --with a finite number of
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FIG. 4. Program output o] regularity estimates N -a (11.1) (N --0, 1, 2) ]or j 1 to 20
iterations. The corresponding limit junction is the Daubechies "minimum phase" wavelet of length
5 (see 14), whose exact regularity order is r 1.0878.... For N O, the estimate is bounded by 1
and, therefore, does not converge to r. For N 2, the estimate converges fairly rapidly to r. After
20 iterations we find 2 - a 1.0831....

operat!ons--by (1.1.1) gives a HSlder regularity estimate for (x) in all cases. Since
limj v supj v, the estimate is improved when the number of iterations j in-
creases.

Figure 4 shows that N must be chosen large enough because the estimate N/v
is bounded by N / 1, whereas the exact regularity order of (x) might be greater
than N + 1. If N is too small, N + av, in fact, necessarily converges to N -+- 1. It
is therefore recommended that N should be chosen maximal (i.e., such that G(X)
has exactly N / 1 zeros at X -1). In this case Theorem 11.1 ensures that the
regularity estimates N+(v converge to N+ CN, which, provided that (x) is stable,
gives the exact regularit.y order of (x). In practice, Fig. 4 shows that the convergence
rate of the estimates (v is fairly high. When the scaling sequence length L is not
too large (e.g., L _< 10), the exact regularity order is numerically estimated to two
decimal places after a few dozen iterations. However, it can be shown [19] that
the computational load of an implementation of (11.1) is increasing exponentially
with j (increasing j by one roughly doubles the number of operations required to
compute (11.1)).

Note that from Theorem 9.2, finite differences Akgn converge uniformly to the
derivatives of a stable limit function (x) whenever these derivatives exist.

Theorem 11.1 is the main result of this paper. It permits us to estimate sharply
HSlder regularity in most cases of interest. (See 9 for the derivation of the optimal
regularity estimate on a particular example of an unstable limit function.) The re-
mainder of this paper connects this result to related work on regularity estimates, and
illustrates it with examples.

12. Relation to Daubechies and Lagarias estimates. In a recent paper [9],
Daubechies and Lagarias determined sharp conditions for HSlder regularity based on
matrix products. Although the approach in [9] relies on two-scale difference equa-
tions (5.1) rather than on limit functions (3.3), the above results, which were derived
independently, are closely related to what can be found in [9]. In fact, (11.1) reads,
in matrix notation,
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where the matrices F and F of size (L- 1) x (L- 1) (where L is the length of the
sequence (fN)n) are defined as

,(f)o 0 0 0
(fN)2 (fN)l (fN)O 0
(fN)4 (fN)3 (fN)2 (fN)l
(f) (f) (f)4 (f)3

(2.3)

(f.)x (f.)o 0 0
(fN)3 (fN)2 (fN)l (fN)O
(fN)5 (fN)4 (fN)3 (fN)2
(fN)7 (fN)6 (fN)5 (fN)4

and IIAII denotes the/-norm of a square matrix A ((hi,j)), i.e.,

maxE lai,J I"

Formulation (12.1) can be proved as follows. Consider the operators of polyno-
mial "biphase decomposition [22]" De ( 0 or 1), defined by the relation U(X)
U(Z2) / XUI(X2), where Us(X) Ds(U(X)). Clearly Fv seen as an operator
acting on polynomials of degree <_ L- 2, transforms U(X) into DS(FN(X)U(X)).
Applying j times the identity Ds(U.(X)V(X2)) Ds(U(X))V(X) gives the polyno-
mial associated to the sequence (fN)n+2k3 (where n 01 ""j- in base 2) as

Ds {Fv(X))-
i--0

where the polynomial 1 corresponds to the vector (1 0 0 0). Therefore,
seen as a vector indexed by k, is equal to the first column of the matrix product in
(12.1). To obtain the other columns, replace the initial polynomial 1 by Xm. This
amounts to shifting the value of n in (f)n+2k, hence changing the values of the i.
But since (11.1) involves the maximum over the values of n, the/-norm of the first
column of the matrix product can be replaced by the/-norm of the whole matrix
product, which gives (12.1).

Using (12.1) in place of (11.1) in Theorem 11.1, we easily recover the results on
global Hhlder regularity derived in [9]. Formulation (12.1) and that used in [9] differ
only by some minor details: Daubechies and Lagarias use/2-norms rather than -norms, and the matrices they consider are a bit larger than (12.2), (12.3) because
they correspond to G(X) 2-N(1 -t-x)N+IFN(X) rather than FN(X). Although
regularity estimates are not proved to be optimal in general in [9], Daubechies and
Lagarias prove optimality for several examples, such as those of 14.

Working with matrices is useful when we want to find optimal regularity estimates
"by hand" [9], without implementing (11.1). Unfortunately, it seems difficult to derive
a general method for determining the optimal regularity by matrix manipulation.
As a result, unlike an implementation of (11.1) on a computer, each example has



1568 OLIVIER RIOUL

to be investigated separately and requires fastidious treatment We here recall for
completeness the basic method used in [9].

THEOREM 12.1 (Daubechies and Lagarias [9]). The following method often pro-
vides a sharp Hhlder regularity estimate for a limit function o(x):

Compute the eigenvalues of FN and FN and let pO, pl be their respective
spectral radii (largest moduli of eigenvalues).

Assume, for example, that pO > pl. Compute matrix B, whose columns are
proportional to the eigenvectors of FN. The norm of the diagonal matrix B-1FNB
is therefore po.

Parameterize B by L- 1 numbers, one for each column. If we can find a
parameterization of B such that

(12.4) IIB-IFvBII _< p0,
where I1" II is any matrix norm, then o(x) is regular of order N -log2 pO (and this
Hhlder regularity estimate is moreover optimal if o(x) is stable).

Proof. First, specifying ei 0 for all i in (12.1) gives 2-Jv >_ ]l(Fv)Jll. Let A be
an eigenvalue of Fv and v an associated nonzero eigenvector. We have, on one hand,
II(Fv)JVll < II(FN)ll Ilvll, and on the other hand, II(Fv)Vll IAIJl]vll. It follows
that (p0)j sup IAIj < I] (Fv)J -< 2-Jav. Now, with the change of basis B, we have

2-’’v max B B-I -iFNB B
j--I

maxH IIB-FCBII
i--0

But we have I]B-1FvBII-- pO and (12.4); therefore, 2-Jav _< c(p) follows. We,
therefore, have proved that (pO)j <_ 2- <_ c (pO)j, which implies cN lim av

log2 p0. The theorem therefore follows from Theorem 11.1. D
Note that this method is only optimal if (12.4) is met for at least one matrix norm,

otherwise the obtained estimate, N-log2 IIB-1FvBI[, is suboptimal. Whether (12.4)
holds for a large class of masks gn is an open problem [9].

13. A sharp upper bound for regularity. So far we have seen two types of
Hhlder regularity estimates: One is optimal in (almost) all cases (11), but many
iterations, performed on a computer, are necessary to determine the regularity order
accurately. The other (12) requires the calculation of two spectral radii of matrices,
but is sometimes suboptimal. Based on the latter, it is nevertheless possible to obtain
a (possibly sharp) upper bound for regularity of stable limit functions that only requires
the computation of one spectral radius and gives the exact regularity order whenever
condition (12.4) is satisfied:

Specifying i 0or i 1 for all/in (12.1) gives 2- _> max(ll(Fv)ll, [I(F)JlI).
We have seen that this is greater than max((p)j, (pl)j); therefore, an upper bound
for the Hhlder regularity is N- log2 max(p, pl). By Theorem 12.1, this upper bound
is attained for stable limit functions if (12.4) holds.

The computation of this upper bound can be simplified to the search of the
spectral radius of only one matrix FN, defined as the common submatrix of F and

F v.
(IN)0
(IN) 
(IN) FN and Fv FN (/UiL- 

(fNiL--1
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We have

(13.1) N log max(p, px) N log max(l(fu)01, I(fu)L-X I, p(Fu)),

where p(FN) is the spectral radius of FN. Therefore the regularity order of a stable
limit function is at most (13.1).

A similar upper bound can be computed using the inequality

which yields a fast implementation [19]: the computational load is here linear in j
(compare with 11). When j --, cx), this gives an upper bound which may be greater
than (13.1) but is still sharp. This result and Theorem 11.1 can be used to compute
sharp lower and upper bounds for the HSlder regularity of qo(x). Table 1 provides
values of these bounds for the examples presented in the next section.

14. Examples: Daubechies orthonormal wavelets. A family of orthonor-
real wavelets with compact support has been constructed by Daubechies in [6]. The
construction is based on binary subdivision schemes. The "mother wavelet" is defined
as the limit function (x) of the scheme (1.2) with initial sequence hn (--1)ngL-l-n
(where L is the mask length). She showed that the regular functions 2-:i/2(2-:ix-k),
defined for all integers j and k, form an orthonormal basis of L2(R) if L is even and

(14.1) G(X)O(X) G(-X)(7(-X) 4XL-,

where G(X) is the polynomial associated to the sequence gL--n. In [6], G(X) is,
moreover, required to have as many zeros at X -1 as possible. This results in
several possible solutions for G(X) that have exactly N + 1 L/2 zeros at X
-1 [61, [r].

Examples of G(X) in [6] have all zeros outside the unit circle ("minimum phase"
choice in the signal processing terminology, since X corresponds to a delay). In [9],
the optimal regularities of "minimum phase" Daubechies wavelets (x) for L 4, 6,
and 8 are obtained using the method described in the preceding section. It turns out
that (12.4) holds for these lengths; therefore, the upper bound (13.1) is attained and
actually equals N- log2 I(fN)01- The estimated regularity of Daubechies "minimum
phase" wavelets derived in [6] is, therefore, -log2 [g01 in this case. It can easily be
checked that the convergent binary subdivision schemes involved are stable; hence this
estimate is optimal. This can be checked directly [9] from Theorem 10.3 by noting
that the first "slope" of ANgjn is [2g01j 2j(-), where a -log2 Ig0[. Table 1
lists these optimal regularities (for L <_ 8), the corresponding outputs of a program
implementing (11.1), and upper bounds derived in 13.

There are other solutions gn, derived for L > 8 in [7], which, unlike "minimum
phase solutions," are close to being symmetric. Table 1 shows that the regularity es-
timates for these wavelets, based on Theorem 11.1, are lower than those of minimum
phase" wavelets. This will be justified in 17.

15. Strictly linear phase" symmetric limit functions. In this section we
apply the above results to a subclass of scaling sequences that is often encountered.
This section is also a prerequisite for comparing HSlder regularity estimates to those
determined using Fourier techniques (17). The subclass considered here consists of
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TABLE
Some regularity estimates for two types of Daubechies orthonormal wavelets: Minimum phase

wavelets [6] and "more symmetric" ones [7] (for mask lengths L >_ 8). The upper bound fcr H61der
regularity in the right-most column is obtained by adding 1/2 to the optimal Sobolev regularity estimate,
derived in [6, Appendix] (see 17). These two apply to all Daubechies wavelets that differ only by
their phase. The numbers r2o are the H61der regularity estimates (11.1) obtained by computer
program after j 20 iterations. Note that more symmetry decreases regularity in general. For
minimum phase wavelets, these estimates converge rapidly to the optimal Hhlder regularity estimates
ro derived in [9] by using the method described in 12. The upper bounds for both types of wavelets
are obtained from 13. They are sharper than the "Sobolev" upper bound and in fact give optimal
Hhlder regularity estimates in the "minimum phase" case for lengths L <_ 8.

4
6
8
10
12
14
16
18
20

Optimal
Sobolev

regularity
estimate

0.4999
0.9150
1.2755
1.5967
1.8883
2.1586
2.4147
2.6616
2.9027

More symme- Minimum phase
tric wavelets wavelets Upper
r20 Upper r20 ro Upper bound

bound bound

’0.5500 0.5500 0.5500 0.9999
1.0831 1.0878 1.0878 1.4150

1.3960 1.4026 1.6066 1.6179 1.6179 1.7755
1.7621 1.7759 1.9424 1.9689 2.0967
2.1019 2.1223 2.1637 2.1891 2.3883
2.4420 2.4681 2.4348 2.4604 2.6586
2.7155 2.7500 2.7358 2.7608 2.9147
2.9977 3.0393 3.o432 3.0736 3.1616
3.2651 3.3110 3.3098 3.383 3.4o27

scaling sequences for which either G(X) or G(X)/(1 -)- X) is "strictly linear phase,"
in the following sense.

DEFINITION 15.1. A polynomial U(X) (or its associated sequence Un of finite
length L) is strictly linear phase if it is symmetric, Un UL-l-n, and if the trigono-
metric polynomial U(ei)e-i(L-1)/2 does not change sign for any w E R.

Note that symmetry of Un implies U(eiw)e-i(L-1)w/2 E R. This condition is called
"linear phase" in signal processing [22]. The above definition requires more, namely
that no discontinuities of the phase due to a change of sign in U(eiw)e-i(L-1)w/2 occur.
Therefore, complex zeros of the symmetric polynomial U(X) occur in pairs (z, 1/2)
not only for Izl 1, but also on the unit circle. That is, roots on the unit circle have
even order. It follows that U(X) has an even number of roots, hence L is odd.

If G(X) or G(X)/(1 + X) is strictly linear phase, then for N odd (even, re-
spectively), the sequence (fN)n in (11.1) is also strictly linear phase. The following
theorem shows that in this case, the determination of the exact regularity order of a
(stable) limit function (x) only requires the computation of the spectral radius of one
matrix. This is to be compared with 12 and 13, where it is shown that two matrices
are involved in the general case, and the computation of one matrix’s spectral radius
only provides an upper bound for regularity.

The following regularity estimate has been derived independently, by other means,
and on particular examples of strictly linear phase scaling sequences, in [6] and [10]
(see 16 and 17).

THEOREM 15.2. Assume G(1) 2, G(X) has at least N + 1 zeros at X -1:

G(X) 2-N(1 + x)N+IFN(X), and FN(X) is strictly linear phase. Define (]N),
(fN)((L-1)/2)+/-, (where n is the length of (fg)n) and the (n- 1)/2 (L- 1)/2 matrix
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N obtained by "folding" the following (L- 1)/2 (L- 2) matrix

around its middle column, i.e.,

(15.1)
(IN)2 (]N)I - (IN)3 (IN)0 -"’N (IN)4 (IN)3 -(?N)5 (IN)2 --(?N)6

Let p be its spectral radius. One has p >_ 1/2. If p < 2N, then the limit function p(x) is
g-iog2 p (almost g-iog,. p in the sense of (10.7) ifp >_ 1 is an integer power of two).
n addition, i: () i, ,tab, ad i/t > o nd a(X) a, o o
than N + 1 zeros at X -1, then the estimate is optimal: (x) is not N-log:p+e
for any > O.

Proof. Define (]) (f)(2--2-)(L-)+n. This noncausal, symmetric se-

quence is strictly linear phe. We first prove that F(X) m](])n
I(])ol. Using Fourier coefficients, we have (])n F , where

E,(fN)ne )]. Hence

1/02 max I(]N)nl <_ - IJN(e")l dw

The theorem, therefore, results from Theorem 10.3 if we prove that I(]]v)01 is
equivalent to p/as j --. c. From (2:4) written for FN(X), we have, for0 <_ m <_ 2J- 1,
JN )2+1n+,+2 -k(fN)k+l(f)2(2n-k)+m. This means, in matrix notation,

((fJN+l)2:i+In+m+2:i)n Fv((f]v)2n+.).,
where Fv is defined by (12.3). Let m 2j -(L- 1)/2 (for sufficiently large j’s
to ensure m >_ 0). The above equation is then rewritten, in terms of the (]N)n, as

((]JN+l)2+(n_(L_3)/2))n FN((]N)2(n_(L_3)/2))n By symmetry, this equation can
be restricted to n 0,..., (L 3)/2, in which case the action of Fv is exactly that
of N. It follows by induction on j that I(]]v)01 is equivalent to II(N)JlI, hence to
p, when j - x). [:]

16. Examples: Deslauriers and Dubuc interpolatory schemes. Deslauri-
ers and Dubuc [10]-[12] studied the regularity of limit functions of a special family
of interpolatory subdivision schemes based on Lagrangian interpolation. Recall that
for interpolatory schemes the iterated points g are carried unchanged at each itera-
tion. Here, we simply insert between g gn+1 and gJn+l gj+12n+2 the value 2n+1"+1 of
the Lagrangian polynomial interpolation of the K consecutive values gJnT1--K/2’ "’"g, gn+lJ "’ gn+K/2’J where K is even. This corresponds to a mask gn of length
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TABLE 2
Optimal HiJlder regularity estimates r of interpolatory subdivision schemes of Deslauriers and

Dubuc [10], [11], [12] for several Lagrangian interpolation orders g corresponding to mask lengths
L 2K- 1 (see 16). These estimates are also optimal in the "Fourier sense," and the numbers
(r- 1)/2 give the optimal Sobolev regularity estimates listed in Table 1 (see 17).

L 2K- 1, which reads (when made causal by shifting)

(16.1) I g2n "--n-K/2,
92n+ Ln(K),

where Ln(X) is the Lagrangian polynomial Ln(X) [Ik+n(X k)/(n k) associated
to the interpolation points k 0,..., K 1.

Shensa has shown [21] that G(X) of length L 2K- 1 is exactly G(X)
Gw(X)Gw(X), where Gw(X) is the polynomial mask of Daubechies wavelets of
compact support [0, g- 1] (see 14wthis fact will be useful in 17). From 14
it follows that G(X) has exactly K zeros at X -1. Moreover, it is strictly linear
phase because G(e) Gw(e)w(ei) [Gw(ei)12e(K-1). Thus Theorem 15.2
applies with N K- 1. Moreover, since all interpolatory subdivision schemes are
stable (6), Theorem 15.2 will provide the exact regularity order of (x).

The matrices ,g-1 (15.1) needed by Theorem 15.2 can be easily determined using
the formula

(fg-1)n c ( K-- 2In --1 n

i--0

n-- 0,...,K- 2,

which results from (16.1) after some calculation. Determination of their spectral radii
yields to the optimal regularities listed in Table 2. For L 7 (i.e., K 4), using 4
zeros at X -1 in G(X), we find that the limit function is almost (2 in the sense
of (10.7), which was first proven by Dubuc in [12]. However, when only 2 zeros at
X -1 in G(X) are used (N 1), we find that the spectral radius of Theorem 15.2
is p- 1/2, hence the limit function is in fact 72.

In [10], Deslauriers and Dubuc extended the study of the previous subdivision
scheme for L 7 (i.e., K 4) to the following interpolatory mask (here defined for
n -3,... ,3):

90=1, g+l=1/2-a, 9+3=a, gn=0 elsewhere,

where a E R. The case a -1/16 corresponds to the previous example, for which
the limit function is 2.

The simplicity and usefulness of Theorem 15.2 is well illustrated through this
example. The mask gn is easily seen to be strictly linear phase for -1/16 <_ a <_ 5;
therefore, Theorem 15.2 applies in this case. (For other values of a we have to use
more general theorems such as Theorem 11.1.) Now, for a - -1/16, G(X) has exactly
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0.5
0.5

0

-1/16. (b) a 0.

0.5

0 4

() 1/4. (a) 0.4.

FIG. 5. Plots of Deslauriers and Dubuc limit functions corresponding to go 1, g-l-1 0.5-a,
g+/-3 a, and gn 0 elsewhere. The successive values of a are a -1/16 (regularity order 2),

(regularity order log2(v/ 1) 0.305...) and a 0.4 (regularitya 0 (regularity order 1), a
order 0.104...).

two zeros at X -1, and we can, therefore, apply Theorem 15.2 with N 1. We
have (]1)0 1 + 4a, (]1)1 -4a, and (]1):t:2 2a; hence

( 2a -4a

Its spectral radius is p (1 + v/1 + 16a)/2. From Theorem 15.2, the exact regularity
order of (x) is r 2- log2(1 + v/1 + 16a), which decreases from 2 to zero when
a increases from -1/16 to 1/2: Figure 5 illustrates this through several examples
corresponding to various values of a.

17. Comparison with Fourier-based regularity estimates. This paper has
developed a direct approach based on the definition of Hhlder regularity. But several
other approaches for estimating regularity based on the Fourier transform 5(w) of
the (compactly supported) limit function (z) have also been considered [3]-[5], [10],
[11], [23]. Note that we have easy access to (w) from mask gn by [3]-[6]

(17.1) 9(w)-- lim GJ(ei).
j-,c

The idea is here to estimate the decay of (w) as Iwl --. x). To do this, several
functional spaces (other than (yr) can be used to interpolate the spaces CN of N-
times continuously differentiable functions. We generally consider one of the following
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spaces: I-I, I-I, H, defined by the conditions IwlrVh(w) e L1, L2, L, respectively.
(The spaces H are the Sobolev spaces of order r.) Estimations of the parameter r
for these spaces ensure some Hhlder regularity, since we have, for any e > 0,

(17.2) H’+I+2 C H+/2+ C H C 7".

(These inclusions are easily proven. The second one uses the Cauchy-Schwarz in-
equality and [11] contains a proof of the last one.)

In [6], Daubechies has derived an estimate for V(x) E r- based on I-I1. This
estimate is easily recovered from the results derived in this this paper. We have, using
the notation of Theorem 10.1,

I f2IIFk(X)ll max, I(fr),l --< Jo IFv(e’)l dw _< maXrt IFN(e’’)l"

Define the number f such hat 2- ma,,rt IFv(’’)l. Then, by Theorem
and 11.1, (x) is (g+-, where f limsupj_oo j. Cohen [Z], [41 has shown that
the sequence f actually converges to (the proof is the same as in Theorem 11.1) and
that, under some weak conditions on G(X), the optimal regularity order r based onH
lies between N+-a and N+1+f+. In the case of Daubechies orthonormal wavelets
(14), Cohen and Daubechies [3]-[5] found that is equivalent to (1/2 1/4 log2 3)L
0.10376L as L --, cx). It follows (from the following theorem) that the optimal Hhlder
regularity order of Daubechies orthonormal wavelets is also asymptotically equivalent
to (0.10376...)L as n --+ cx). However, for small values of L (L _< 20), the estimates
derived in this paper, listed in Table 1, are much sharper than the asymptotic result
of Cohen and Daubechies.

Daubechies has also derived [6, Appendix] other regularity estimates for the spe-
cial case of her orthonormal wavelets described in 14. It turns out that her estimates
are optimal for the Sobolev spaces H. This is due to Theorem 15.2 and the property,
already mentioned in 14, that the polynomial mask G(X) of a Daubechies wavelet
is such that G(X)((X) is the polynomial mask of a Deslauriers and Dubuc inter-
polatory scheme [21]. We have G(ei)(e) IG(ei)12; therefore, from (17.1) the
Fourier transform of the limit function of a Deslauriers and Dubuc scheme is IVh(w)l 2,
where @(w) is the Fourier transform of the limit function corresponding to the wavelet.
The following theorem shows that since the Deslauriers and Dubuc limit functions are
strictly linear phase, their optimal Hhlder regularity estimates r, provided by The-
orem 15.2 and listed in Table 2, are also optimal for the spaces H. This implies

(x) E H/2; therefore, (x) (r--1)/2--e, which is optimal for spaces H/2. This
regularity order is exactly the one derived by Daubechies in [6]. Table 1 lists these
optimal Sobolev regularity orders for several lengths.

The above discussion shows that if G(X)G(X) is strictly linear phase, then The-
orem 15.2 applied on G(X)(7(X) provides the optimal Sobolev regularity of the limit
function corresponding to the polynomial mask G(X). This result has been derived
independently by Daubechies and Cohen [5] using the Littlewood-Paley theory. Re-
cently, Villemoes [23] has shown that this holds more generally under the weak con-
ditions on G(X)of Cohen [3].

But are these "Fourier-optimal" estimates optimal for Hhlder regularity? The
following theorem shows that the answer is no. The basic reason for this is that
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the exact Hblder regularity order of (x) depends on the phase of b(w), i.e., on the
phase of G(e) by (17.1), whereas Fourier-based regularity estimates only depend on

the modulus of b(w) (or G(ei)). This theorem also shows that in the framework of

15 (the "strictly linear phase" case), optimal Fourier-based estimates are, in fact,
also optimal for Hblder regularity. This is natural since the strictly linear phase case

corresponds to limit functions that can be made zero-phase by shifting, i.e., b(w) >_ 0.
THEOREM 17.1. For strictly linear phase masks, optimal regularity estimates

based on H are also optimal for Hblder regularity.
Optimal regularity estimates based on H are not optimal for Hblder regularity in

general. Nonetheless, they are o by 1/2 at most compared to optimal Hblder regularity
estimates.

Proof. We first prove optimality in the strictly linear phase case. From (17.1), the
framework of 15 can easily be reduced to the case b(w). >_ 0. Optimality for spaces

H and (r coincide if we prove that in this case (x) E Ca implies (x) E H-, for
any > 0. We may restrict to 0 < c <_ 1, otherwise just consider a derivative of (x).
The integral I(w) fsin(wh/2)lh1-1-+ dh absolutely converges for 0 < c _< 1;
making a change of variable yields I(w) Iwla-I(1); therefore,

(w)lwla-e dw c//(w) sin(wh/2)lh1-1-a+e dhdw

c/((h/2) (-h/2))lhl--+ dh

absolutely converges because (x) is compactly supported and (a. This proves that
e

Table 1 shows that regularity orders of Daubechies orthonormal wavelets that are

optimal for Sobolev spaces H are not optimal for HSlder regularity.
The fact that optimal Fourier-based estimates are greater than or equal to r- ,

where r is the exact HSlder regularity estimate, results from the well-known inclusion
r C H-, which holds for compactly supported functions [16].

Trivial extensions of this theorem can be derived for other "Fourier-based" spaces,
using inclusions like (17.2).

Note that Table I shows that the HSlder regularity estimates of "more symmetric"
wavelets are numerically found to be less than those of minimum phase wavelets (the
ones that are "nonsymmetric" the most). That is, more symmetry (for the same
modulus of G(ei)) decreases regularity. In addition, both regularity estimates are

greater than the optimal Sobolev regularity order that constitutes a lower-bound for
the exact HSlder regularity order. In fact, Theorem 17.1 shows that this lower bound
is attained for strictly linear phase masks.
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BIFURCATIONS OF NONLINEAR OSCILLATIONS AND
FREQUENCY ENTRAINMENT NEAR RESONANCE*

CARMEN CHICONEt

Abstract. A unified approach to the Poincar--Andronov global center bifurcation and the
subharmonic Melnikov bifurcation theory is developed using S. P. Diliberto’s integration of the
variational equations of a two-dimensional system of autonomous ordinary differential equations
and a Lyapunov-Schmidt reduction to the implicit function theorem. In addition, the subharmonic
Melnikov function is generalized to the case of subharmonic bifurcation from an unperturbed system
whose free oscillation is a limit cycle. Thus, results on frequency entrainment are obtained when
an external periodic excitation is in resonance with the frequency of the limit cycle. The theory is
applied to the subharmonic bifurcations of two coupled van der Pol oscillators running in resonance.

Key words, limit cycles, center bifurcations, subharmonics, Melnikov method, forced oscilla-
tions, frequency entrainment
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1. Introduction. The subject of this paper is the theory of frequency entrain-
ment for driven nonlinear oscillators when the period of the self-sustained free oscil-
lation is nearly resonance with a periodic external excitation. Our main purpose is to
demonstrate a mathematical theorem that is useful in determining the number and
position of the subharmonics produced by such an external excitation. Our result
is closely related to two well-known theorems: the Poincard-Andronov theorem on
the global center bifurcation [1], [2], [3], [6], and the Melnikov theorem on the global
bifurcation of subharmonics from an integrable system [21], [31], [42], [43]. In fact,
our theorem can be considered as a generalization of Melnikov’s method to cover the
case of self-sustained oscillations.

In order to explain the main result, consider a forced oscillation problem of the
following type:

&=f(x)+g(x,t), xR2, R,

where the unperturbed system

&- f(x)

with flow t -. Ct has a limit cycle F of period T as a self-sustained oscillation; the
external excitation is periodic of period r], i.e.,

t + t),

and the period of the external excitation is in resonance with the period of F, i.e., there
are relatively prime positive integers m and n such that nT mr]. We are interested
in the periodic solutions of the forced system of period mr], the subharmonics of order
m. For this, we look for a curve e - a(e) in the phase plane such that a(O) E F and,
for sufficiently small e, such that the point a(e) is the initial value for a subharmonic of
order m. When there is such a curve of initial conditions for a family of subharmonics,
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we say a(0) is a subharmonic branch point on F. Our main result gives a real valued
function - C(), for a coordinate on F, such that the simple zeros of C are the
subharmonic branch points. The formula for this function is expressed in terms of
Euclidean geometrical quantities that we denote as follows: III] denotes the Euclidean
norm, <, > the Euclidean inner product, a the scalar curvature, div the divergence of
a vector field, curl the curl of a vector field, and A the wedge product of two vectors.
In fact, the bifurcation function C is defined by

C() := [(1 )Af + aM] (mrs, ),
where

(/0 )(t) "=/(t,) exp div f(8())ds

for{ 1
[2’[fll curl f]} (,(())(T) dT,.=

f0t{ lllf,, a(s) }z(t, := (f, g) g

1 }:= g

Our mNn theorem, the limit cycle subharmonic bifurcation theorem, states: If either
(m,) 1 or a(m, ) 0 and if ( is a simple zero 4 C, then ( is a subhaonic
branch point.

If the periodic trajectory F of the unperturbed system is not a limit cycle, but
rather a periodic trajectory of period T contained in a one parameter Nmily of periodic
trajectories of the unperturbed system, then the appropriate bifurcation function is
the subharmonic Melnikov function given by . In order to show that C reduces to

in this ce, consider a Poincar section E for the unperturbed system that is
orthogonal to F at a point (0 E, and define both the Poincar return map and the
transition time function on E. In 2 we will show the derivative of the return map,
evaluated at the coordinate on E corresponding to (0, is (T, (0), while the derivative
of the transition time Nnction is a(T, 0). Thus, for example, if F is a member of
a one parameter Nmily of periodic orbits, then F is not hyperbolic, equivalently,
(nT, () 1, and C reduces to the usual subharmonic Melnikov function. Moreover,
in this ce, the appropriate nondegeneracy condition of the theorem, a(m, ) 0,
reduces to the condition that the period function for the one parameter family of
periodic trajectories of the unperturbed system h a nonzero derivative at F; this is
the usual nondegeneracy condition for the subharmonic Melnikov theory; el. [15], [21],
[43]. For further results related to period functions, see [4], [9], [11], [12], [14], [16],

[331, and [40].
As a typical application, consider two weakly coupled van der Pol oscillators of

the form

-u + 5(1 u)v,
= Ty,

r(--X + e(1 x)y) + eU,

where 5 > 0, e is a small parameter, and T > 0 is a rational number. We view the
second oscillator a driven oscillator where the periodic forcing function, t u(t),
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FIG. 1. Computer generated graph of C vs for weakly coupled van der Pol oscillators iz v,
) -u + 0.1(1 u2)v, 5c 0.5y, 0.5(-x + 0.1(1 x2)y) + eu with 2:1 resonance.

is the output of the first oscillator. Since T is rational, the frequency of the free
oscillation of the second oscillator is in resonance with the frequency of the external
excitation. We ask for the periodic response of the second oscillator when e 0. For
background material on forced oscillation problems we refer to [2], [15], [18], [27], [30],
[22], [23], [25], [32], [34], [41] for classic treatments and to [21], [26], [36], [42], [43]
for some of the latest results. As a typical calculation we fix 5 0.1 and T 0.5.
For this example the period of the free oscillation of the second oscillator is twice the
period of the "external" force, a 2 1 resonance. A numerical approximation to the
graph of (() is shown in Fig. 1. The graph indicates the existence of four simple
zeros of C over one period of the free oscillation and, applying our theorem, we expect,
for lel, sufficiently small, four subharmonics of order two, i.e., four periodic solutions
of the forced second oscillator each with period twice the period of the self-sustained
oscillation of the first oscillator. Of course, in view of the topology of the circle, two of
these subharmonics are stable and two of them are unstable, with the subharmonics
corresponding to consecutive zeros of C having opposite stability.

Our treatment of the bifurcation theory of nonlinear oscillations is based on the
geometric quadrature of the homogeneous variational equations of a two-dimensional
differential system given by Diliberto [20] and a Lyapunov-Schmidt reduction to the
implicit function theorem. Using this foundation, we are able to offer a unified ap-
proach to the bifurcation theory for plane vector fields that includes the Poincar-
Andronov center bifurcation theorem and the usual subharmonic Melnikov theorem.
Since an exposition of these results requires only a minimum of additional effort, we
do not offer the most efficient proof of our main result. Rather, we take a slightly
longer route to our theorem that allows us to give new proofs of these other clas-
sic results. In addition to the unification provided by our implicit function theorem
approach to the bifurcation theory, we obtain smooth curves of bifurcating periodic
solutions. Thus, the precise positions of the bifurcating solutions can be computed
and, perhaps, continued to further global bifurcations. Also, we mention that our
method yields proofs of the bifurcation theorems that do not require reduction to a
normal form or a change to action angle variables.

The plan of the paper is as follows. In 2 we give a proof of Diliberto’s theorem and
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obtain the geometric interpretation of the functions a and f in terms of the Poincar
map and the transition time function. We also define the functions Af and A/[ in their
natural context as constituents of the solution of a certain inhomogeneous variational
equation. In 3 we prove the Poincar-Andronov center bifurcation theorem. In
4 we prove the subharmonic Melnikov theorem, our main result, the limit cycle
subharmonic bifurcation theorem, and we prove some theorems on bifurcation of
subharmonics from degenerate families. Also, we connect our theory with the classical
perturbation theory for linear systems. In the final section, 5, we give additional
applications of the theory.

2. Diliberto’s theorem. The fundamental result on which this paper is based
is the theorem of Diliberto [20] on the integration of the homogeneous variational
equations of a plane autonomous differential equation in terms of geometric quantities
along a given trajectory of the system. Here we let X (X1, X2) denote a smooth
plane vector field with flow Ct. The geometric quantities are the curvature, the curl,
and the divergence given by

) OX OX-"llXl1-3 Xl-2-X2-l curlX --Ox2 OXl divX--
Ox Ox Ox Ox

where IlXll v/(X,X) denotes the Euclidean norm. It will also be convenient to
define the orthogonal vector field X+/- :-- (-X2, X1) as well as the vector field Uxz
parallel to X+/- given by

x_(,).ux-(p) :-
IiX(p)ll 2

The normalization is chosen so that (X+/-, Ux 1. Finally, we introduce the wedge
product of two vector fields X (X1, X2) and Y (X, X2) to be X A Y XY2
X2Y1. In the course of our discussion we make use of the formula

XAY= <X+/- Y>
It allows for a choice between two geometric interpretations of the same quantity,
namely, the area given by the wedge product and the projection given by the inner
product. This choice is rather arbitrary, but is often made according to tradition.

THEOREM 2.1 (Diliberto’s theorem). If X(p) 0, then the linear variational
equation along the integral curve t Ct(p),

9 DX((p))V,

has a fundamental matrix solution ((t), satisfying det ((0)) 1, given by

where

and

(t) := [x(()), v(t)],

v(t) := (t)x((p)) + Z(t)ux ((,))

(/0 )f(t) :--(t,X,p):--exp div X(s(p))ds

t{ 1
[2]lx,l-curl x]} (,(p))(,)dT.(t) := (t, x,) :=
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Moreover, the inverse of this fundamental matrix (partitioned by rows) is given by

(I)-l(t) - X+/-(t(p))

Proof. Define -/(t) Ct(P). Since X(p) 0, the function t -. X(’)’(t)) is a
nontrivial solution of the linear variational equation. Next, define

(partitioned by columns) and use the coordinate transformation U p-Iv on the
linear variational equation DX(7(t))V to obtain AU, where

A := P-I(DX(7(t)))P p-l.

A somewhat tedious calculation shows the matrix A is given by

2llXll-2(xxF2 x2Rx) curlX

d- In IlXll 211xll curl X

d
0 d- In IlXll + div X

Since this system is in triangular form, we can find a simple representation for the
general solution of I[l AU. In fact, if we use el := (1, 0) and e2 := (0, 1), then

u(t)- }lX(p)ll {Ul(O) + v2(o)llX(p)ll20!(t)} el + u2(o)llX(p)ll 3(t)e2,

where U (U1, U2). Finally, if we choose the initial conditions so that one solution has
initial condition U(0) IIX(p)llel, and a second solution satisfies the initial condition
IIX(p)IIU(0) e2, then we obtain two linearly independent solutions. These solutions
form the columns of a fundamental matrix for Il AU, while the fundamental
matrix in the statement of the theorem is just (I) P(I). A simple calculation shows
that det((I)(0)) 1. The statement about the inverse of the fundamental matrix (I)(t)
is a straightforward deduction, and its proof is omitted, v1

Remark. It should be noted that the constant 2 multiplying the curvature in the
theorem was omitted in the formulas in Diliberto’s original paper.

Diliberto’s theorem contains all the important information about the solutions of
the linear variational equation along the trajectories of the plane vector field X. We
will use the theorem to derive several corollaries that illustrate the importance of the
result. The first few of these corollaries can be taken to give the geometric meaning of
the two functions a and 3 that are defined in the statement of the theorem. For this
we introduce some basic definitions. Let p and q be points in ]12 on the trajectory
t Ct(P) of X with q Cr(P). We consider two sections for the flow of X, E at p,
and A at q, given by plane curves s a(s) and s 5(s) with a() p. Moreover,
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we let Y denote the tangent vector field of a and Z the tangent vector field of i. We
use h" 5] --. A to denote the transition map. It assigns to a point r E the point
where the trajectory of X starting from r first meets A. We use T -- ] to denote
the transition time function that assigns to r E the minimum positive time required
for the transition. There will be an open interval 2? c R such that for s /: both h
and T are defined on a(Z). We define , i-1 o h o a(Z). Then, we can express the
transition map and the transition time function in the local coordinates on the two
sections defined by the functions a and 5. It is convenient to give these representations
names. In fact, we define the scalar transition map h" Z -, by the formula

h :-_. 6-1oloa,

and the scalar transition time .function T" Z -, R by

T:--Toa.

When we write h (p), we understand this to be the derivative h’ (), and when we write

T’(p) we understand this to be the derivative T’(). Finally, we specify two special
cases. If p is a periodic point of X, we can take A. In this case, the transition
map is called the return map or the Poincard map on the Poincar6 section . If, in
addition, p is contained in a one parameter family of periodic trajectories of X, we
say p is in a period annulus with (Poincard) section . In this case, the corresponding
transition time function is called the period function.

The next theorem identifies the functions and in Diliberto’s theorem geomet-
rically and, in particular, provides formulas for the derivative of the return map and
the period function.

THEOREM 2.2. Let X be a plane vector field with flow , a section for the
flow at p E ]2, and A a section for the flow at q CT(P). Also, let s a(s) be a
local coordinate function for with tangent vector field Y such that a() p, and let
s -. 5(s) be a local coordinate function .for A with tangent vector field Z. If h is the
transition map and T is the transition time function, then

-, XA Y(p)
h (p) (T(p), X, p)

X A Z(h(p))

and

(Z,X) , (Y,X)T’(p) ii ((P)) (p)
IlXll 2

(p) X A Y(p)((p), X, p).

In particular, if p is a periodic point of X, the derivative of the return map is given
by

-, X A Y(p) ((p), X,p),h (p)
X A Y((p))

and, in addition, if p is contained in a period annulus, the derivative of the period
function is given by

T’ (p) -X A Y(p)(T(p), X, p).
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Proof. By the definition of the transition map and the transition time function
we have

or, in local coordinates,

5(h(s)) CT(s)(a(s)).
After differentiating both sides of the last equation and evaluating at s , we obtain
the following formula for the derivative of the transition map:

d
h’()Z(q) sCT(s)(a(s)) DCT()(p)Y(p) + T’()X(q).

We will apply Diliberto’s theorem to obtain the required formulas. For this,
observe that the function t H V(t), giving the second column of the Diliberto fun-
damental matrix of the linear variational equations along the trajectory t - Ct(P) of
X, is the unique solution of the following linear variational initial value problem:

DX(t(p))V, v(0) (v),

whose solution evaluated at T() is

V(T()) c(T(), X, p)X(q) / (T(), X, p)ux (q).

Since t DCt(p)ux_ (p) is a solution of the same initial value problem, we have

DCt(p)ux-(p) V(t),

and, of course, we also have

DCt(p)X(p) X(t(p)).

Moreover, there are real numbers a, b, c, and d such that

Y(p) aX(p) + bux- (p), Z(q) cX(q) + dux (q).

In fact, these numbers can be expressed in terms of the given vectors as follows:

(Y,X)
a

iiX]12
(p), b X A Y(p),

(z,x)
c

ilXli2 (q), d X A Z(q).

Now, we compute

DCt(p)Y(p) aX(t(p)) + bV(t),

and, after the obvious substitutions into the formula for h(), we obtain

(ch’ () T’() a b) X(q) + (dh’() b) Ux (q) O.

The first part of the theorem follows immediately from the last equality and the linear
independence of X(q) and Uxz (q).
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From the definition of the return map we can assume F. A,q h(p), and
Y Z. The derivative of the return map in the statement of the theorem is obtained
by specializing the formula,

just derived for the derivative of the transition map.
For the derivative of the period function we have the same specialization and, in

addition, the fact that p lies in a period annulus. The periodicity of p implies p q

and, in turn, a c, while the membership of p in a period annulus implies (p) 1.
Hence, in this case, ch() a 0 and the formula obtained for the derivative of the
transition time function reduces to the required formula for the period function,

T’() -ba. [:l

For the majority of situations encountered in practice, when dealing with a spiral
flow in the plane, a horizontal line segment can be chosen as a Poincar section. In
this case, the representation of the derivative of the return map and of the period
function given in the last theorem takes a particularly simple form. If the horizontal
line segment is an interval of the line with equation y k, then, for example, the
vector field Y may be taken to be the unit vector in the (positive) horizontal direction.
If X2 denotes the second component of the vector field X, then, with "(t) :- Ct(x, k),
the representation of the derivative of the return map is

X2(x,k) IoT(x)
div X(’(t) dt)

while the representation of the derivative of the period function is

oT(Z) { 1
exp (for div X(/(t)) dt) dT

These cases are often encountered in the applications.
The geometric identification of the function/ is now clear. In fact, generally, if

we consider a trajectory t - Ct(P) of X and two sections E at p and A at Cr(p), then
/3(T, X, p) is just the normalized derivative of the transition map. The normalization
coefficient is the quotient of the two wedge products given in the theorem. The
geometric identification of the function a is more complicated in the general case.
But, if the two sections are orthogonal to the trajectory through p, then a(T, X, p)
is just the derivative of the transition time function normalized by the multiplicative
factor -X A Y(p).

The next lemma gives an explicit formula for the solution of the inhomogeneous
linear variational equations along a trajectory of X; this formula will be needed in
the perturbation theory that will be developed later.

LEMMA 2.3 (variation lemma). Let X (X1, X2) and b (bl, b2) denote smooth
plane vector fields, and let Ct denote the flow of X. Ifp E ]R2 and X(p) # 0, then the
solution, t W(t), of the initial value problem

W DX(t(p))W + b(t(p)), w(0) =0
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is given by

where

w() [,;() + ()()] x(()) + [Z()()] x-(()),

and (, are defined in the statement of Diliberto’s theorem. In addition, if m is a
positive integer, p is a point in a period annulus of X with local section given at p
by the integral curve s -, a(s) of X+/- such that a() p, and if T denotes the scalar
period function defined on , then

m
T’(), (mT()) 1(mT()) -iiX(p)ll 2

and

m
W(mT()) (mT())- iiX(p)ll 2T’()Ad(mT())] X(p) + AA(mT())Ux (p).

Proof. Using variation of parameters, we have

W(t) (I)(t) (I)-l(s)b(s) ds,

where (I) is the Diliberto fundamental matrix. To evaluate this formula for W we first
observe that

{ 1 }-V+/-(t) -a(t)X+/- + (t)iixll2 x (t(p)).

Then, using the formulas for the Diliberto fundamental matrix and its inverse given
in Diliberto’s theorem, we compute

/0 [ ]b-l(s)b(s(p)) ds A(t)

The first statement of the lemma is now immediate.
For the second part of the lemma, we sume p is a periodic point of X and the

coordinate for the section at p is given by the integral curve s a(s) of Xl with
a() p. Then, since p belongs to a period annulus, the return map is the identity
on E, and we conclude from the formula for the return map obtained above that

Z(T()) 1.

Moreover, using this fact, together with a straightforward chage of variables in the
integral representation of a(mT()), or, using the formula for T’, we find

c(mT()) ma(T()).
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Thus, in view of the formula for the derivative of the period function given in the
previous theorem,

m
a(mT()) -iiX(p)]l 2 T’().

After substitution of these identities into the formula for W(t) and a simple rear-
rangement of the terms, the final equality in the statement of the lemma is
proved.

3. The Poincar6-Andronov theorem. In order to state the main result of
this section, we consider a plane vector field (x, y) -, X(x, y, e) depending on the real
small parameter e. In case the phase portrait of the unperturbed system Xo(x, y) :-
X(x, y, 0) contains a period annulus .4, we seek to determine if there is a periodic
trajectory F contained in ,4 and a continuous family F of periodic trajectories of
(x, y) X(x, y, e) such that Fo F.

For this bifurcation problem it is convenient to consider the differential equation
corresponding to the vector field (x, y) -. X(x, y, e) in the form

5c P(x, y) + ep(x, y) + O(e2), Q(x, y) + eq(x, y) + O(e2).

Also, we let denote the flow of X. We can always arrange the coordinates so that a
certain horizontal line segment E y Y0 is transverse to the flow of X0 in 4. Then,
there is some e0 > 0 such that (x, y) -. X(x, y, ) is transverse to E, for all e satisfying
lel < 0. We assume F is one of the periodic trajectories in j( transverse to E, and
let denote the usual distance coordinate along E. Then, both the scalar transition
time function (, e) -. T(, e) and the scalar Poincar6 return map (, ) -. h(, e)
are defined on E. It is convenient in the analysis to define X to be the vector field
with components (-Q,P) and H(, e) to be the vector (d(, e), 0), where d is the
displacement function defined by d(, e) := h(, ) . We also define the normalized
displacement function F by

F(, e) Xoa- (, Yo)" H(, ) -Q(, yo)d(, ).

There are two basic facts: F(, e) 0 if and only if the trajectory of (x, y) -. X(x, y, e)
through (, Y0) is periodic and F(, 0) 0. If there is an e. > 0 and a continuous
function/3: (-e., e.) E such that F((e), e) --_ 0, then, for each e in the domain of fl,
there is a periodic trajectory F of the vector field (x, y) X(x, y, e) passing through
the point (/3(e), y0). In this case, we say a continuous family of periodic trajectories
of X emerges from the periodic trajectory F0.

The next result provides a means to identify the periodic trajectories in a period
annulus of the unperturbed system from which a family of limit cycles emerges. It is a
version of the theorem given in [1] and is the basic bifurcation theorem in this context.
Our approach to the proof of this theorem is somewhat different from the development
of the same result in [1]. For example, in [1, 32], the vector field family in which
the bifurcation occurs is assumed to be analytic and, in [1, 33], a first integral must
be constructed for the unperturbed conservative system. Here, we prove the result
by analyzing an appropriate variational equation directly. The theorem has two main
components: a reduction and an identification. Here, reduction refers to reducing the
problem of the existence of a family of limit cycles to an application of the implicit
function theorem, and identification refers to the identification of the appropriate
partial derivatives in terms of the components of the vector field X.
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THEOREM 3.1. Let (x, y) - X(x, y, e) denote a vector field with flow t and
corresponding dierential equation

c P(x, y) / ep(x, y) / O(e2), 9 Q(x, y) + eq(x, y) + O(e2)
such that the coesponding unpeurbed vector field Xo given by (x, y) X(x, y, 0)
has a peod annulus with Poincard section c {(x, y) :y Yo}.

(i) Reduction. If there is a point o such that the coesponding noalized
displacement function F satisfies F(o, O) 0 and F(o, O) O, then there is a
periodic trajecto F of Xo meeting at o and a continuous family, Fe, of periodic
trajectoes of X emerging from F. Moreover, for suciently small e O, the pe-
riodic trajecto F is a limit cycle of the vector field (x, y) X(x, y, ). In fact, if
eF(o, O)/Q(o, yo) > O, then F is asymptotically stable. IfeF(o, O)/Q(o, yo) < O,
then F is asymptotically unstable.

(ii) identification. The paial devative of the noalized displacement function
with respect to the bifurcation parameter is given by

r )F(, O) (Pq Qp) (7(t))exp div Xo(7(s)) ds dr,
do

where 7(t) := (, Yo) is the integral curve coesponding to the peodic trajectory F
through (, Yo). In addition, if F(o, O)= 0 for some o E, then

F(o, 0) -Q(o, yo) {div Xo(o, yo)Te(o, 0)

+ div(p, q)((t)) dt
o

+ div Xo((o, o)) dt
o d e=o

(iii) g Xo is Hamiltonin (div Xo 0), then for ,
F(, O) (Pq Qp)(7(t)) dt div(p, q) dxdy.

Jo

If, in addition, F o 0) 0, then

F(o, 0) -Q(o, o) div(p, q)(7(t))
o

Proof. Since F(, 0) --0,

F(, e) e (F(, 0) + O(e)) := eG(, e).

But then, from the hypotheses,

a(o, 0) F(o, 0) 0 and G(o, 0) F(o, 0) # 0.

The implicit function theorem applied to G implies the existence of the required
function e -*/(e). For the stability of the perturbed limit cycles, just note that the
displacement has the form

d(, e) ed(, 0) + O(e2).
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Thus, for sufficiently small e, if ede(o, 0) < 0, then -. d(, e) crosses the horizontal
line segment E with negative slope as increases through o. It is then immediate
from the definition of the displacement that Fe is a stable limit cycle. By the same
argument, the limit cycle will be unstable when ede(o, 0) < 0. But,

Fee (o, 0)ede(o, O) -e
Q(o, yo)

and therefore the statement of the theorem follows.
For the computation of the partial derivative Fe(, 0), we have

F(, 0) Xo(, Uo)" rI(, 0)

with I-Ie (, 0) (he(, 0), 0). Thus, we must compute he. For this, consider the integral
curve (x(t, , e), y(t, , e)) of (x, y) -. X(x, y, e) starting at the point (, Yo), and let
T(, e) denote the time of first return of this solution to F. Clearly, we have

x(T(, e), , e) h(, e), y(T(, e), , ) Yo,

and, after differentiation with respect to e and an evaluation at e 0, we obtain

&(T(, 0), , O)Te(, O) + xe(T(, 0), , O) he(, 0),
I(T(, 0), , O)Te(, O) + ye(T(, 0), , O) O.

Define

w(t) := ((t, , o), (t, , o)),

and then, using the abbreviations T :--- T(, 0), Te := Te(, 0), and He := He(, 0), we
have

TeXo(7(T)) + W(T) He TeXo([, Yo) + W(T).

Consequently,

Fe(, 0) X(, yo)" W(T).

In order to compute W we will solve an appropriate variational initial value
problem. Since

u(0, , ) uo,

we have

(0, , ) 0, u(0, , ) 0.

Thus, it is easy to see that W is the solution of the the following initial value problem:

W DXo(7(t))W + b(t), W(0) 0,

where b(t) (p(9/(t)),q(9/(t))). An application of the second part of the variation
lemma with m- 1 implies

Fe(, 0) X(,yo). W(T) A/I(T, X, b, 7(0)).
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Thus

F(, O) (Pq Qp) (-(t)) exp div X0(/(T)) dT dt

as required.
To obtain the representation for F(, 0) under the hypothesis that F(o, 0) 0,

we do not compute the mixed partial derivative directly from the representation just
obtained for F(, 0). Rather, we return to the definition of F and compute the partial
derivatives from the formula

Since X does not depend on e, we have

F(, 0) X.n +X. H(, 0).

But, by hypothesis, He(o, 0) -0. So the required derivative is given by

0) uo). o).

To compute the partial derivatives of H we use the previously given representation of
the scalar return map. In the present case, this takes the form

h(,e)=X2(,yo, e) (T(,e)f divX((, Yo), e) dr)X:y,e)
exp

Jo--

Since

H(o, 0) (h(o, 0), 0),

we need only calculate h. First, using the hypotheses, h(, 0)= and h(, 0) 0,
it is easy to verify that the derivative of the first factor of h(, e) with respect to e
vanishes at e 0, and the value of this factor at (o, 0) is unity. Thus, the required
derivative is given by

hf (o, 0) exp div Xo (/(t)) dt div Xo(o, yo)T(o, O)

foT(f’) d
divX(t(o, yo),e)l dr}.+ d- =o

Since the characteristic exponent of F vanishes, the exponential term is unity. We
also have

d
d- div X((o, yo), e)

e----0

and it follows that

h(o, 0) div Xo(o, yo)T(o, 0) + fT(o,0)
d0

T(o,O) d
+ div Xo((o, Yo dt
o de =o

div(p, q) o d
( (o, Yo)) + div Xo((o, Yo))

div(p, q)(/(t)) dt

e--O
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as required.
The proof of (iii) is just an application of Green’s theorem.
There is a large literature on the applications of the theorem. In most of these

applications the most difficult problem is the computation of the integral for Fe(, 0)
and the determination of its simple zeros. Some examples of such computations can
be found in the references [1], [5], [7], [8], [10], [13], [19], [21], [27], [28], [29], [35], [37],
[39], [43], [44]. A classic, but very simple application, can be made for the van der
Pol oscillator with small damping. For this we have the system

!) -x + e(1 x2)y.

Here the unperturbed system is linear, and the period annulus fills the entire punc-
tured plane. The positive x-axis is a Poincar section and, using the theorem, we
compute

F(, 0) (1 x2)y2 dt

(1 2 cos2 t)2 sin2 t dt

4

The bifurcation function has a unique simple zero at 2, and

Fe(2 0)
e ------A--’ 2er.
Q(2, 0)

Thus, there is a continuous family of limit cycles emerging from the periodic trajectory
x(t) 2 cos t y(t) -2 sin t of the unperturbed system such that the family consists
of stable limit cycles for e > 0 and unstable limit cycles for e < 0.

4. Subharmonic bifurcation theory. In this section we consider bifurcation
to periodic solutions in the family Ee of planar differential equations

+/-=f(x)+eG(x,t,e), xeIR2, cell(,

where both f and G are smooth functions; G is an -periodic function, i.e.,

a(x, t + ,) a(x, t, ,)

for all x, t, and e, and where G has the form

a(x, t, g(x, t) + t,

with both g and gR smooth functions of the indicated variables. We are interested
in the bifurcation of periodic orbits from periodic trajectories F of the unperturbed
system Eo as le[ increases from zero. For this we make one further assumption. The
period of F is in m n resonance with the period of the forcing function G, i.e., there
are relatively prime positive integers m and n such that the period of F is ml/n. At
the end of this section we show how to relax this assumption in the presence of a
detuning.

The idea of the bifurcation theory is to find the periodic trajectories as fixed points
of the parameterized Poincard map P 1I(2 ]R IR2 given by (, e) x(mv/, , e),
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where t -+ x(t, , e) is the solution of E satisfying the initial condition x(0, , e)
In this interpretation, is in the section 5] ]t2 0 for the flow considered on the
manifold diffeomorphic to ]t2 S obtained by identification of the time modulo mlT.
The basic property of the Poincar map is that, for fixed e, a solution of E that
starts at a fixed point of the function -+ P(, e) is a periodic solution of E. For
example, suppose P(0, e) 0 and x(t,0, e) satisfies x(0,0, e) 0. If we define
y(t) :-- x(t q-miT, 0, e), then

f(y)+ eG(y, + m, e)
f(y) + eG(y, , e).

Thus, y is a solution of E with the initial condition y(0) x(m7, 0, e) 0 and, by
uniqueness of the solutions of E, we have x(t, 0, e) y(t, 0, e). It follows that x is
a periodic function of its first variable. Also, if x is not a constant solution of E, the
minimum period of x must be miT/k for some positive integer k.

The Poincar( map is easy to compute on the resonant orbit F. Since, for the flow
of the unperturbed system, we have

() </)() ;
the function - P(, 0) is the identity on F. We wish to find conditions on the
functions f and i51 such that, for sufficiently small e = 0, some of these fixed points
remain. In order to state the bifurcation theorems that provide these conditions, we
will need a few more definitions. We identify IR2 0 with ]1(2 and, for E
we define the displacement function (, e) :-- P(, e) together with its radial pro-
jection p(, e) ((, e), f-L()) and its tangential projection T(, e) :-- ((, e), f()),
where (,) denotes the usual inner product on IR2. For F a periodic trajectory of the
unperturbed system whose period is in resonance with the external periodic force
we say E F is a subharmonic branch point if there is an e0 > 0 and a curve, e -+

defined for lel < e0, with image in the section , such that a(0) and i(a(e), e) 0.
Of course, if i(a(e), e) 0, then a(e) is the initial value for a periodic solution
of E. When the unperturbed periodic solution F is in m 1 resonance with the
forcing, the resonance is called subharmonic of order m and the perturbed periodic
solutions are called subharmonics. Subharmonic resonance of order one is also called
harmonic. This is the reason for the use of the term "subharmonic" in the definition
of subharmonic branch points. However, the bifurcating solutions at a subharmonic
branch point may not be, in the strict sense of the term, subharmonics. For example,
if n 1, a 1 n resonance is called ultraharmonic and an m n resonance is called
ultrasubharmonic. See [43, pp. 73-78] for a geometric view of these solutions.

As in the Poincar6-Andronov theorem, the bifurcation analysis for subharmonic
branch points consists of two main steps: reduction and identification. Here, reduction
refers to reducing the problem of the existence of a curve of subharmonics bifurcating
from F to an application of the implicit function theorem, i.e., to the nonvanishing of
a certain partial derivative, while identification refers to finding an explicit formula
for this derivative in terms of the functions f and (. For this we will use throughout
the functions defined in 2 and given by

(/0 )fT(t) :-- fT(t,):--exp div f(8())ds

S0 { 1 }(t) (t, 5) :- I [2llfll curl f] (())/7(T) dT,
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Af() ]iill2 --f/ g (s())ds,

(,) := f0 { 1

Also, we will compute several times the derivatives of functions of the two variables
and e. We will use the convention that derivatives indicated by D, for functions

with range in ]R2, or by d, for functions with range in , refer to the derivative with
respect to the space variable , while derivatives indicated by a subscripted variable
refer to the partial derivative with respect to that variable.

To begin the analysis, we expand the displacement function into its perturbation
series

i(. e) P(. 0) + P(. 0)e + O(e2)
x(.n. . 0) + x(.V. . 0) + O().

and we recall that, by the variation lemma, the first-order term of the perturbation
series is given by

x (iV" / a.M)f q-/./Uf+/-.

For on the resonant orbit F, ti(, 0) ---0, and, consequently,

d
DS(, 0)(f()) P(t(), 0) f() 0.

Thus, - DS(, 0) is not invertible and we cannot use the implicit function theorem
directly. However, we can use various forms of the Lyapunov-Schmidt reduction
depending on how degenerate the curve F is as part of the zero set of the function- (, 0).

The most degenerate case is the classical case when the unperturbed system
is linear and (, 0) 0. Actually, this degeneracy is equivalent to assuming F is
contained in an isochronous period annulus; cf. [13]. In this case, we have the following
proposition.

PROPOSITION 4.1. Let P denote the parameterized Poincard map for the system
Ee,

r(x)+ (x.,. ). x e . e .
where G is l-periodic of the form

(x. t. ) g(x. t) + g(x. t. ).

and assume that F is a periodic solution of the unperturbed system that belongs to an
isochronous period annulus.

Reduction. If there are positive integers m and n such that the period of F is equal
to ml/n and if the function -. P(, 0) has a simple zero at o, i.e.,

P(0, O) 0 and det (DP(0, 0)) 0,

then o is a subharmonic branch point.
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Identification. The bifurcation function P(, 0) is given by

Pe(,,O) f-t-i[f[ 2A/Ift- ().

Moreover, in case the unperturbed system is linear with f(xl,x2) (wx2,-WXl) and
if 2rn/w my, then the bifurcation function is given by

1
0) I1 11 +

where

I() x2g (x, t) xg2(x, t) dr, I2() :- xg(x, t) + x2g2(x, t) dr.
d0 d0

Proof. By the hypotheses, the displacement function, 5(, e) :- P(, e) -, for
the perturbed system can be represented in the form

5(, e) e [P(, 0) / O(e)].

Therefore, the implicit function theorem can be applied to determine when there is
an implicit solution of the equation P(, 0) + O(e) 0 at some point (0, 0). This
proves the reduction statement of the proposition. For the identification we simply
observe that F is not hyperbolic and that the period function on the period annulus
is constant. Then, using the results of 2, we have (m/,) 1 and a(mr/, ) 0 for
E F. Thus, from the formula for x given above, we obtain the desired result.

In case the unperturbed vector field f is linear, with f(xl, x2) (wx2,-wx), the
punctured phase plane of the unperturbed system is filled by periodic trajectories, each
of which lies on a circle centered at the origin, and the hypotheses of the proposition
hold. If, in addition, we assume the period of the external excitation is in resonance
with the linear system, i.e., there are positive integers m and n such that 2zrn/w m,
then the formula for x(m/, , 0) reduces to

1 dr) w A g(x, dr)]w21[[[2 [(fomn(f(x)g(x,t)) f()+ (fo’Vf(x) t)

where, in components, (, 2) and

x(t) :-- (Xl (t), x2(t)) (1 C08 (ot) -[- 2 sin (wt), --1 sin (wt) + 2 cos (wt)).

Moreover, if the components of the external excitation are given by

g(x, t) := t), t)),

and we define

2rn/w
I1 () := x2g (X, t) xlg2 (X, t) dt,

d0

2rn/w
I2() := xgl(x,t)+x2g2(x,t)dt,

JO

we then have

1, o)
i1[1 + 2I(), 212() I())
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as required.
For computational purposes, it is convenient to define Z():-- (I1(), I2()), and

to observe that

P(, 0) _1 I2(sc) )"
Then, the existence of a simple zero of P(, 0) is easily seen to be equivalent to
the existence of a simple zero of Z. A final special case, where we take w 1 and
gl(x, t) 0, results in the identification

P({, 0) g2(x(t), t) sin t dr, g2(x(t), t) cos t dt
J0 J0

Here, the components of P({, 0) are given by the same formulas obtained from the
classical perturbation series methods. See [27, XII, 2] for a version of the classic ap-
proach to these formulas and for the computations, using the same formulas, showing
the existence of a unique stable harmonic solution of the forced van der Pol oscillator,

-’y
/ -x + e(1 x2)y + ea sin t.

When { -- ti({, 0) is not identically zero on some neighborhood of F, the bifur-
cation theory must deal with the zero order terms of the perturbation expansion of
the displacement function. The least degenerate case occurs when the kernel K: of
the map Dti(, 0) 2

__
R2 is one-dimensional. We have already shown f()

Thus, this nondegeneracy condition will be satisfied when f+/-({) . It turns out
that this nondegeneracy condition is equivalent to having one of the following: either
F is hyperbolic or, at { E F, the transit time map on a section in the phase plane
orthogonal to F has a nonzero derivative along the section at {. The second possibility
is the only way to have nondegeneracy when F is in a period annulus. In this case,
the transit time reduces to the period function. Of course, if the period function has a
zero derivative "at F" on a section transverse to F, then this derivative will be zero on
every such section. When the derivative of the period function vanishes in this way,
F is called critical. However, it is worth noting that the vanishing of the derivative
of the transit time along a section intersecting a limit cycle depends on the choice of
section.

For the next theorem we assume that the unperturbed system +/- f(x) has flow
Ct and a noncritical periodic trajectory P given by t Ct(P) that lies in a period
annulus ,4 C E. We let T ,4 - denote the period function for the unperturbed
system on the period annulus A; it assigns to each E ,4 C E the minimum period
of the periodic trajectory of the unperturbed system passing through . Also, the
subharmonic Melnikov function is defined for 4, in terms of the radial projection
of the displacement function p, by

M({) := p({, 0).

THEOREM 4.2 (subharmonic bifurcation theorem). Let E denote the parameter-
ized family of differential equations

+/---f(x)+eg(x,t)+e2gR(x,t,e), xe2, eeR,
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such that Eo has flow t -, Ct, a period annulus .4, and a periodic trajectory F c dt that
is in resonance with the q-periodic external force G(x, t, e) :- g(x, t) + egR(x t, e),
i.e., there are relatively prime natural numbers m and n such that the period of F is

m/n.
(i) Reduction. If F is not critical and E F is a simple zero of the subharmonic

Melnikov function, i.e., dT(f+/-)() : 0, M() 0 and dM(f)() 0, then is a
subharmonic branch point.

(ii) Identification. The directional derivative of the period function T in the di-
rection f+/-() is given by

dT(f+/-) ()

and the subharmonic Melnikov function is given by

exp (JoS divf(dPt()) dt) ds,

M() fld(m/, f, g, ) exp div f(8()) ds f(t()) A g(t(), t) dr.

Proof. We have

ti(, e) P(, 0) + P,(, 0)e + O(e2).
For on the resonant orbit F, (, 0) =- 0, and, as we have seen,

d
DS(, 0)(f()) P(t(), 0) f() 0.

it=(}

Thus, DS(, 0) is not invertible, and we cannot use the implicit function theorem
directly. However, the Lyapunov-Schmidt reduction can be employed. First, we apply
the implicit function theorem to the tangential projection T. For this, let F, and
compute the directional derivative of T(, 0) in the direction f to obtain

Since (, 0) 0 on F, the formula for this derivative reduces to

d(, 0)(f()) (ne(, 0)f(), f()).
In order to compute D(, 0)f(), recall

nP(, 0)f () DCmv()f (),

and let V be defined in Diliberto’s theorem. Since both

1 f() and tV(t,f,)

are solutions of the homogeneous variational equation for the unperturbed system
& f(x) along the trajectory t Ct() satisfying the same initial condition, the two
functions are equal, and we have

nCmu()f() Ilf()[[2V(mv)= I[f()l[2 a(mv)f()+ []f()[]2 ()
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In view of the representation of the period function given in the variation lemma and
the nonhyperbolicity of F, this formula can be expressed more concisely as

DCm,()f+/-() [mdT(f+/-)()] f()4- f+/-(),

and, in turn, we have a simple expression for the directional derivative of 6

D6(, 0)f+/-() (DP(, 0) I)f+/-() [mdT()(f+/-())] f().

Taking the inner product with f(), we find the required directional derivative of - to
be

dT(, 0)(f+/-()) -m lif()ll2 dT()(f+/-()) : O.

Now, by an application of the implicit function theorem to the function -, we conclude
that there is a smooth two-dimensional surface q in the (, e)-space passing through
the curve F 0 such that T vanishes on . Since, in addition, for E F we have

d-r(, O)f() <(DP(, O) I)f(), f()> O,

is transverse to the section and F c 8.
To complete the reduction we restrict our attention to the manifold . To be

more precise, we consider a neighborhood of the point (0, 0) on F. There is a local
coordinate chart (U, ov) on ,S such that U is a product neighborhood in ]R ]R and
ov U --, ,S C IR2 Ii is a smooth function that can be taken to have the form

 v(o,

Here the image of the function 0 (0, 0) is contained in r, and (0, 0) 0. Now,
we can view the restriction of the radial projection p to q, Ps, as the function defined
by

ps(o, p( u(o,

Since ps(O, O) p((O, 0), 0) =- 0, the restriction of p, represented locally by its Taylor
polynomial with remainder, has the form

ps(O, e) Pl (O)e 4- O(e2)

on a product neighborhood of the origin in the (0, e)-space. The first-order Taylor
coefficient is given by

pl(O) OP$ (0, O) dp(cp(O, 0), O)((0, 0)) + p(cp(O, 0), 0).

But, for ( E F, a computation similar to the computation made above for dT shows

dp(, O)(f+/-()) dp(, O)(f()) O.

Thus, dp((, O) --0 and

pl (0) p(p(O, 0), O) M(cp(O, 0)).
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The hypothesis M(0) 0, but dM(o)(f(o)) 0 implies pl(0) 0 and p (0) # 0.
Thus, there is an e0 > 0 and a smooth function a0 defined for le[ < e0, with range in
the 0-space, such that ps(ao(e), e) =_ O. If we define a(e) := (O(ao(e), e), e), then

o,

and we have 6(a(e), e) =_ 0 as required to prove the reduction.
For the identification, the derivative of the period function can be computed

directly from the variation lemma. In fact,

dT(f+/- )() -[[f()l 2a(T(), f, ).

The proof will be complete when we identify the Melnikov function. To do this, we
compute p(, 0) as follows:

O) (5(, 0), f+/- ())

But, xe(t, , 0) is the solution of the variational initial value problem

W Df(())W + g((), ), W(0) 0.

By the variation lemma, this solution is given by

0) (mod f).

Using the fact that () 1 and substitution of this expression into the formula for
p(, 0) we obtain the desired result.

When F is hyperbolic, the result is similar to the last theorem, but the formulas
for the partial derivatives of the perturbation series are more complicated. In order to
state our bifurcation theorem in this context, we again consider the system E given
by

f(x)+ x e e

where the external excitation G is periodic of period /in its second variable. We
assume the unperturbed system, +/- f(x), has a limit cycle F whose period is in
resonance with the period of the forcing function. In fact, we assume the period of F
is mrl/n for m and n relatively prime positive integers.

Before stating our theorem, we pause to recall a trivial but important fact. If
the limit cycle of the unperturbed system is hyperbolic, it is structurally stable in the
class of plane vector fields. When we consider the forced oscillator on the manifold
]I2 X S the three-dimensional system of differential equations has, for e 0, a
normally hyperbolic torus corresponding to the limit cycle. The flow on this torus
will be periodic or quasiperiodic depending on whether or not the resonance condition
is satisfied. But, in either case, the orbits corresponding to the limit cycle will no
longer be structurally stable; the stability of the limit cycle has been "transferred to
the torus." In the resonant case, if we consider the appropriate iterate of the Poincar
map, we will have the Poincar map reduced to the identity on the torus. Thus, it
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is natural to ask if any of the fixed points of the Poincar map, corresponding to the
points on the limit cycle, survive after perturbation as fixed points or higher order
periodic points of the Poincar map, i.e., if any periodic solutions survive as harmonic
or subharmonic solutions of the forced oscillator.

For our bifurcation result, the definitions of the Poincard section , the param-
eterized Poincar(i map P and the displacement function i remain unchanged. We
consider f and G fixed, with

t, g(x, t) + t,

and, for notational convenience, when we refer to the functions a, , jM, and Af
with the single argument , we understand that the remaining arguments are fixed at
t mr/, f, and g. In order to obtain our bifurcation result, a correction term must be
added to the subharmonic Melnikov function. In fact, the new function we require is
defined by

C() := [(1 )Af + aM] ().

We call C the subharmonic bifurcation function. The next theorem applies either when
F is hyperbolic or when, at the bifurcation point, the derivative of the transit time
does not vanish.

THEOREM 4.3 (limit cycle subharmonic bifurcation theorem). Let E denote the
parameterized family of differential equations

+/-=f(x)+eg(x,t)+e2gR(x,t,e), xeR2, ee

such that Eo has a limit cycle F whose period is in resonance with the r/-periodic
external force G(x, t, e) := g(x, t) + egR(x, t, e), i.e., there are relatively prime natural
numbers m and n such that the period of F is mr If F is hyperbolic and E F is a
simple zero of the subharmonic bifurcation function C, i.e., C() 0 and d(J(f)() 7
O, then is a subharmonic branch point. Also, if F is a simple zero of the
subharmonic bifurcation function and if c() 7 O, then is a subharmonic branch
point.

Proof. With the projections p and T defined exactly as before and with ( F, we
have

Thus, there are two choices. If F is hyperbolic, then/ # 1, and we can apply the
implicit function theorem to the radial projection to obtain a manifold , transverse
to 1 such that p is identically zero on S and such that F C . If, on the other hand,
a() # 0, there is a manifold , defined locally in a neighborhood U of (, 0), such
that T is identically zero on , is transverse to N C U, and F N U C . In both cases,
the local coordinates are given by

(o,
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with o(8, 0) . Thus, in the hyperbolic case we can restrict r to 8 and obtain the
representation

rs(e, ) := (e) + o(=),
while in case a() 0, we restrict the projection p to ,9 to obtain

ps(e, ) p(e) + o().
The reduction portion of the theorem is the content of the following propositions. In
the hyperbolic case, a simple zero of T1 () is a subharmonic branch point, while
in the case a() 0, a simple zero of 8 --, pl (0) is a subharmonic branch point.

We will complete the proof by identification of the functions T and p. For this,
note that

Ors (8, O) dr(o(8, 0), 0)(oe (8, 0)) + r(o(8, 0), 0)

dT(, O)(p(O, 0)) + T(, O)

and

Ops
(O O) dp(cp(O, 0), O)(p(O, 0)) + p(cp(O, 0), O)p(O)

dp(, O)(e(O, 0)) + p({, 0).

As in the last computation of the previous theorem, using the variation lemma and
remembering that () may not be unity, we find

r(g, 0) IIf[le(A; + a)(), pC(g, 0) () (g).

To compute the other terms we observe that o(8, e) P. Hence, the vector field
can be expressed as a linear combination of f and f+/- evaluated at o(8, e). In fact,
there are scalars a and b (perhaps different in the two cases) such that

o(0, 0) af() + bf+/-({).
Moreover, since both dr({, 0)f({)= 0 and dp({, 0)f({)= 0, we have

dr(, 0)o(8, 0) b[[f[[4a({), dp({, 0)o(8, 0) [b( X)[[f[[] ({).

Now, after substitution, we obtain

r(O) [b[Ifll4a + I[fll2(jV" + jA)] (), p(O) [b(/- 1)llfl[ 2 +/A/I] (),

and it suffices, in each ease, to compute b. For this, we recall that on 8, in the
hyperbolic ease,

p((e, ), ) o.

So

dp(cp(O, 0), 0)(p(0, 0)) + p(cp(e, 0), O) O,

and we have

b dp(, O)f+/- () -p(, 0).
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Thus, we can solve for b to obtain

and, after substitution into the last formula for T1, we compute

llfll =
rl (8) 1 ,S [(1 + a.h/[] (8).

In case a() 0, the proof is similar. We find

llf( )ll4c ( )

and

1
[( 1 + czA/l]

as required. E]

We have just considered subharmonic bifurcation from periodic trajectories of
our unperturbed system in the most degenerate case, when the unperturbed system
has an isochronous center, and in the least degenerate case, when the kernel of the
space derivative of the displacement function at the unperturbed periodic orbit F is
one-dimensional. A bifurcation theory for the cases of intermediate degeneracy can
be carried out quite generally using our methods. However, since computation of the
higher-order derivatives that appear in the analysis increase in complexity, we are
content to illustrate the analysis in the least degenerate of the remaining cases. For
this, it should now be clear that there are two possibilities depending on whether or
not F is a limit cycle. If F is not a limit cycle, it belongs to a period annulus. This
means (). 1 for in this period annulus, and the degenerate case is a() 0
but da()f+/- () 0 for E F, i.e., the derivative of the period function vanishes on
F but its second derivative does not vanish. This case has been treated by different
methods when the unperturbed system is Hamiltonian in [38] and in a more abstract
setting in [24]. In case F is a nonhyperbolic limit cycle, say for E F, ()

_
1

but d()f+/-() 0, we already know the bifurcation is not degenerate at a point
F where a() 0. So the bifurcation is degenerate when this is not the case, i.e.,

when F is a nonhyperbolic limit cycle of multiplicity 2 (cf. [1, p. 272]), which contains
points where the derivative of the transit time map on orthogonal sections vanishes.
For these cases there is the possibility that more than one family of subharmonics is
found near a subharmonic branch point. We will say F is a subharmonic branch
point with n-branches if there is an e0 > 0 and distinct (germs of) curves (at e 0),
e ak(e); k 1,..., n, each defined either for e0 < e _< 0 or 0 _< e < e0, and each with
image in the section E, such that ak(O) and 6(ak(e), e) 0. The next theorem
gives the result for the case of the period annulus.

THEOREM 4.4 (order 2 subharmonic bifurcation theorem). Let E denote the
parameterized family of differential equations

+/--f(x)+eg(x,t)+e2gR(x,t,e), xe2, eel,

such that Eo has a period annulus ,4 and a periodic trajectory F C .4 that is in
resonance with the ?-periodic external force (], i.e., there are relatively prime natural
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numbers m and n such that the period of F is mrl/n. If F is critical (c() =_ O) and if
E F is a simple zero of the subharmonic Melnikov function, such that

Af()dt()f+/-() 0,

then is a subharmonic branch point with two branches. Moreover, these two branches
exist only in the direction of e such that

eAf()dt()f+/-() < 0.

Proof. Fix E r; let t -- Ct denote the flow of & f(x); let s 8 denote
the flow of & f+/-(x), and consider the local coordinates defined at (, 0) by the
transformation

(, , ) - (. (()), ).

In these coordinates we have

oc(, , ) := (, (()), ).

However, for notational convenience, we will write T for 7oc. Using this convention,
we see immediately that T(0, t, 0) 0. Also, since

(, t, 0) Ill( (()))I1(
we have

T(0, t, 0) lit (t())114a (t()) 0,

and, for each t R, we compute

T88(0, t, 0) IIf (t())Ilad( (t()) f+/- (t()) - 0.

By an application of the (Weierstrass) preparation theorem,

T(S, t, e) (a(t, e) + b(t, e)s + s2) u(s, t, e)

for functions a, b, and u, of the indicated variables, which satisfy

a(t, 0) 0, b(t, 0) 0, u(0, t, 0) - 0.

In particular, there are functions t --, al (t) and t bl (t) such that

a(t, ) a (t)e + O(e2), b(t, e) b (t)e + O(e),

and we have T(S(t, e), t, e) 0 for s(t, e) denoting one of the two roots

-(t, ) + x/-a(t) + o(:)
2

of the Weierstrass polynomial. Now, if a (0) 0, there is a branched surface ,9 with
exactly two branches along r in the direction of e such that a (0)e < 0. In fact, for
each root there is a locally defined "surface" given by

(t, ) - ((t, ), t, )
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that contains F and is such that T(S(t, e), t, e) =_ O.
To identify the quantity al (0), we first compute

Te(0, 0, 0) ae(0, 0)u(0, 0, 0) al (0)u(0, 0, 0).

But, in addition, we know that

T,(0, 0, 0) T(,, 0) [(JV" / J)llfll:] (:)

and

[f(,)[ [4da(5)f-L() T(0, 0, 0) 2u(0, 0, 0).

Thus, after substitution, we obtain

ax(O)
2jV’()

If() I:do()f+/- (5)’
and we see there will be a real branched surface with two branches provided

eAf()da()f+/-() < 0.

Next, as before, we consider the restriction of the projection p to q. However,
here there is a slight difference from our previous arguments because the function s
is not necessarily smooth at e 0. To overcome this difficulty we must incorporate
the Puiseux series for our expansion of s in powers of e. In the quadratic case this
is quite simple. In fact, under our hypothesis that al(0) 0, there exists a function
(t, ) -- s* (t, ), analytic at (0, 0), such that

(t, ) *(t, ).

When we restrict the projection p to the corresponding branch of,.q, we have a function
(t, ) - p*(t, ), analytic at (0, 0), defined by

p* (t, ) := po(* (t, ), t, )
with

p,s(t, e) p*(t, V).

Now, using the definition of p,

Ploc(8, t, e) :’- p (bs (bt()), e),

but henceforth writing p for ploc, we obtain from previous computations, p(0, t, 0) 0,
and

ps(s,t,O) dp(s,t,O)f+/-(s,t) -IIf(s,t)ll2(1 (s,t)) =_ O.

A calculation using these facts and the chain rule yields p(t, 0) 0 and

p(t, O) 2p(0, t, O) 2 (t()) j4 (t())

Thus, we have the representation

p*(t, ) p2(t)ff2 + O(ff3)
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with p2(t) (t()), and we see that if is a simple zero of the Melnikov function,
then t 0 is a simple zero of P2, and the implicit function theorem applies to show
the existence of a curve --. a(), analytic at 0, and such that p* (a(), () _= 0. It
follows that

ps((v), ) p* ((vq), v) 0,

and, therefore, t a(vq), i.e.,

- ,((), ((())
is the desired branch of subharmonics at

THEOREM 4.5 (order 2 limit cycle subharmonic bifurcation theorem). Let E
denote the parameterized family of differential equations

+/--f(x)+eg(x,t)+e2gR(x,t,e), xe2, ee

such that Eo has a periodic trajectory F C 4 that is in resonance with the y-periodic
external force G, i.e., there are relatively prime natural numbers m and n such that
the period of F is ml/n. If F is such that following three conditions are satisfied:
(i) a() 0 and () 1, (ii) either AA()d()f+/-() # 0 or Af()da()f+/-() # 0,
and (iii) e F is a simple zero of the bifurcation function

:D "= Af()d()f+/-() A/I()da()f+/- (),

then is a subharmonic branch point with two branches. Moreover, these two branches
exist, in case A/I()d()f+/-() 0, only in the direction of e such that

ej/t()dl3()f+/-() < 0

and, in case Af()da()f+/-() # 0, only in the direction of e such that

eAf()da()f+/-() < O.

Proof. The proof of this theorem follows exactly the same logic as the proof of the
last theorem with only a few complications. The preparation theorem is applied in
turn to both projections p and T, but the proof in both cases is the same. Also, using
the notation developed in the proof of the last theorem, we must deal with the fact
that neither p88(0, 0, 0) nor Ts(0, 0, 0) must vanish. For example, in the computation
of T we obtain

*(o, o) (o, o, o)[(o, o)] + 2(o, o, o).

So, we must compute s (0, 0). However, using the quadratic formula and the definition
of s* it is clear that

[(0, 0)] -(0),

with the quantity al(0) computable as before. Thus, by similar, but slightly more
complicated computations, the theorem can be proved by computation of the bifur-
cation derivatives in terms of a, , j4, and Af.
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We end this section with an important remark on detuning. For this, consider a
parametrized family of differential equations E given by

+/--f(x)+eG(x,t,e), xeR2, ee

where E0 has a periodic trajectory F. Up to now we have assumed that the period
y of the excitation t --, G(x, t, e) is in resonance with the period of F. However, this
condition can easily be relaxed in our analysis. In fact, we can assume merely that
the period of the excitation is given by an expression of the form y / ke + O(e2). In
this situation the parameter k E R is called a detuning. When detuning is introduced,
we retain our resonance assumption that the period of F is equal to my/n and simply
reformulate the analysis in terms of an appropriate Poincar map, namely,

P(. ) x(. + .k + O(). , ),

where x(t, , e) is the solution of Ee with x(0, , e) . Clearly, all the derivatives
of P with respect to the space variable reduce to previously computed expressions
when evaluated at e--0. On the other hand, we have

P(, O) +/-(my, , O)mk + x(m/, , 0)
mkf() + [(Af + aJPi)f + A/luf+/-]()

[ 1
((ink + Af) + aA4)f + [Ifl 12/3J4f+/- ()"

Thus, all previous statements of theorems and formulas for derivatives remain valid
in the case of a detuning when we replace each occurrence of Af with mk + Af.

5. Examples. As a first example to illustrate the use of the limit cycle subhar-
monic bifurcation theorem, we consider the nonlinear system given by

-u + (1 u) + a(, u, ), + u( :) + (, u, ),

where G(x, y, t) :-- (g (x, y, t), g2(x, y, t)) is t-periodic of period y "= 2rn/m for some
relatively prime positive integers n and m. Also, we denote the associated vector
field of the unperturbed system by X. This vector field is chosen to have a simple
representation in polar coordinates,

+ ( ), ,
and a unique hyperbolic limit cycle r of period 2r on the unit circle. In fact the
integral curve of X corresponding to r and starting at (1, 2) with [[ 1 is
given by

x(t) 1 cos t 2 sin t, y(t) x sin t + 2 cos t.

For this example, we compute c(t) 0 on r. Thus, the bifurcation function is

e(() [(1- )A (()= (1-e-’n) (x,,t)-(,,t)dt.

If we specify the forcing function, we can now determine the existence of subhar-
monic branch points. For example, if

9(t) cost + bsint, 9(t) ecost + dsint,
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we compute

C() nr (1 e-4n) ((c- b)l (a + d)2),

and we see there are generically two subharmonic branch points at the intersection
of the unit circle with the line (c- b)l (a / d)2 0. For an example where the
excitation depends on the space variables, we take

t t
gl (x, y, t) ax cos , g2 (x, y, t) by sin

and compute, taking n 1,

C() 1-(b- a) (1 e-4) (1 2)(1 + 2).

Thus, there are four subharmonic branch points corresponding to the intersections of
the lines

with the unit circle.
In the above example we are able to give a complete mathematical analysis of

the subharmonic response of a system whose free oscillation is a limit cycle when
the system is subjected to a resonant periodic external excitation. We are not able
at present to give a similar rigorous mathematical analysis for a model equation
that arises from a physical problem. However, we have been successful in applying
the theory using numerical experiments. To illustrate this, we consider the example
mentioned in the introduction of a forced van der Pol oscillator. In fact, we consider
the system

-u + (1 u)v,

T(--X q- 6(1 x2)y) + eU,

where T, 5, and e are real parameters. Here, we view

C Ty,

as the unperturbed system. It has, for 5 > 0 and T > 0, a stable limit cycle as its free
oscillation. If, in addition, T is a rational number and e - 0, then the xy-system is
perturbed by a periodic external stimulus provided by the periodic output t -+ u(t)
of the uv-system, a second van der Pol oscillator running in resonance. To find the
number and the positions of the subharmonic branch points where, for sufficiently
small e, families of subharmonic solutions of the perturbed oscillator emerge, we must
find the simple zeros of the subharmonic bifurcation function C along the unperturbed
limit cycle. Here, we are restricted by the lack of explicit analytic expressions for the
solutions of the unperturbed system near its stable limit cycle. Thus, we have re-
sorted to numerical experiments in order to suggest the actual subharmonic response.
The graph of the bifurcation function C can be computed numerically to obtain the
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subharmonic branch points for various choices of the parameters. A typical graph of
this type is depicted in Fig. 1 of the introduction.

Our final example is an application of the order 2 limit cycle subharmonic bifur-
cation theorem. For this, consider the system E given by

& y x(1 x2 y2)2 e cos t, -x y(1 x2 y2)2 + e sin t,

which has the form

+/--- f(x)+ eg(t).

Here, the unperturbed system has a (semistable) multiplicity 2 limit cycle F on the
unit circle. The corresponding integral curve of E0 starting at := (1, 2) is

x(t) 1 cos t + 2 sin t, y(t) -1 sin t / 2 cos t.

To apply the theorem, we define r := V/X2 + y2, and compute

div f(x, y)= -2(r:- 1)(3r2- 1),
curl f(x, y) -2,

Then, for E F, we can compute

2 6r4 + 8r6 3r8

2 4r2 + 6ra 4r6 + rs"

dc(f)f+/- (f) 0,
d(f)f+/-(f) -16r.

For example, we have f+/-() -, and, for any E R2,

Thus,

Z() exp -2(r2- 1)(3r2- 1)dt

dd()f+/-(f) d() ss((1 + s))

After the obvious computation, we find

:r drdf()f+/-() -8 ss
But, since

+ -r2 (1 r2)2,

d()f+/-() -16r.

Also, since r(0, s) I[(1 + s)[[, we have rs(0, 0) 1. This means dr/ds =- 1, and, in
turn,

s--0

we can easily find the variational equation for r8 on F to be
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Next, we find

2r

jPI() ysint xcostdt -21.

Thus, the only zeros of AA() 0 are on the line 1 0. In particular, for (=t=1, 0),

We also have

/)(() -16rAf(() 16r (y cos t + x sin t) dt 32r22.

Thus,/) has a simple zero along F at , and, by the theorem, there will be two branches
of harmonics at the subharmonic branch point . At (-1, 0) these harmonics exist
for sufficiently small e < 0, while at (1, 0) they exist for sufficiently small e > 0.
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LIMIT CYCLES IN A CUBIC SYSTEM WITH A CUSP*

WANG XIANf AND ROBERT E. KOOIJ

Abstract. This paper studies the number of limit cycles in a cubic system with a cusp. By using new
results concerning systems of Li6nard type, the question of relative position and the maximum number of
limit cycles for this system is solved completely.

Key words, cubic system, limit cycles, Li6nard system

AMS(MOS) subject classifications. 34C, 58F

1. Introduction. In this paper we give a global analysis of a planar cubic system
that arises in the study of three-dimensional viscous flow structures near a plane wall.
In [3] Bakker developed a classification strategy to classify two-dimensional viscous
flow structures near a plane wall in a systematic way. The investigation of three-
dimensional flows is taken up by Bakker and de Winkel [4] and Kooij and Bakker
[10]. The classification strategy relies to a great extent on the qualitative theory of
differential equations and bifurcation theory. The flow is assumed to be steady, viscous,
incompressible, and it satisfies no-slip boundary conditions on the wall. The topology
of such a flow is studied on the basis of local solutions of the Navier-Stokes equations.
The streamline pattern is represented by the trajectories of a three-dimensional system

dx dy dz
(*)

dt u’ dt v’ dt
. w,

where is real time, and u, v, w denote the velocity components in a cartesian reference
system. The wall is represented by z 0. The local solutions are obtained by performing
Taylor expansions of the velocity vector field.

The main objective of the classification strategy developed by Bakker [3] is to
give a unified description of all topologically different flow patterns that will arise near
a singularity of system (,).

The dynamical behavior of the wall shear stress vector, defined by " tx(Ou/Oz)z=o
in the x-direction and o-= tz(v/Oz)z=o in the y-direction, where tz is the dynamical
viscosity of the fluid, is governed by the equation dy/dx=limz_,o (v(x, y, z)/u(x, y, z)).
The solution curves of this equation are referred to as skin friction lines.

For the type of singularity that is studied by Kooij and Bakker 10], the equation
that describes the skin friction lines is equivalent with the following system"

Yc y + ax2 + x3, Ax,2 x3.

In this paper we present a qualitative study of this cubic system.

2. Some definitions and theorems concerning Li6nard systems. First we shall quote
some results from [13]-[15], [17].

Consider the system

(1) Yc=p(y)-F(x), 3 -g(x),

* Received by the editors July 10, 1991" accepted for publication (in revised form) March 11, 1992.
f Department of Mathematics, Nanjing University, Nanjing, People’s Republic of China.
t Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, the Nether-

lands.
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with F(x) I f(s ds, where

f(x),g(x)e C(,.2, --(X)__--< 3’ <0< 3’2_<--, c,o(y) e C.
In (1), g(x) and q(y) may have several zeros, that is, (1) may have several singular
points.

DEFINITION 1 [13]. A set of singular points of (1) is called an unstable (stable)
singular point system with index +1 if the sum of the indices of the singular points is
+1 and there exists a bounded region D, containing this set of singular points, such
that from every point on the boundary OD only positive (negative) semitrajectories of
(1) are leaving D.

DEFINITION 2 [13]. A set of singular points of (1) is called an unstable (stable)
singular point-cycle system with index /1 if the sum of the indices of the singular
points is +1 and there exists at least one limit cycle or separatrix cycle containing one
or several of these singular points in its interior and there exists a bounded region D,
containing the set of singular points, such that from every point on the boundary OD
only positive (negative) semitrajectories of (1) are leaving D.

THEOREM 1 [13]. Consider the special case of system (1):

(2) q(y)- E(x), = -g(x) -go(X)-ge(X),

where go(x) and ge (X) are the odd part and the even part of g(x), respectively. Suppose
(2) satisfies

(1) E(0)=0, E(-x) E(x), yq(y)> 0 (y 0), and q(y) increasing for y;
(2) g(O)=O, xg(x)>O for xC_[a, 0] (3’1 <a-<0) and g(x)>0.
Then (2) does not have closed orbits that intersect with x a andx 0 simultaneously.
THEOREM 2 14]. Suppose that system (1) satisfies
(1) yq(y)>0 (y0) and q(y) is increasing for y, and there exist Xo, Xl,A,

with 0 < Xo < xl < 3"2, 0 < A <= Xl such that F(O) F(xl) O, f(x) < 0for x < xo, f(x) > 0
for x > Xo, g(0) g(A) 0, xg(x) > 0 (x O, A);

(2) The system of equations

g(u) g(v)
F(u)=F(v), f(u)-f(v)’ 3’,<u<0, Xl(t)(3’2,

has at most one solution;
(3) The function f(x)/g(x) is increasing for x (xl, 3’2).
Then (1) has at most one limit cycle, and if it exists it has a negative characteristic

exponent.
COROLLARY. If system (1) satisfies condition (1) in Theorem 2 and the function

g(x)/f(x) is decreasing for 3"1 < x < 0 and xl <x < 3"2, then (1) has at most one limit
cycle, and if it exists it has a negative characteristic exponent.

THEOREM 3 15]. Suppose that system (1) satisfies
(1) yp(y) > O(y 0), p(y) is increasing for y , and there exist A, xl, 1, 2, x2,

with 3"1 ( X1 ( 1 ( 0 ( 2 ( X2 ( 3"2, 0 < A <= x2, such that F(Xl) F(0) F(x2)
O,f(x) < 0 for x (1, :2), f(x) > 0 for x (Y,1, :g2), g(0) g(A) =0, xg(x) > 0(x # 0, A);

(2) G(x) >-_ G(x2), where G(x) o g(s)ds;
(3) The system of equations

g(u) g(v)
F(u) F(v),

f(u) f(v)’ X1 < U < O, 22 < V < 3"2,
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has at most one solution;
(4) The function f(x)/g(x) is increasing for x (x2, Y2).
Then (1) has at most one limit cycle, and if it exists it has a negative characteristic

exponent.
Remark. If in system (1) q(y) y, then the last condition of Theorem 3 may be

weakened into
(4’) The function f(x)F(x)/g(x) is increasing for (x2, Y2).
THEOREM 4 [17]. Consider the system

(3) 2=y, =-g(x)-f(x)y.

Suppose there exist 3/1 ( Cl bl < al < 0 < a2 < b2 c2 < ")/2, such that
(1) xg(x)<O forx(a2, b2)(cl,al),xg(x)>O forx6(c2, T)U(Yl, Cl),
(2) f(x)<=O for xe(bl, b),f(x)>=O for xC:(bl, b2),
(3) F(a2) F(c2), F(Cl) F(al),
(4) The functions f(x), g(x)/(x-c2) and (X-Cz)(f(x)/g(x)) are increasing for

x (c2, y2), thefunctionsf(x), g(x)/(X-Cl) and (X-Cl)(f(x)/g(x)) are decreasingfor
x (,1, c).

Then (3) has at most two limit cycles surrounding all singular points.
Remark. It follows from the proof of Theorem 4 that it still can be applied as

c2= b2= a2=0 or c1= bl a =0.

3. Some properties of a cubic system with a cusp. The cubic system given in 10]
reads

(4) 2 y + ax2 + x ,x2- x

We can confine ourselves to the case a > 0 because for a 0 it is easy to see that (4)
has no closed orbits and for a<0 the transformation (x,y,a,A)(-x,-y,-a,-A)
can be applied to retain system (4) with a > 0.

For A 0, (4) has two singularities, O(0, 0) and A(A,-aAE-A3), where O is a
cusp and A is an antisaddle. A cusp is a nonhyperbolic singularity whose local topology
is determined by two tangent separatrices, a stable and an unstable one. By an

antisaddle, we mean a node, a focus, or a center. For )t 0, O and A collapse to form
an unstable nilpotent focus (a < v/2) or a nilpotent point with an elliptic sector (a >_- x/2),
as can be seen from the classification scheme for nilpotent singularities in Andronov [2].

By comparing the trajectories of (4) for A -0, a < /2, with the trajectories of the
system 2-y + axE, ))---x (which form a family of closed curves), it can be proved
that O is globally unstable for A --0, a < v/2; see Appendix A.

It is easy to check that A is a stable (unstable) elementary antisaddle if A(2a + 31) <
0(>0) and that for 2a + 31 =0 A is a stable first-order weak focus.

The qualitative behavior of system (4) at infinity is as given in Fig. 1, as can be
confirmed by using several blowups; see [6]. In fact, it can be shown that for all values

FIG. 1. Behavior at infinity of system (4).
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of a and A, the Poincar6 equator is attracting. The blowups are described in detail in
Appendix B.

The translation of A to the origin and a rescaling of time, =-z, reduces (4) to
the following Li6nard system:

dx dy
(5)

dr
y F(x)

dr
g(x),

with

F(x) A(2a + 3A)x + (a + 3A)x2 + x3,
f(x) (x + A)(3x + 2a + 3A),
g(x)=x(x+A)2,

X
2

G(x) - (3x2 + 8Ax + 6A2).

4. Statement of the main result. In the following we will call a limit cycle that
does not intersect the line x + A =0 (in system (5)) small, and a limit cycle that does
intersect the line x + A =0 (in system (5)) large.

The main result of this paper is the following.
THEOREM 5. (i) For A >-- 0 system (5) has no closed orbits. (ii) Forfixed A < 0 there

exist al= al(A), a2--- a2(A), and a3= a3(A) with -A <a3<=aa<al and -A <<-a <-A,
such that

(a) For a >- -A system (5) has no small limit cycle and exactly one large limit cycle,
and it has a negative characteristic exponent;

(b) For a < a <-A(a al) system (5) has exactly one large limit cycle and exactly
one small limit cycle (one cusploop ); the small limit cycle has a positive charac-
teristic exponent; the large limit cycle is stable;

(c) For az < a < a (a a2) system (5) has two large limit cycles (a unique semistable
large limit cycle) and no small limit cycles;

(d) For a3 < a < a2 system (5) has no small limit cycles and the number of large
limit cycles is two, one (in which case the limit cycle is semistable), or zero;

(e) For a3 < a (a- a3) system (5) has no closed orbits (a unique semistable large
limit cycle).

By a cusploop, we mean a homoclinic orbit that consists of a cusp and its two
separatrices that connect. The theorem will be proved completely by six lemmas.

First, let us define the roots of F(x)= 0 and f(x)- 0:

a + 3A +v/(a 3A)(a + A) a + 3A -x/(a 3A)(a + A)
X X0 0, X22 2

and

21 =- a-A <-A

respectively. The roots of g(x) are x =0 and x =-A.
LEMMA 1. For A >--0 system (5) has no closed orbits.
Proof We first consider the case A 0; at this time (5) has only one singular point

O(0, 0) and xg(x) > 0 (x 0). Since

F(u)=F(v), G(u)=G(v), -<u<0, 0<v<,

i.e.,

u2+uv+v+a(u+v)=O, (/,/2+02)(/,/+0)=0, --0(3<//<0,

does not have a solution, (5) has no closed orbit by Rychkov’s theorem [11].
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For h>0, if 0<a<=3h, then F(x)=0 has no real roots except x=0; thus
g(x)F(x) > 0 for x R\{0, h}. Notice that

Ix(x, y)= 1/2y + G(x) C

represents a family of closed curves, and so from

d=-g(x)(x)<-_o,
d’r

we know at once that (5) has no closed orbits.
In order to discuss the case a > 3h, we consider the equivalent system of (5),

ax a(6) d-- Y’ dz- g(x) f(x)y.

System (6) has two singular points, B(-A, 0) and O(0, 0). Since at this time X < X2 < 2
-h, thusf(x) > 0 for -h < x <, it follows that (6) has no closed trajectory surrounding
O alone.

Next we consider the system

dx dy
x(x + h)2_2(a + 3h)xy(7) d-- y’ dz-

and the equivalent system

(8)
dx dy
d-- y-(a + 3A)x2,

dr
--X(X2+ h2) 2Ax2.

(6)

x(x+h)
-2(a + 3A)x-[3x2 + A(2a + 3A)]

ay
-2(a +3A)x =x (7)

it would follow that (7) has at least one limit cycle, but this contradicts the result
proved above. Hence (6), that is (5), has no closed trajectory. This completes the proof
of Lemma 1.

Next we will discuss the case A < 0.
LEMMA 2. For 0 < a <= -h system (5) has no closed orbits. For -h < a < -h system

(5) has no small limit cycle.
Proof. The proof of the first statement is the same as for the case h > 0, 0 < a -<_ 3A

above. After simplifying and by putting s u + v, r/= uv, the system of equations

(9) F(u)=F(v), G(u)=G(v), -<u<O, O<v<-h

can be changed into

rl=st2+(a+3h)+h(2a+3h)=Hl(), r/<O,

(10) (32 + 8A+ 6A2)
H(:),r/= 2(3sc + 4A

From Theorem 1 we know that (8) does not have a trajectory intersecting with
x =-A and x-0 simultaneously; therefore, (7) has no closed trajectory surrounding
B, O. Furthermore, we can prove that (8) has no limit cycles surrounding O alone, by
using a Dulac function B(y)=exp(-(2(a+3A)/A2)y).

Because for (8) O is a stable first-order weak focus, as can be proved using [5,
form. 3.4.11], it follows that singular point system B, O of (7) is stable.

Suppose that (6) has a closed trajectory surrounding B, O; then from
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The solutions of H(sC)=H2() are 2=-a-2A+/a(3a+4A)/3 and o=-2A.
Obviously, the numbers sc2 are complex for 3a +4A < 0, and because o>-A, (10) and
hence (9) have no solution. The second statement of the lemma follows from Rychkov’s
theorem 11 ].

LEMMA 3. For a >=-A system (5) has no small limit cycle.
Proof If P(x, y)=y-F(x) and Q(x)=-g(x), then for B(y) exp (-(3/Z)y) we

have div (BP, BQ) (B/A)(x + A)(3x2- A(2a + 3A)). By Dulac’s criterion, for A(2a +
3A)<0, system (5) has no closed orbits that do not intersect x+A =0.

LEMMA 4. For a <-Z system (5) has at most one small limit cycle, and if it exists
it has a positive characteristic exponent.

Proof By the change of variables, =--, y o-y, system (5) converts into the
system

(5’) d--- y- F,(x),
dt

g(x)

where F(x)=-F(x),f(x) -f(x).
It is easy to see that 0 < < x < -A 2 < x2, FI(0) F(Xl) O,f(x) < 0 for

x <, and f(x) > 0 for x >, xg(x) > 0 (x 0) for x e (-oo, -,).
An elementary calculation shows that

d (g(x) (x + A):

with H() 3x + 2(2 + 3X)x + X(2a + 3A).
The discriminant D of H(x) satisfies D 8a(2a + 3A) < 0, and, therefore, (d/dx)-

(g(x)/f(x)) < 0 ceainly holds for x (-, 0) U (x, -A).
The result follows from the corollary of Theorem 2 and the observation that we

have used the transformation =-.
LEMMA 5. For a -A system (5) has exactly one large limit cycle, and if it exists

it has a negative characteristic exponent.
Proof For a -A, (5) has no closed trajectory surrounding O alone by Lemma

3. It follows that the singular point system O, A’(-A,-aAZ-A3) is unstable. Notice
that for system (5) the singular points at infinity are repelling; so (5) has at least one
large stable limit cycle. We will prove the uniqueness of this large limit cycle by using
Theorem 3. It is easy to see that x < < 0 < 2 < xz, where f(x) < 0 for x (, 2)
and f(x)> 0 for x (, 2), and, therefore, condition (1) of Theorem 3 is satisfied;
see Fig. 2.

An elementary calculation shows that

(a + A)(3a2 + 4aA 3A)4(a + A)(a 3A)
G(x)-G(x2)=

12

The region S ={(, a)lA(2a+3A)<0, a>0} can be divided into

3a ]<A<0, a>0

and

2 3a }--a<A<- a>0
3 2 +/’

Obviously, for S($2) the inequality G(x)-G(x2)>=O(<=O) holds, and, therefore,
condition (2) of Theorem 3 holds for Sa.
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Y
F(x)

, .I’ X
X

x=-A-a x=-A

FIG 2. Relative positions off(x), F(x), and g(x).

After simplifying and by putting : u + v, uv, the system of equations

f(u) f(v)
F(u)=F(v), . < u <0,

g(u) g(v)’

can be reduced to

r/= :2 + (a + 3A): + X(2a + 3A) HI()

r/= -1/2(2a + 3A)(: + A) H2(:), r/<0.
It is easy to check that the functions Ha() and H2() have exactly one intersection
point with < 0; see Fig. 3. Therefore, condition (3) of Theorem 3 is also fulfilled.

An elementary calculation shows that

d (f(x)F(x)) q(x)

where q(x)=6x+(5a+211)x+21(5a+121)x-1(a-31)(2a+31). The numbers
=-I and 2=-(5a+121)/9 satisfy q’()=q’(2)=0. Fuhermore, -z=
(5a+31)/9> 0 and q(-)=-2a(a+1)>O. It follows that q(x) > 0 for x> x> 22
x, hence

& g(x)

i.e., condition (4’) of Theorem 3 is also fulfilled.

FIG. 3. Relative positions of HI() and H2(s).
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For the region $1 all conditions of Theorem 3 are satisfied and the lemma is
proved. To prove the lemma for region $2, we will reflect system (5) with respect to
the y-axis, yielding

dx dy
11 d- y F(x), dr -,(x),

with F(x)=-F(-x) and (x)=-g(-x).
It is easy to see that for system (11) G(xl)>= G(x) in the region $2. The other

conditions of Theorem 3 are also satisfied for system (11), as can be shown in a similar
way as above. The lemma is completely proved.

LEMMA 6. For -A < a <-A system (4) has at most two large limit cycles.
Proof. By a change of variables --r, y-+-y, system (4) changes into the system

dx dy _x2(x_ A)"(4’)
dr Y axe- x3’ dr

Consider the equivalent system of (4’)"

dx dy -x(x A) (2ax + 3x2)y.(12)
dr

y’ dr-
Let F(x) x2(x + a),f(x) x(2a + 3x), g(x) x2(x-/).

The roots of F(x) 0 are x -a < x2 0. The roots off(x) 0 are a -a </3
0. The roots of g(x)=0 are c a < d =0. For -a < a <-a, we have a < xl < ,k and

Notice that the first three conditions of Theorem 4 are fulfilled with

y -oo, cl A, b a, a2 b2 c2 0, T2 oo

and where a satisfies F(al)= F(A) and bl < al <0; see Fig. 4.
In the interval (0, oo),f’(x) 6x + 2a > O, (g(x)/x)’= 2x a > O,

xf(x)’ 2a + 3A

g(x) / (x a)2 > O,

so the functions f(x), g(x)/x and (xf(x))/g(x) are increasing for x (0, m). In the
interval (-,Z),f’(x)=6x+2a<3Z+(2a+3A)<O, (g(x)/(x-A))’=2x<O, (((x-
A)f(x))/g(x))’=-2a/x2<O, so the functions f(x),g(x)/(x-A) and ((x-
A)f(x))/g(x) are decreasing for x (-, A). Therefore, from Theorem 4 and its remark,

y

FIG 4. Relative positions of F(x) and g(x).
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it follows that (12) has at most two large limit cycles surrounding the two singular
points O, A. The lemma is completely proved.

Proof of Theorem 5. In the region K {(x, y)l-<x <-2;t, lyl<} system (5),
considered as a vector field Xa, is a so-called semicomplete family (mod x =0) of
rotated vector fields with respect to the parameter "a" because in the region K the
following assertions hold except on x 0"

raThe derivative of the angle between Xo and Xa with respect to a is strictly
negative for x 0,

mtan 0 - +c as a -* +, where 0 is the angle of the vector field.
From this we can deduce, see Perko 11 ], that attracting (repelling) limit cycles expand
(shrink) monotonically as a decreases. As a varies, limit cycles appear or disappear
in a singular point, in a separatrix cycle or in a semistable limit cycle. It follows from
Lemmas 2-4 that there must exist a unique a al(A) with -A-_< a <--A, such that
(5)a=a has a cusploop F. It is easy to see that F is unstable from the inside. We
conjecture that when the cusploop F exists, it is surrounded by a large stable limit
cycle, and hence F is also unstable from the outside. However, we were not able to
exclude the possibility that for some A the cusploop is semistable, i.e., a(A)= al(A).

Thus O, A’ form an unstable singular point system (a >= -A), an unstable singular
point-cycle system (a -< a < --A) or O, A’ form a stable singular point system (a < a).
The remaining conclusions of Theorem 5 can be deduced at once from Lemmas 2-6.

Remark. Because the parameter a rotates the vector field in the region K only,
we were not able to prove the uniqueness of the semistable limit cycle bifurcation set.
We conjecture that this bifurcation set is unique (i.e., a a3 in Theorem 5). If it could
be shown that (5) has no limit cycles intersecting x+2A =0, then the conjecture is
proved.

5. Concluding remarks. In this section we give the bifurcation diagram (Fig. 5)
and the corresponding phase portraits (Fig. 6) for system (4), using the conjectures
stated above. The bifurcation sets in Fig. 5 correspond to Hopf-bifurcation (H), the
cusploop (CL), and a semistable limit cycle (SS). The results follow directly from
Theorem 5. Notice that in order to transform (4) to (5), the transformation z =-t has
been used.

&
HCL

SS
[I

V

FIG. 5. The bifurcation diagram.

If in system (4), a and h are taken to be small parameters, then (4) can be
considered a partial unfolding of a nilpotent focus of codimension 4. We call it a focus
of codimension 4, copying some arguments in [8], since normal form theory (see [12])
together with the Tarski-Seidenberg decision theorem (see Appendix [1]) show that
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(a) (b) II

(e) III (d) IV

Y

(e) V

FIG. 6. Phase portraits of system (4).

this singularity lies on a semialgebraic set of codimension 4. We do not know whether
there exists a theorem that asserts that 4 parameters suffice to fully describe a versal
unfolding of such a singularity. We conjecture that the following system is a versal
unfolding of the nilpotent focus of codimension 4:

(13) 2 y + tXlX + ia,2x + x3, [d,3x At ,.x2 x3.

Using Theorem 5 and the well-known results concerning the Takens-Bogdanov system,
describing the unfolding of a cusp of codimension 2, it follows that system (13) can
have three limit cycles and that the distribution of limit cycles as given in Fig. 7 is
realizable. Obviously, system (13) can be brought into the equivalent form

(14) 2 y f2 A X "Jv AzX
2

X -- l -I- p2X -F X2 y.

In [7] Dumortier, Roussarie, and Sotomayor have studied system (14) with v2 fixed
(0 < /2 < 2%/) and considered this system as a versal unfolding of the nilpotent focus
of codimension 3. Dangelmeyer and Guckenheimer [5] also obtained some results for
system (14).

Appendix A. System (4) with & =0. For & 0 system (4) reduces to

(A1) d--- y + ax2 + x3, d-’
For a2 < 2 the origin O(0, 0) of system (A1) is a nilpotent focus. We will show that it
is globally unstable.
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(a) Bifurcation of case III

(b) Bifurcation of case IV

FIG. 7. Limit cycles for system (14).

Consider the following system:

(A2)
dx dy

X3= Q(X).d--- y + ax2= P(x, y),
dt

It is obvious that the trajectories of (A2) form a family of closed curves because
P(-x, y)= P(x, y), and Q(-x)= -Q(x).

The first integral of (A2) reads

1 a (ax2+2yV(x, y)=-log(x4+Zaxy+2y-)+--wtan- \ o ] =C,

with w /2-a and a< 2.
The derivative of V(x, y) along trajectories of (A1) satisfies

X6dV _O__V _O._._.Vx3__ >0 for a<2.d--- (A OX
y + ax+ x3)

Oy x4 + 2axy + 2y2=
It follows that the origin O(0, 0) of (A1) is globally unstable for a2< 2.

Appendix B. Singularities at infinity of system (4). System (4) reads

(B 1 9 y + ax + x3, f hx x

It is easy to check that (B1) has no singularity at the end of the x-axis. Therefore, it
suffices to use the Poincar transformation z 1/y, v= x/y, dt/d= z2, to study the
singularities at infinity. System (B1) reduces to

dz dv
(B2) -hz21)2 -t- zl)3, z2 -1- azv2 -I- )3 hzv3 q_ ,04.

dz dz

The singularities of (B2) on z=0 are I1(0, 0) and Ie(0,-1).
First let us study I1(0, 0).
Using a polar blowup, z r cos q, v r sin q, -Tr =< q _-< 7r, system (B2) changes

t:= r cose q sin q+ re(a cos q sin q9 +sin4 qg) + r3(-h cos q sine q9 +sin
(B3)

ff cos q / r(a cose q sine / cos q sin q).

The singularities of system (B3) on r=0 are A(0,-(7r/2)) and Ae(0, 7r/2).

into
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Linearization of (B3) near A1, with =-(r/2)+sc, yields

(B4) i" r2- r3- r9-- arE Ar3, 3 ..1.. ar2_ r.
If in (B4) we make the change of variables (r, t)-> (-r, -t), then we obtain the
linearization of (B4) near A (with (rr/2)+sc).

So, in order to study the topological character of A1 and A:, it suffices to study
the phase portrait of (B4) near the origin both for r < 0 and for r > 0.

A second blowup, r r/cos 0, sc r/sin 0, with -(rr/2) <= 0 <= 7r/2, changes (B4)
into

r 7 (cos3 0 cos 0 sin2 0) + r(-cose 0 a cos 0 sin 0 + a cos 0 sin 0 + sin4 19)

-A r/3 cos4 0 sin 0,
(BS)

0 -2 cos2 0 sin 0 + r/(cos 0 sin 0 + 2a cos2 0 sin2 0 + 2 cos 0 sin 0)

+ A r/2 cos 0 sinE 0.

The singularities of (BS) on r/=0 are C1(0,-(7r/2)), C2(0, 0), and Ca(0, 7r/2).
Linearization of (BS) near C1, with 0 =-(r/2)+ 8, yields

(B6)
r/2- r/5 ar/28 ’1282 - T83 -{" a283 q- A384,

--2r/8 + 282 + 2ar/82- 83 --Near C2 system (BS) has a linear part r, =-20, and it follows that C2 is a
hyperbolic saddle.

If in (B6) we make the change of variables (a, a, a)-+ (-a,-a,-a), we obtain the
linearization of (B6) near C3 (with 0 =(rr/2)+a).

A third.blowup, r/=/9 cos/z, 8 p sin/z, with 0 =</x =< rr, changes (B6) into a system
with four singularities on t9 0; DI(0, 0), D2(0, rr/4), D3(0, rr/2), and D4(0 7r). We do
not give the complete system after the blowup, just the linearization near D, 1, 2, 3, 4,
with/x =/*o+ er"

D: t5 p + o(I p, erl), & -3er + o(I/9, erl),

D3 /J 2/9 + o(I p, o-I), & -3er + o( p, erl),

D4: -P + (I P, erl), 6" 30 + o( p, erl),

(B7) D2:
per 1

/93 +3 2

v/ 4x/ - ap er + 3x/ 00
-2 q- O(I p, o"13),

6.=3 3o- 1 p2 a--a
-ap-t/ 4,/ +--"- p3_

3 p2er 3 3er- aper2---,+ o(Ip, o"13).

Obviously, D, D3, and D4 are hyperbolic saddles. D2 is a semihyperbolic saddle, as
can be seen after transforming

in system (B7):

1 p3:--g- +oO(Ip, o.,I)+o([pl3),
3o)
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p

(a) rt p cos , O -X+ p sin Ix.

C C3

- o

(b) ,/cos O, o -+,/sin O.

)
IhA2

(c) z cos o, v sin o.

V

(d) phase portrait near 11.

FIG. B1.

FIG. B2

After three blowups we have obtained only isolated singularities that are hyperbolic
or semihyperbolic, so we can determine the topological character of I1 in system (B2).
Notice that the topological character of I1 is independent of a and A.

In Fig. B1 the blow-down for the singularity I1 is sketched. After linearization of
system (B1) near I. (take v=-I + w), the linear part of (B2) becomes z’=-z, w’=
(a + A)z- w. It follows that I2 is a stable improper node, independent of a and A.

In Fig. B2 the topological behavior of system (B1) near infinity is sketched. The
Poincar6 equator is attracting for all values of a and A.
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ELIMINATING THE GENERICITY CONDITIONS IN THE SKEW
TOEPLITZ OPERATOR ALGORITHM FOR H-OPTIMIZATION*
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Abstract. In this paper the genericity conditions are eliminated in the skew Toeplitz operator algorithm
for H-optimization of[Oper. Theory" Adv. Appl., 49 (1988), pp. 21-43], [Systems Control Lett., 11 (1988),
pp. 259-264]. This paper gives an explicit formula for a class of weighted sensitivity minimization problems.
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1. Introduction. It is well known now that a number of problems in control
engineering can be reduced to certain generalized interpolation problems in H [1].
Namely, let w, tn H with w rational and m nonconstant inner. Then the H-optimal
weighted sensitivity problem amounts to the computation of

po inf w mq ll, q H,
and find the corresponding qopt that reaches the bound.

This problem has been studied from an operator point of view in a number of
papers (see [1]-[4] and the reference therein). Particularly, in [1], [3], [4] Bercovici,
Foias, Tannenbaum, and Zames introduced the skew Toeplitz operators and
developed several algorithms for the computation of po and qopt. The point of this
paper is to eliminate the genericity conditions in the algorithm given in [4] (see also
[2, XII]).

To be more precise, recall that po is the norm of a certain operator (which is
equivalent to the Hankel operator [1]). qopt can be computed from the corresponding
singular vector. Namely, S" H2 H2 denotes the unilateral shift (all of our Hardy
spaces will be defined on the unit disc D in the standard way) and PI-I" H2 H2mH2

H denotes the orthogonal projection. Let T S(m) PI_ISIH, then po W(T)I1" here
W(T) PnMw[ H, Mw is the multiplication operator by w. In [1]-[4], under some
specified genericity conditions an algorithm is given to compute p0 and qopt by reducing
the problem to the noninvertibility of an n n matrix; here n := max {degree p, degree
q} for relatively prime polynomials p and q such that w p! q. This paper eliminates
those genericity conditions, and also reduces the computation of po to the noninverti-
bility of an (n + l) (n + l) matrix (see Theorem 3). So the algorithm is now complete
(see 4 for the algorithm).

2. Some basic facts and equalities. Throughout this paper, for a linear bounded
operator A on a complex Hilbert space K, we denote its spectrum by r(A), its essential
spectrum by ere(A), and its essential norm by [IA[le. Recall that the essential spectrum
and essential norm are, respectively, the spectrum and norm in the Calkin algebraic
(i.e., the quotient of the space of all operators modulo the compact operators). In this

* Received by the editors April 22, 1991; accepted for publication (in revised form) March 31, 1992.
This work was supported by a grant from the Research Fund of Indiana University.

? Department of Mathematics, Indiana University, Bloomington, Indiana 47405.

1623



1624 CAIXING GU

section we present some facts from [2, XII, 3] that are essential for our work. Let

To q( T)(p-- W(T) W( T)*)q( T)*

p2q(r)q(r), -p(r)p(r)*

E CkTjT*’,
0,0

where
2(2.1) Ck p qiqk Pjk

and p, respectively, q are coefficients for z in p, respectively, q.
It is clear that T is not invertible if and only if p2I W(T) W( T)* is not invertible,

or equivalently, p2 tr(W(T) W(T)*). If p > W(T)]], then the noninveibility of T
is equivalent to p2 being an eigenvalue of W(T) W(T)*; the largest such p > 0 is equal
to inf w- mq], q H

By dropping p, we are thus lead to the following problem: given a skew Toeplitz
operator 1],

tl,

T E CTT*
0,0

with the property that 0 cr(To) if and only if zero is an eigenvalue of To (which is
equivalent to {z, C(z) 0} f’) {z OD, z o’(T)} b. Here by [8], [9], tr(T) {zeros of
m in D and essential singularities of m on OD), determine if 0 tr(To) or not. If
0 tr(To), find a nonzero y in H such that Toy O.

Now recall that the unilateral shift on H2 is the minimal isometric dilation of
T= S(m) [5], [6]. This implies that

(2.2) To PH Y CkSJS*k H.
0,0

In particular, Toy 0 for some y in H if and only if

(2.3) ., CSS*ky mg
0,0

for some g H2. If y is the coefficient of z in the power series expansion of y, then

SJS*ky SJ[z-k(Y --Yo-- zy, --zk-lyk_l)
(2.3a)

zJ-k(Y Yo-- zy," --zk-lyk_l).

Now let C(z), respectively Ci(z) (for 0 <- < n) be the polynomials of degree less than
or equal to 2n, respectively, 2n- 1 defined by

n,n 2n

C(z) E Ckz"+-k E azj,

(2.3b)
o,o j=o

2n--1

C,(z)= E Cz"+-+’= E ao,
i<k<--n,O-<j<--n j=l

where C;k is given by (2.1). We notice that for i-j < n, we have

(2.3c) ao a;_i.

Substituting (2.3a) into (2.3) and using the definition of C(z) and C(z)’s, we conclude
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that Toy 0 if and only if

n-1

(2.4) C(z)y(z)- E Ci(z)yi z"m(z)q(z)
i=0

for some g H2.
Now we can state the genericity conditions assumed in [4] (see also [2, XII]).

(A) C(z) 0 for all z tr(T) U {0}.

Under the assumption (A), since

C(T)=II(T-zoI),

where/3 0 and Zo runs over the zeros of C(z) (thus Zo is not in r(T) so each T- ZoI
is invertible), we deduce that C(T) is invertible. Obviously C(T)-’ commutes with T.
By Sarason’s theorem [10] (see also [2, IX, 7.4]) there exists C(-1) in H such that
C(-1)(T) C(T)-. Moreover, using the fact that (C(-IC)(T) I, we see that there
exists an h in H satisfying

(2.5) C(-I)c 1 + mh,.

By multiplying (2.4) by C(-I), we obtain

(2.6)
n--1

y(z)- E (C(-1)Ci)(z)Yi m(z)[znC(-1)g(z)-hl(Z)Y(Z)] m(z)h(z),
i=0

where h(z) H2.
Applying PH to the previous equation gives

n--1 n--1

(2.7) Y= YiPHC(-1)Ci , YiXi,
=o =o

where using PHC(-’)(S)= C(T)-IpH (see [2] for the definition of C(-1)(S)) then

(2.7a) Xi PHC-IC, C(T)-IpHC (for 0=< < n)

does not depend on the particular choice of C-) and is obviously in H. Substituting
(2.7) into (2.4) produces

n--1

(2.8) E Yi(CPHC(-1)C-C)(z)=z"m(z)g(z) (z6D).
i=0

Using in addition the lifting property P,C(S)PH PHC(S), we have PHCPHC(-1)Ci
Ci=PCC(-’)C,-C=(P,-I)Ci in mH- (0=<i<n). So by (2.7a) and (2.8) there
exists a sequence of functions g in H2 such that

(2.9) CX C mg (for 0 -<_ < n),
n--1

(2.10) E Yigi(z) z"g(z) (z D).
i=0

3. Main results. First we will eliminate the condition C(0) 0 in A. Namely, we
assume C(z) has a zero at zero of order k (k-<-n) and

(A1) {z, C(z)=O}CI o’(T)= d.
Let us introduce some notations. For a D, f H2, let f=Y )i=of(Z-C be the

power series expansion off at a. Define Hs(a)" H2---> H2 by
s-1

l"Is(O)f’-" f(z--ol)i--[fo "fs--1]"
i=0
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It is clear from the definition that for f, h H2,
rI(a)/, h=[foho,Aho+foh,"

fm:--i fl fo
Let lI.(0)gi(z)= [gio, gil,’’’, gin+,] and 1-I.(0)X,(z)= [X,.o, X.,,""", X,.-,]. Notice
that under the assumption (A1) all equalities in 2 are valid Applying 1-I.(0) to (2.10)
and (2.7), respectively, we get

n--1

(3.0a) 2 Yigo 0 (0 <-- j < n),
i=0

n-1

(3.0b) E YiXij Yj (0<= j < n).
i=0

It seems that we get 2n-equations for n-unknown [Yo,"" ’, Y,-a]. Soon we will
see that some equations are redundant.

Notice by (2.3b, c) that the first n coefficients of polynomials Ci(z) are
n--1 n--1 --i

(3 1)
H.(0)Ci(z)= Z ajz= z’ Z azJ

j-----i

=[0. 0, ao," ", a,,-1-] (0_--< i< n).
THEOREM 1. Under the assumption (A1) if Toy 0 for some nonzero function y in

H, then y is given by (2.7), where [Yo,"" ", Y,,-1] is a nonzero solution of

(3.2a) E yggij 0 k <= j < n
i=0

and
n-1

(3.2b) Z YX Y n k <= j < n ),
i=0

or, equivalently,

(3.2)
Hg 3

[y’" "’ Yn-1]’=0’
where [Yo y._ is the transpose of vector [yo Y.-1] and

got: gn- l,k

Gn-k
go,n-1 gn-l,n--1 (n-k)n

0 1 0

Hk 0 0 1

Xo.,,-1 X-l,-lJ ".

0 0 1

Conversely, if [ro,. ., r,_] is a nonzero solution of (3.2), then the function y given by
(2.7) with y ri (0 <= < n) is a nonzero function in H satisfying Toy 0 and has its first
n Taylor coefficients given by Yi ri (0 <- < n).
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Proof. From the above analysis, it follows that if y is nonzero in H such that
Toy =0, then y is given by (2.7), and [Yo,"" ", Yn-1] is nonzero satisfying (3.0a) and
(3.0b); hence (3.2a) and (3.2b).

Conversely, let y =Y rixi. Observe that (A1) implies ao al ak-1 =0. By
(3.1), C(z) zkd(z), Ci(z) zkdi(z) (0 <-_ < n), where d(z), di(z) are polynomials.
Therefore, (2.9) becomes

zk(d(z)xi- di(z)) mgi (0 <- < n).

Thus

(3.2c) g0=0 for 0_-< < n, O<=j<-k-1.

Hence (3.2a) is equivalent to (3.0a). So by (2.10) and (2.9) we have
n--1 n--1 --1

(3.2d) C(z)y(z) riCi(z) X ri( fxi Ci) rimgi z’mg
i=o i=o i=o

Since (2.4) holds if and only if Toy =0, it suffices to prove that the first n Taylor
coefficients of y, namely, Yo, Yl,’", Y,-1 coincide with ro, rl,..., rn-1. Applying
II,(0) to (3.2d) yields

n--1

II,,(O)C(z)y(z)- Y’. r,II,(O)C,(z)=O.
i=0

Notice that
n-1

rII,(O)C,(z)= E r,[O O, ao, a,_l_,]
i=0

=A[ro,’’., r,_]’

where

By (3.0) and (3.1) we obtain

ao 0

an-1 al ao

(3.2e) A[yo- ro, , Y-I r,-1]’= 0.

By (A1), ao ai ak-1 0 but ak # O. So by (3.2e), y r (0 _<- < n k). But yi r
(n-k <- i< n) is exactly (3.2b). Thus y= r (0_-<i< n). This also shows that y=0 if
and only if [Yo,""", Y,-1] 0; therefore, y is nonzero. []

Remark 2. For k 0, Theorem 1 reduces to Proposition 3 in [2, XII, 3]. For the
k> n we have C(z)=-O (see 4 below). Of course in this case, Assumption (A1) is
not satisfied, but we can nevertheless characterize ker To. Namely, now by (2.4) Toy O,
y e H, if and only if

n--1

E y,C,(z)= z"m(z)g(z)
i=0

for some g(z) H. By (3.1), C/(z) z"di(z) (0 <- i<n), where di(z) are polynomials
of degree at most n- 1. So we have

n--1

(3.2f) Z yd(z)= m(z)g(z).
i=0

Now let l(z)==o yd(z). There are two situations.
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(i) If re(z) is a Blaschke product of degree at most n- 1, namely,

i=1 1-6iz/
l+’"+ls <-n-l,

then Yi satisfying (3.20 for some g e Ha if and only if y is a solution of the system

(3.2g) l(J)( ai) 0 1 <-- <-- s, 0 <--_ j < li,

where l(J)(ai) means the jth derivative of l(z) evaluated at a.
(ii) If rn(z) is not a Blaschke product of degree at most n 1, namely, either re(z)

has a singular part or re(z) has more than n-1 roots in D; then (3.2f) is valid for
some g e H2 if and only if Y yd(z) 0, i.e.,

n-1
(3.2h) a,j+,y 0 0 <= j < n,

i=0

where a,j+, is given by (2.3c).
Notice that in both cases we do not assume m(0)#0. Let us denote by Y1

(respectively, Y2) the set

Y1 (respectively, Y2) {y # 0, Y e H, y(z) has its first

(3.2i) n-Taylor coefficients Yo," ",

satisfying (3 .2g) (respectively, (3.2h))}.

From the above discussion, we see that

(3.2j) ker To := {y 0, y H, Toy 0} Y (respectively, Y2).

Next we consider another nongeneric case, namely, we make the assumption (A2)"

(A2) C(0) # 0, {z, C(z)=O}f’l{r(T)}={a}.

(Recall that by 2, a D.)
We need the following facts (for detail see [2, X.1]).
LZMMA 3. Let rn( z) be an inner function in H such that

(l,z_ai (z) rno(z)rn(z) (rno(z) rn(z))rn(z)
= 1- 6iz/

rn and =1.

Let

Then

[(Z--Ol’i) li-j-1 ] (Z=OlS) is
o’ 1 6z) s=o \ 1 ff.sZ/

s#i

0 <-i<-_k, 0 <-j<l.

H(m)= H(ml)mlH(mo)= H(ml)@m{ Cio’o, CiC}.
Now assume (A2) holds. Let m(z)=(z-a)/(1-6z)m(z), with ml(cX)0 by

virtue of (A2), l>= 1. Let

o) =(z-a)t-9- O<--j<l.

By Lemma 3.2,

11 ml }H H(m) n(ml)@ flj &j, flj C Hi@ Ho.
tj=o (1 5z)

Let PH, be the corresponding projection PH," H H, i= O, 1.
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Let y in H such that Toy 0. The idea is to decompose y into

(3.3) Y=Pn’Y+PY=PI-I’Y (1- cTz)’ j=O
and for Pn,y to apply the techniques in 2. By (2.4), we have

=o 1-z
g(z).

Since (S(m))= {zeros of m in D and essential singularities of m on OD}, we have
{z, C(z) =0} (S(m)) by viue of (A2). Thus as for (2.5), there exists C(- H
such that

(3.5) C(-C 1 + mh.
Hence

(3.6)
y(z)- i=OE C(-1)CiYi ml(z) z" z-a_

6z
C(-1)g(z)-hl(z)Y(Z)

=ml(Z)h(z).

Applying P to the previous equation yields

n--1 n--1

(3.7a) Pn,y(z)= YiPH,(C(-1)Ci)(z) Y’. YiXi,
=o i=o

where Xi H1--H(ml). Substituting (3.7a) into (3.3), we obtain

(3.7) Y=
i=o (1 az)l.j =o

Substituting (3.7) into (3.4) and multiplying both sides by (1- z) gives

(3.8)
mlC(Z) fl +(1-ez)’ E (Cx-C)(z)

kj=0 i=0

z"(-)’m,(z)g(z)

as for (2.9), we have that there exists g H such that

(3.9) cx,- c, m(z)g,(z) (o < n).

Therefore, by combining (3.8) and (3.9), we have

l--1 --1

(3.10) C(z) +(1-6z) yg=z"(z-a)g(z).
=0 i=0

Let us define H(a)C(z)=[ao(a),.’’,a_(a)] and introduce the matrices
A(a, x l, C(z)) and M(a, s x l, fo," ,f_,), where fo," ,f-, H,

ao(a) 0

A(, xt, C(z))
a,(,) "..

a,_,() a,() ao()

[ n,()fo ]’M(< x s,,... ,f,_,)=
n,()L_,
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Let A A(0, n x n, C(. )), N M(0, n x l, tro,. ., rl-1), and

M M(O, n x n, (1 6z)lgo, ., (1 6z)lgn_l).

Applying IIn(0) to (3.10) gives
l-1

Y. flA[IIn(0)cr]’+ M[yo,’’’, Yn-a]’-" 0.
j=0

Observe that Y-__Io/3[II(0)cr]’ S[flo,"’,/3,_1]’; hence

AN[flo, 1/-1]t’- M[yo, Yn-1

that is,

(3.10a) [AN, M][flo,"" "., fit-l, Yo,’", Y,-]’ 0.

Let As=A(a, lxl, C(z)), Ns=M(a, lxl,ro,’’’,trl-1), Ms=M(a,ln, (1-
tz)/go, (1- tz)lgn_l). Similarly, applying Yl/(c) to (3.10) produces

(3.10b) [AN, M][o,’’’,/-a, Yo,""", Y,-a]’ 0.

Finally, we get the singular system for the skew Toeplitz operator Tp,

()
N M

[o,...,,-,o, .,._ =o.

Remark 4. For the more general case, namely,

c(oleo, {, c(zl=ot (r={o,...,

B(z). Obviously,let m (z), be as in Lemma 2. Let B(z) , (1 z)’, and
l. Let% are polynomials. Reindex % to be o, _; here

N M(0, n x l, o, ", -),

M M(0, n x n, (lgo,""", ()g-),

N M(, l, x l, o, ", ,-),

M M(, l x n, (zgo, ", (z)g-),

(, x , C( (0i.
Then, similar to (3.11), we get the (n+l)x(n+l) matrix of the following form

AN M

AoNo Mo

AiN Mi

AkNk Mk

For simplicity we shall present the details only for the case when assumption (A2) is
valid. Then we are able to present our second theorem.

THEOREM 5. Under the assumption (A2), if Toy =0 for some nonzero function in
H, then y is given by (3.7), where [flo,"" ", flt-, Yo," ", Y-] is a nonzero solution of
(3.1 1). Conversely, if 0o," , 01-1, o," ", -] is a nonzero solution of (3.1 1), then
the function y given by (3.7) with y (0 < n) and fl O (0 j < l) is a nonzero

function in H satisfying Toy 0 and has its first n-Taylor coecient given by y
(0 < n) (hence the fl’s in (3.3) equal the given O (0 j < l)).
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Proof. The first part easily follows from the above discussion. Conversely, if
[0o,’", 01-1,6o,’", 6,’_1] satisfying (3.11), then (3.10) and (3.8) with flj and Yk
replaced by 0j and 6k, respectively, (0_<-- j <_-- 1, 0 <= k <_- n 1) are valid with some
g H2. Introducing

yields

6C(z)=z,’(z-a)(3.12a)
C(z)y(z) 1

i=o 1 z ml(z)g(z)

=z,’m(z)g(z).

Again, like in the proof of Theorem 1, applying I-I,’(0) to (3.12) we obtain

A[yo 6o, y,’_ 8,,_ ]’ O,

but this time by (A2) ao0; this implies that A is invertible, hence yi 6i (0=< i< n).
n--1 --1Therefore, PIY =o YiXi =o 6iyg. This in turn shows y is given by (3.3) with

(0 _-< j < l), and thus by (3.4), (3.12) implies Toy 0. By (3.7) and the fact that H Hx
Ho, it is clear that y is a nonzero function in H ifand only if[flo, , ill-i, Yo, ",

is nonzero. This completes the proof.
Following [3], [4] we shall call the systems (3.2) and (3.11) the singular systems

associated to the skew Toeplitz operator To. Notice that in the more general case when
we assume only C(0)S0, the system (3.11) must be replaced with that given in the
Remark 4.

4. The computation of singular systems. In the singular system (3.11) the matrices
N and N are easy to compute. In order to complete the algorithm, we have to find
the functions g (0<-i< n). To illustrate the idea clearly, we introduce the following
properties:

(B1). C(z) has a zero at 0 of order k (k -< n), and other zeros of C(z) are simple;
(B2). The zeros of C(z) are simple, different from zero.
Condition (B2) is one of the genericity conditions in [3], [4]; the simplicity of

the zeros is only a technical simplification there as well as here (see Remark 8 below).
Also we notice that C#(z): z2,’C(1/$) C(z) since in (2.3b) Cjk--’kj by (2.1); we
have that under the condition (B2), C(z) has 2n zeros Zl,’", Zp, zp+l,’",
1/1,""", 1/p, Izi]< (1-< i=<p), and Izl (p+ l<-_i<-2n-p). Under the condition
(B1), notice that C(z) is of degree 2n-k, in addition to zero; C(z) has 2n-2k zeros
ZI,’’" Zp, Zp+l,’’" Z2n_2k_p, 1/,’.., l/p, [Zi[< 1 (1 _-< i<--p), and [z/l= 1 (p+ 1 -< i_-<
2n-2k-p) (see [3], [4] for details).

PROPOSITION 6 (see [3], [2, XII.3]). Under the assumptions (A2) and (B2), the
polynomials gi (of degree at most 2n 1) (0 <- < n) in (3.9) and in (3.11) are uniquely
determined by the following 2n interpolation conditions"

gi(Zs)
C(zs) ( O<= < n )l<_s<=2n_pm,(z,)

(4.1)

gi(1/s)=-m,(z)Ci() (0<--i<n).l<=s<=p

For the next proposition, we need IIk(O)m(z)=[too" mk-].

n--1 ml(g l--1

(3.12) Y
i=o (1 ciz)i j=o
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PROPOSITION 7. Under the assumptions (A1) and (B1), the polynomials gi (of
degree at most 2n-1) (0_-<i< n) in (2.9) and in (3.2) are uniquely determined by the
following 2n interpolation conditions:

(4.1a) go =0 (0<= i< n, 0--<_j< k),
2n -1 -j

(4.1b) gij Y sai.j+s (0 =< < n, 2n k <=j <= 2n 1),

(4.1c)

gi(zs)
G(z,)
m(zs)

gi m(zs)C
1

(0--< i< n, l<=s<=2n-2k-p),

(O<= < n, l <=s<=p).

Proof (4.1a) is from (3.2c). For z e it, by multiplying (2.9) with r(eit), we get

gi Crxi- rCi (0 <= < n),

where rhxiK is the orthogonal of H2 in L2, since xiH=H(m). Also, since
C#(z) z2"C(1/)= C(z)= Y;:-"o a.izi, we have a2,,-i /i (0<= < n); so by (A1), ai =0
(0<=i<k) implies a2,,_i=O (0<=i<k). Thus C(z) is a polynomial of degree 2n-k.
Since Ci(z) is of degree at most 2n 1, the coefficients of e ’’t in the Fourier expansion
of g are all zero for m>=2n, and they come from -rCi(e") for 2n-k<=m<=2n-1.
By direct computation we have (4.1b). For (4.1c) see [3] and Proposition 3.4 in
[2, XII.3]. The proof is complete.

Remark 8. The assumption of simplicity for the zeros of C(z) is not essential.
Indeed, for instance if z is a zero of multiplicity 2, then from (2.9) CXi- Ci mgi we
have also that C’,’i. + CxI-C’ m’gi + mg’i, and thus we obtain the two interpolation
conditions for gi at z z,, namely,

gi(Zl)
m(zl)

and

1
g(zi) [-C(zl)- m’(zl) C/(Zl)]

m(zl)

m,(zl)7 1
--C(z1)- Ci(z1)

m(gl) J m(za)’
and similarly other two interpolation conditions for gi at 1/1. The general case is
handled in a similar way. For details see [3].

Also, by combining the techniques of Theorems 1 and 5, we can handle the most
general case. This is the case when

{z, C(z) 0} (T) {0, ,,,..., ,}.

Remark 9. We would like to mention here a method for constructing c(-l(z)
and hl(Z in (2.5). More precisely, let Zl"’Zp (p-<2n) denote the roots of C. Then

C(_)(z 1 -X(z)m(z)
hi(z) -X(z)

C(z)

where X(z) is a polynomial obeying the following interpolation conditions

1-X(zi)m(zi)--O 1 <= i<--p.
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Thus Pn(m) C(-I)(z)Ci(z) PH(1 X(z)m(z))Ci(z)/C(z) (0-<i< n). For details see [1]
and the references therein.

5. The algorithm. We can now summarize the above discussion and present the
computational algorithm for H optimization.

First compute 11WI] max {1W(z)[, z D} and Wll =max {1W(z)[, z O-e(T
o’(T) OD}. Then for any p such that Wl]oo->_ p > Wile, compute the zeros of the
polynomial C(z). (C(z) is given by (2.3b) and (2.1), hence depending on p.)

Case 1. If (A) holds, then compute the Lagrange polynomials go," ",g,-1 deter-
mined by (3.14c) with k =0 and by Remark 8, and define (3.2) with k =0 accordingly.
Retain p if (3.2) with k 0 has a nonzero solution, that is, if the n x n matrix G [g0]
is singular. Denote the largest such p by p.

Case 2. If (A1) holds, then compute the go,’",g-I by (3.14a, b, c) and by
Remark 8, compute C(-1) and PHC(-1)Ci (0 < < n) by Remark 8, and hence get the
system (3.2). Retain p if (3.2) has a nonzero solution. Denote the largest such p by p2.

Case 3. If (A2) holds, then obtain go," ", g,- by (4.1) and Remark 8. Compute
(3.11) accordingly. Retain p if the (n + l)x (n + l) matrix

AN M
is singular. Denote the largest such p by p3.

Case 4. In all other cases, use Remarks 8 and 9, and adjust accordingly the
computations from the previous cases. The largest p obtained is denoted by p4.

If none of p (1 -< -< 4) exists, then

Po inf {ll w mq II q H} w lie.
If some Pi exists, then po max,__<,_<_4 p,> IlWlle-In this case, we also have [2], [10]

qopt is unique.

(W(T)-w(z))x(z)
qopt-- m(z)x(z)

where x(z)= W(T)*y(z) and y(z) is any function in H corresponding to the singular
value po, namely, y(z) is given by (2.7) or (3.7) accordingly.

Next we will apply the algorithm to explicitly solve the weighted sensitivity
minimization problem for the weight of the form

az+W(z) a , O.
yz+8’

For background material and similar results by using different methods, see [3], [4],
[5]-[7], [11].

Tp yr+ 6 /r* + g) 1-5 aT+ Cl ff. T* +
P

A + BT+ BT* + CTT*,

where

A= 1612-
1 1 c := =- ==, n:--

C(z) Bz2 + Fz + B, where F A + C, Co(z) B + Cz. The zeros of C(z) are
z, z= (-F We always assume levi -< [z=l. Then z2 1/e if zl # 0.
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Case 1. (A) holds. If z Z2 (that is, if IF[ 21B]), then the system (3.2) with k 0,
n 1 has nonzero solution if and only if

Z10--- go(0)--"" z2 C(Za)-m(z,)Co(z2)
z, z, m(z,) z2-

B (m-c /F2-4lBlZ l +lm(z)li)=-B(z-z)m(z)(-[m(z)[2) + 2 -[m(z)
If IF[ 2IBm, then z z=-sign (f)(Inl/n), where

signF={ 1 F>0,
-1 F<0.

Then the system (3.2) with k 0, n 1 has a nonzero solution if and only if

0= go(0)= go(z)-g;(zl)z1

( m’(z))- Co(z)- Cz + Co(z)z m(z

(B m’(x) )Int +(C-(sign F)IBI)Bm(z)
Case 2. (A1) holds, i.e., B=0, m(0)0; hence C(z)=Fz, Co(z)=Cz=

(c/)C(z). So Xo(z)= P.c-l(z)Co(z)=(c/)P.C-(z)C(z)=(c/F)P.
(C/F)(1 m(z)m(O)). The system (3.2) reduces to

or, equivalently, (for Yo 0)

If m(0) 0; B=0, F=0, i.e., C(z)O (for instance, for w(z)=(z+)/(z+/)).
If O= I, then C(z)O. For w= z, if p=, then C() 0). Then by F= A+ C
O, To =A(I- *), and Toy=O for y0 if and only if (I- *)y 0 (since A B =0
implies =7). We know by [9] that (I-*)=u.@u. is a rank one operator,
where u, (1 m(z)-m(O)). Therefore, ker To is the ohogonal of one-dimension space
{cu., c C} in H(m), which is always nonempty when dim H(m) is greater than one.

Case 3. (A2) holds, i.e., C(z)=Bz+Fz+=B(z-z)(z-z),
m(z)=((z-z)/(1-z))m(z), with m(z) 0 (i= 1,2). Then we have

(z- z--N M(0, x h, o," ",- [(-z’-, ],

0 0

2BZl + Fz[’"’...
A, A(z, x l, C(z)) B "’... "’....

0 B 2Bz+Fz 0

0 1

1

N=M(z, xl,o,..., -1)= ."

1 0

1
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M M(O, I x 1, (1- lz)lgo(z))-- go(O),

M;I= M(zl, lx 1, (1-iz)lgo(z))

(1 --IZll2)Igo(Z)

where go(z) is a polynomial of degree 1 given by (3.13); in particular, go(zl)
-Co(Zl)/ml(z). Therefore, the (1 l)x (1 l) matrix in system (3.11) is

B(-Zl) 1-1
,’’’, B go(0)

0 ,..., 0 (1 --[Zll2)lgo(Zl)
2Bz + Fz *

B *

0 2BzI + Fz B 0 *

whose determinant equals to +(1-lz,12)lz-’B(2BZl+ Fz1)l-lgo(Zl).
Notice by 0 < IZll < 1, 2BZl + FZl # 0 (since 2B + F 0 implies Zl z2 but [z2]

I1/Zll > 1); hence the system (3.11) has a nonzero solution if and only if go(zl) -0, i.e.,
Co(z1)-0. So Zl--B/C, but

-F +x/F2-4IBI2 -F-x/F-4IBI2

Z when F> 0, Zl when F < 0.
2B 2B

In both cases we have AC IBI2, which is true if and only if

By simple algebraic manipulation, we obtain a6- fly. This is a contradiction.
Case 4. B=0, F#O, m(z)=zml(z) with l_->l and m(0)#0. Then C(z)=Fz,

Co(z) Cz as in Case 2. For this case we have not written down an explicit singular
system. As we mentioned in Remark 9, we have to invoke the techniques of Cases 2
and Case 3. The following shows how to do this in principle for the general weight.

Let y be such that Tpy=O. Observe that (3.7), (3.9), and (3.10) are still valid,
namely, we have

l-1

(*) y= yoXo(z)+ m,(z) E [jZI-j-I
j=O

1-1

(**) FZ E jZI-j-I-Jt- yOgO(z) zl+lg(z)
j=o

for some g(z) H2, where, by (3.9) and (3.14a, b), go(z) is a polynomial of degree 1,
go(0) =0, g(0)=-m(0). C. Therefore, by (,) and (**),/3j=0 (0-<_j-< 1-2) and

F,_ + yog(0) 0, m(O),81_ + yo(Xo(0) 1) 0,

where by (3.5) C-)(z)C(z)= 1 + m(z)h(z). So

C C
Xo(Z) PHm,)C-’)(z)Co(z) =- PH,,,)I = (1 rn(z)m(O)).
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The above linear equation for (fl-l, Yo) has a nonzero solution if and only if

F g)(0)
ml(0) Xo(0)- 1

which plus B 0 leads to 36 yfl. This is again a contradiction.
In conclusion for the weight of the form w(z) (Oz + )/(yz + 6) in Cases 3 and

4, ker To {0}.
Remark 10. In Case 4 there is a simpler way to show ker To 0. Recall from [9]

that I TT* 1 (R) 1, where 1 is the function with constant value 1; thus To A + CTT*
A+ C(! 1 (R) 1), and for y O, Toy 0 if and only if

Fy(z) C(1 (R) 1). y(z) C(y(z), 1). 1.

So by F0, (y(z), 1)0, and F(y(z),l)=(Fy(z),l)=C(y(z),l)(1,1), i.e., F=C,
that is again A 0, which is impossible as in Case 4.
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ON THE ASYMPTOTICS OF THE JACOBI FUNCTION AND ITS ZEROS*

R. WONG? AND Q.-Q. WANG’I"

Abstract. Explicit and realistic error bounds are constructed for a one-term and a two-term asymptotic
approximation of the Jacobi function tp"")(t) as/ oo, uniformly for (0, oo). A similar result is obtained
for the zeros tw,k of this function as/x 0% which holds uniformly with respect to unbounded k. Exponentially
decaying error bounds are also given for asymptotic approximations of q"’’)(t) as t-->oo and of t,k as
k --> oo, which are uniform for/z _-> 6 > O.

Key words. Jacobi function, uniform asymptotic approximations, error bounds, zeros

AMS(MOS) subject classifications. 33A30, 41A60

1. Introduction. Let a, fl, and/x be real numbers with/x > 0 and a -1,-2,. ..
The Jacobi function is defined by

(1.1) o,(’)(, t) 2Fl[1/2(a + fl + 1 i/x), 1/2(c +/3 + 1 + i/x); a + 1", -sinh2 t]

for > 0, where 2Fl(a, b; c; z) is the Gaussian hypergeometric function This function
plays an important role in the interactions of special functions and group theory, and
for an excellent survey of this topic, we refer to Koornwinder [7].

The Jacobi polynomial P’’3)(x) can also be expressed in terms of the hyper-
geometric function 12, p. 63]

F(a+n+l)

and this formula furnishes the extension of the polynomial P’(x) to arbitrary values
of the degree n. From (1.1) and (1.2), it is evident that

(1.3) o’o)(t)= F(a + 1)F(1/2(im-c-/3 + 1))
F(1/2(i/z+ a -/3 + 1)) (i_,,_3_1)(cosh 2 t),

’)(t) is called the Jacobi function. This function is also relatedand for this reason, q.
to the Legendre function [8, (12.05), p. 170]

(1.4)
P-m(z) 2-’(z 1)"/2(z + 1) "/2

2Fl(m- n, m+ n+ 1; m+ 1; 1/2-1/2z)/F(a + 1),

and the relationship is

1.5) (sinh t) (cosh t) ’)
2, (t) F(a + 1)P_+,,(cosh 2t).

Recently, asymptotic approximations, complete with error bounds, have been
obtained for the Jacobi polynomial P"’)(cos 0) as n- oo, which are uniformly valid
for 0-<_0<=7r/2; see [4] and [2]. Corresponding results for the Legendre function
P"(cosh z) as n--> +oo, which are uniformly valid for 0 < z <, can also be found in
[8, p. 466] and [10]. The purpose of this paper is to present similar results for the
Jacobi function 0’)(, t) as/x--> +oo, which is uniform with respect to in (0, oo), and

* Received by the editors July 16, 1991; accepted for publication (in revised form) February 24, 1992.
This research was partially supported by Natural Sciences and Engineering Research Council of Canada
grant A7359.

? Department ofApplied Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.
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to use these results to obtain asymptotic approximations for the zeros tl,k of this
<’O)(t)function as IX-> o, uniformly with respect to k. Asymptotic expansions of

have been given previously by Trim6che [13] and Fitouhi and Hamza [3] using
differential equation theory. Based on an integral representation of the Jacobi function,
Schindler [9] (in the case when cr fl) and Stanton and Tomas [11] have derived
asymptotic expansions of -’)w. (t) as t-> 0, which is, in a sense, uniform with respect
to Ixt. However, no error bounds were constructed for these expansions, and no study
of the asymptotic behavior of the zeros t,,k was made in these investigations. In the
present paper, we shall also use the differential equation approach, and our work relies
heavily on the results of Olver [8, Chap. 12]. For completeness, we also include an

’o)(t) as - o, which is uniform in Ix > > 0, and aasymptotic approximation of q,
corresponding result for t,,k as k--> c. The problems studied in this paper have been
suggested by R. A. Askey.

(,t)(t) is the2. Differential equations. It is known that the Jacobi function
unique even C-function on R which satisfies

v"(t) + [(2a + 1) coth + (2/3 + 1) tanh t]v’(t)
(2.1)

+[IX2+(c +fl + 1)2]v(t)=0

and v(0)= 1; see [7, p. 2]. If we set

(2.2) u(t) (sinh t)/(cosh t)’/q’’)(t),
then it is easily verified that

(2.3) u"(t)+ ix)+ --asinh2 -o---5 tju(t)=O.
When a >-1/2, we also have u(0) 0.

To apply the asymptotic theory of Olver [8, pp. 438-440], we shall restrict ourselves
to the case a _>-0 and introduce the new variables

(2.4)
(-r) t, " < 0,

w()=(-)u(t).
The transformed equation is given by

d:W {ix: a2-1 O(’)’W(sr) ’<0,(2.5) dsr2- -+ 4st: +

" -j

where

(2.6) l{-14-az [ 1/4 -a2 1/4-/32 ]}g’(’)

" sinh (-’) cosh --)
Note that 4’(’) is analytic at " 0.

3. Asymptotic expansion. For negative ’, Theorem 4.1 in [8, p. 444] gives two
asymptotic solutions to (2.5), one involving the Bessel function J,(ixx/----) and the
other involving Y,(IX4-). To identify the function (-)iu(t) in (2.4) with one of
these two solutions or a linear combination of them, we note that from (2.2) and (2.4)
we have

(3.1) (-r)lu (t) (-sr)
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as r-->0-. Since J(x)--(x/2)/F(a+ 1) for x near zero, it can be shown, as in [8,
pp. 464 and 466], that

(sinh t)’+(cosh t)+1/2q’)(t)

(3.2) -2F(j+ l) t-{tJ(lzt) s=O

2 n-1 Bs 2)
Ja+l(/) E 2--"-T-F e2n+l,l(/z, --t2)

for t>0, where the coefficients As(’) and B(sr) are analytic functions in a region
containing " 0, and are determined by the recursive formulas

(3.3) B(’)=-A’(’)+(2-) O(v)A(v)- a+ A(v) (_v),

(3.4) As+l(’) aB() srB’(sr) + f @(sr)B() d’,

where

(3.7)

and

(3.8)

e2,,, (/x, -t2)l <= 3(a )tE-’(Ixt)M (Ixt)

{A(a)exp o,,(tBo)

X3(O) sup
x(0,)

The leading coefficients can be calculated explicitly For convenience, we put

(3.9) A=1/4-a, B=1/4-fl.

with Ao(sr) 1. The remainder in (3.2) satisfies the estimate

IE2n+l,l(/A,, )l < A3(a)(-’)-E’(/xx/)M(/x--)
(3.5)

-exp { Az,(a) T’o(x/ Bo)} ,o(Bn)2n+l

where the modulus function M(x) and the weight function E (x) are defined in [8,
Chap. 12, 1.3], E:(x) 1/E(x) and a,V(f) denotes the total variation of a function
f(x) on an interval (a, b). The constants Az(a) and A3(a) in (3.5) are given in [8, p. 443].
It is not easy to estimate or compute these constants; some propeies and values of
these constants can be found in the above mentioned reference.

Note that for each n, expansion (3.2) gives (2n + 1) terms, i.e., we always have an
odd number of terms. By using the same argument as in [8, Chap. 12], it is possible
to derive an expansion that yields an even number of terms, and the result is

’(t)(sinh t)+(cosh t)o+,
2r( + 1) t_{ tJ(t) l as(_t)

(3.6) .
,=0

2 ,-1 B(_t2)
+,(t) Z +.,,(, -t)

=o
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Since Ao(sr) 1, it follows from (3.3) and (2.6) that

 tlfo’Bo(-t2) -7 {A(-s-2+csch2 s)-B sech2 s} ds;

accordingly,

1 --1(3.10) Bo(-t2)=- {A(t -coth t)-B tanh t}.

From (3.4), we also have

Al(-t2) 1/2(a +1/2)t-l{A(t-1 -coth t)- B tanh t}

+1/4{A(t-- csch2 t)+ B sech2 t}
(3.11)

-1/4{A(1/2t-- -1 coth +1/2 csch t)

ABt-1 tanh -1/2B2 sech t} + C,

where

(3.12) C=a(1 ) 1 B2- -A+B --(A+ZAB+
is chosen so that Aa(0)=0, a condition needed in deriving (3.2).

4. Estimates for "l/’o,,(tBo) and "’o,,(Al). In order for the error bounds in (3.5) and
(3.7) to be of any practical use, the total variations Vo,,(tB,) and Vo,,(A,) should be
estimated. Here we illustrate only the cases involving Bo and Aa. First we recall the
property

(4.1) %.b(f) If’(t)ldt,

and observe the relation

T’c,o{4 B,(sr)} 7/’o,t{tB,(-tz)}.
From (3.10), we have

{tBo(-fl)}’= 1/2{a(-t-2+ csch2 t)- B sech2 t}.

Since -t-2+csch is always negative, it follows from (4.1) that

(4.2) Vo,,(tBo) <- 1/2{[a](coth t- -a) + [B[ tanh t}.

Consequently,

(4.3)

On the other hand, since both -a coth t-t-2 and --a tanh are decreasing in the
interval 0 < < o, we have 0_-< -1 coth -_-< and 0-< -1 tanh -< 1. Hence (4.2)
also gives

(4.4) o,,(tBo) <- - ([a[ + 3[B[).

For large values of t, the bound in (4.3) is preferable since it is independent of t. For
small values of t, (4.4) is a better estimate since the bound on the right-hand side
decreases to zero with t.
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Similarly, (3.11) (or (3.4) and (3.10)) gives

{Al(_t2)},= (+ c)ATl(t)+1/4{2(1/2 + a B AB} T2( t)

+1/4AT3(t)+1/4A2T4(t)+1/4(2B + B) Ts(t),

where

Tl(t) =-2t-3 + -2 coth + --1 csch2 t,

T2(t) -2 tanh t-t-1 sech2 t,

T3(t) -2t-3 + 2 coth csch2 t,

T4(t) -3- -2 coth t- - csch2 + coth csch2 t,

Ts(t) =-tanh sech2 t.

We now show that for each 1, , 5, the sign of Ti(t) remains the same for (0, ).
Clearly, T(t) can be written as

(-2 sinh2 + sinh cosh + t2)4
T(t)

4t sinh2

and the numerator here is equal to

-2(e2’- 2 + e-2’ + t(e2’- e-2’ + (2t)2.

By expanding e2t and e-’ into Maclaurin series and regrouping terms with equal
exponents of t, it can be easily verified that this numerator has the power series
expansion

-4+ 2n (2t)2n
=2 (2n)!

from which it follows immediately that

Tz(t) > 0, t>0.

In a similar manner, it can be proven that for > 0,

T2(t) > 0, T3(t) < 0, T4(t) < 0,

Hence

(4.5)

Ts(t) < 0.

fot [Tl(t)[ at= -- -1 coth t+1/2-<1/2,

o’
T(t)l dt -t-’ tanh t+ 1 _<- 1,

lT3(t)l dt=-t-2+csch2 t+1/2<--1/2,

o
ITa(t)l dt=1/2t-2-t- coth t+1/2 csch2 t+1/2-<1/2,

Ir(t)l dt= -1/2 sech2 +1/2 <=1/2.
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From (4.1), it follows that

(4.6)

and

(4.7)

Fo,, (A,) -< o,(A,)

=(:+ )IAI+IAI+A
+-1412(1/2 + )B-ABI+[2B + B2I.

It can also be shown that

(4.8)

where

F’o, A1) <= 2 V ce, i

v(c,/3) o(1/2+ a)lAI +12(1/2+ a)B-AB[
(4.9) +olAI +A:+I2B + B:I.
To do this, we return to (4.5) and put

x( r(tl , ,..., 5.

By expressing the hyperbolic functions in terms of the exponential function, it can
easily be shown that

X(t)
(et_ e_,) -4(e2’- 2 + e-2’) + 3 t(e’- e-2’)

2 -:t }+4t-t(e’-2+e
We now apply the argument in 4 used to show the signs of (t). This leads to a
Maclaurin series expansion with all negative coecients for the quantity inside the
above curly bracket. Thus, X(t) is a decreasing function in (0, ). In a similar manner,
it can be verified that for each 1,. ., 5, X(t) is a nonnegative decreasing function
in (0, m). Fuhermore, as 0+, we have

From (4.6), it follows that (4.8) is proved.. ers. The uniform expansions (3.2) and (3.6) can be used to determine the
(’(t) and the main tool in this regard is the followingzeros of the Jacobi function ,

result stated in Hethcote [6].
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THEOREM A. In the interval [a-p, a+p], supposef(t)= g(t)+ e(t), where f(t) is
continuous, g(t) is differentiable, g(a) 0, m min Ig’(t)l > 0, and

(5.1) E=maxle(t)l<min{Ig(a-p)l, lg(a+p)l}.
Then there exists a zero c off(t) in the interval such that [c- a <--E m.

In (3.2) we now take n =0. This gives

(sinh t)+1/2(cosh t)t+qf’)(t)
(5.2) 2F(a + 1) t1/2{j (/zt) + t_lel,l(tZ t2)}"

In terms of the phase function O,(x) defined by

O(x) -1/4r, O<x<-_x,

(5.3)
O,(x) =tan-1 { Y(x)J(x) J’ x>-X.,

where X denotes the smallest positive root of the equation J(x)+ Y(x)= 0 and the
branch of the inverse tangent is chosen to make O(x) continuous, the Bessel function
can be expressed as

J(x) E-(x)M(x) cos O,(x).(5.4)

It is known that

2
(5.5) O’s(x) rxM](x)’ x > X,

and

(5.6) O(j,s) (s-1/2)Tr, O(y,,s) (s- 1)r,

where j, and y,, are the sth positive zero of J(x) and Y(x); see [8, p. 437]. To
apply the above theorem to (5.2), we take

/z t_(sinh t),+(cosh t)+
(5.7) f(t)=2F(a+l)

E,(txt)M-l(tzt)q’’t3)(t),
(5.8) g(t) cos O,(txt),

(5.9) e(t)-- t-E(lt)Ml(lzt)ea,(lx, -t2).
From (3.5) with (-st)= (see (2.4)), it follows that

(5.10) le(t)[_<A3(c) exp {A2(a)OUo.,[tBo(_t2)])l/’o.,[tBo(-t2)],
which, coupled with (4.3), yields

(5.11) Ie(t)l <A()([AI/IBI) exp {A()(Ial/ [BI)}
In view of (4.4), the estimate (5.10) also gives

(5.12) le(t)l_-< x3(=)exp (IAI+31BI) t



1644 R. WONG AND Q.-Q. WANG

Differentiation and use of (5.5) give

2/z sin 0 (/zt)
(5.13) g’(t) tzt>X.7rlxtM(tzt)
Since A2(a)>= 7rxM(x) (see [8, p. 443]), we have

(5.14) g’(t)] > 2lsin 0 (t)l
A2(a) tX.

According to (5.6), the sth zero of g(t) is a=j,,/ and sin (j,)= 1. We now
choose p - with being suciently large so that

(5.15) ]sin 0(t)[ sin O(j,-)
for a p a + p. (Note that by (5.5), O(x) is an increasing function for x > X,.)
Coupling (5.14) and (5.15) gives ... >0,(5.16) m =min Ig’(t)l

=()

the minimum being taken over the interval [a- ps, a + p]. To verify that condition
(5.1) holds, we observe from (5.11) that

(5.17) E max le(t)l
2

if we choose

(5.18) A()(IAI + IBI).
From (5.12), we also have

eA3(a)([al + 3[BI) (j,, )E max le(t) N +-6 x
which of course implies

j
(5.19) E 0.5473x3(a)(lAl+ 3IBI),
if (5.18) holds and 4. Here we have made use of the fact that j,, jo, 2.40482
for a 0 and s 1.

On the other hand, since g(a)=0 by (5.6), we have

g(ap)=g’()p,

where a < + < a +p and a p <

_
< a. From (5.14) and (5.15) it follows that

1
(5.20) [g(ap)[ (a)
Thus, in view of (5.17), condition (5.1) holds if

e
(5.21) A=()A3()(IAI + IBI).

By Theorem A, (5.16), and (5.21), the Jacobi function ’)(t) has a zero t,, satisfying

j, < ea2(a)a3(a)(Ial +
(5.22) t..- 2
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if (5.18) and the second inequality in (5.15) hold. On the other hand, from (5.16) and
(5.19), we also have

(5.23) _<- 0.5473A2(a )A3( a )(IAI + 31BI) J’,
if, in addition, (5.21) holds.

Note that since X is a zero of J,(x)+ Y(x), from (4.3) in [8, p. 443] we have
A3(a) > zrXM](X,)/x/. Furthermore, since xM](x)>-2/rr if a _>-1/2 (see [15, pp. 446
and 447]), it follows that A3(a) -> x/. From the integral representation of J](x) + Y](x)
in [15, p. 444], it is readily seen that M](x) is an increasing function of a. If 0 -< a -<1/2,
then xM](x) is also an increasing function of x; see 15, p. 446]. Since X is increasing
in a (see [15, p. 508]), XM](X)>=XM(X,)>=XoM2o(Xo). Using Xo= 0.23 (see [8,
p. 438]), the last quantity is easily computed to be greater or equal to 0.93. Consequently,
in both cases, 0<_-a<-1/2 and a>=1/2, we have A3(a)=>e-1. Thus, condition (5.18) is
included in condition (5.21) for/x >-1.

The condition in the second inequality of (5.15) can also be made more explicit.
In view of (5.6), the Mean Value Theorem gives

(5.24) sin O.(j, + tz-) +1 +cos O.(j., + )O(j., + )--
for some 0<sc<tz-. Since j.,+>X, and xM(x)>-_2/zr if a->_1/2, we have, from
(5.5), 10’.(j.,+:)l_-< 1 if a_->1/2. For 0=<a-<_1/2, we can repeat an earlier argument (in
the previous paragraph) to show that xM(x) >- XoM(Xo) >= 0.93 for all x >_- X.. Thus
from (5.5) we have 10’.(j.,. + so)l_-< 0.685 if 0<_-a _-<1/2. In both cases, we conclude

(5.25) [sin O,(j,,+-)[_-> 1 /z

Therefore, (5.15) holds if/z/2-> 2. Summarizing the above results gives the following
theorem.

TnogM 1. If/x_-->max {2, eh2(a)h3(a)([A[+[B[)/2}, then the zeros t,, of the
Jacobi function (,t) satisfy the uniform asymptotic estimates (5.22) and (5.23)

Note that both results (5.22) and (5.23) are needed, since the quantity j,s/tZ may
tend to zero or infinity.

To show that the error estimates in (5.22) and (5.23) are of the correct order, we
recall a result given in [8, p. 453, Ex. 7.2], which states that the sth negative zero of
the solution in (4.05) of that reference is given by

2r/Bo(- r/) -3(5.26) " -% + 2 + ?O(/x ), /x - ,
2 ].L2.uniformly with respect to unbounded s, where Ts J,./ Since (-’) by (2.4),

it is readily seen that

r,Bo(-rs) + "ysB(-3,’)O(-4)
(5.27) t,s y- 2

+ Bo(-7)O(be-s) +
uniformly with respect to s, where 7s =j,,,/tz. By the argument used for (4.4), it is
easily shown that

(5.28) [no(-t:)l-<--(lal +3IB[).
Hence (5.27) gives

(5.29) t,,. /,
7Bo(-7)

2 + sO(l-4) + 0(j[--3),
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Using the same argument as for (4.3), we also have from (3.10),

(5.30) ]tBo(-t)]<=1/2([Al+[BI), t>0.

In view of (5.28) and (5.30), it is now clear from the second term in (5.29) that the
error estimates for the one-term approximation (5.22), (5.23) are of the right asymptotic
order.

By using similar arguments as above, error bounds have been constructed for the
two-term expansion (5.29). The details are, however, much more complicated, and can
be found in [14]. For this case, use has also been made of the results (4.7) and (4.8).

6. Large-t behavior. Turning our attention to the asymptotic behavior of q,
as t->, we first recall the following Liouville-Green approximation. Let f(t) be a
real, positive, twice continuously differentiable function on a finite or infinite interval
(al, a2), and let g(t) be a continuous real or complex function on (a, a2). Theorem
2.2 in [8, p. 196] states that the differential equation

(6.1)
du
dt---+ {f(t) g( t)}u 0

has two linearly independent, twice continuously differentiable solutions

(6.2) Ul(t)=f-l(t) exp {i f f(t) dt}{l+e(t)},
(6.3) u2(t) f-(t) exp {-i l f(t) dt}{l + e(t)},

such that

(6.4) lej(t)[<=exp{V,t(F)}-l, j= 1,2,

where a is an arbitrary point in the closure of (a, a), and

(6.5) F( t) -- at.

To apply this result to (2.3), we take a =o, f(t)= 2, and
2 2

g(t)
sinh2 cosh2 t’

and get the two linearly independent solutions

(6.6) ul(t) - ei’t{1 + el(t)},

(6.7) u2(t) - e-i"{1 + e(t)},

with [ej(t)l<-exp{t,(F)}-l. By (6.5),

F(t)
1 f 1/4-

dt,[ cosh

from which it follows that

IF’(t) de N-- AI csch dt + IB sech dt

<1__= {iAl(coth t- 1)+lBl(1-tanh t)}.
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Simple estimation gives

V,,(F) <_-
1

{41Al e --’ + 21hi e-2’ }

for t->_ 1/2. Thus the error terms in (6.6) and (6.7) satisfy

(6.8) lej(t)l<-_exp{(41Al+21BI)e-2’}-l, j= 1,2,

for t->_ 1/2. The general solution (t) of (2.3) is a linear combination of the two solutions
Ul(t) and u2(t) given in (6.6) and (6.7). Hence

(6.9) a(t)= 1--r {cl e itt + c2 e -’"t + 7(t)},

where cl and c2 are arbitrary constants and g(t) satisfies

(6.10) I(t)l<-(Icl+lc2l){exp [ (41AI +21B I) e-’ ] -1}
for >-1/2. Note that 7(t)= O(e-’) as t- c. Consequently,

1
eit. _ilxt e_2t(6.11) t(t)--7 {C1 -{- C_ e + O( )}

as t-> oo. Let u(t) be the function defined by (2.2), i.e.,

(6.12) u(t) (sinh t)+(cosh t)/3+pf’/3)(t).
From (1.1) and the connection formula (10.16) in [8, p. 167], it can be shown that

u(t) F(a + 1){A(/,) e’*t+ A(/x) e-*’ + O(e-2’)}(6.13)

as + c, where

F(i/x)2-i
(6.14) A,-= A, (/x) F[1/2(a +/3 + 1 + i/x)]F[1/2(c -/3 + 1 + i/x)]

and the bar in (6.13) denotes the complex conjugate; cf. [7, eqns. (2.17) and (2.18)].
Comparing (6.11) and (6.13), we conclude that u(t)= t(t) if we choose

C F(a + 1)/xA(/z), c2= F(a +
and, consequently, we obtain from (6.6) and (6.7).

(6.15) u(t) 2r( + 1)lA(z)l{cos (/xt + 0,)+ e*(t)},

where 0,= 0,(c,/3) denotes the argument of A(/z), i.e.,

A() IA(/)I e i,*

and

(6.16) [e*(t)l<=exp{(4lAl+2lB[) e-2’} 1.

Note that the error term e*(t) is exponentially decaying in t. Indeed, we have

(6.17) e*(t)=O(e-2t)
as t+c. Direct computation from (6.14) shows that 0,(1/2, 1/2)= 0,(1/2,-1/2)=-r/2 and

1/2) -1/2) o.



1648 R. WONG AND Q.-Q. WANG

To derive an asymptotic formula for the zeros t,,s for large values of s, we will
make use of the following corollary of Theorem A stated in [5].

TnzOgEM B. In the interval [ncr-- p, nTr- 0 + p], where p < 7r/2, supposef(t)
sin + ) + t), f( t) is continuous, and E max e(t)l< sin p. en there exists a zero
c off(t) in the interval such that [c-(n-)lEp csc p.

To apply this result, we rewrite (6.15) in the form

(6.18) u(t)=2F(a+l)lA()l{sin(t+O+)+e*(t)},
and we take =0,+/2 and p=/4. For satisfying s-O,-t
s-O-/4, we have from (6.16),

(6.19) e*(t)lexp {(41A+21BI) e-(-,-’/}-l.
Note that if A B 0, then e*(t) 0; cf. [7, eqn. (2.11)]. Since 2 > I/In (1 + 1/), to
have the right-hand side of (6.19) bounded by sin (/4)= 1/, we require

(6.20) s- 0,- e In (41A + 2181)

Fuhermore, since ex- 1 xe, coupling (6.19) and (6.20) gives

(6.21) E max le*(t)l 1.7072(4[A1 + 21hi) L.
From Theorem B, it follows that u(t) has a zero t,. such that

8%3(41AI+21Nl) e-(s-"-/"Z

for all integers s satisfying (6.20). In paicular, we have

-+o(

as s. Note that (6.23) agrees with the exact results: t., s/ when ,
and .,. (s-)/ when = =-.

elegets. The authors would like to thank the referees for a careful
reading of this paper and several helpful suggestions, and they are also grateful to one
of the referees for pointing out an error in an earlier version.
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